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1. flF1'ETIM

This paper is concerned with the statistical assessment of dependency

beyond autocorrelation in the context of nonlinear time series models. The

central theme is that residuals from models fitted according to

inapplicable linearity assumptions can also profitably be used for further

- analysis beyond linearity. A well known property of linear time series

residuals is that they are uncorrelated; in the context of linear models

they should also be independent, apart from the effects of parameter

estimation with short series. However, in the context of nonlinear models

it is not often recognised that uncorrelated residuals also hold

information concerning higher order dependence in the data. Developments

of such a higher order residual analysis will be explored here, in

-. particular for two types of nonlinear autoregressive modc'l which have the

usual linear Yule-Walker autoregressive correlation structure. Some higher

order dependency correlations will be obtained. In a companion paper, the

suggestion of reversed residuals will be made, and the analysis given in

this paper will be extended to encompass these reversed residuals.

2. AUTOREGSSIO AND LINEAR AUTOREGRESSIVE RESIDC MS

2.1 Autoregression for Nonlinear models

The standard form of autoregression needs widening for use with

nonlinear models; we consider first the standard form which is explicitly

4 autoregressive in a linear additive way and then several weaker variants.

A stationary time series (Xt) of mean A is assumed. Under the Ltnear

autoregresstue modeL, of order p, the (Xt) satisfy the equation

Xt-AA-l(Xt._ 1-4 )+a 2 ( Xt_2-sA)+. . .+ap( Xtp-)A)+Gt , t-O, tl, *2 .... (2.1)

where the et are independent and identically distributed and ,al,a 2 ... ap

are fiTed parameters. A more general definition of autoregression of order

4 p, could be the Ltnar condtttonaL ezpectatton requirement that
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E(Xt-AIXt-l,Xt-2, .... Xt-p)

- al( Xt_-A)4 2(Xt-2-). .+ap( Xtp-l), t-O, 1, *2... (2.2)

The definition (2.1) implies (2.2) but not vice-versa. Thus this

definition could apply to models which are not of the linear form (2.1),

either because the et are dependent, but still with

E(etXtl1,Xt_ 2 .... Xtp)=O, or because the model has some other structure

altogether. For instance, there are the random coefficient models of

Nicholls and Quinn (1982), the exponenti.al distribution random coefficient

models of Lawrance and Lewis (1981,1984), the discrete distribution random

coefficient models of Jacobs and Lewis(1983), and the gamma-beta random

coefficient models of Lewis (1981).
S

Random coefficient autoregressive models of order p take the general

form
Xt = At(I) Xt_l+At( 2 )Xt_2+...+At(P)Xt-p+Bt, t=O,*l,±2... (2.3)

where the vector of coefficients (It( 1 ),Pt(2 ).... t(P),Bt} is a stationary

vector sequence of independent random variables, and sometimes in addition,

Bt is independent of the random coefficients at time t. It is easy to see

that such models satisfy the linear conditional expectation definition of

pth order autoregression, but are nonlinear. A first order case of the

type (2.3) will be used to illustrate the proposed method of residual

6 analysis of autoregressive nonlinearity.

A further and weaker definition of autoregression is the requirement

that the autocovariances of the (Xt), denoted by (yk), just satisfy

S Yule-Walker linear difference equations of the form,

Yr-alyr _14K2Yr 2 + .. +KpYr p ,  Yr"Y-r , r-l ,# 2 #... ( 2.4 )

for suitable constants a,a 21.....Qp; this will be referred to as

6 YuLe-WaLker autoregresston. It is true for processes which satisfy (2.1)

and (2.2), as may be verified in the usual manner by multiplying Xt by Xt.r

and taking expectations. The reverse is not true, (2.4) does not imply

(2.1) or (2.2). A case In which (2.4) holds but in which (2.1) and (2,2)

.. . ... ... 
. . .



do not, is the product autoregression model of McKenzie (1982), where, with

p-1, E(XtIXtl) is a fractional power of Xt-_I this model will also be used

in Section 4.3 as an ilustration of the proposed residual methods.

A variety of other models can satisfy the Yule-Walker definition of

autoregression, and yet not satisfy the linear conditional expectation

definition. Amongst these are first order Markov chains under fairly

general conditons, and others such as the semi-Markov generated processes

discussed in Cox and Lewis (Chapter 7, 1966) and Lewis (1980). Notice that

we do not define nonlinear autoregressive models in a constructive way.

The class is so wide as to make this impossible; one such class has been

studied by Jones (1979). Rather, we require that the autocorrelations

should satisfy linear equations, similar in structure to those satisfied by

the autocorrelation of linear autoregressive models. In view of this, our

suggested analysis extends, rather than superceeds, conventional methods.

2.2 Definition and Discussion of Linear Autoregressive Residuals

For the analysis of time series data involving models satisfying (2.1),

or (2.2) or minimally (2.3), the use of Ltnear autoregresstve residuaLs of

order p, defined as

Rt( P) - (Xt-M )-al( Xt-l-, )-a2( x-2-A)--..-ap( Xt-p-) (2.5)

is suggested. This suggestion is based on the following theorem, which is

a generalization of a result given in Lawrance and Lewis (1984, Section

7.2) for p-2.

Theorem. Let the stationary process (Xt) satisfy the Yule-Walker type

equations (2.4). Then the linear autoregressive residuals (Rt(P)) defined

at (2.5) are uncorrelated (although not necessarily independent).

Proof. The autocovariances of the residuals (2.5) are

. .* . ..
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COv[Rt(P),Rt+r(P)J = Cov[( Xt-L),Rt+r( P)]-alCov(X t i-),Rt+r(p)]--•

-CpCOV[ (Xt-p-A), Pt r(P) (2.6)

= COv[(Xt-),Rt+r(P)]-alCoV[(Xt- ),Rt+r+l(P)]-...

-QpCOv[(Xt-A),Rt+r+p(P)]. (2.7)

Equation (2.7) follows because the (Xt) process is stationary and

consequently the (Rt(P)) process is stationary. The covariances in (2.7)

need only be considered for positive lag since the autocovariance is an

even function of r. Then the crosscovariances on the right-hand side of

(2.7) are all of the same type and given by

Coy [( Xt- ), Rt~r( P)] - Coy [( xt- ), (( xt+r- )-al( xt+r-1- ). • •-ap( Xt+r-p-A ) }

= Yr-alYr-...-apYrp r=l,2,... (2.8)

Now by the Yule-Walker equations (2.4), the expression (2.8) is zero. Thus

using (2.8) in (2.7)

Cov[Rt(P),Rt+r(P)] = 0 r=*l,*2,..., (2.9)

as was to be proven. The proof is immediate for the linear autoregressive

model (2.1), since Rt(P) - et, and et and Rt+r(P) are by definition

independent.

Note that the linear autoregressive residuals (Rt(P)) will generally

still be dependent though uncorrelated in nonlinear modelling of the (Xt);

with the linear autoregressive model (2.1) the {Rt(P)) will not only be

uncorrelaLed but also independent. Zt ts thts dtfference uhtch wtLL be

expLotled to expLore nonLineartty Ln pth order nonltnear autoregresstue

processes. The dependency attributable to parameter estimation is taken to

be small in the large scale applications we have in mind; indeed, nonlinear

modelling of short series of data may well be hard to justify.

The quantities Rt(P) are autoregressive residuals in the sense that

Rt(P) is the residual of Xt after subtracting off Dit ( P), its best linear

least squares predictor in terms of Xt-l,Xt- 2 ... Xt- p . given by

At ( p ) - +al(Xt-l-)+02(Xt-2-)+"••+ap(Xc-p-)" (2.10)

Thus the residu.als Pt(P)1 give the basic way of taking out the linear
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correlation component in models with pth order autoregression minima]ly of
*': the *Yule-Walker form (2.4). Note too that if the process is

autoregressive in this sense, linear autoregression on terms beyond Xt-p- ,

for example (Xt_p_k-), will yield 0p+k-O, k-l,2.... ; this is a property of

* the linear component being taken out so as to minimize the expected mean

square of the residual Rt(P+k).

A further point worth noting about the residuals Rt(P) concerns their

crosscovariances with the Xt's. In the proof of the theorem it is seen

that Cov[Xt-A,Rt+r(P)] = 0 for r = 1,2..... However, the other half of

these crosscovariances is non-zero.

Exa le: The nonGaussian linear AR( 1) model

* Taking (2.1) with p=l,and p instead of a,, the crosscorrelation of Xt-A and

Rt-r(P) in the AR(1) model is given by

Corr(Xt-L,Rt-r) = (1-p2 )1/2 pr for r=1,2,3.... (2.11)

the superscript has been dropped from Rt-r, as it will be in similar future

use. Note further, that in this case Rt+r is independent of Xt for

r -1,2..... Further use of (2.11) will be made in Sections 3 and 5.

For the use of (Rt(P)) in data analysis, the order p of the linear

aspect of the autoregression needs to have been chosen; any of the

available standard methods may still be used. In addition, of course, the

0 jal,a2,.. .ap need to be estimated; there are at least two convenient

possibilities: (1) the assumption of a linear autoregressive model like

(2.1) and the use of least squares estimation, and (2) a non-model based

0 approach to estimation employing the first p Yule-Walker type equations

(2.4). The latter is suggested here; however, Tjostheim and Paulsen (1983)

recommend (1) when dealing with modest sized samples from linear models, on

account of serious estimation bias with the Yule-Walker estimates. Since

the use envisaged here is primarily with nonlinear models and substantial

sets of data, the superiority of (1) over (2) is not established or
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crucial.

3. ASSFUSMENT OF HIGHER ORDER DEPENDENCE

Since the linear autoregressive residuals (Rt(P)) of (2.5) have zero

covariances when (2.4) holds, but for nonlinear processes need not be

independent, a residual analysis of this nonlinearity can be based on an

assessment of their higher order dependence. To consider what form this

might take, we note that the use of (Xt2) has been suggested by Granger and

Andersen (1978,p.63) for bilinear models, for which many of the simple

cases have zero autocorrelations themselves. The correspondinq initial

suggestion here is, as was briefly illustrated in Lawy ana Lewis

(1984), to use the residuals ((Rt(P))2). Displays can then eis. ' , , be made

of the associated autocorrelation functions, scatter plots, periodograms,

cumtil.tivc periodograms, etc, using standard (second order) tme series

software.

However, the autocorrelations of ((Rt(P))2) are fourth order quantities

in the original series (Xt), which is a double jump from the second order

autocorrelations of the series {Xt}. Such quantities will be very

difficult to handle theoretically with most types of nonlinear model.

The crosscorreLatton function of (Rt(P)) and ((Rt(P)) 2 ) is essentially 3rd

order, but by involving the variance of ((Rt(P))2), also needs some fourth

order joinL woments of (Xt) up to lag p. The necessary calculations of all

these quantities for two nonlinear models will be given in Section 4.

The behaviour of the crosscorrelation function of Rt(P) and {(Rt(P)) 2 )

may be judged against the fact that the (Rt(P)) are tndependent for the

linear autoregressive model of order p, and hence it will be zero except at
I

lag zero. For the random coefficient autoregressive processes considered

in Section 4, the suggested crosscorrelation function will be shown to

posess a useful cut-off propertyi this generalizes the NEAR(2) result given

I j
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in Lawrance and Lewis (1984).

Two rather simpler crosscorrelation quantities can be proposed from

consideration of the zero covariance result of (2.8), and the additional

fact that when the pth order linear autoregressive model holds, Xt and

Rt+r(P) (r=1,2,...) will be independent, and not just uncorrelated.

a. Working in terms of (Xt) adjusted for its mean g, which is better

computationally and often nicer theoretically, the following may be

considered

CorrU(Xt-IL)2 , Rt+r(p)], for r=O,l,2,. (3.1)

Corr[Xt-A,(Rt+r(P))2 ], for r=O*l,+2,... (3.2)

These autocorreIations are not equivalent in the aspects of higher order

0 dependenc.y of th, (Xt) process which they assess. To see this, note that

the covariance corresponding to (3.1) involv'n only third order joint

moments of the form E[(Xt-A)2(Xt+r-i-9)], i=O,+l.,...,±p while the

U covariance corresponding to (3.2) involves additional joint moments of the

form E[Xt-g)(Xt+r-9)(Xt+r-i)], i=O,±l,.....p. Further, the denominator of

(3.2), by needing var((Rt(P)) 2}, is more compli.cated in the higher order

'6'] moments it involves relative to the denominator of (3.1) which needs

var(Rt(P)}. However, both correlations, and particularly (3.1), are more

tractable than the autocorrelations of ((Rt(P))2) or the crosscorrelations

• of (Rt(P)) and {(Rt(P))2).

Exa Ie (Continued from (2.11)): The nonCaun ian linear AR(l) model.

An an illustration of the use of (3.1) and (3.2), for the linear AR(1)

00
model, ((2.1) with p~i and p instead of cq) there are the results

t0 r=-l,-2, .. .

Corr[ (Xt-AA), (Rt_ r )
2] va(X) (3.3)

lskew(X) var(R z)( p3 )pr, r-0,1,...

corr[(Xt-1)2 Rt-r] = (3.4)Iskew( X) -- var !:]'p r=O i
rVar((X-) } " ..1-p

Note the fastex yeoiuetLLc decrease in (3.4) relative to (3.3); (3.4)

contains more higher moment information. The other halves of both these
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crosscorrelation functions are of course zero. Behaviour of this type for

these functions - .ro for r<O and geometric decay for r)O - would suggest

linear modlni with n nkwed marginal distributions or nonlinear models.

Discussion of parallel results for two types of nonlinvar model are given

in section 4.

Th, uno of squaring in the construction of these higher order

deip.ndency measures is recognized as being pragmatic and somewhat arbitary;

it does however lead to expressions involving selected types of simpler

higher order cross moments. The end use of the higher order dependency

mv.i-iuroo. (!.n eithr be exploratory for a given data set, to ascertain

whthor thore is appreciable nonlinearity present, or constructively, to

provide evidence for fitting suitable tyjen of nonlinear model which can

match the observed highr ordor dependency.

Earlier discussion of higher order dependence in nonC.lannian Ltnear

models is givn by Roonblat t. (I980) in t.rma of the bispectrum; aspects of

nonlinearity and higher ordr nixictra are briefly considered in Rosenblatt

(1979).

4

I

I'

* . -,--~*
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4. I D R ONI=R DEP RC'T FOR TNW TIPES OF BUE IN R MODNEL

In this section we obtain properties of the measures of higher order

dependency discussed in the previous section, for two specific types of

nonlinear models. The models considered are autoregressive in the

Yule-Walker sense of (2.4), but not 4ri the linear sense of (2.1).

4.1 Rande. Coefficient Autoregressive Mode s

As already remarked in Section 1, a generalization of the linear

autoregressive model (2.1) is to let the coefficients al,a 2 ,...ap be random

variables. One general class of such models has been discussed by Nicholls

and Quinn (1982) who cite Andell (1976) and articles in the economic

literature. Other classes of models with random coefficients include the

0 discrete distribution models of Jacobs and Lewis (1983) and the exponential

models of Lawrance and Lewis (1981,1984). The class of random coefficient

autoregressive processes to be of interest here is given by

Xt = At(')XtI+At(2 )Xt_2+...+At(P)Xt-p+Bt t0O,±1,±2,.... (4.1)

where (At( 1 ),At( 2 ),...,At(P),Bt} is a stationary vector sequence of

tndependent random variables with E(At( ))=aj for j1l,...,p. The

components of the vectors are not necessarily independent. For example the

discrete distribution models of Jacobs and Lewis (1983) can be written in

this form, and have dependent coefficients, as do the exponential models of

Lawrance and Lewis (1981, 1984). It is easily verified that the process

(4.1) satisfies conditional expectation autoregression (2.2) and thus also

the weaker Yule-Walker definition (2.4); it will also clearly be

0P stationary. Note also that the standard linear autoregressive model (2.1)

is a special case of (4.1) in which the random coefficients are actually

constant.

We now give a characteristic result for this type of process when

" higher order dependency is measured by Corr[Rt(P),(Xt+r-A )2 ] or

Corr[Rt(P),(RPtr(P)) 2 ], assuming that the Rt(P)'s are uncorrelated.

S, - " • ", - "," " " _ " ,. ' _' . , , . , . ' " _ . . 2 - " .. "
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Theorm. With the random coefficient model (4.1),

CorrRt(P),(Xtr-M) 2 ] and Corr[Rt(P),(Rt-r(P)) 2 ] are equal to zero for

r-l,2,....

Proof: Using the definitions (2.5) and (4.1),

Rt(P) - (Xt-A)-Ql(Xt-l-M)-...-ap(Xt-p-A)

= (At(l)-:l)Xt-i + (At( 2 )-a2)Xt-2 + • + (At( p )- a p)xt- p

+ Bt-( l-al...-ap ). (4.2)

On multiplying (4.2) by (Rt-r(P))2 and taking expectations, thus obtaining

Cov[Rt(P).(Rt-r(p) )21, we have a sum of p terms given by

pE E{(At(0)-aj)Xt-j(Rt-r(P) ) 2 }  (4.3)

j=l

* and a last term involving Bt which is clearly zero. Now At(j)-uj is

independent of both the Xt.j and (Rt-r(P)) 2 , for r-l,2,..., which may

S- nevertheless be themselves dependent. Thus the jth term in (4.3) becomes

E(A(J)-xj)E(Xt-j(Rt-r(P)) 2 ) = 0 for r=l,2,...,

since E(A(J))=cj. This completes the proof which clearly includes the

first cross correlation mentioned in the theorem. The proof htghLtghts the

4] fact that tt ts the tndependence of the vector of coefftctents

(A(l),.....At(P),st on preuous Xt's ,,htch creates the effect tn this type

of modeL.

0 The results of the theorem can be used to help validate random coef-

ficient autoregressive models; also useful in this respect are the non-

zero higher order residual crosscorrelations, eg for positive r

Corr[Rt(P),(Rt+r(P)) 2 ]. These have been obtained for the second order

autoregressive exponential process studied in Lawrance and Lewis (1984),

similar results for any first order random coefficient model of the type

(4.1) are given in the next subsection.

It is worth noting that with Gt-r defined as any reasonable function of

(Xtr,Xtrl .... ),a similar argument to that given in the proof shows that

Corr( Rt(P), Gt_r 1-0, r-1,2.... (4.4)



A result of this type is not, however, sufficient to establish, for

instance, that Rt(P) and Rt-r(P) are independent; they are dependent.

The random coefficient autoregressive structure of (4.1) is not a

necessary condition for the results of this section to hold; this may be

illustrated by noting that Corr[Rt(p),(Xtr-,A)2 ] is zero when

C12(r)aE((Xt-)(Xt.r-A )2 ) satisfy the equations

C12(r )-ciC 12 ( r-l )4+2C1 2 ( r-2 )+...+4UpC. 2 ( r-p), r-l, 2......(4.5)

-- The similarity of these equations to standard Yule-Walker equations (2.4)

will be apparent. Thus any process with this property will have

* Corr(Rt(P),(Xt-r-A)2 ] equal to zero for non-negative r.

* 4.2 Higher Order Dependency fer First Order Random Coefficient

Autoregressive Models

The model to be considered is the first order (p-1) case of (4.1), now

to be denoted as
x-Xt-t-+B, t-o, *l,*,.... (4 .6 )

in which At and Bt are independent within and between each t; we also write

a-E(At), ;iE(Xt)( 1-a )-E( Bt).

Many basic mathematical and probabilistic properties of this equation have

been studied by Vervaat (1979). Interest here is restricted mainly to the

residual crosscovariances of (Rt2 ,Rt-r) and [(Xt-) 2 ,Rtr] where Rt is the

0 first order residual given by

t-xt -A-a( xt-1-;L). (4 .7v)

It has been established in Section 4.1 that Cov(Rt,R4tr 2 )-Cov(Rt 2 0Rt+r)-O

* for r-1,2,..., and so now Cov(Rt2,Rt-r) for r-O,1,2,... is obtained

explicitly.

The calculation begins by writing the required covariance as

* Cov( R2, Rtr )- ( (( Xt-g )-a( Xt_l-) ]2[( xt-r- )-a( tr-l-)])

-C21( r)-at2 1(r+l )-2a{Clll( r)-aCl11( r+l )}

+a2 (C21(r-l)-aC21 (r)) (4.8)

* %*ere, as defined just before (4.5),

•~ ~ ~ ~~~~~~~~ "Al. ; :? ::: "> : :~~
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C21(r)E{((xt-L)2( Xt-r-A)) }• Clll( r)-E{((Xt-;)(Xt-l-;L)(Xt-r-;L))]

The higher order triple moment Clll(r) is easily seen to be equivalently

given by aC2 1(r-1), in the present instance, and hence (4.8) becomes,

'" ~C°V( Rt2, Rt-r )-C21( r)-aC2i( r+l )-a2{C21( r-I )-aC21( r))} r-1,2,.. (4.9)

For r-0, with A3-E(Xt-g)3], there is the seperate result

E(Rt3 )-( l+2a 3 )93-3aC21( 1).. (4.10)

The calculation of C21(r) is effected by writing the defining equation

(4.6) in the form
.. Xt-;L+gAt (Xt-l-; )+( u c Bt ).

Squaring both sides, multiplying by Xt-r-A, and taking expectations then

gives

C2 1( r )+2uC( r )-a2C2 I( r-l )+2( Aa2+E( AtBt ) )C( r-i) (4.11)

where

C( r )=Cov( Xt,Xtr )-ara2 , a2mvar( Xt), a2ME( At2 ).

Further simplifications of (4.11) using C(r)=ara2 gives the recursive

equation

C2I(r)=a 2C2l(r-l)+b3ar-l, r-l,2,..., (4.12)
where

b3=2a2( var( At )+Cov( At, St )).

Equation (4.12) has explicit solution

C21(r)-a2rA3+b3 (a2 r-ar)/(a2-a), r-0,l..... (4.13)

Going back to (4.9) for Cov(Rt2 ,Rt-r) and using (4.12), we have finally

Cov( Rt2 , Rt-r )-( a2 +a3a2 -aa22-a2 )C21( r-1)

+(l-a 2+a3-aa2 )b3ar-l, r-1,2..... (4.14)

Thus, (4.14) and (4.13) constitute the explicit solution for the

crosscovariances of the residuals (Rt2,Rt-r)s notice that when At is the

constant a, the case of the standard first order linear model, these

crosscovariances are correctly zero. The NEAR 1) model of Lawrance and

Lewis (1981) specializes (4.6), by having independence within each (At,Bt)

and particular forms for At and St.

If the covariances (4.14) are to be converted to correlations, then

4 V( Rt) a % "r(- Rt) mat be obtaUted. This require. the -2oam tnq
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calculation,

Var(Rtz) - E(Rt') - (E(Rtz)]z (4.15)

*" where

E(Rt z ) - (1 - aZ)a z - Var(Rt), (4.16)

E(Rt 4 ) - (l+a 4 )AL4 - 4aC3 1(l) + 6aZC2 2(l) - 4a 3 C13 (l), (4.17)

* with

A4-E[(Xt-) 4 ], Cij(l)E[Xt-A)i(Xt-l-Is)J], (i,j)-(3,l),(3,2),(l,3).(4.18)

The joint moments in (4.17) were obtained in terms of the first four

moments about the mean of Xt, the first three moments about zero of At and

the first two moments about zero of Bt . These are not reproduced here.

The explicit result for (4.15) was checked numerically against a slightly

different method of computations while being used to obtain the

illustrations given in Figure 1 and 2 for NEAR(l) models.

It was remarked in Section 3, following (3.2) that the

crosscorrelations of (Xt-kL)z and Rt+r(P) can also be useful in assessing

higher order dependence. Tn the present case of first order autoregression

there are the results,

Cov[(Xt-AL)z, Rt-r] = C2 1(r) - a C2 1(r+l), (4.19)

Var(Rt) - (1-az)az, Var[(Xt-A)z)] = E(Xt-&)' -a4. (4.20)

These formula can all be applied to the NEAR(l) model quite simply,

noting that in this case

E(Atr) _ cor, E(Btr) - rl[p+(l-p)br ]
6(4.21)

b- (1-a)3, p - (1-j3)/[l-(1--a)J3].

Figures 1 and 2 give the results of computations of Corr[Rt2 ,Rt-r] and

Corr[(Xt-A)z,Rtr] for the NEAR(l) model. The top left frame of Figure 1 is

the linear .R(l) case for which all cross-correlations apart from lag zero

are zeroi the other three cases in Figure 1 each have zero

crosscorrelations at negative lags, in agreement with the theoretical

results in Section 4.1, but have some non-zero values at the zero and

positive lags. It is evident that the lag zero cross correlations contain
0.
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NEAR(1) RESIDUAL CROSSCORRELATIONS (R(T)*2.R(T-R))
ALPI A-0.Wg. KTA-0.756. C A(I) CASE ALPA-O.g9O. ETAfO.824

I0 -L o,..

0  0

CiN

'-20 -I0 • 0 0 20 '-20 -tO 0 I 20

LAGM~ LAG(R)

ALPHA-0.857. BETA=0.875. PREAR(1) CASE ALP$A=0.758. BETA-0.990. TEAR(1) CASE

00

o I,,I.... l i,, .....

TL

- -20 0 20 -20 -10 0 10 20
LAG(R) .AG(R)

Ftgure I. Four computatton of the crosscorre attons for vartous Lags,

between the Ltnear autoregresstuve restduaL, Rt(P), and (Rt(P))z for the

NEAR(1) process itth p(1)=oj3 heLd constant at 0.75; tn effect the rematntng

free parameter ts beting uarted through tts aLowabLe range.

much of the discriminating information between the four cases; this will be

so for first order autoregressive models in which much of the higher order

dependency is at lag one, and the lag zero cross correlation involves both

third and fourth order aspects of the lag one dependency. For further

information on the TEAR(l) and PREAR(1) cases see Lawrance and Lewis0

(19 1).

Pigure 2 gives Corr[ (Xt-f)zRt-r Ior the same four cases used in

4 Figure 1. The neative lags are again zero for all cases, and hence this

. .-. • • %
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property does not discriminate the linear from the nonlinear cases. Rather

it is the strength of the crosscorrelations at positive lags which performs

this task, albeit less clearly than the croescorrelations of the residuals

and squared residuals.

NEAR(1) RESIDUAL CROSSCORRELATIONS ((X(T)-MU).2.R(T-R))

ALPIA-0.ggg. (TA-0.75. EA R ) CASE ALPHA-O.tO0. SITA-O.524

A d

LAO(R) LAG(R)

MPHA.0 857. BETA-O.875. PREAP(1) CASE ALPHA-O756. ITA-O.990. TEAR( ) CASE

o 0 _ __ _ __ol_ __ _ _

ft a

-20 -0 0 10 0 -S -10 0 10

Fiur 2. Fou coptain of th ,rocre s fo aiosLg

n N

between t~he Lf, nea" autorogressf, s rsduaL, Re(P), and (Xt-A), z for the

MMJL(1) process with p( I)"aA heLd constant at 0.751 i~n effect t~he remninng

o 0

free p trmer tn beng ured through es aL, Lob, range.

0

- . *. .
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4.3 Higher Order Dependency for the Product Autoregreesion Model

Another form of nonlinear autoregressive model, called PAR( i), was

introduced by McKenzie (1982); the basic idea of its construction is to

consider the exponentiation of the standard AR(1) equation. Then its

additive structure becomes multiplicative, and the general form of the

PAR(l) product autoregressive model model is

xt=(Xt-)PBt, t,-o,,*2,... (4.22)

where p is the dependency parameter, 0p<l, and (Bt) is an independent and

identically distributed innovation sequence. McKenzie studies the model

when Bt is chosen so that (Xt) has a gamma marginal distribution, and

obtains several basic results; for instance, that p still represents the
S

lag one autocorrelation and that the autocorrelations in general satisfy

the Yule-Walker first order equations ((2.4) with p-1). It is apparent,

however, that the linear conditional expectation definition of

autoregression (equation (2.4)) is not satisfied because of the power form

implied by (4.22).

As with the first order random coefficient models in Section 4.2, we

consider the first order residual Rt, given by (4.7), and will likewise

determine Cov(Rt 2 ,Rt-r) for r-O,±l,*2,..., noting that for this model these

correlations are non-zero for all lags. We will use the general expression

(4.8) in terms of the third order central moments C2 1 (r) and C1 11 (r), but

this time there is no simple relation between them, and both are needed for

all lags. Also, calculation of C2 1(r) and C111(r) must be in terms of
0

their uncentered components, since these are the quantities which can

immediately be determined from the PAR(l) equation (4.22). The required

uncentered moments will be written as

e2-E( Xt
2 ), e3-E( Xt

3 )

e2(r )-E( Xt 2Xt-r), el 1 1 ( r )-E(XtXtlXt-r) (4.23)

for r-O, tl,±2,..., and there is need to note the special cases,

S-
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e2l(O)e3, e1 ll(O )e 21( 1), ell1 ( 1 )-e21(-l).

All these quantities will be calculated.

First, it is necessary to note the following relations between the

centred and uncentred moments,

C2 1( r)=e2l(r)- 3 -21C(r)-_a 2  (all r)

C1 1 1 (O)-C 2 1 (l), C1 1 (l)-C 2 l(-1) (4.24)

Cjjl(r)=elll(r)-gA3-(C(r)+C(r-l)+C(1)), (r$O,l).

The calculations of e.pr) and e 1 1 1 (r) need to be treated separately

for positive and negative lags, but follow in the same general manner and

will be illustrated by that for e21(r) for positive lags. By iterating the

PAR(l) equation (4.22) r steps backward,

r-1
Xt - Xt-r p(r) a Bt-iPMi

i-O

where p(r)zpr, r-Ol..... Squaring this equation, multiplying it by Xtr

and taking expectations, gives
r-l

e2l(r)-E{Xt-r 2p(r )+ l } a E{Bt_i2p(i)}. (4.25)

i-O

To obtain the expectations in the repeated product, taking the 2p(i)th

power of (4.22), leads to

(xt2p( i))E {xt_,2pp( i))}E {t2p( i ) ,

and hence dropping the unnecossary suffix t, to the result

SE(8 2p(i))E(X2P( i))/E{X2 P(i+l)).

Now (4.25) can be expressed purely in moments of X, as

e2 l(r)-E(X
2 p(r)+l)E(X2 )/E(X2 p(r)). (4.26)

4 To proceed further, invoke a gama marginal distribution for X with density

f (x)aO* 3 x-le-t/r(13), 0, 0),0, X O; (4.27)

this has mean A/B, variance A/Q2, third central moment 2j/9 3, and there is

the kth moment result E(Xk) - r(0+k)/9kr(0). From (4.26) and similar

expressions we then have

\ .
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e21( r) = [3(,3+1 )(,3+2pr)/e 3 , r=1,2.(...
e 3(r) 3+p I r I )(3+p I r I +1 )/e 3 , r=-l,-2,... (4.28)

e[((r) - 3 (,3 +p)(,3+pr-l+pr)/e 3  r=2,3, ...
0L3( 0 +p lrl)( 0++plrl+l)/e

3, r=-l,-2.... (4.29)

with e21 (o), elll(O) and e1jl(1) being given by the special cases of

(4.23). Use of (4.24) gives finally the required expressions

2,3pr/e3 r=0,1,....
C2 1(r) = (pjrI+p2IrI)/e3, r=-l,-2 (4.30)

(r 3(pr+pr+l)/e 3 , r=2,3....Clll(r) = t,{(l+O)plrl+l+p21rl+l-oplrl-1}/e 3  r=1,2,.... (4.31)

All these may be used in (4.8) to obtain the desired Cov(Rt 2 ,Rt-r) for

r=0,±l,±2,...; also the simpler covariance or correlation of (Xt-g) 2 and

Rt-r is easily available from (4.19) and (4.31).

Conversion of these covariances to correlations requires Var(Rtz ) as at

(4.15); the required intermediate results are

94 = 9 03/e',

C 3 1 (l) 313(0j+2)p, C 1 3 (l) = 13(313+(l+p)(2+p))p,

C2 2 (l) = 0 Z+2 3 p+2 j3 (1 3 +2 )pZ. (4.32)

These then give the explicit expression

Var(Rtz) - ((90-1)1z - 4,3(,3+6)pz + 120p 3

+ 0( 9 ,32 3+1 6 )p4-1213ps-43ps }/e 4  (4.33)

Together with Var(Rt) which is simply (l-pZ)1 3 / 5 z, Cov(RtRt-r) can be

converted into Corr(Rtz,Rt-.r).

Figures 3 and 4 illustrate the residual and squared residual cross

correlation for the PAR(l) model. Figure 3 shows how these residual cross

correlations vary over the range of p values from p-0 to p-0.9 for an

exponential marginal distribution. At p-0, the PAR(l) is an IDD process

and the residuals are trivially independent, resulting in the only non-zero

crosscorrelation at lag zero. As the p value increases the dependence

spreads out, most strongly at lag minus one and positive lags. An

interesting feature is the lag zero crosscorrelation which changes from6.
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being strongly positive at p-O to approximately zero at p-0.75, to

moderately negative at p=0.

PAR(1) RESIDUAL CROSSCORRELATIONS (R(T).2.R(T-R))

ft ft* f
TWA, I

I . ft
0 .o,

,,a .a o" 0 0 -'G0 .

' . ot h- ft n IQAl ..........

30 ftC

U 0 0

.........

-20 -0 0 'a i0 -20 -10 ' 10 - - 0 0 20

LA.(R) LAC M] LW0G(R

!Ftg,,re 3. Coinputatons of the restduaL crosscorre~attons, Corr(RtZ,Rtr)

for the PAR(J) modeL. Stnce 0--1 the margtnaL dtstrtbutton ts exponenttaL.

fTe Lg one sertaL correaton ts tncreased from p(l)O.O (upper Left) to

p(J'o.9 (Lower rght).

Figure gives four dierent ga cases of the PAR() residual cross

correlations, all with e-0.75. The gamma shape parameter 13 takes the

values 0.5, 1.0, 2.5 and 10.0; these cases indicate that change in the

g imma parameter cause only modest changes in detail o the cross

correlations.
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PAR(l) RESIDUAL CROSSCORRELATIONS (R(T).2.R(T-R))

S(TA-0.500. RkO-C 750. Th4CTA- 10 BETA-1.000. m40-0.750. THE1A. 1 0

- I I I
fat

ft I
00

ft

o 0 2  -20 0 '0 20

LAG(R) LAG(R)

BETA= 2 500, RHO=0 750, TH.-A= 1 0 BETA= 1 OCO RHO :0 75,
"
'

. 
IFI-A= 1 0

0

go

or a

A. fl I . i ,

-2o - 0 0o 20 -,o 0 1o 2 0
US Q) AG(R)

* Ftgure 4. Conputations of the restdua, crosscorreLat tons, Corr(Rtz,Rt-r)

for the PAR(1 ) model. The p for each case of 0. 75, arid the ftgures

i.L ustrate the effect on the restdual crosscorreat tons of changtng the

i nder j3 of the gamma dtstrtbuton through 0.5, 1.0, 2.5 and 10.0.

5. 0ON IA3IOSK A. for analyzing higher order dependence in nonlinear time
I-

series with pth order autoregressive correlation structure has been

proposed. It utilizes standard uncorrelated linear autoregressive

residuals, and the crosscorrelation function of these residuals and their

squares. The behaviour of this crosscorrelation function has been utilized

for two rather different types of nonlinear model: random coefficient

I
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autoregression and multiplicative autoregression: the behaviour has been

shown to allow discrimination between models in the same class with the

same marginal and autocorrelation structures.

The residuals crosscorrelation function provides a partial analysis of

third order information in the time series; it does not attempt to capture

all third order information, which is the aim of such techniques as

bispectral analysis and which will often be intractable with nonlinear

models. Being based on standard linear residuals, the analysis extends

rather than replaces conventional residual analysis.

Developments of the analysis which focus on the directionality implicit

in many time series are being investigated; reversed residuals assume a

I reversed directionality and allow exploration of the consequences of such

an asssumption.
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