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ABSTRACT A""

The paper considers nonlinear time series whose second order
autocorrelations satisfy autoregressive Yule-Walker equations. The usual
linear residuals are then uncorrelated, but not independent, as would be
- the case for linear autoregressive processes. Two such types of nonlinear
’ model are treated in some detail: random coefficient autoregression and
. multiplicative autoregression. The proposed analysis involves
q crosscorrelation of the usual linear residuals and their squares. This
function is obtained for the two types of model considered, and allows
differentiation between models with the same autocorrelation structure in
the same class. For the random coefficient models it is shown that one
side of the crosscorrelation function is zero, giving a useful signature of
these processes. The non-zero features of the crosscorrelations are
q informative of the higher order dependency structure. In applications this
residual analysis requires only standard statistical calculations, and
extends rather than replaces the usual second order analysis.
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1. INTRODUCTION

This paper is concerned with the statistical assessment of dependency
beyond autocorrelation in the context of nonlinear time series models. The
central theme is that residuals from models fitted according to
inapplicable linearity assumptions can also profitably be used for further <
analysis beyond linearity. A well known property of linear time series
residuals is that they are uncorrelated; in the context of linear models
they should also be independent, apart from the effects of parameter
estimation with short series. However, in the context of nonlinear models
it 1is not often recognised that uncorrelated residuals also hold
information concerning higher order dependence in the data. Developments
of such a higher order residual analysis will be explored here, in
particular for two types of nonlinear autoregressive modal which have the
usual linear Yule-Walker autoregressive correlation structure. Some higher
order dependency correlations will be obtained. In a companion paper, the
suggestion of reversed residuals will be made, and the analysis given in

this paper will be extended to encompasg these reversed residuals.

2. AUTOREGRESSION AND LINEAR AUTOREGRESSIVE RESIDUALS

“; 2.1 Autoregression for Nonlinear Models

-

;Z The standard form of autoregression needs widening for use with

[ nonlinear models; we consider first the standard form which is explicitly

r' autoregressive in a linear additive way and then several weaker variants.

- A stationary time series (Xy)} of mean u is assumed. Under the linear §
} autoregressive model, of order p, the (X} satisfy the equation

}. xt-u-al(xt_l—u)+a2(xt_z—u)+...+ap(xt-p—u)+et, t=0,t1,%2,... (2.1)

! where the ¢ are independent and identically distributed and u,ax;,a2,...,0p

are fired parameters. A more general definition of autoregression of order

L] p. could be the linear conditional expectation requirement that




L
»

»
-

s
.

el

'
P

P——

—
N N

TR VA TN Nl Wy T W W W W W S NE RN e TR TR T O LA A i i oGl SN ari AXihaieuil A e il Wt NI B P A R 1
.

E(Xe—#|Xg-1.Xg~2¢ .. Xg—p)
= a)(Xg—1-M)+ag(Xp—2—k)+. . .+op(Xg-p=H),  t=0,%1,%2,... . (2.2)
The definition (2.1) implies (2.2) but not vice-versa. Thus this
definition could apply to models which are not of the linear foxrm (2.1),
either because the €t are dependent, but still with
E(eg|Xg-1,Xg—2/ .+ +Xg—p)=0, or because the model has some other structure
altogether. For instance, there are the random coefficient models of
Nicholls and Quinn (1982), the exponent:.al distribution random coefficient
models of Lawrance and Lewis (1981,1984), the discrete distribution random
coefficient models of Jacobs and Lewis(1983), and the gamma-beta random
coefficient models of Lewis (1981).
Random coefficient autoregressive models of order p take the general

form

Xe = Ap(1) X +a¢(2)xe_o+. . . +BL(P)X¢_ 4B, t=0,%1,%2,... (2.3)
where the vectoxr of coefficients (At(l),ht(z),..., t(P),Bt) is a stationary
vector sequence of independent random variables, and sometimes in addition,
By is independent of the random coefficients at time t. It is easy to see
that such models satisfy the linear conditional expectation definition of
pth order autoregression, but are nonlinear. A first order case of the
type (2.3) will be used to illustrate the proposed method of residual
analysis of autoregressive nonlinearity.

A further and weaker definition of autoregression is the requirement
that the autocovariances of the (X}, denoted by (¥}, 7just satisfy
Yule-Walker linear difference equations of the form,

Yr=&1Yr-1+%2Yy-2+.. . +apYr-p, Yr=Y-x: r=1,2,... (2.4)
for suitable constants aj,a2,....08p; this will be referred to as
Yule-Walker autoregression. It is true for processes which satisfy (2.1)
and (2.2), as may be verified in the usual manner by multiplying Xy by X¢-p

and taking expectations. The reverse is not true, (2.4) does not imply

(2.1) or (2.2). A case in which (2.4) holds but in which (2.1) and (2.2)
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2N do not, is the product autoregression model of McKenzie (1982), where, with

pP=1l, E(XgIXg-1) is a fractional power of X¢_;s; this model will also be used

in Section 4.3 as an ilustration of the proposed residual methods.

A variety of other models can satisfy the Yule-Walker definition of

p——

autoregression, and yet not satisfy the linear conditional expectation

definition. Amongst these are first order Markov chains under fairly

general conditons, and others such as the semi-Markov generated processes
(] discussed in Cox and Lewis (Chapter 7, 1966) and Lewis (1980). Notice that
we do not define nonlinear autoregressive models in a constructive way.

The class is so wide as to make this impossible; one such class has heen

r

studied by Jones (1978). Rather, we require that the autocorrelations

o
[ ]

should satisfy linear equations, similar in structure to those satisfied by

the autocorrelation of linear autoregressive models. In view of this, our

suggested analysis extends, rather than superceeds, conventional methods.

2.2 Definition and Discussion of Linear Autoregressive Residuals

For the analysis of time series data involving models satisfying (2.1),

{‘ or (2.2) or minimally (2.3), the use of linear autoregressive residuals of
order p, defined as
" a Re(P) = (Xe-p)-ay(Xe-1-p)~02(Ke—2-1)-. . -—Cp( Xt —p=i) (2.5)

is suggested. This suggestion is based on the following theorem, which is

a generalization of a result given in Lawrance and Lewis (1984, Section

w
Ol

7.2) for p=2.

LT T

Theorem. Let the stationary process (Xp) satisfy the Yule-Walker type

equations (2.4). Then the linear autoregressive residuals {Rt(P)) defined

at (2.5) are uncorrelated (although not necessarily independent).

Proof. The autocovariances of the residuals (2.5) are




Cov(Re(P),Re4p(P)]) = Cov[(Xe—u),ResrlP)]-a1Cov[(Xe—1-1),Re4r(P))-...

—apCOV(Xg_p—h ), Re4r(P)] (2.6)
= Cov[(Xg—t),Resr{P)]-a1Covl(Xe—1), Resrs1(P)1-. ..

—apCov((Xg—i),Resrsp(P)1. (2.7)
Equation (2.7) follows because the (Xt} process is stationary and
consequently the (Rt(P)) process is stationary. The covariances in (2.7)
need only be considered for positive lag since the autocovariance is an
even function of r. Then the crosscovariances on the right-hand side of
(2.7) are all of the same type and given by

Cov[(Xe—),Resr(P)] = Cov{(xg-u), ((Xgsr—H)—01(Xg4pr-1-H). . .~0p(Xe4r—p~H)} ]

Yr-ﬂl')/r_l—. . .—apYr..p r=1,2,... . (2 .8)
Now by the Yule-Walker equations (2.4), the expression (2.8) is zero. Thus

using (2.8) in (2.7)
Cov{Re(P),Re4p(P)] = 0 r=t1,%2,..., (2.9)

as was to be proven. The proof is immediate for the linear autoregressive
model (2.1), since Re(P) = ¢, and e and Rg4 (P) are by definition
independent.

Note that the linear autoregressive residuals (Rt(P)} will generally
still be dependent though uncorrelated in nonlinear modelling of the ({Xg}:
with the linear autoregressive model (2.1) the (R¢(P))} will not only be
uncorrelated but also independent. It i3 this difference which will Dbe
exrploited to explore nonlinearity in pth order nonlinear autoregressive
processes. The dependency attributable to parameter estimation is taken to
be small in the large scale applications we have in mind; indeed, nonlinear
modelling of short series of data may well be hard to justify.

The quantities Rt(P) are autoregressive residuals in the sense that
Rt(P) is the residual of Xy after subtracting off ut(P), its best linear
least squares predictor in terms of Xg-1,Xt-2,...,Xt-p. given by

pe(P) = pda)(Xp—y—m)+a2(Xe-2~k)+. . .+ap(Xe—pi). (2.10)

Thus the residuals {R.(P)} give the basic way of taking out the linear
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correlation component in wmodels with pth order autoregression minimally of
the 'Yule-Walker' form (2.4). Note too that if the process is
autoregressive in this sense, linear autoregression on terms beyond Xe-p—is
for example (xt—p—k'#): will yield ap+k-o, k=1,2,...; this is a property of
the linear component being taken out 8o as to minimize the expected mean
square of the residual Rg(P*k),

A further point worth noting about the residuals Rt(P) concerns their
crosscovariances with the Xi¢'s. In the proof of the theorem it is seen
that Cov[Xi¢—u,Re4r(P)] = 0 for r = 1,2,... . However, the other half of
these crosscovariances is non-zero.

Example: The nonGaussian linear AR(1) model
Taking (2.1) with p=l1,and p instead of «;, the crosscorrelation of X.—u and
Re—c(P) in the AR(1) model is given by

Corr(Xg-pm,Re-¢) = (1-p2)1/2 o for r=1,2,3,...; (2.11)
the superscript has been dropped from Ri_,, as it will be in similar future
use. Note further, that in this case Rg4y is independent of X for
r=1,2,... . Further use of (2.11) will be made in Sections 3 and 5.

For the use of (Rt(P)) in data analysis, the order p of the linear
aspect of the autoregression needs to have been chosen; any of the
available standard methods may still be used. In addition, of course, the
M, ®1,%2,...,0p need to be estimated; there are at least two convenient
possibilities: (1) the assumption of a linear autoregressive model like
(2.1) and the use of least squares estimation, and (2) a non—-model based
approach to estimation employing the first p Yule-Walker type equations
(2.4). The latter is suggested here; however, Tjostheim and Paulsen (1983)
recommend (1) when dealing with modest sized samples from linear models, on
account of serious estimation bias with the Yule-Walker estimates. Since

the use envisaged here is primarily with nonlinear models and substantial

sets of data, the superiority of (1) over (2) is not established or
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crucial.

3. ASSESSMENT OF HIGHER ORDER DEPENDENCE

since the linear autoregressive residuals (Rt(P)) of (2.5) have zero
covariances when (2.4) holds, but for nonlinear processes need not be
independent, a residual analysis of this nonlinearity can be based on an
assessment of their higher order dependence. To consider what form this
might take, we note that the use of (xtz} has been suggested by Granger and
Andersen (1978,p.63) for bilinear models, for which many of the simple
cases have 2zero autocorrelations themselves, The corresponding initial
suggestion here 1is, as was briefly illustrated in Law ana Lewis
(1984), to use the residuals ((R¢(P))2}). Displays can then e1s: v be made
of the associated autocorrelation functions, scatter plots, periodograms,
cumulative periodograms, etc, using standard (second order) time series
software.

However, the autocorrelations of ((Rt(P))Z) are fourth order quantities
in the original series (X}, which is a double jump from the second order
autocorrelations of the series (Xg}. Such quantities will be very
difficult to handle theoretically with most types of nonlinear model.
The crosscorrelation function of (R¢(P)} and ((R¢(P))2} is essentially 3rd
order, but by involving the variance of ((Rt(P))z), also needs some fourth
order joinlL moments of (X¢]} up to lag p. The necessary calculations of all
these quantities for two nonlinear models will be given in Section 4.

The behaviour of the crosscorrelation function of Rt(P) and {(Rt(P))z)
may be judged against the fact that the (Rt(P)} are independent for the
linear autoregressive model of order p, and hence it will be zero except at
lag zero. For the random coefficient autoregressive processes considered

in Section 4, the suggested crosscorrelation function will be shown to

posess a useful cut-off property; this generalizes the NEAR(2) result given
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in Lawrance and Lewis (1984).

Two rather simpler crosscorrelation quantities can be proposed from

o A
4
4

consideration of the zero covariance result of (2.8), and the additional

fact that when the pth order linear autoregressive model holds, X; and

———

Re+r(P) (v=1,2,...) will be independent, and not 3just uncorrelated.
Working 1in terms of (X} adjusted for its mean u, which is better
computationally and often nicer theoretically, the following may be
considered

corxr{(Xg—p)2, Re4r(P)], for r=0,t1,%2, ... (3.1)

t Corr{X¢-u, (Re+r(P))2], for r=0tl,%2,... . (3.2)
Thege autocorrelations are not equivalent in the aspects of higher order
L. dependency of the (Xg} process which they assess. To see this, note that

the covariance corresponding to (3.1) involves only third order joint

moments of the form E[(xt—u)z(xt.,,r_i—u)], i=0,+1,...,tp while the
S
a covariance corresponding to (3.2) involves additicnal joint moments of the

3

‘.

: form E[Xe—u)(Xp4yr—B ) (Xg4v-i)), 1=0,%1,...,2tp. Further, the denominator of
b -

: (3.2), by needing var[(Rt(P))z}, i8 more complicated in the higher order
“] moments it 1involves relative to the denominator of (3.1) which needs
var(Re(P)}. However, both correlations, and particularly (3.1), are more

tractable than the autocorrelations of ((Ry(P))2} or the crosscorrelations

of (RelP)} and ((Re(P))2).
Example (Continued from (2.11)): The nonCaussian linear AR(1) model.
E-- As an illustration of the use of (3.1) and (3.2), for the linear AR(1l)
[
[. model, ((2.1) with p=1 and p instead of «aj) there are the results
: 0 r=-1,-2,...
Corr[(X¢-p),(Re-y)?) = (3.3)
var(X) _.3\.r =
[ skew(X) var(Rz)(l e>)p", r=0,1,...
® 0 rt—l,—Z, PR
' : Xe=1)2,Rey] = 3.4
: Corr((Xe=n)“,Re—r] skew(X)-———‘-,-a-E-(-gz‘—“ [l:_e /2 Ly =0, 1 ( )
(Var((X-x)2)172 li+p ’ S

Note the faster geowetric dJdecrease in (3.4) relative to (3.3); (3.4)

containg more higher moment information. The other halves of both these
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crosscorrelation functions are of course zero. Behaviour of this type for
these functions - zaro for r<0 and geometric decay for r»0 - would suggest
linear modoln with skowed marginal distributions or nonlinear models.
Discussion of parallel results for two types of nonlincar model are given
in section 4.

The usne of squaring in the construction of these higher order
dopondency measures is recognized as being pragmatic and somewhat arbitary;
it does however lead to expressions involving selected types of simpler
higher order cross moments. The end use of the higher order dependency
measures  can aithor be exploratory for a given data set, to ascertain
whaothor thare is appreciable nonlinearity present, or constructively, to
provide evidence for fitting suitable typcos of nonlinear model which can
match the observed highar ordor dependency.

Earlier discussion of higher order dependence in nonGaunaian Linear
models is givan by Rosaonblatt (1980) in torms of the bispectrum; aspects of
nonlinearity and higher ordar spactra are briefly considered in Rosenblatt

(1979).
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4, HIGHER ORDER DEPENDENCY FOR TWO TYPES OF NOMLINEAR MODEL

In this section we obtain properties of the measures of higher order
dependency discussed in the previous section, for two specific types of
nonlinear models. The models considered are autoregressive in the
Yule-Walker sense of (2.4), but not “n the linear sense of (2.1).
4.1 Random Coefficient Autoregressive Models

As already remarked in Section 1, a generalization of the linear
autoregressive model (2.1) is to let the coefficients «;,x2,...0p be random
variables. One general class of such models has been discussed by Nicholls
and Quinn (1982) who cite Andell (1976) and articles in the economic
literature. Other classes of models with random coefficients include the
discrete distribution models of Jacobs and Lewis (1983) and the exponential
models of Lawrance and Lewis (1981,1984). The class of random coefficient
autoregressive processes to be of interest here is given by

Xe = Ag(1)xe_1+ae(2)Xg o+, . . +AL(P)Xe _p+Be t=0,%1,%2,..., (4.1)
where (A¢(1),a:(2),...,a(P), By} is a stationary vector sequence of
independent random variables with E(At(j))=aj for 3j=1,...,P. The
components of the vectors are not necessarily independent. For example the
discrete distribution models of Jacobs and Lewis (1983) can be written in
this form, and have dependent coefficients, as do the exponential models of
Lawrance and Lewis (1981, 1984). It is easily verified that the process
(4.1) satisfies conditional expectation autoregression (2.2) and thus also
the weaker Yule-Walker definition (2.4); it will also clearly be
stationary. Note also that the standard linear autoregressive model (2.1)
is a special case of (4.1) in which the random coefficients are actually
constant.

We now give a characteristic result for this type of process when
higher order dependency is measured by Corr[R¢{P),(Xp4y-n)2) or

Corr[Re(P),(Re4 (P))2], assuming that the R¢(P)'s are uncorrelateq.

. .. S e . . . L.

rs a PP SN DR P Y N G S TP L A AT Ca e e

N T W ey eyl
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™heorem. With the random coefficient model (4.1),
Corr[Re(P), (X¢_r-u)2] and Corr{Re(P),(R¢_(P))2] are equal to zero for
r=1,2,....
Proof: Using the definitions (2.5) and (4.1),

Re(P) = (Xp-p)-ay(Xe-1-H)~.. .~0p(Xg—p—H)

= (Ag( 1)y )Xe-1 + (Ag(2)-ap)Xe—p + ... + (AL(P)-ap)Xep
+ Bg-(l-ay...-ap)u . (4.2)

On multiplying (4.2) by (Rt—r( P ))2 and taking expectations, thus obtaining

Cov[Re(P), (Re—(P))2], we have a sum of p terms given by

P .
L E{(At{I)-aj)Xe—5(Re-r(P))2) (4.3)
=1

and a last term involving By which is clearly zero. Now At(j)-aj is

independent of both the X¢-j and (R¢—r(P))2, for r=1,2,..., which may
nevertheless be themselves dependent. Thus the jth term in (4.3) becomes
E(A(T)-ay)E(Xe-3(Re-p{P))2) = 0 for r=1,2,...,
since E( A(j))=aj. This completes the proof which clearly includes the
first cross correlation mentioned in the theorem. The proof highlights the
fact that 1t 1s the 1independence of the vector of coefflclents
(At(l),...,At(P),Bt) on previous Xi's which creates the effect in this type
of model.

The results of the: theorem can be used to help validate random coef-
ficient autoregressive wodels; also useful in this respect are the non-
zero higher order residual crosscorrelations, eg for positive r
Cort[Rt(P),( Rt...r(P))Z]. These have been obtained for the second order
autoregressive exponential process studied in lawrance and Lewis (1984);
similar results for any first order random coefficient model of the type
(4.1) are given in the next subsection.

It is worth noting that with G¢_, defined as any reasonable function of

(Xp-y+Xg—y-1+-..), @ 8imilar argument to that given in the proof shows that

CO!I[Rt(p).Gt—r)'or r=1,2,... . (4.4)
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A result of this type is not, however, sufficient to establish, for
o instance, that Ry(P) and R_,(P) are independent; they are dependent.
The random coefficient autoregressive structure of (4.1) is not a
necessary condition for the results of this section to hold; this may be
illustrated by noting that Corr[Re(P),(X¢_r-p)2] is zero when

C12(xr)=E{(Xg-pu)(Xp-x-i)2) satisfy the equations

DAL S o A
L RIS o v ”
. . .
S - . . .

Cy2(r)=a1Cy2(r-1)+xpCyo(x-2)+.. .MPC].Z( r-p), x=1,2,... . (4.5)

s o
«el,
et
.
. .

The similarity of these equations to standard Yule-Walker equations (2.4)

will be apparent. Thus any process with ¢this property will have

cOrt[Rt(p),(xt—r’#)zl equal to zero for non-negative r.

4.2 Higher Order Dependency fcr Pirst Order Random Coefficient
Autoregressive Models

The model to be considered is the first order (p=l1) case of (4.1), now
to be denoted as
Xg=AgXe-1+B¢, t=0,%1,%2,... , (4.6)
in which Ay and B,y are independent within and between each t; we also write
a=E(A¢ ), W=E(Xg)=(1l-a) lE(B).

Many basic mathematical and probabilistic properties of this equation have
been studied by Vervaat (1979). Interest here is restricted mainly to the

residual crosscovariances of (R¢2,Ry_y) and [(X¢-p)2,Re_y] where Ry is the

first order residual given by
Re=Xt—p-a(Xe-1-H). (4.7)
It has been established in Section 4.1 that Cov(Rg,Rg—y?)=Cov(R¢2,Re4y)=0
0- for r=1,2,..., and 80 now Cov(R¢2,Re_y) for r=0,1,2,... is obtained
explicitly.
The calculation beging by writing the required covariance as
° CoV(Re 2, Re—y )=E( [(Xg—n)-a(Xg—1-4) )2 [(Xp-p—H)-a(Xg—p-1-K)])
=Cy3(r)-aCz1(x+1)-2a(Cy11(r)-aC111(r+1))

+a2(Ccy(x-1)-aCz (x)) (4.8)
® where, as defined just before (4.5),

- R L. ‘w Wt .- . Lt B T - . o - .
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C21( X )=E{( X¢—1)2(Xe—y—1)) . CL1U(E)=E{(Xe—1 )(Xp—1-1 ) Xg—p-1) ) .
The higher ovder triple moment Ci11(xr) is easily seen to be equivalently
given by acCj3(r-1), in the present ingtance, and hence (4.8) becomes,
Cov(ntz,ét_r)=c21(r)—aczl(r+1)—a2(c21(r~1)-ac21(r)), r=1,2,... (4.9)
For r=0, with u3=E[X¢-u)3], there is the seperate result
E(R¢3)=(1+2a3 )u3-3aC2(1).. (4.10)
The calculation of Cy;(r) is effected by writing the defining equation

(4.6) in the form

Xe—u+u=RAe (Xg— 11 )+( WAL+Be ).
Squaring both sides, wmultiplying by X¢—y—#4, and taking expectations then

gives

C21( ¥ )+2uC( ¥ )=aCp) ( T-1)+2( pag+E(AgBy ) )C(r-1) (4.11)
where

C(r)mCov(Xe,Xe-y)=a¥a?, o2avar(Xy), az=E(A¢2).

Purther simplifications of (4.11) using C(r)=afo? gives the recursive

equation
C21(T)=aCz)(x~1)+bzar~1l, r=1,2,..., (4.12)
where
b3=202 (uvar(ag }+Cov(Ag, Bt )}.
Equation (4.12) has explicit solution
Cai1(r)=azfuz+bz(azf-ar)/(az-a), r=0,1,... . (4.13)
Going back to (4.9) for Cov(Rg?,R¢~y) and using (4.12), we have finally

Cov(R¢2,Re—y )=(az+a3ay-aaz2-a2 )Cy3(r~1)

+(1-a2+a3-aa; )bzar-i, r=1,2,... . (4.14)

Thus, (4.14) and (4.13) constitute the explicit solution for the

‘ crosscovariances of the residuals (thoRt-r)l notice that when A, is the
q constant a, the case of the standard first order linear model, these
é’ Crosscovariances are correctly zero. The NEAR(1) model of Lawrance and

(] Lewis (1981) specializes (4.6), by having independence within each (At,Bg)
Y and particular forms for Ay and Bg.

Iv If the covariances (4.14) are to be converted to correlations, then
C Var(Ry) and r(Re?) must be obtained. This requires the £ollowing

.
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calculation, }
var(Rg?) = E(Re*) - (E(Rg2))? (4.15)
where |
E(R¢2) = (1 - a?)0? = var(Re), (4.16)
E(Re%) = (1+a%)uq - 4aC33(1) + 6a2Cp2(1) - 4a3Cy3(1), (4.17)
with

we=E[(Xg-1)?), Ci5(1)=E[Xe-1) (Xe-1-1)31, (1,3)=(3,1),(3,2),(1,3).(4.18)
The joint moments in (4.17) were obtained in terms of the first four
moments about the mean of Xi, the first three moments about zero of Ay and
the first two moments about zero of By. These are not reproduced here.
The explicit result for (4.15) was checked numerically against a slightly
different method of computations while being used to obtain the
illustrxations given in FPigure 1 and 2 for NEAR(1l) models.

It was remarked in Section 3, following (3.2) that the
i crosscorrelations of (Xi¢-pu)2 and Rt.,.r(P) can also be useful in assessing
E- higher order dependence. In the present case of first order autoregression
4 there are the results,

o Cov[(Xt-1)2, Re—y] = C21(r) — a Cpy(r+l), (4.19)

ﬁi var(Ry) = (1-a2)02, var[(Xy—u)2)] = E(Xe-p)* - o4, (4.20)
t These formula can all be applied to the NEAR(1l) model quite simply,
S

y noting that in this case

]

E(AtT) = apf, E(BtF) = ri1(p+(1-p)b¥)
(4.21)

b= (1-a)8, P = (1-8)/(1-(1-a)B].

Figures 1 and 2 give the results of computations of Corr[R¢?,Re-r] and
Corr[(Xp—u)2,Re—y) for the NEAR(1l) model. The top left frame of Figure 1 is
E the linear FAR(1l) case for which all cross-correlations apart from lag zero
-L are zero; the other three cases in Figure 1 each have zero
)

h crxosscorxelations at negative lags, in agreement with the theoretical
results in Section 4.1, but have some non-zero values at the zero and

positive lags. It is evident that the lag zero cross correlations contain
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NEAR(1) RESIDUAL CROSSCORRELATIONS (R(T)s2.R(T-R))

ALPHA=0.999, BETA=0.758, EAR(1) CASE

[ 1]
a4

-09
T

CROSSCORR(R(T)e2,R(T-R))
(]

v T T -y Y "y

4 A A A d A -

CROSSCORR(R(T)e2,R(T-R))

-1.0

ALPHA=0.910, BETA=0.824

2

0.5
T

T — T T g v v

-20 =10 -0 10 -2
LAG(R) LAG(R)
ALPHA=0.857, BETA=0.875, PREAR{1) CASE ALPHA=0.758, BETA=0.990, TEAR(1) CASE

- T T v Ll v L3 L Al 2 L] A 1 T T T T L)
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E } p g L 4
2 v 8 er h
o ] LA &
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- -k i i e 1 A I ° . b

1-20 -0 r q 20 -2 T © W

LAG(R) LAG(R)
Figure 1. Four computation of the crosscorrelations for various lags,

between the linear autoregressive residual, Ry(P), and (R4 (P)}2 for the
NEAR(1) process with p(1)=a3 held constant at 0.75; in effect the remaining

free parameter is being varied through its allowable range.

much of the discriminating information between the four cases; this will be
so for first order autoregressive models in which much of the higher order
dependency is at lag one, and the lag zero cross correlation involves both
third and fourth order aspects of the lag one dependency. For further
information on the TEAR(1l) and PREAR(1l) cases see Lawrance and Lewis
(1981).

Figure 2 gives Corr{(X¢-u)?,Rg-y) for the same four cases used in

Figure 1. The negative lags are again zero for all cases, and hence this
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property does not discriminate the linear from the nonlinear cases. Rather
it is the strength of the crosscorrelations at positive lags which performs

this task, albeit less clearly than the crosscorrelations of the residuals

and squared residuals.

-‘)'."."T“-

10

NEAR(1) RESIDUAL CROSSCORRELATIONS ((X(T)-Mu)e2,R(T-R))

ALPHA=0.999, BETA=0.758, EAR(1) CASE

CROSSCORR((X(T)-MU)e2 R(T-R))
0

v Y Y A4 g °g v
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Flgure 2. Four computations of the crosscorrelations, for various lags

between the Llinear autoregressive residual, R.(P), and (Xg-p)? for the

NEAR(1) process with p(1)=oB held constant at 0.75; in effect the remaining

CROSSCORR((X(T)~Mu)e2, R(T-R))

08

ALPHA=(0.910, BETA=0.824
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“hl......

free parameter is dbeing vartied through (ts allowable range.
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e 4.3 Higher Order Dependency for the Product Autoregression Model

» g a
-

. O

Another form of nonlinear autoregressive model, called PAR(1l), was
introduced by McKenzie (1982); the basic idea of its construction is to

consider the exponentiation of the standard AR(1) equation. Then its

additive structure becomes multiplicative, and the general form of the
PAR( 1) product autoregressive model model is !
Xe=(Xe—1)PBy,  t=0,%1,%2,..., (4.22)

where p is the dependency parameter, 0<p<l, and (By) is an independent and
identically distributed innovation Ssequence. McKenzie studies the model
when By is chosen so that (X¢} has a gamma marginal distribution, and
obtaina several basic results; for instance, that p still represents the
lag one autocorrelation and that the autocorrelations in general satisfy
the Yule-Walker first order equations ((2.4) with p=1). It is apparent,
however, that the linear conditional expectation definition of
autoregression (equation (2.4)) is not satisfied because of the power form
implied by (4.22).

As with the first order random coefficient models in Section 4.2, we
consider the first order residual Ry, given by (4.7), and will 1likewise
determine Cov( thth-r) for r=0,%1,%2,..., noting that for this model these

correlations are non-zero for all lags. We will use the general expression

(4.8) in terms of the third order central moments Cy3(r) and Cy33(r), but
this time there is no simple relation between them, and both are needed for

= all lags. Also, calculation of Cz3(r) and Cj;;(r) must be in terms of

o

; . their uncentered components, 8ince these are the quantities which can
immediately be determined from the PAR(1l) equation (4.22). The required

-

F uncentered moments will be written as

®

ex=E(X¢2),  e3=E(X¢3)
- e21(E)=E(Xe2Xe_p), €112 T )=E(XgXe-1Xe-x) (4.23)

for r=0,t1,t2,..., and there is need to note the special cases,

vy
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e21(0)=e3, e111(0)=ez1(1), e111(1)=ez1(-1).
All these quantities will be calculated.
Pirst, it is necessary to note the following relations between the
centred and uncentred moments,
C21(r)=ez1(x)-u3-2uc(r)-uc? (all r)
C111(0)=C21(1), Cy11(1)=Ca1(-1) (4.24)
Ci11(xr)=e111(r)-pu3-u(C(r)+C{r-1)+c(1)}, (r#0,1).
The calculations of e;;(r) and ej;;(r) need to be treated separately
for positive and negative lags, but follow in the same general manner and
will be illustrated by that for ej)(r) for positive lags. By iterating the

PAR(1l) equation (4.22) r steps backward,
r-1 )
xt = xt-rp(r) I Bt—ip(l)
i=Q
where po(r)=pr,r=0,1,.... Squaring this equation, multiplying it by X¢-p
and taking expectations, gives

r-1
e21( 1 )=E(X¢—2P(T)+1) 1 E(By_32P(1)}, (4.25)
i=0

To obtain the expectations in the repeated product, taking the 2p(i)th
power of (4.22), leads to
g(xt29( i))-a(xt_IZPP( i))g(BtZP( i)y,
and hence dropping the unnecassary suffix t, to the result
E(B2P(1))=E(x2P( 1)) /E(x2P(1+1)),

Now (4.25) can be expressed purely in moments of X, as

e21(x)=E(Xx2P(X)*+1)E(x2)/E(Xx2P(T)}, (4.26)
3
L.
r‘ To proceed further, invoke a gamma marginal distribution for X with density
b
{ £(x)=6PxP~le-€%/r(8), 6,80, x30; (4.27)
b
3

thig has mean B/6, variance B/62, third central moment 28/63, and there is
[‘ the kth moment result E(XK)=r(p+k)/6%Xr(g). Prom (4.26) and similar

[. expressions we then have
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- [Ble+1)(B+2pT ) 03, r=1,2,...
3 e215) = [T ) pep ® 141103, r=-1,-2, ... (4.28)
€ - [B(B+p)(B+pT 14pT )03, r=2,3,...
i 110D = [t lE ] ) prprp E1910/63,  tmtsoa ... (4.29)
- with e23(0), @111(0) and ey17(1) being given by the special cases of
ﬁ (4.23). Use of (4.24) gives finally the required expressions
_ [2pp¥/e3 r=0,1, ..

g Cai(r) = {5(p|rs+pz|r|),ea, r=—1,-2,. (4.30)
-
§ _ [B(pT+pT+l) 03, r=2,3,...

C1u(x) = {a((1+a)p"'+1+92'r'+1-ap‘r|-1)/e3 r=1,2,... (#3D)

- —u

All these may be used in (4.8) to obtain the desired Cov(R¢2,Rg-y) for
r=0,t1,%2,...; also the simpler covariance or correlation of (X¢-u)? and

Ry-y is easily available from (4.19) and (4.31).

,,
. -

Conversion of these covariances to correlations requires var(Re?) as at

(4.15); the required intermediate results are
ug = 9 53/86'

C31(1) = 3B(B+2)p, C13(1) = B(3B+(1+p)(2+p)}p,

s al . - N

Ca2(1) = B2+2Pp+2B(B+2)p2. (4.32)

A
P

TV VY
." 5

These then give the explicit expression

var(Reg2) = ((98-1)B82 - aB(B+6)p2 + 128p°
+ B(9B2-p+16)p*-12pp5-4Bp°) /04 (4.33)

Together with Var(R¢) which is simply (1-p%)8/62, Cov(R¢?,Rt-y) can be

converted into Corr(R¢?,Re-r).
- Figures 3 and 4 illustrate the residual and squared residual cross

correlation for the PAR(1) model. Figure 3 shows how these residual cross

i'. correlations vary over the range of p values from p=0 to p=0.9 for an
E.: exponential marginal distribution. At p=0, the PAR(1l) is an IDD process
E and the residuals are trivially independent, resulting in the only non-zero
. crogscorrelation at lag zero. As the p value increases the dependence
. spreads out, most strongly at lag minus one and positive lags. aAn
\ interesting feature is the lag zero crosscorrelation which changes from

L

r
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being s8trongly positive at p=0 to approximately zero at p=0.75, to

moderately negative at p=0.

PAR(1) RESIDUAL CROSSCORRELATIONS (R(T)s2.R(T~R))
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Figure 3. Camputations of the residual crosscorrelations, Corr(Ry2,Re.p)
for the PAR(1) model. Since pB=1 the marginal distribution is exponential.
The lag one sertal correlation is increased from p(1)=0.0 (upper left) to

p(1)=0.9 (lower right).

Figure 4 gives four different gamma cases of the PAR(1) residual cross
correlations, all with p=0.75. The gamma shape parameter 3 takes the
values 0.5, 1.0, 2.5 and 10.0; these cases indicate that changes in the
gamnma parameter cause only modest changes 1in detail of the cross

correlations.
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PAR(1) RESIDUAL CROSSCORRELATIONS (R(T)#2.R(T-R))
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Ftgure 4. Computations of the residual crosscorrelations, Corr(Ry?,Rg¢-p)
for the PAR(1) model. The p for each case of 0.75, and the figures
illustrate the effect on the residual crosscorrelations of changing the

index B of the gamma distribution through 0.5, 1.0, 2.5 and 10.0.

5. CONCLUSIONS

A methodology for analyzing higher order dependence in nonlinear time
series with pth order autoregressive correlation structure has been
proposed. It utilizes standard uncorrelated 1linear autoregressive
residuals, and the crosscorrelation function of these residuals and their

squares. The behaviour of this crosscorrelation function has been utilized

for two rather different types cf nonlinear wodel: random coefficient
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autoregression and multiplicative autoregression: the behaviour has been
shown to allow discrimination between models in the same class with the

same marginal and autocorrelation structures.

The residuals crosscorrelation function provides a partial analysis of .
third order inforxrmation in the time series; it does not attempt to capture

all third order information, which is the aim of such techniques as

"111‘v 7T ¥ ¥ X

bispectral analysis and which will often be intractable with nonlinear
models. Being based on standard linear residuals, the analysis extends

rather than replaces conventional residual analysis.

‘-

Developments of the analysis which focus on the directionality implicit

in many time 3eries are being investigated; reversed residuals assume a

reversed directionality and allow exploration of the consequences of such

an asssumption.
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