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ABSTRACT
We study the variational problem
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Y =0 on 3R, y*(0) =0, y*(|R]) =1
where ¢* is the increasing rearrangement of Y. An approximate problem is
introduced which involves a variational problem with n free boundaries
(n +* »), Various estimates are established. In particular when Q is
convex it is shown that the solution to the approximate problem is

superharmonic and has bounded gradient.

AMS (MOS) Subject Classification: 35320

Key Words: Queer differential equation, Plasma equation, Variational problem,
Free boundary

Work Unit Number 1 (Applied Analysis)

*Courant Institute of Mathematical Sciences, New York University.

This research was begun while both authors were at the Courant Institute of
Mathematical Sciences where the first author was supported by the U. S.
Department of Energy Contract No. DE~AC02-76ER03077 and the second author was
supported in part by an N.S.E.R.C. of Canada fellowship. Sponsored by the
United States Army under Contract No. DAAG29-80-C-0041. This material is
based vpon work supported by the National Science Foundation under Grant No.
MCS-8210950.

b - L. ~ . . . A PR, . vl
P S S . L VS AR . < el .. - ot ..
i o o PP e AR .. Y .




I A A A e el A S it e S bt i o el S e e

SIGNIFICANCE AND EXPLANATION

\queer differential equations first arose in the work of Harold Grad on
controlled thermonuclear fusion. They relate in particular to models for the
slow adiabatic evolution and resistive diffusion of a plasma. '%£;} are queer
in that she§~share aspects of partial, ordinary and functional differential
equations. In-t;e;préseﬁt~;ork the authors give a new way of thinking of
these equations by relating them to free boundary problems. This is the first
of a series of papers intending to demonstrate that solutions of such a queer
differential equation can be thought of as limits of solutions of free

boundary problems with n-free boundaries. A long term hope is that this work

will complement and further refine existing numerical schemes for finding such

solutions. 4 R
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A NEW APPROACH TO "QUEER" DIFFERENTIAL EQUATIONS

*
Peter Laurence and E. W. Stredulinsky

Introduction.

In this work we study the so called queer differential equations. We introduce a new
approach which gives insight into the types of estimates one can expect and which provides
a setting in which it is hoped they can be rigorously established. 1In this approach we
introduce an approximate problem involving many free boundaries. Exploiting the
asgsociated free boundary conditions and properties of harmonic functions we show that
solutions are superharmonic and satisfy gradient bounds. It appears likely that these
estimates will carry over to the original problem.

Queer differential equations (Q.D.E.s) arise in nuclear fusion research. They were
introduced by Harold Grad as a way of more accurately modeling adiabatic compression (8]
and resistive diffusion (5] of a plasma.

Historically "plasma equations”™ have been studied by many authors. These studies
have essentially involved nonlinear elliptic equations and the associated free boundary
problems. Other models which lead to Q.D.E.'s have been considered by J. Mossino,

R. Temam (10,11}, G. vigfusson [15,16]. The origin of all the plasma equations is the

Grad-Shafranov equation which in 2-dimensions (the case of physical interest) is

2
() Ay = -p* (V) -[5-;—“-}'.

*Courant Institute of Mathematical Sciences, New York University.
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Canada fellowship. Sponsored by the United States Army under Contract No. DAAG29-80-C-
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Here p(y), £(¥) are profile functions related respectively to the pressure and the total
poloidal current (6]. Traditionally p, f have been prescribed.

The work of Harold Grad demonstrates that the quantities which are prescribed by the
dynamics of the plasma are not p(y), f(¥) but rather u(y) and v(y) given

respectively by (see [5])

(2) u(y) = —2-7
(y*")

v = o
where Y = 2 4in the two dimensional case. Here ¢* is the increasing rearrangement of a
function. To recall its definition we first introduce
(3) vy (t) = [{x : w0x) < t}]

(where |E| is the lebesgue measure of E). Then y*(v) is the inverse function of

v More exactly

v

(4) ¥*(v) = inf{s : Vw(s) > v} .
Eliminating p, f from (1) in favor of u and v leads to

(5) Ay = -t (P (V)Y = yu(y) (prt) Y 2pen

- 2t ? - Vi .
Here ¢*' and ¢*" denote the compositions
v"(vv(w(x))) and 0"(Vv(¢(x)))
respectively. From (5) it is clear that in a typical case second derivatives of ¢*
appear. For this reason we propose to study the model equation
(6) Ay(x) = -W"(VW(W(x)))
obtained in 2-dimensions (where Y = 2) from the choice
wy) =Y, vy =0 .

An equation of this form was first considered by R. Temam in {13) where a variational
formulation was given and the existence of a minimizer was established. There the author
considered a domain 2 C K' and imposed the condition ¥ = 0 on 3{. However physically

[{6] what one would like to also prescribe is the difference in ¢ (the flux) between its

-2
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absolute maximum and minimum (here the minimum is zero). This is equivalent to specifying
Y*(0) angd W'(IQ’). We will take
(M vro) =~ 0, y*(lel) = 1.
This is no loss of generality as it is easily checked that (6) is invariant under the
trangformation

V*Ay+c
for constants A, c.

In section 1 of this paper we will begin as in (13] by formulating a variational
principle in 2 (an open set in R') and establishing the existence of a minimizer in a
function class which incorporates (7). We then derive certain estimates for the
minimizer. Obstacles towards obtaining further estimates are the apriori unknown
structure of the level sets and of the set of critical points. Thus, as an attempt to
isolate regularity questions from these we introduce in section 2 a variational problem
within a class of functions with convex level sets. In section 3 we approximate this
problem by an n-shell free boundary problem which makes clearer the separate influences of
the lLaplacian term and the O.D.E. term. Similar problems with one free boundary were
first studied by Acker (1] and Caffarelli and Spruck (3]. In a future paper we intend to
show that a solution of (6) is obtained as a limit of solutions to the approximate problem
as n > o,

In the present paper in section 4 we show that the solution to the approximate
problem is superharmonic and satisfies a gradient bound. Superharmonicity is preserved
under taking a weak limit of such solutions. There is strong evidence that such a limit
is a solution of the Q.D.E. (6) and that the gradient bounds are preserved althcough all
details have not been worked out as of this writing. Recent work of Caffarelli and
Friedman [2]) may make possible the extension of this approach to the nonconvex case.

We would like to thank H. Grad for suggesting this problem and for his warm
encouragement and helpful conversations throughout this work. In addition we would like

to thank L. Caffarelli, A. Friedman, J. Spruck and W. Ziemer for useful conversations.
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1. A Variational Problem and Estimates for its Minimizers

In this section we will introduce a variational formulation for the problem (6).
This is similar to the variational problem considered in [13], however in [13})' boundary
conditions were not imposed on y*. We begin with a brief discussion of the formal
relationship between the Q.D.E. (6) and the variational problem (8,9). We then establish
the existence of minimizers and go on to prove various estimates for stationary solutions
Y of the variational problem. For instance it is shown that ¢* is Lipshitz.

Let £ be an open bounded set in R and define

2 lal 2
(8) J) = [ lvylfax + [ (y*r%av .
h 0
We seek to minimize J(9) over ¥ in
° » [ ]
(9) w={vew 2@ : v ew 20,2, v (0) =0, v(la]) = 1} .

By w!'"2(E) we mean the Sobolev space of square integral functiona on E with square
integral first derivatives and by 31'2(E) we mean the closure of d;(z) in w'2(p).
Clearly we have imposed the boundary condition
vy =0 on 23f.
In addition the consatraints V'(O) =0, v.(|ﬂ|) = 1 are equivalent to specifying the inf
and sup of § to be zero and one respectively. The condition w.(O) =0 is actually
superfluous, see Remark 1.1.
We will now give a brief derivation of the Buler equation for (8,9). The
calculations are somewhat formal but illustrative.
Suppose ¢ is a minimizer or simply a stationary point and y e C2(§3. Let
P, = {x e 2: ¥(x) = ¢}.
Since ¢y e Cz(ﬁ) we have that Q\(pg U p1) is open and consequently
sup ¢ < 1, inf ¢y >0
X K .
for any compact set K C {\(py U py). Given n € CO(Q\(po U py}) we then have

we = +ENneEew for small € and we can carry out the following variation.

-4~
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(10) 0 deawt)|e-o 2‘]sz n ax

1l
+2] V*' < n >'av
0
where
<n> (v =] TV_nT a™ /[ Tﬁ ™!
s(v) v s(v) v
with

s(v) = {x : VW(W(x)) = v}
and ®P~! being n - 1 dimensional surface measure (Hausdorff measure). The second term
on the right hand side of (10) is obtained by using the following formula along with the
agsumption that differentiation with respect to €, v can be interchanged,
%—w+en)'(v) =<n > (v) .
€
€=0 _
This formula can be rigorously derived under the assumption that lvw] ¥ 0 in Q, 1113,
An integration by parts now yields,
(2
J nay ax + | v <n>dav =0
Q 0

which can be expressed after use of the coarea formula (12) as

| nay ax + [ y*o(v_ (y(x))In(x) dx = 0 .
Q Q ¥

Therefore

Ay = —y*" in QMPy U Py) .
It is possible to perform variations involving n's whose support does not lie in

Pg U Py (see remark 1.4). These however bring into play certain boundary terms due to

&

4 the integration by parts in the second term of (10). The interpretation of such terms

L‘ requires an understanding of the set of critical points of the minimizer ¢ and its level
.

3 sets.

1 -5-
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We now present an existence result and various estimates for stationary points of the
varjiational problem. For reasons of clarity we defer the proofs until later.
Theorem 1.1. The infimum of J(y) in W is attained.

Remark 1.1. There is a weak maximum principle for the variational problem in the

following sense. It is not necessary to impose the condition y*(0) = 0, If this
agssumption is dropped from the definition of W, theorem 1.1 remains true and it can be
demonstrated that ¥*(0) = 0 gtill holds for any minimizer V. See the end of the proof
of theorem 1.1 for details.
Remark 1.2. It is not known whether the minimizer is unique in general., It is unique
however in the radial case, see remark 1.5.

We would now like to introduce a regularity result for ¢¥*. To do this we introduce
a function

wie) = [ |vel3ax .
{y<t)

Clearly W is an increasing function. Let dW be the induced Lebesque-Stieltjes
‘l measure. Note that if we interpret ¥ properly (see (12)) it follows from the coarea
L formula that d4dw is absolutely continuous and

aw n-1
—=(t) = [ |9y|an a.e. .
dat {ﬂ-t}

Theorem 1.2. If ¢ is a stationary point for the variational problem (8,9) then

1] + Yy (v

at ) = J(¢y) a.e.

v
and therefore ¢* 1is Lipshitz.

Remark 1.3. The methods of theorem 1.2 apply to the problem of minimizing J(}) over

¥ € W having a given collection of level sets {¢ = t} = H(t). This is reminiscent of a
numerical scheme introduced by Harold Grad (7], see remark 1.6.

In order to present several further estimates we need a general version of the coarea

formula. 1In this respect we discuss averages of Sobolev functions. For f € W"z(ﬂ) let

tid

-f=

v

T

ST e . L. . B a . f g . -
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£ (x) = J £(y)dy
r Br(x)| Br(x)

where B,(x) = {y : |x = y| < r}. Also let A(x), u(x) be the approximate lower and
upper limits respectively of f at x (see [4], 2.9.12) and A(x) = liminf £,.(x),
r+0

u(x) =~ limsup £, (x). It is easily shown that fr + £ in Wl;:(ﬂ). From this it is seen
+>

that fr *rfo pointwise quasi-everywhere, that is everywhere except possibly on a set of

zero Newtonian capacity. let ?(x) = Lim fr(x) where it exists. Clearly

f=f in w,’z(ﬂ). Throughout the r::S of this section the particular representative

(from a w1'2 equivalence class) which we use will be the above limit of averages (which

is defined quasi-everywhere). Using the fact that fr + £ in wl;:(ﬂ) it can be shown
in addition that A(x) = A(x) = u(x) = u(x) quasi-everywhere. Using this, part 14 of
theorem 4.5.9 [7] and the fact that the Newtonian capacity of a set being zero implies

that its HP™1 measure is zero we get the following result,

]
(12) [alvel ~ | [ —ga e
Q o {f=t}

for measurable functions f£,g such that g|Vf| is integrable and f @ W'¢2 (with the
particular representative of f being chosen as above).

Using (12) we can now establish the following lemma.
Lemma 1.1. Let dV,(t) be the Lebesgue Stieltjes measure induced by Vy(t) for
uew' 3@ then

-1 g -
i) avgle) = (ur'(vy(e)nTlae + ) |{u ti}'dsti(t)

i

where th (t) 1is a unit mass concentrated at ty and {ti} is the collection of

i
points t for which |{u = t}| > o,

1) avge) = V)T la™ lae + ascr)
{u=t}

where S(t) = |{u < t} n {|Vu| = 0}|

Iy
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Proof of Remark 1.1 (weak maximum principle). Remove the condition y*(0) = 0 from the

definition of W. The proof of theorem 1.1 still holds. Assume ¢ is a minimizer. Let
v, = max{y,0} .
o
It is easily checked that (w+)' - (W')+. Also y_e H"z(ﬂ) with

TV, = X(ypp) TV 2-e. and V3 e w20, al) witn y2' = X(gerp) ¥t 'are: - Here

Xg = 1 on E and Xg = 0 on the complement of E. Clearly Jyp,) < I unless

v 20 a.e.

Remark 1.4. This weak maximum principle in conjunction with a rescaling leads to the fact

that W may be replaced by

- ©4,2 1.2
(13) Ww={pew ') : yr ew ‘0,0, veiitt]) »

without altering the infimum of J.

Remark 1.5. In the case when {I is a ball the variational problem has only one radial

stationary point. This is in fact the unique minimizer. To see this let
2= {x : [x| < R} and assume y(x) = f£(|x|) is a stationary point. The problem is
eagily reduced to considering an appropriate O.D.E., for which there is a unique solution
satisfying
£ (r) = -3 e ™+ (nw HTH
where wn is the measure of the unit ball in R'. By using symmetrization (which leaves

y* fixed) we see that any minimizer must be radial and therefore unique.

Proof of Theorem 1.2. let We = feow where fc(x) = x + eh(x), h e 53(0,1) and € is

small enough that ¢h' < 1 on (0,1]. We have
Voo = £ .
Also f {8 strictly increasing with c' inverse so
vfow(f(t)) = vw(t) .
Consequently
(foy)*(v) = £(y*(v))
and

(foy)*'(v) = £' (y*(v)Iy*'(v) .

-9-
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From this it is seen that

2,012 lal 2 2
Jh) = [ (LTI Tax + [ (£ pr v T v (v Cav .
a ¢ 0 €

It is easily seen that the following formula holds for continuous gq.

la| ,
J gle)aw(t) = [ q(y)|v¢|“ax .
0 h

Therefore

|al ,
[ nteraw(e) = [ n'(y)|vy| “ax .
0 Q

Purthermore if r(v) is increasing and absolutely continuous and g 1is Borel measurable

then (gee [12])

b r(b)
[ atr(v)ir'(mat = |
a r{a)

g(t)at .

To apply this formula we introduce the following device. Let

+ -

vit) +V (t)
v -y
Vv(t) 2

where vw(t+), vw(t') represent the limit of v* from the right and left respectively.
We then have

Vver(v) = w"ﬁvw-(v))) a.e.
since off of a countable set either both sides are zero or

v = V“w-(v)) .

Consequently letting r(v) = y*(v), g(t) = h'(t)¢"(;¢(t)) in this formula we get

-10-
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[ ntesenvrt(nav = [ nige v e
0 0

1
- [ R(EINST (Vo (E))ae .

0
Therefore
1
0 = [ nhr(t)(aw(e) + VeV, (E))at)
0
and
(14) aW(t) + ¥*'(V (E))at = C a.e. .

Clearly y* is Lipshitz since d4w(t) » 0. Integrating (14) over (0,1) and reversing the
above argquments leads to
c = J(y).
Remark 1.6. The methods used above are closely related to a more geometrical way of
looking at the variational problem. This approach which we outline below is made use of
in numerical schemes devised by Harold Grad. The relationship between it and the
variational problem (8,9) will remain formal until it can be proved that there are no
intervals on which ¢*' = 0 when ¥ is a minimizer to (8,9).
Lat
Vix) = Vyteix)) .

Clearly -‘7 is determined solely by the level sets of ¥ and thus is a purely geometrical

quantity. Let

Kv) = _ [ lewv]ae™' .
{v(x)=v}
- -_‘ It is possible to show that J(y) is minimized by ¢ satisfying
. 1
9 . * W ——
v =

®
ﬁ- with J(y) being
r
.
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The problem of minimizing (8) can thus be viewed as finding a collection of level sets for

which (15) is minimized.

Proof of Lemma 1.1. By [14] u* @ w'/2(0,a) for any a < |2]. We establish the result

on (0,a) from which the general result follows.
Remove the "flat places™ in the graph of u. That is let {(an,bn)} be the
collection of intervals on which u* 1is constant and define
u* (V) = u*(v)
for V= vy - { (b, - a,) and v e Y(a,,b). U is absolutely continuous and strictly

b _<v
increasing so Pt has absolutely continuous inverse g with

L g'(t) = (F** (g}~ a.e. .
)
T Also

a

ur (V) = u*'(v)

for almost all v e (o,a)\(kkan,bn)), in fact precisely for those v which are Lebesgue

points for the set (O,a)\(g(an,bn)). It is easy to reconstruct V,(t) as the sum of
g and an increasing step function with jumps corresponding to the "flat places” on the
graph of u and so i) follows.

We can conclude ii) from an application of the coarea formula. To see this let

-1
g = xz(t)IVuI s B(t) = (IVuf >0, u<€t)
so that

meer| = [ g|Vulax
Q

[ t X [vu]
e = I I { vu ,0} dﬂn-1d! .
b - minu {u=s} Vu

H But
H

[ ]
d -

-1
0=/ x - |uldx = | ] x - au" 'ae
a {|Vu|=0} o (u=t} {|vu|=0}
-12~
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(16) B ({u=t, [Yu[ = 0}) = 0 a.e.
therefore

t
Vit = I (vul"'an™ " as + [{IVu| = 0, u < ¢}

minu {u=s}
and 1i) followa.
Since by ii) ds(t) contains the singular part of dv,(t), that is (by 1))

L Hu=¢.1|as (v) ,
i ey

it is clear that iii) must hold.
Proof of Propoeition 1.1. Let s(t) = {y=t}. For almost all t we have

f IW' < o, !'P-“[W'tl lv"l = 0}) =0
s(t)

(see {16)) and lemma 3 iii) holding with u = . For such a t choose € such that

[ (vvlae™ ! = en® V(sce))
s(t)

and let

E = {xes(t) s |Vy| < 2¢} .

From this we gee that

2™ Vs(enE) < ™ Vis(t))

8o

= 1(a(t)) < 28" V(E)

but
vy e < lve)]™ N ¢ 2ea™ Ve ™!

s(t)
1

< ae(m™ N (sle)))”

- am™ o™ [ feyla™? .
s(t)

Combining this with theorem 1.2 gives i).

-13=
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We now wish to use the following "isoperimetric inequality”,

n~-1

q

(17 (al - v (en ™ < n"wn"/“H“°'({v = t}) a.e.

¥
where @ is the volume of the unit ball in R'. For smooth ¢ it is a direct
consequence of the standard isoperimetric inequality and the fact that almost all level
o
1,2
sets of § are smooth (Sard's theorem, implicit function theorem). For % € W '“(Q) one

can combine the Sobolev inequality

n-1
{ ‘fzu"/("'”} "< ;‘«.;‘/“‘12 |vu]

with the coarea formula (12) to prove (17).

By (16) we have

'y =t, [Vg| =0) =0 a.e.

so

@ N w=enic [ qwT'a™' [ |vela™' aee.

{y=t} {y=t}

= | IVvl"dn""wm-v"(vv(m)
{y=t}

by theorem 1.2, Now combining this with lemma 1.1 i1ii) and (17) we get

2(n=1) =1

2 2 n
viey) € Jo{1 + n%l (8] v, () }

almost everywhere. We can easily recover 1ii) since y** is zero on (‘1'bi)' the

(v

intervals where ¥* is constant, and if F has measure zero then

e
o v, (o, R} = Jto,|ay] =) (b, - a,)
- v { 1 i
}i (recall the proof of lemma 1.1 i)). From remark 1.5 it can be seen that ii) is sharp if
b? 1 is a ball.
-,
®
a
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®

«“ S -~ o = - PR - - A ~. . . - “ . - A
- . . o -
- e el - - . . B

SRS PR PR WL WAL YD GNP R R S

-
3
‘~
- - - : .. - - - - b
- - . -~ - T .t - . - - - - -+
LIPS I S L AP L & 3 AP AP i e = Y P . ata e ta e onl v Aot o




'I'
-

L)

.

- ——— A

r

g

2. 'The Variational Problem for Functions with Convex lLevel Sets

For a convex domain § we expect minimizers to the variational problem (8,9) to have
nested convex level sets. This motivates us at the present stage to introduce such a
condition as a constraint on the variational problem. The hope is that solutions of the
constrained problem will correspond to solutions of the original problem. This is
justified to some extent by the results to be presented in [9]. For simplicity we
restrict our attention to 2 C R?- This is the case of physical interest.

We will first present the technical setting for the constrained problem and then
prove existence and continuity of solutions.

Let us begin by giving a weak definition for the class of functions with convex level
sets. We have chosen this particular definition since it accomodates the "almost
everywhere defined"” nature of functions in W1'p(ﬂ) and more importantly allows us to
avoid the technicalities associated with "flat places” in the graph of a function, that is
places where level sets have positive measure.

For an open convex set 1 let
(18) Cp = {u e w'""P(Q) : rThere is a dense set {t )}, t, e (dnf v, sup u) and there

are convex sets C, such that u > tn a.e. in C, and

ust ae. in ﬂ\cn} .
In this context it is easy to see what form "“flat places” take. To see this consider a
function u € Cp. Let {t }, {c,} be as in (18). Given t € (inf u, sup u) choose
subsequences {t1,n)' {tz‘n} of (tn) such that tyntt and tantt and let the
associated convex sets be Cq,n* C2,n° It is easy to check that {u = t} Aiffers from
(19) Mte) = @ cy, N e,

2,n

by a set of measure zero. If [{u-t}l >0 then T(t) is a region bounded by the convex

curves

3(Q Cy )y 30V C, ).

i,n n 2,n

1f |{u=t}} = 0 then TI(t) is a convex curve. In the case where t = inf u or

t = sup u one can use C, p, Cy g, respectively to show that {u=t} dQiffers from

-15-




Q\(g Cz,n’ and Q c1,n respectively by a set of measure zero. In the first case a
“flat place” is bounded by 98 and a(g cz,n’ and in the second by 3(Q c,’n).

We can now state the constrained problem as that of minimizing J(y) over wn Cz.
that is
(20) Int{3(¥) : y e wnNC,} .
Theorem 2.1. The infimum in (20) is attained in W NC,.
Remark. Theorem 2.1 is an immediate consequence of the proof of theorem 1.1 and the
following result on the weak closedness of (,.

1
Proposition 2.1. Given y € Cp such that ¢ + ¥ weakly in W ‘Pay, p>1 and

t e (inf y, sup ¢) then there exists a convex set C such that ¢ > t a.e. in C and
vy<t a.e. in f\c.
Corollary 2.1. Cp is weakly closed in w'P(2) for p> 1
In proving proposition 2.1 we need the following lemma. It is actually true that
ut e Wgéﬁ(o:lﬂl) (see [13]) but only the weaker result is needed.
Lemma 2.1. If uew''P(Q), p> 1 then u* is continuous on (0,[a|).
In addition we will prove the following regularity result.
Theorem 2.2. If u € Cz N L7(R) then u is continuous.
Remark. Since 2 C lz, “1.9(9) consists of continuous functions if p > 2.

Proof of Lemma 2.1. Assume u* is discontinuous at v € (0,{R]|). There then exists ty,

t; such that inf u <ty <ty <supu and [{t, Cu< t,}| = 0. Let

1 t>e,
t-t
£(t) = T, ty <t
0 t<t

so f(u) e w'P(Q) and VE(u) = £'(u)Vu a.e. . Since |{t1 <uc t2}| = 0 we have
Vf(u) = 0 a.e. and also f£(u) = f(u) = x{u)t } a.e. (xp equals 1 on F and gzero on
2

Q\F). Since 0 < v < |f] we have [{u> t2)| >0 and |({u ¢ t2}| > 0. Let

-16-
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E = {u < t,}. Using the Sobolev inequality (for 2|l > 0)

J 1o =+ [ olP < cea,|e]) [ |v9IP
Q TET ) ] 4]

with ¢ = f(u) we conclude that
J{u > tz}l =0

which contradicts |{u > t2}| > 0 and we are done.

Proof of Proposition 2.1. Assume vn + ¢ weakly in w"p(ﬂ) and v, e Cp, p> 1.
Chooge a subsequence {still represented by wn) for which v, v ¢ both in Lz(ﬂ) and
pointwise a.e. and W; + y* pointwise a.e.. Given t € (inf u, sup u) we can conclude
by lemma 2.1 and the intermediate value theorem that there exists a v such that

¥*(v) = t. Since #;, ¥* are increasing there is a Vv < || such that

W;(;) »> ¢'(;) > t. Choose t,, C, from the definition of wn e Cp such that t +t

and choose Vn such that v is the largest v satisfying w;(v) = tn. From the

n

monotonicity of W; we have v, < ¥ for large n so

n
le,| > 1al - v > la| - v>o.
Since <, CQ, @ is bounded and C,, 1is convex there exist balls B, C C, with
|Bn| > X >0, A independently of n. By choosing a subsequence and redefining the

balls B, we can assume in addition that they have a common center. Parameterizing acn
using an angle © we can apply Arzela-ascoli to conclude that a subsequence of {3 Cn}
converges unjiformly to 9C for some convex set C. The desired conclusion now follows
easily from the properties of C,, t, (see (18)) and the fact that wn + ¢ pointwise

a.e.. The corollary follows immediately.

Proof of Theorem 2.2. Assume that ¢ € C2 and that we have real numbers ty, tp and

convex sets C,4, C5 such that inf y < t1 < t2 <Csup ¥, ¢ » t, a.e. oOn Cy angd

i
v<t, ace. in Q\Ci. The following calculation will show that 3C,, 3C2 do not
intersect.

Let 4 = aist {3c,, 3c,}. Choose x5 e 3C, such that 4 = dist {x,,3C,}. Let

C(r) be the circle concentric to x5 of radius r. Clearly C(r) Iintersects

-17=-
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{v>¢t,} ana {y < t,} on a aet of positive one-dimensional measure for almost every
r > d. Also for almost all r,y restricted to C(r) is an absolutely continuous

function with (1-dimensional) derivative given by T ¢ V¢ where T is the unit tangent

to C(r). Because of this we have for almost all r > 4 that

tz't1‘ ! T'Vﬂd!i1
A(r)

for some arc A(r) CcC(r) N Q. Therefore

2
(t. - t.)
r cring

and integrating with respect to r from d to 1 we have

(21) (ty -t log &t < c [ [w]? .
a

Equivalently we have

(22) exp(-(ty - t)72 [ [v9]%) < a .
2

We will now redefine ¢ on a set of measure zero so that its level sets {y = t}
coincide with T(t) (see(19)). (21) then becomes an estimate of the modulus of continuity
of ¥ and we are done.

let t,, C, be as in the definition of ¥ € (,. Let

ro~{xec <t} P o= {xeac;: ¥t} .

Clearly if G = U (E, U Fp) then l6l = 0. Let

sup {tnz x @ Cn} for x €6

: Vix) =
- Yix) otherwise .

It is easily checked that redefining ¢ a.e. in this way forces {;'- t}] =T(c) as

T

required.
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% 3. An Approximating Free Boundary Problem

We now introduce an approximate problem which we will demonstrate to be a free
boundary problem. This is done for several reasons. One, it reqularizes the problem thus
allowing estimates to be made. Two, it is a first step in achieving one of the goals of
section 2, that is to produce a solution to the original variational problem . .ich has

convex level sets. A third advantage to this approach is that it allows us to seperate

the influence of the two terms in J(y).

In the next section we will establish free boundary conditions and present
applications.

The approximation of J(j) 4is achieved by replacing y*' by a difference

quotient. This yields the following functional. Let

n —-<=2

2 . n
(23) I_(w) = [ ||+ ) T
n a =1 N

where A, = {t, , €y < t;}, ¢, = i/F, £ = 1,..., . Clearly [a;] = Volty) = Ve, .
We seek to minimize J_(y) over
n
o
1'2 - *
(24) Fo={vew “@mnc,:v(0)=o0,vlay~1}.
It turns out that J  does not achieve its minimum on F,. What one would expect to be

n

the minimizer will be seen to satisfy ¥*{ oy =1 - !, For this reason we introduce

n
the following two function spaces
4,2 * _ e
e Fo={vew ' "@ANC,:y(0) ~0,1-1/ncy ()<}
o
[ (25)
o
. 1,2 »
r F,={vew ' S(mNnC, v (0)=0}.
- *
;‘ An approximate version of the constraint ¥ (]/Q]) = 1 is embedded in the functional
F. itself. This is demonstrated by the following proposition. Note that as in section 1 the
. .
. constraint ¢ (0) = 0 is superfluous.
[,
: -19-
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Proposition 3.1.

J = inf J ()

weri n

is independent of i, i = 0, 1, 2.

This will be proved in conjunction with the following existence result.

Theorem 3.1. Let J be as in Proposition 3.1. Then J igs minimized on Py, that is

o

there exists wo eF such that J = J_(vo). Also if qﬁ' is minimized by some ¥ €

1
n
Fz(Fz 2 F,), that is J = J_(y) then we can redefine ¢ on a set of measure zero so
n
that ¢ satisfies the following:

i) ¥ is continucus
i1) There are nested convex curves Yye i=1,...,n =1 such that Yy {y= 1/;}
for i =1,...,Ai=-2 and
y_ =aly=1-24

n-1 n

where {y = 1 - 1/n} is a convex set. Consequently
n-1
1i1) ¢ is harmonic in 2\ { U vy, }.
i=1

Proof of Theorem 3.1. We first introduce a simple way of altering a function y € ¥,

with J_(y) ¢ » in such a way that J_ is reduced. To carry this out first note that
n T
J=(y) <= implies that |A,| # 0 so that sup ¥ > 1 - 1/n. Now recall the remarks made

subsequent to the definition of Cp. For each 41 = 1,...,ii= 1 1let cgf&, 3= 1,2 be

the convex sets associated there with t = {/n (if sup y = 1 - 1/ then we only have

(1)

C{f;). Let ¥ be the continuous function which is i/n on Y- an ¢y,

i,n
n
{=1,,..,1 =1, and is harmonic elsewhere. Since Vw is left continuous we have
V_(i/n) = V,(4/n) and therefore J_(¥) < J_(¢). By (3] we see that y e C, so Y eF,

v n n -
as well. A consequence of the above is that if ¢ is a minimizer then y = ¢y a.e. .

This establishes the second part of Theorem 3.1.
We now apply the above methods to proving existence. It is easy to see that there
exists a function ¥, such that J_ (¥)) < ® so0 choose a minimizing sequence (Wn}. A8

-— n —
above replace on by wn' Choose a subsequence such that wn + ¢ weakly in w"z(ﬂ).

-20-
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As in the proof of proposition 2.1 we can choose a subsequence so that the curves Yin),

aasociated as above with ;;, converge uniformly to curves Yy with

o

L.

Yy < 1/; a.e. nutside \f and ¢ > i/; a.e. ingide Yy Let ; be the continuous

function which is i/; on Y, and is harmonic elsewhere. It is clear from the uniform

convergence of the Yin)

that lAi(Vn)I > |A1(E)|. Also
J1981% < [ 1vw)? < um [ vy |2
(]

80 -w- minimizes J_. Clearly ;e w1'2(9), Y*(0) = 0 and ;‘(IM) =1-1/n so
n

v e Fyo

Proof of Proposition 3.1. Clearly

inf 3 > inf J_ > inf J_
Fo n F1 n F2 n
since Fg C Fy C Fp. From theorem 3.1 we know that there exists a minimizer of J_ in
n
Fqy and that if y e ?2 minimjzes J_ over F then y € F1. Therefore
n
inf J_ = inf J_ .

LA n Fz n
To finish we will show that

inf J_< inf J_

Fo n P1 n

by altering the minimizer ¢ whose existence was proved in theorem 3.1.

Let C be the interior of the convex set (¢ = 1-1/n}. Recall |c| = la,l > o.
Since the Newtonian capacity of a point is zero it is easy to construct functions
f, € Cj(C) with sup f, = 1/W such that

[ 19 12 = o™

and |{f = 1/n}| = 0. Now consider ¥, =V + £ . Clearly y_ € Fy and

3 I_(,) = I_(¥) + o(1/n)

n n
so that
[' Lim J_(y ) = I_(y)
o n+*® p n
) and we are done.
. -21-
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4. Free Boundary Conditions and Applications

Having established existence for the approximate problem (23,24) we now go on to
establish the jump conditions across the free boundaries Yy (see theorem 3.1). These
will be applied to show that minimizers ¢ of J_ are superharmonic and satisfy L

n
gradient bounds.

;_ ) The derivation of the free boundary conditions which we give here is formal. Our
first purpose is to shed light on their consequences so we have left the justification of
these formulas to another paper [9].
: We will now formally apply the Hadamard variational principle. The result will be a
formula for how the normal derivative of ¢ jumps across each free boundary Yy

Given i we restrict our variations to £, = Aj U RAj,q- Let Te be a one parameter

family of smooth diffeomorphisms of onto 01 which coincide with the identity map on

i
some fixed neighborhood of ani. Let us denote

e=0

Using the trial function vo'rs we compute the variation of J_.
T

@ wor | =) [%|% e £+ 9T DE .V
de ; € Q ~ ~

€=0 i

-2

-2 -2
+ j (lA1| - IAi+1I )og * 2

A}

where pn is the unit normal to Yy directed into Ay. The first term on the right hand

side may as usual be turned into a divergence and then a surface integral,

-22-
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%* ' %* + being the exterior and interior normals reapectively. As this holds for a
i

“sufficiently large” class of f we have the free boundary condition across Yy being

-2
%% )2 =7 (___l__ - __l__) { =

W ,2
2 2
1 Iyl

(26) (3; Tpeeeyn = 1 .
e

'A1+1

One of t.e main reasons this calculation is formal is that it must be justified that
variations preserving the convex function class W N C2 provide a sufficiently large

collection of functions £ * n. on Y, to conclude (26). This and other considerations

such as smoothness of Y will be dealt with in ([9].

i
We now present the applications of (26).

Theorem 4.1. If ¥ is a minimizer of J on F, then ¢ is superharmonic.
n
Theorem 4.2. If  is a minimizer of J_ on F1 then
n
; -1
v < .
Ive) T

n

Remark. Recall that {y*'| < J(¢) for solutions of the variational problem (8,9) and

that ;'-1/|A_| is the difference quotient corresponding to V¥*'([®|). From this and

n
other considerations we expect that theorem 4.2 will yield an estimate independent of T.

As a precursor to theorems 4.1, 4.2 we present several results on harmonic

functions. ILet A be an open region bounded by two nested nonintersecting convex

curves. Let r, be the exterior curve and P2 the interior curve.

Proposition 4.1. If h is subharmonic in A with h=¢; on T, i =1,2,cy < c, then

1'

|Vh| is nondecreasing along curves of steepest ascent.

-23-
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Remark. A consequence of this result is that h restricted to a curve of steepest
descent (parameterized with respect to arclength) is a convex function. This provides the
intuition that the volume function Vh(t) = |{h<t}| should be convex. This is made
rigorous by the following result.

Proposition 4.2. If h is as in proposition 4.1 then

Vr‘(t) < 0 on (C1,C2) .

From this we conclude that

c, + ¢ c1 + c

1 2
|{c1 <h<¢——s—" | I I B¢ 3

2¢h < cz}' .

Proof of Proposition 4.1. First note that all level curves of h are convex curves

[3]. Given pg € A we can assume without loss of generality that p, = (0,0) and that
(x5,yg) = (0,1) is the outward normal to the level curve of h passing through pj.
Also we can assume that y = g,.(x) gives a local parametrization for level sets
{h = t}. That is
hix,q.(x)) = t
for x,t small. Note that g§(0) = 0, gj(0) < 0. From the chain rule we get
hyx + hyy9t + hyy(qé)z + hyog =0 .
Using 4h > 0 and g3(0) = 0 we have

-h,,, + hyga >0 at pg .

Yy
Also
Vh 2, _ -1,,2 2
T VOI9R]) = 219n]7 (hih  + 2hyehohy, + hoby o)
and
he(pg) = 0, =h, = |Vn]
80

vh 2 2
¢ V(|Vh =~2h h > - "
oy * VR yyy ° "Py%

at Pg-. Since level curves are convex and (0,1) 1is an outward normal we see that

g§(0) < 0. Therefore |Vh| decreases as we go outward along curves of steepest descent,

-24-
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that is in the direction h is decreasing. Phrased differently we say that thl
increases along curves of steepest ascent,

Proof of Proposition 4.2. Recall that ((15], pg. 28) using the coarea formula and the

divergence theorem we get |

vieer = [ lonl e |
{h=t}
and
Vi) = [ Ve (— a’
h {h=t} |vn|2 TVR]

Let k(p) be the curvature of a level set of h at a point p so

vr(e) = ho.2 | Yh e 9(|on]) Thl)
{h=t} |"n| {h=t} |vn|
. sh

-2 k
3 2 °
{h=t} |Vn| {h=t} |Vn|

But Ah » 0 and k » 0 8o we have

VR(t) €0 .
Clearly
v(c1+c2) R V(c1) + V(cz)
s 2 3 .
b But
- e, ¢ h < (g + €072} = Wlleq + c3)/2) = Vyleg)
¢
and
¢ [{te, + €3)/2 € h < e,}| = Wlcy) - Vylley + ¢3)/2)
-
b . so ,{c1 $h<(c, + cz)/z}l > H(c1 +c,)/2 < h< c2}| as required.
[ -
¢
3
b
t -25-
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Proof of Theorem 4.1. Assume Y is a minimizer. To prove that ¢ is superharmonic we

will show that

] WWevnso

Q
for all n € C (2). For simplicity we prove this only for n e c';mi), 1= 1,051,
ni = A{ U Aj,q+ We use the divergence theorem to evaluate the above integral. Since the
free boundary condition is only weakly attained the following calculation is rigorous only
with the addition of a limiting argument. The technical details of such an argqument are

left to [9]). Formally the divergence theorem says that

[ veewma] (|34 - |5
Q2 Yy e

) ndH1 .

3n1

From the free boundary condition we see that the difference of th normal derivatives is

"
¢
5 positive if |A;] > |Ag,q| and negative if |ay] < |Ag4q]. 1In the first case y would
B : be superharmonic in @, and in the second subharmonic. Assume lni(v)l < |A1*1(¢)| 80
b .
that ¢ is subharmonic in ﬂi. Let h be the harmonic function on Qi which agrees

with ¢ on Yi.q and v, .. Clearly Y<h in 91. From proposition 4.2 we have

IAi(h)I > |a,,.(h)] but since § < h the level set {y = i/n} must be surrounded by

i+1
{h = i/n} in which case |A1(¢)| > |A1+1(0)|. But this contradicts our assumption so we

e} (rde "

conclude that IAi(W)l > |a (¢)| and so y is superharmonic.

i+1
h Proof of Theorem 4.2. To establish the gradient bound we use proposition 4.1 and the free
y boundary condition. Given x € A; for some i, consider the curve of steepest ascent

2
which leads from x to aan. By proposition 4.1, |V¢| is nondecreasing along this
curve except across the free boundaries where the decrease is given by the free boundary

condition. Thus we have
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as required.

Remark. The results of this paper except theorem 2.2 have been generalized to n-

dimensions. This will be dealt with to some extent in future papers. In addition some of

[. the results generalize to the variational problems associated with functionals of the type

[al Y
ulp)(yp**) ', Y > 1
0

? [+ o -n7
a Q

where u is smooth and satisfies u » A > 0. This more general class is used in (8] to

model adiabatic compression of a plasma.
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