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ABSTRACT

We study the variational problem

J( = V *12 + J (**' (v))2dv
0

=0 on +*i~(0) 0, **fl,(i) - 1

* where i* is the increasing rearrangement of *. An approximate problem is

introduced which involves a variational problem with n free boundaries

(n + -). Various estimates are established. In particular when 2 is

convex it is shown that the solution to the approximate problem is

superharmonic and has bounded gradient.
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SIGNIFICANCE AND EXPLANATION

Queer differential equations first arose in the work of Harold Grad on

* controlled thermonuclear fusion. They relate in particular to models for the

- slow adiabatic evolution and resistive diffusion of a plasma. They are queer

in that Ahey- share aspects of partial, ordinary and functional differential

equations. In-the-pre nt-work the authors give a new way of thinking of

*' - these equations by relating them to free boundary problems. This is the first

..- of a series of papers intending to demonstrate that solutions of such a queer

differential equation can be thought of as limits of solutions of free

boundary problems with n-free boundaries. A long term hope is that this work

will complement and further refine existing numerical schemes for finding such

solutions.
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A NEW APPROACH TO "QUEER" DIFFERENTIAL EQUATIONS

Peter Laurence and E. W. Stredulinsky

Introduction.

In this work we study the so called queer differential equations. We introduce a new

approach which gives insight into the types of estimates one can expect and which provides

a setting in which it is hoped they can be rigorously established. In this approach we

introduce an approximate problem involving many free boundaries. Exploiting the

associated free boundary conditions and properties of harmonic functions we show that

solutions are superharmonic and satisfy gradient bounds. It appears likely that these

estimates will carry over to the original problem.

Queer differential equations (Q.D.E.s) arise in nuclear fusion research. They were

introduced by Harold Grad as a way of more accurately modeling adiabatic compression [8]

and resistive diffusion (5] of a plasma.

Historically "plasma equations" have been studied by many authors. These studies

have essentially involved nonlinear elliptic equations and the associated free boundary

problems. Other models which lead to Q.D.E.'s have been considered by J. Mosaino,

R. Temam (10,11), G. Vigfusson (15,16]. The origin of all the plasma equations is the

Grad-Shafranov equation which in 2-dimensions (the case of physical interest) is

2(1) = -p'(4') - j-- ---,.
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Here p(), f(d) are profile functions related respectively to the pressure and the total

poloidal current (6]. Traditionally p, f have been prescribed.

The work of Harold Grad demonstrates that the quantities which are prescribed by the

dynamics of the plasma are not p(*), f(#) but rather u(*) and v(#) given

respectively by (see [5])

(2) u($) -

f
v(lI) - $--

where y = 2 in the two dimensional case. Here 4, is the increasing rearrangement of a

function. To recall its definition we first introduce

(3) V*(t) I[x : (x) < tij

(where JEJ is the Lebesgue measure of E). Then #*(v) is the inverse function of

V * More exactly

(4) *(v) - inf{s V (a) v.

Eliminating p, f from (1) in favor of v and v leads to

(5) AY - .j(4)(4*') -y-2*

-1/2 (v21)),14 *, 2 2 v21)

Here *' and **" denote the compositions

*'(V *(*(xII) and *"(VV(4lxl)))

respectively. From (5) it is clear that in a typical case second derivatives of 4,

appear. For this reason we propose to study the model equation

(6) A4-(x) --= *(v((x

obtained in 2-dimensions (where y - 2) from the choice

I I(4M) -1/2, v(,) - .

An equation of this form was first considered by R. Temam in [13] where a variational

formulation was given and the existence of a minimizer was established. There the author

considered a domain 0 C Tn  and imposed the condition 4 = 0 on ag. However physically

[6] what one would like to also prescribe is the difference in 4 (the flux) between its

-2-
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absolute maximum and minimum (here the minimum is zero). This is equivalent to specifying

**(0) and *(lfl). We will take

(7) **(o) -, (j) - 1

This is no loss of generality as it is easily checked that (6) is invariant under the

transformation

+. *+c

for constants A, c.

In section I of this paper we will begin as in (13] by formulating a variational

principle in 9 (an open set in Rn ) and establishing the existence of a minimizer in a

function class which incorporates (7). We then derive certain estimates for the

minimizer. Obstacles towards obtaining further estimates are the apriori unknown

structure of the level sets and of the set of critical points. Thus, as an attempt to

isolate regularity questions from these we introduce in section 2 a variational problem

within a class of functions with convex level sets. In section 3 we approximate this

problem by an n-shell free boundary problem which makes clearer the separate influences of

the Laplacian term and the Q.D.E. term. Similar problems with one free boundary were

first studied by Acker (1] and Caffarelli and Spruck (3]. In a future paper we intend to

show that a solution of (6) is obtained as a limit of solutions to the approximate problem

as n .

In the present paper in section 4 we show that the solution to the approximate

problem is superharmonic and satisfies a gradient bound. Superharmonicity is preserved

under taking a weak limit of such solutions. There is strong evidence that such a limit

is a solution of the Q.D.E. (6) and that the gradient bounds are preserved although all

details have not been worked out as of this writing. Recent work of Caffarelli and

Friedman [2] may make possible the extension of this approach to the nonconvex case.

We would like to thank H. Grad for suggesting this problem and for his warm

encouragement and helpful conversations throughout this work. In addition we would like

to thank L. Caffarelli, A. Friedman, J. Spruck and W. Ziemer for useful conversations.
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1. A Variational Problem and Estimates for its Minimizers

In this section we will introduce a variational formulation for the problem (6).

This is similar to the variational problem considered in (13], however in [13]'boundary

conditions were not imposed on **. We begin with a brief discussion of the formal

relationship between the Q.D.E. (6) and the variational problem (8,9). We then establish

the existence of minimizers and go on to prove various estimates for stationary solutions

of the variational problem. For instance it is shown that * is Lipshitz.

Let Ql be an open bounded set in 30 and define

(8) J(') V*I dxv f +fl (#'') dv
a0

We seek to minimize J(*) over 1 in

(9) W - w (9) e w1"2 (0,11), * (0) - 0, *111) - 1)

By W
1
'
2
(E) we mean the Sobolev space of square integral functions on E with square

integral first derivatives and by W ('2CE) we mean the closure of C(E) in W ('2 (E).

Clearly we have imposed the boundary condition

= 0 on

In addition the constraints *(0) a 0, *(ll) = 
1 are equivalent to specifying the inf

and sup of * to be zero and one respectively. The condition **(0) - 0 is actually

superfluous, see Remark 1.1.

We will now give a brief derivation of the Euler equation for (8,9). The

calculations are somewhat formal but illustrative.

Suppose * is a minimizer or simply a stationary point and * e c2(f). Let
I

Pt= {x f: v(x) = t.

Since P e C2 (6) we have that Q\(p0 u Pl) is open and consequently

sup * < 1, inf * > 0

K K

for any compact set K C Q\(p 0 U pl). Given T1 e C;(Q\(p0 U pl)) we then have

*' = e n Ti e w for small e and we can carry out the following variation.

-4-



( 10* -d3 , 21 V Vn dx

+ 2 f Y*' < n >'dv
0

where

< n > Mv f n dHn-1 If I dH n-1

s(v) s(v)

with

8(v) - {x :VOW(x) - v}

and Hn -1  being n - 1 dimensional surface measure (Hausdorff measure). The second term

on the right hand side of (10) is obtained by using the following formula along with the

assumption that differentiation with respect to c, v can be interchanged,

7C (* + -)*(v)I  = < n > (v)

This formula can be rigorously derived under the assumption that IVpi l 0 in Q, [11].

An integration by parts now yields,

f nh*dx+ "<n > dv- 0
0

which can be expressed after use of the coares formula (12) as

nA* dx + f **-(V*(*(x))lx) dx -0

Therefore

- -ili*- in Q\(P0 U P1 )

It is possible to perform variations involving n's whose support does not lie in

P0 U P1  (see remark 1.4). These however bring into play certain boundary terms due to

the integration by parts in the second term of (10). The interpretation of such terms

requires an understanding of the set of critical points of the minimizer i and its level

sets.

-5-
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We now present an existence result and various estimates for stationary points of the

variational problem. For reasons of clarity we defer the proofs until later.

Theorem 1.1. The infimum of J(*) in W is attained.

Remark 1.1. There is a weak maximum principle for the variational problem in the

following sense. It is not necessary to impose the condition **(0) = 0. If this

assumption is dropped from the definition of W, theorem 1.1 remains true and it can be

demonstrated that **(0) - 0 still holds for any minimizer *. See the end of the proof

of theorem 1.1 for details.

Remark 1.2. It is not known whether the minimizer is unique in general. It is unique

however in the radial case, see remark 1.5.

We would now like to introduce a regularity result for *. To do this we introduce

a function

W(t)- I IV#12 dx

Clearly W is an increasing function. Let dW be the induced Lebesque-Stieltjes

measure. Note that if we interpret # properly (see (12)) it follows from the coares

formula that dW is absolutely continuous and

-t(t) f I IV'IdHn
- a

.e.t ({ -t

Theorem 1.2. If ' is a stationary point for the variational problem (8,9) then

C dW
T + **S (V) J a.e.

and therefore ** is Lipshitz.

Remark 1.3. The methods of theorem 1.2 apply to the problem of minimizing J(*) over

ep e W having a given collection of level sets (1 - t} = H(t). This is reminiscent of a

numerical scheme introduced by Harold Grad (7], see remark 1.6.

In order to present several further estimates we need a general version of the coarea

formula. In this respect we discuss averages of Sobolev functions. For f e W1' 2 (D) let

-6-
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f "W. f(y)dy
r I I r r ( X ) B x )

r

where Br(x) = (y Ix - YJ < r). Also let X(x), U(x) be the approximate lower and

upper limits respectively of f at x (see [41, 2.9.12) and )(x) - liminf fr(x),
r 0

limsup fr(x). It is easily shown that f + f in ' (9). From this it is seen
r O r 1 c

that f r f pointwise quasi-everywhere, that is everywhere except possibly on a set ofr

zero Newtonian capacity. Let i(x) - Lim f (x) where it exists. Clearly
r+0 r

f - f in W '2 (Q). Throughout the rest of this section the particular representative

(from a WI'2 equivalence class) which we use will be the above limit of averages (which

is defined quasi-everywhere). Using the fact that f + f in W 1(6) it can be shown
r n sh

in addition that X(x) = T(x) - p(x) - T(x) quasi-everywhere. Using this, part 14 of

theorem 4.5.9 [7] and the fact that the Newtonian capacity of a set being zero implies

that its Hn- 1 measure is zero we get the following result,

(12) f gjVff _ I f g dHn-1 dt

for measurable functions f,g such that gIvfl is integrable and f e w1 ,2  (with the

particular representative of f being chosen as above).

Using (12) we can now establish the following lemma.

Lema 1.1. Let dVu(t) be the Lebesgue StieltJes measure induced by Vut) for

u e W1'2( ) then

i) dVu(t) - (u*'(Vu(t)))'dt + . l{u = t iId6t (t)

i i

where d6 tt) is a unit mass concentrated at ti and {t i is the collection of

points t for which l{u - tl > 0.

ii) dVu(t) - f VuIdHn-1 dt + dS(t)

(u-ti

where S(t) - (u ti {IVuI 01i

-7-
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Proof of Remark 1.1 (weak maximum principle). Remove the condition 40*(0) - 0 from the

definition of W. The proof of theorem 1.1 still holds. Assume * is a minimizer. Let

K ax(i,,Q

It is easily checked that 1+1" + 1 "1+. Also * + e W ('
2 1) with

V4#+ - X{v)}V* a.e. and ii': 1,2 (0,191) with I'' - X{**,)0 **Ia.e.. Here

=I on E and X. 0 on the complement of Z. Clearly J(*+) - J(*) unless

)0 a.e.

Remark 1.4. This weak maximum principle in conjunction with a rescaling leads to the fact

that W may be replaced by

(13) W - {, e W '2 (a) , e w '2 (0,1l11), *-dal)
without altering the infimum of J.

Remark 1.5. In the case when 0 is a ball the variational problem has only one radial

stationary point. This is in fact the unique minimizer. lb see this let

{x : IxI < RI and assume $(x) - f(Ixl) is a stationary point. The problem is

easily reduced to considering an appropriate O.D.Z., for which there is a unique solution

satisfying

f(r) - -J(*)(nw nrn' + (nw nrn-1)l)

where w is the measure of the unit hall in Ir. By using symmetrization (which leaves
n

* fixed) we see that any minimizer must be radial and therefore unique.

Proof of Theorem 1.2. Let *= f o* where f W) x + h(x), h e c0(0,1) and C is

small enough that ch' < 1 on (0,1]. we have

V*i - f()V41

Also f is strictly increasing with C7 inverse so

Vfo*(f~t)) = V (t)

Consequently

(fo*)*(v) =f(*(v))

and

(fo*)*'(v) -f'(*(v))**'(v)

-9-
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From this it is seen that

V40 = f f.:(*)) 2IV*l2d + 2 ° ()*(v)) 2dve0

It is easily seen that the following formula holds for continuous g.

f g(t)dW(t) _ f g(,)Vl, 2dx
0

Therefore

f h'(t)dw(t) - f h'(,)lV1g 2dx
0

Furthermore if r(v) is increasing and absolutely continuous and g is Borel measurable

then (see [121)

b r(b)
Sg(r(v))r'(v)dt f J g(t)dt

a r(a)

To apply this formula we introduce the following device. Let

V (t+) + V *t)(t) -

where V ,(t+), V(t) represent the limit of V from the right and left respectively.
0 40

We then have

O'(v) 4(V *(#*(v))) a.e.

since off of a countable set either both sides are zero or

v " V(**(v) •

Consequently letting r(v) **(v), g(t) h'(t)*'(v -- ) in this formula we get

-10-
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,W. K .K-V

f h'(*'(v))*'(v)2 dv I I h'(t) **'((
0 0

= f h'(t)l*'CV (t)dt.
0

Therefore

a - f h'(t)(dW(t) + *'(V (t))dt)

0

and

(14) dw(t) + l*(V *(t))dt - c a.e.

Clearly * is Lipshitz since dW(t) O 0. Integrating (14) over (0,1) and reversing the

S above arguments leads to

c - (1').

Remark 1.6. The methods used above are closely related to a more geometrical way of

looking at the variational problem. This approach which we outline below is made use of

in numerical schemes devised by Harold Grad. The relationship between it and the

variational problem (8,9) will remain formal until it can be proved that there are no

intervals on which 1"' - 0 when 1 is a minimizer to (8,9).
~Let

-4

V(X) - V'(*dx))

Clearly V is determined solely by the level sets of 1 and thus is a purely geometrical

quantity. Let

_ K(v) - I IvvldHnI

{V(x)-v}

It is possible to show that J(*) is minimized by 1 satisfying

1
1 + K(v)

with J(#) being

7 -11-
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1 1 ) I + K v ) j
0

The problem of minimizing (8) can thus be viewed as finding a collection of level sets for

which (15) is minimized.

Proof of Lema 1.1. By [14] u* e W1 "2 (0,a) for any a < II. We establish the result

on (O,a) from which the general result follows.

Remove the "flat places" in the graph of u. That is let {(an bn ) be the

collection of intervals on which u* is constant and define

- u*(v)

for = v - . (bn - an) and v e U(abn). u* is absolutely continuous and strictly

b 4v
increasing so It has absolutely continuous inverse g with

g'(t) - (Gi'(g(t)))'1 a.e.

Also

1*' ) u*' (v)

for almost all v e (O,a)\(U(an,bn)), in fact precisely for those v which are Lebesgue

points for the set (O,a)\(Un(anibn)). It is easy to reconstruct Vu(t) as the sun of

g and an increasing step function with jumps corresponding to the "flat places" on the

graph of u and so i) follows.

We can conclude ii) from an application of the coarea formula. To see this let

g XE(t) IVul 1 , x(t) - (jVul > 0, u 4 t)

so that

I[(t)t f g[Vuldx
t Xiulo

ft f {ul"o d~n-lds

minu {u-8} IVU

But

0
o = f X{IVulo IIVuldx f J X{IVuI=OidHn-ldt

-- (u-ti

-12-
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s o 

-
( 116) n ((u - t, IVul 0 }1) - 0 a.e.

therefore

Vu(t) - J f jVu '.-1  d + I{Ivul - 0, u t il
minu {u-s)

and ii) follows.

Since by ii) ds(t) contains the singular part of dVu(t), that is (by i))
[~~t -( t t } ld 6 (t W

i i

it is clear that iii) must hold.

Proof of Proposition 1.1. Let a(t) [ * -t}. For almost all t we have

i IV*I <-, unU(4 ,-t, IV*l - 0)) - o
s(t)

(see (16)) and lemma I iii) holding with u -. For such a t choose e such that

J, IVl, dHn I , cl (at))
s(t)

and let

Z - {xes(t) : Iv.I ( 2C)

From this we see that

2-H nCI(s(t)\E) 4 CH'Is(t))

so

8n-'(,(t)) 4 2Rn-'(E1

but

**(V t)) C( C I ) 4 2E(n- (E))"

8(t)

( 4(H n(s(t)))

4 .n-1 (s(t)))' 2  J 17*IdH'-I

a~t)

Combining this with theorem 1.2 gives I).

-13-
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We now wish to use the following "isoperimetric inequality".

n-I

(17) (Jul - V *Ct)) n( nt w I ln/nHn-I( 0 t) a.e.

where w is the volume of the unit ball in IF~. For smooth #' it Is a directn

consequence of the standard isoperimetric inequality and the fact that almost all level

sets of *' are smooth (Bard's theorem, implicit function theorem). For *e W one

can combine the Sobolev inequality

n-i

f u'n/(n-1) n -C n-1 I/n I lviiin

with the coarea formula (12) to prove (17).

By (16) we have

H n-1D t' iV4,I - 0) - 0 &.a.

so

(H (4-t))) C f IV#.I dEn I IV#ldHn- S.C.

{--t n-

by theorem 1.2. Now combining thia with lea 1.1 111) and (17) we get

2(n-1) -1

n 40

almost everywhere. we can easily recover ii) since **' is zero on (aisbi), the

intervals where 4'* is constant, and if F has measure zero then

* V4 ((0,1)\Ffl - J(0,JQ)j - I (bi -a,

i

(recall the proof of lemma 1.1 iM. From remark 1.5 it can be seen that ii) is sharp if

Qi is a ball.

-14-
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2. The Variational Problem for Functions with Convex Level Sets

For a convex domain 9 we expect minimizers to the variational problem (8,9) to have

nested convex level sets. This motivates us at the present stage to introduc6 such a

condition as a constraint on the variational problem. The hope is that solutions of the

constrained problem will correspond to solutions of the original problem. This is

justified to some extent by the results to be presented in [9]. For simplicity we

restrict our attention to Q C R2* This is the case of physical interest.

We will first present the technical setting for the constrained problem and then

prove existence and continuity of solutions.

Let us begin by giving a weak definition for the class of functions with convex level

sets. We have chosen this particular definition since it accomodates the "almost

everywhere defined" nature of functions in W 1 'P() and more importantly allows us to

avoid the technicalities associated with "flat places" in the graph of a function, that is

places where level sets have positive measure.

For an open convex set 0 let

(181 Cp - {u e W1'P() : There is a dense set in
) , tn e (inf u, sup u) and there

are convex sets Cn such that u p tn A.A. in Cn and

u 4 t a.e. in \C,'. n \ n}

In this context it is easy to see what form "flat places" take. To see this consider a

function u e C . Let {tn}, (C be as in (18). Given t e (inf u, sup u) choose
t) 14. n n

subsequences {t1,n), It2, n ) of {t n such that t1, n + t and t2,n + t and let the

associated convex sets be C1,n , C2,n.  It is easy to check that (u - t) differs from

(19) r(t) ( n ci, )\(U C2,n)

by a set of measure zero. If I{u-t}i 0 then r(t) is a region bounded by the convex

curves

a ( C) 3(U C
n 1,n n 2,n

If I{u-t}l - 0 then F(t) is a convex curve. In the case where t - inf u or

t - sup u one can use C2,n, C1,n respectively to show that {u-t) differs from

-15-
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4

"\(nU C2,n) and C,,, respectively by a set of measure zero. In the first case a

"flat place" is bounded by 32 and 8(U C,) and in the second by 3(n 0
n 2,n 1,

We can now state the constrained problem as that of minimizing J(#) over W C2,

that is

(20) Inf{3(4) % V w rC2} 

Theorem 2.1. The infimum in (20) is attained in W 0C2 .

Remark. Theorem 2.1 is an immediate consequence of the proof of theorem 1.1 and the

following result on the weak closedness of C2.

Proposition 2.1. Given #n e Cp such that #n * * weakly in W 1,P(0), p > 1 and

t e (inf *, sup *) then there exists a convex set C such that * • t a.e. in C and

4 t a.e. in Q\C.

Corollary 2.1. Cp is weakly closed in W1 'P(Q) for p > 1.

In proving proposition 2.1 we need the following leemm. It is actually true that

u- e W (, ) (see (13]) but only the weaker result is needed.

Lemma 2.1. If u e w'P(n), p > I then u* is continuous on (0,101).

In addition we will prove the following regularity result.

Theorem 2.2. If u e C2 ) L (2) then u is continuous.

Remark. Since 0 C R2 , w1 'P() consists of continuous functions if p > 2.

Proof of Lemma 2.1. Assume u* is discontinuous at v e (0,101). There then exists t 1 .

t2 such that inf u < t1 < t2 < sup u and I(t 1 ( u 4 t 2 )I - 0. Let

t >

I t 2

, '. ~so fu) e V'(2) and Vf(u) - f' (uVu e.e. • Since l{t I ( u • t2} -0 we have

•Vf(u) -0 s.e. and also f(u) -f(u) - X~u>t2} a.e. (X, equals I on F and zero on

Q\F). Since 0 < v < Jul we have I~u > t2)I > 0 and J(u t2 )I > 0. Let

-16-
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Z - {u - t2}. Using the Sobolev inequality (for JEl > 0)

2

f l* - f 1j- p 4 C(Q,IEI) I IvIp

with 4 = f(u) we conclude that

l{u > t 2 )1

which contradicts {u > t2}1 > 0 and we are done.

Proof of Proposition 2.1. Assume n * * weakly in W (Q) and 4Pn e C, p > 1.

Choose a subsequence (still represented by 4n) for which 4n * * both in L2 (Q) and
n n

pointwise a.e. and 4 * pointwise a.e.. Given t e (inf u, sup u) we can conclude

by lema 2.1 and the intermediate value theorem that there exists a v such that

4*(v) - t. Since 4, 4, are increasing there is a v 1 1 such thatmn

**(v) #*(v) > t. Choose tnl Cn from the definition of_ 4 n e C such that t * t
n p n

and choose v. such that vn is the largest v satisfying t,5(v) - tn .  From the

monotonicity of 4, we have vn < V for large n so
n f

CnI ) l-v ) 10- >o.

Since Cn C 11, 11 is bounded and Cn is convex there exist balls Bn C Cn with

?I n ) ; > 0, X independently of n. By choosing a subsequence and redefining the

balls Bn we can assume in addition that they have a common center. Parameterizing 3C

using an angle e we can apply Arzela-Ascoli to conclude that a subsequence of (3 C }

converges uniformly to 8C for some convex set C. The desired conclusion now follows

easily from the properties of Cn , tn  (see (18)) and the fact that *n + * pointwise

a.e.. The corollary follows immediately.

Proof of Theorem 2.2. Assume that * e C2  and that we have real numbers ti, t2  and

convex sets CI, C2  such that inf * < tI < t2 < sup t, ti a.e. on Ci and

4# 4 ti a.e. in Q\Ci. The following calculation will show that aC1 , 3C2  do not

intersect.

Let d diet (3 1, ac. Choose x0 e aC, such that d - diet {x 0 ,aC 2 } . Let

C(r) be the circle concentric to x0  of radius r. Clearly C(r) intersects

-17-
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L - W,

( t2} and {* ( t2) on a set of positive one-dimensional measure for almost every

r > d. Also for almost all r,* restricted to C(r) is an absolutely continuous

function with (1-dimensional) derivative given by T * V# where T is the unit tangent

to C(r). Because of this we have for almost all r > d that

t2 - t 1 - f T * V~dH
1

A( r)

for some arc A(r) C C(r) r) Q. Therefore

(t2 - t I c 2Iv12dH

r C(r)CN

and integrating with respect to r from d to I we have

(21) (t2 - t 1 )2 log d-1 4 c J IV*,12

Equivalently we have

* (22) exp(-(t2 - ti) 2 f I*I 2 )  d

We will now redefine 1 on a set of measure zero so that its level sets {# = t)

coincide with r(t) (see(19)). (21) then becomes an estimate of the modulus of continuity

of * and we are done.

Let tn, C, he as in the definition of * e C2 . Let

= x C < t), F {x e \c pt)
.. n n nn

Clearly if G = U (En U rn ] then 1G1 - 0. Let
n

' sup {tn % x • C) for x e G• 'I(x) t

W(x) otherwise

It is easily checked that redefining # a.e. in this way forces { - t) = r(t) as

required.

. -18-
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3. An Approximating Free Boundary Problem

We now introduce an approximate problem which we will demonstrate to be a free

boundary problem. This is done for several reasons. One, it regularizes the problem thus

allowing estimates to be made. Two, it is a first step in achieving one of the goals of

section 2, that is to produce a solution to the original variational problem . .ich has

convex level sets. A third advantage to this approach is that it allows us to seperate

the influence of the two terms in J(*).

In the next section we will establish free boundary conditions and present

applications.

The approximation of J(*) is achieved by replacing **' by a difference

quotient. This yields the following functional. Let

- -2
(23) J(*)f f vT2  ) -j--'n i-I1

where Ai - (ti_ ( < ti}, ti - i/W, i - 1.... Clearly iA? - V*(ti) - V*(tiI)

We seek to minimize J.(*) over
n

(24) F0 - W (a) r) C 2  *(0) - 0, ( 1)

It turns out that J does not achieve its minimum on F0 . What one would expect to be
T

the minimizer will be seen to satisfy li*(10f) -1--. For this reason we introduce
n

the following two function spaces

0 1,2

,- { e w1  (Q) n C2 : *(0) - 0, 1 - 1/n 4 * (Il1) 4 1)

(25)
0°1,

2

r2 - W' e W (g) M C2 : 4(0) 0}

An approximate version of the constraint ( I - 1 is embedded in the functional

itself. This is demonstrated by the following proposition. Note that as in section I the
0

constraint i (0) " 0 is superfluous.

-19-
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Proposition 3.1. J - inf J (4)

*eFi  n

in independent of i, i 0, 1, 2.

This will be proved in conjunction with the following existence result.

Theorem 3.1. Let J be as in Proposition 3.1. Then J_ is minimized on that is

there exists 0 e FI such that J - J_(*0 ). Also if J is minimized by some * e
n W

F2(F 2 D FI), that is J - J_(*) then we can redefine * on a set of measure zero so
n

that 4 satisfies the following:

i) 4 is continuous

ii) There are nested convex curves Yir i - 1,...,W- I such that y= i/n

for i = 1,...,W- 2 and

n-1 n

where { I - - 1/}n is a convex set. Consequently
n-1

iii) 4 is harmonic in Q\ { U ¥iJ"
i=i

Proof of Theorem 3.1. We first introduce a simple way of altering a function e F2

with J_(#) < - in such a way that J_ is reduced. To carry this out first note that
n W

J-(*) < - implies that IAn! 0 0 so that sup I ) 1 - I/n. Now recall the remarks made

subsequent to the definition of C P. For each i .... let C j - 1,2 be

the convex sets associated there with t - i/W (if sup * - I - I/W then we only have

Cin) Let 4 be the continuous function which is i/n on Y, 3( C1 n)e
n

1 - .,n- 1, and is harmonic elsewhere. Since V is left continuous we have

V_(i/n) = V (i/n) and therefore J_(4) ( J_(). By (3] we see that e e C2 so e F 2'pn n

as well. A consequence of the above is that if * is a minimizer then , - * s.e.

This establishes the second part of Theorem 3.1.

We now apply the above methods to proving existence. It is easy to see that there

exists a function #0 such that J_ (*0) < - so choose a minimizing sequence {,n} • Asn1

above replace dn by 4n" Choose a subsequence such that n + weakly in W2(a).

-20-
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(n)As in the proof of proposition 2.1 we can choose a subsequence so that the curves Yi

associated as above with nn* converge uniformly to curves y with

* i/n a.e. -utsIde y and 0 > I/n a.e. Inside Yi. Let * be the continuous

function which is i/n on Y and is harmonic elsewhere. It is clear from the uniform

convergence of the y(n) that IA Also

I Iv*l2 4 fI v*12 4 li_ j IV*n12
0

so * minimizes J-. Clearly ; e W12 (9), **(0) - 0 and 1(IaI) = 1 - 1/n- so
n

e FI.

Proof of Proposition 3.1. Clearly

inf J ) inf J # inf J
F0  n F1  n F2  n

since F0 C F1 C F2 . From theorem 3.1 we know that there exists a minimizer of J. inq n
F1  and that if i e F2 minimizes J- over F2  then * e F1 . Therefore

n

inf J inf J_
F1  n F2 n

To finish we will show that

inf J 4 inf J
F0 n F1  n

by altering the minimizer ' whose existence was proved in theorem 3.1.

Let C be the interior of the convex set € - I-I/n. Recall IC = IAn > 0.

Since the Newtonian capacity of a point is zero it is easy to construct functions

f e c(c) with sup fn - 1/it such that

f IVfnI 2 - o(n-1)

and I{f = I/n)I = 0. Now consider *n = 4 + fn" Clearly n e F0 and

J n= _(4) + o(1/n)
n n

so that
Lim 3_(11n) - (11)

LmJ n J-
4n0. n n

and we are done.
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4. Free Boundary Conditions and Applications

Having established existence for the approximate problem (23,24) we now go on to

establish the jump conditions across the free boundaries yi (see theoiem 3.1). These

will be applied to show that minimizers of J are superharmonic and satisfy L
n

gradient bounds.

The derivation of the free boundary conditions which we give here is formal. Our

first purpose is to shed light on their consequences so we have left the justification of

these formulas to another paper [9].

We will now formally apply the Hadamard variational principle. The result will be a

formula for how the normal derivative of * jumps across each free boundary yi"

Given i we restrict our variations to 0 1 Ai U Ai+ i. Let Te be a one parameter

family of smooth diffeoamorphisms of 9 onto 9] which coincide with the identity map on
ii

O some fixed neighborhood of 3a i Let us denote

3T,
- C-0

Using the trial function *oTC we compute the variation of J
n

-2

+ n (lAiI '2 - I•~I ~

Ti

where is the unit normal to y directed into Ai. The first term on the right hand

5 side may as usual be turned into a divergence and then a surface integral,

-22-
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d. <,,o,.°I -J 2 (PI ,2j f .
n -0 y e i

, i

_-2 -2
+ J n (!A1 -

2 - Ifi+ -) •

Yi

*n n , being the exterior and interior normals respectively. As this holds for a
e i

"sufficiently large' class of f we have the free boundary condition across Yi being

_* 2 34P 2 --2 1 1
(26) N 1 n) - n (- - - ) i- 1,...,n - 1

e) ( i + 1  IA1!

One of te main reasons this calculation is formal is that it must be justified that

variations preserving the convex function class W f C2  provide a sufficiently large

collection of functions f * n. on Y to conclude (26). This and other considerations

such as smoothness of Yi will be dealt with in (9].

We now present the applications of (26).

Theorem 4.1. If t is a minimizer of J_ on F1  then * is superharmonic.
n

Theorem 4.2. If V is a minimizer of J_ on FI then
n

-- 1o

n7

Remark. Recall that i'*'I J(*) for solutions of the variational problem (8,9) and

that n - /AI is the difference quotient corresponding to FI' . From this and
n

other considerations we expect that theorem 4.2 will yield an estimate independent of -.

As a precursor to theorems 4.1, 4.2 we present several results on harmonic

functions. Let A be an open region bounded by two nested nonintersecting convex

curves. Let rI be the exterior curve and r2  the interior curve.

Proposition 4.1. If h is subharmonic in A with h - ci on ri , i - 1,2,c I < c2  then

SIVhI is nondecreasing along curves of steepest ascent.
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Remark. A consequence of this result is that h restricted to a curve of steepest

descent (parameterized with respect to arclength) is a convex function. This provides the

intuition that the volume function Vh(t) = 1{h<t1 should be convex. This is made

rigorous by the following result.

Proposition 4.2. If h is as in proposition 4.1 then

V"(t) ( 0 on (ClC 2 )

From this we conclude that

c1 + c 2  cl + c 2

(h 1 2 2 hc 21

Proof of Proposition 4.1. First note that all level curves of h are convex curves

[3]. Given Po e A we can assume without loss of generality that Po - (0,0) and that

(x0 ,y0 ) - (0,1) is the outward normal to the level curve of h passing through Po
I

Also we can assume that y = gt(x) gives a local parametrization for level sets

th - t. That is

h(x,gt(x)) = t

for x,t small. Note that g6(0) - 0, ga(O) 4 0. From the chain rule we get

+ hxy g + hyy(g,)
2 

+ hygz 0

Using Ah ) 0 and g(0) 0 we have

-hyy + hyg5 ; 0 at PO

Also

Vh "V(lVh 12 = 21Vhl-l(h2 h + 2h h yh + h 2h
77 xxx x yxy y yy

and

hx(pO) = 0, -hy = IVhI

so

• V(lVhl ) = -2h h -

at p0. Since level curves are convex and (0,1) is an outward normal we see that

* ga(O) 0 0. Therefore IVhl decreases as we go outward along curves of steepest descent,

-24-
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that is in the direction h is decreasing. Phrased differently we say that jVh!

increases along curves of steepest ascent.

Proof of PropoeItion 4.2. Recall that ((15], pg. 28) using the coarea formula and the

divergence theorem we get

Vt) f vhI IdHI
{ht}

and

V;(t)_ f Vh ) dHI
{h-t} jVh1 7T

Let k(p) be the curvature of a level set of h at a point p so

vA(t) - / - Vh * V(lVhl)
{h-t} h h-t} jVhj

. Ah 2 k

{h-ti jVh1
3  

{h-ti Vh

But Ah) 0 and k ) 0 so we have

v;(t) 0 0

Clearly

c1+c 2  V(c 1 ) + V(c 2 )

2 2

But

l{c I ( h < (cI + c2)/211 = Vh((cl + c2 )/2) - Vh(cl)

and

1{(c 1 + c2 )/2 4 h c c2 )1 = Vh(c2) - Vh((C 1 + c2 )/2)

so l{c 1 4 h < (cI + c2)/211 J {(cI + c2)/2 4 h < c2}I as required.
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Proof of Theorem 4.1. Assume 4 is a minimizer. To prove that 4 is superharmonic we

will show that

f v4,.v T))o

for all n e C(0). For simplicity we prove this only for n e (fi)1 i - i,. ,n- 1,

=i 
= Ai U Ai+i. We use the divergence theorem to evaluate the above integral. Since the

free boundary condition is only weakly attained the following calculation is rigorous only

with the addition of a limiting argument. The technical details of such an argument are

left to (9]. Formally the divergence theorem says that

f V*v f (1 -1 - 12-1J ndH 1

Ti

From the free boundary condition we see that the difference of th normal derivatives is

positive if IAij • IAi+iI and negative if lAdl ' IAi+1l. In the first case , would

be superharmonic in i and in the second subharmonic. Assume lAi(*)I < IAi+ 1 (#)l so

that 4 is subharmonic in i . Let h be the harmonic function on 0i which agrees

with 4 on yi-i and yi+I" Clearly * ( h in Qi. From proposition 4.2 we have

Ai (h) J i~+j (h)j but since * 4 h the level set (4 = i/n} must be surrounded by

th = i/n) in which case A i(*)l > IAi+ 1C)I. But this contradicts our assumption so we

conclude that JAi(*) I ) lAi+i(*) I and so 4 is superharmonic.

Proof of Theorem 4.2. To establish the gradient bound we use proposition 4.1 and the free

boundary condition. Given x e Ai for some i, consider the curve of steepest ascent

which leads from x to 3A n By proposition 4.1, lV*1 2  is nondecreasing along this

curve except across the free boundaries where the decrease is given by the free boundary

condition. Thus we have

-26-

-

• -. . - . . - . . - . - - -Q° ° . . .



2 ni ~*I(IkkI12 -A 2 )
k-i n1k

an required.

Remark. The results of this paper except theorem 2.2 have been generalized to n-

dimensions. This will be dealt with to some extent in future papers. In addition some of

the results generalize to the variational problems associated with functionals of the type

J V,,2 + ( j) f 101 (L*UY y>I
Li 0

where ui is smooth and satisfies p ?, I > 0. This more general class is used in (8] to

model adiabatic compression of a plasma.
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