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ABSTRACT R
This paper discusses the dispersal of two interacting biological species.

The dispersal - a response to population pressure alone - is modelled by the
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degenerate parabolic system .

ut = [u(u+v)x]x ‘A ;
L <
ve = klv(utv), ], a - o
. @ o
in conjunction with an initial prescription of the individual densities u -
and v together with standard zero-flux boundary conditions. We demonstrate ';3ﬁfv[:fﬂ:’ﬂ
'- '.. T ) -- '- 4

here the following interesting feature of this model: segregated initial data

give rise to solutions which are segregated for all time.
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SIGNIFICANCE AND EXPLANATION

TAI§ dO{.LN\C_ﬂf
»He*considerﬁhera(a mathematical model for interacting biological species

e aw"hors

that disperse as a response to population pressure. We demonstrate here an

interesting feature of the model: species which are initially segregated

remain segregated for all time. ~
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ON INTERACTING POPULATIONS THAT DISPERSE TO AVOID CROWDING:
PRESERVATION OF SEGREGATION

* . Rk . Y *
M. Bertsch , M. E. Gurtin , D. Hilhorst , and L. A. Peletier

1. 1Introduction

Consider two interacting biological species with populations
sufficiently dense that a continuum theory is applicable, and
assume that the species are undergoing dispersal on a time scale
sufficiently small that births and deaths are negligible.
Granted these assumptions, conservation of population requires

that

- u, = -div{ug),

t
(1.1}

Ve ™ =div(vw),

where u(x,t) and v(x,t) are the spatial densities of the
species, while the vector fields gq(x,t) and w(x,t) are the
corresponding dispersal velocities.

We restrict our attention to situations in which dispersal
is a response to population pressure and express this mathematically
by requiring that the dispersal of each of the species be driven
by the gradient V{(u+v) of the total population,l u+v, We

therefore assume that

—
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1For a single species this type of constitutive assumption was

introduced by Gurney and Nisbet [1l], Gurtin and MacCamy (2].
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q= —le(u+v),

(1.2)
w = -kzv(u+v),
with kl,k2 strictly-positivel constants, and this leads to
2
the system
u, = kldiv[uV(u+v)],
(1.3)
v, = kzdiv[vV(u+v)].

For convenience, we limit our attention to one space-dimension
and we choose the time-scale so that k1 = 1. Then writing k = k2

we have the system

-

u, = [u(u+v)xlx,
(1.4)
v, = k(v(u+v)x]x.
We shall suppose that the two species live in a finite habitat
Q= (-L, L), L > 0;
that individuals are unable to cross the boundary of Q,
u(u+v)x = v(u+v)x =0 for x = %L, t > 0; (1.5)

and that the two populations are prescribed initially,

Irhe system (1.3) with k, = 0 was studied by Bertsch and
Hilhorst [3] and by Bertsch, Gurtin, Hilhorst, and Peletier [41.

2Gurtin and Pipkin [5). See also Busenberg and Travis !6]. An
alternative theory was developed by Shiggsada, Kawasaki, and
Teramoto [7]. This theory is discussed in [4]) and [5].

-2-
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ulx, 0) = uo(x), vix,0) = vo(x) for x € Q. (1.6)
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In this paper we shall study the problem (1.4)-(1.6)

7

for initial data which are segregated in the sense that, for

some a €& {i,

P —
T

ug(x) =0 for x> a, 'vo(x) =0 for x < a. (1.7)

ASs our main result we establish the existence of a solution

in which the two species are segregated for all time. This

result is quite surprisingl as it is independent of the
initial distributions2 of the species and of the ratio k of

their dispersivities.

lActually, Gurtin and Pipkin [5] gave a particular solution to
(1.2) - corresponding to initial Dirac distributions - in which
the two species are segregated for all time. Being a specific
solution, it is not clear from this result whether "preservation
of segregation"” is a generic property of the equations (1.4).

2Gtanted they are segregated.
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S 2. The problem. Results.

- We shall use the notation

1 ;

+

R = (0,®), Q=00x R, QT =0 x (0,7),
and, for any function f: Q - IR,
= ot (f) = interior{(x,t) € Q: f(x,t) > 0}.

Our problem consists in finding functions ul(x,t) and v(x,t)

on Q such that

B, u

¢ fufusv) I
in Q, (2.1)

v

" k[v(u+v)x]x

(1)
u(u+v) = v(utv) = 0 on 230 x rY, (2.2)

u(x,0) = uo(x), vix,0) = vo(x) in Q. (2.3)

We shall assume throughout that:

(Al) k > 0, wg,vg >0, uyv, €C(l;

{A2) the initial data are segregated, so that (1.7) holds

for some a € (I;

(A3)1 each of the sets {x: ug (%) > 0} and {x: vo(x) > 0

is connected.

The purpose of this paper is to establish - for such segregated

initial data - solutions of (I) which are segregated for all time.

1

We make this assumption for convenience only.
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Proceeding formally, let (u,v) be a segregated solution. Then
the sets Q'(u) and Q¥ (v) are disjoint; hence (assuming

u,v > 0)
u=0 in otw, v &0 in QY(u,
and, by (2.1),

. + , +
u, = (uux)x in Q (u), v, = k(vvx)x in Q (v). (2.4)

Thus where positive u and v obey porous-media equations.

As is well known,l solutions of the porous-media equation may not
be smooth, and for that reason it is advantageous to work with a
weak formulation of Problem (I). This is reinforced by the
observation that (I) is a free-boundary problem and conditions

at the free boundary are generally indigenous to a weak formulation,
not required as separate restrictions. (The free boundary is the

set
3= {207 () vatm)ne (2.5)

which separates the region with ul(x,t) > 0 from that with
ui{x,t) = 0 and separates the region with v(x,t) > 0 from
that with v(x,t) = 0.}

With this in mind, assume for the moment that (u,v) is a
smooth solution of (I). If we multiply (2.l1) by an arbitrary

smooth function {(x,t), integrate over QT' and use (2.2)

Cf., e.g., the survey article of Peletier (8].
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and (2.3), we arrive at the relations

{I) {u(T¥(T) - ug¥v(0) ] = Q.r {uy, - utusv) v, 1,

T
(2.6)

[ bvmam - vevio) = Qf {vig - kviuev) ¥ 3,
T
where we have used the notation u(t) = u(-,t), etc. We shall

use (2.6) as the basis of our definition of a weak solution.

Definition. A (weak) solution of Problem (I) is a pair
(u,v) with the following properties:

(1) uw,v €L(Q) for T > 0; u(t),v(t) € LM for t 2 0;
(wv) 2 € L2(0,7; BL(Q)) for T > 0;

(ii) u(t),v(t) > 0 almost everywhere in O for t > 0;

(iii) u and v satisfy (2.6) for all y € cl(@ ana T > 0.
If, in addition, there is a continuous function E§E: [0,°)+* Q

such that, given any t > 0,

vix,t) 0 for -L < x < E(t),

(2.7)
0 for E(t) < x < L,

u(x,t)

then (u,v) is segregated. We will refer to £ as a separation

curve.
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-~ Remarks:
1, The terms u(utv) and v(utv)  in (2.6) are defined

. as follows:

l u

3 o [(u+v)2]x if w0

u(u+v)x =

0 if u=20

L]

and similarly for v(u+v)x. Then, since u/(u+v) < 1, while

[(u+v)_2]x € Lz(QT), we have
", uusv), € L2(Qy) for T > 0.

2, The integral identities (2.6) imply that, as t -+ 0,
u(t) = Uy, v(t) Vv, weakly in LZ(Q);
i.e., that
g [u(t)-uglé =+ o0, { [V(t)=vo]¥ =+ 0 (2.8)
s
for all y € Lz(ﬂ). To verify (2.8) we simply apply (2.6) with

y € Cl(ﬁ)(independent of time). This yields (2.8) for ¥ € cl@

and hence - using a standard argument - for y € Lz(ﬂ).

?1 3. The choice y =1 in (2.6) leads to the global

:} conservation laws

- Jutey = Ju,, [ty =]v (2.9)

g o a9 % L 90

b

2, A

- for t > 0. K

N ‘1
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We close this section by stating our main results; the

corresponding proofs will be given in Section 3.

Theorem 1. Problem (I) has exactly one segregated solution.

Remark. It is important to emphasize that we have established
uniqueness only within the class of segregated solutions. Thus
we have not ruled out the possibility - for segregated initial

data - of solutions which mix. We conjecture that this cannot

happen.

Theorem 2. Let {u,v) be the segregated solution of

Problem (I). Then:
(i) u + v € C(Q);

s - : 1 . + .
(ii) u, = (vu ) classically” in Q (u);

s . : +
(iii) v, = k(vv )~ classically in Q (v).

. . <o . e
lThat is, u is C on Q+(u) and there satisfies u, = (uu )
pointwise. x

-8~
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Our next theorem is concerned with the free boundary &
(cf. (2.5)). In view of (2.4), the portion of & along which
the two species are not in contact should have properties

similar to those of the free boundary for the porous-media problem:

pp = (PR ), in Q,

(PM) { pp, = 0 on 230 x rY,

p(x,0) = po(x) in Q.

As is known,l when the initial data have the form

po(x) >0 in (al,az), po(x) = 0 otherwise,

-L < a; < a, < L, the free boundary Q 0 30*(p) consists of
two continuous, time-parametrizable curves, one emanating from
a,, one from a,. If b(t), 0 < t<« Ty designates the curve

from a; (resp., az), then:

(F.}) bi(t) = b(0) on (O,Tb) for some T, € (0,T

1 b];

1

(Fz) b(t) is C and strictly decreasing {(resp., strictly

increasing) on (Tb,Tb)7

(F3) b(Ty) € oL

This discussion should motivate the following definition in which

"FB" is shorthand for "free boundary".

lcf., e.g., the review article by Peletier [8}. See also
Aronson and Peletier [9].
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A

is a left free-boundary curve extending

b

Figure 1.

t is an internal free-boundary

aQ.

to

o

curve that is right up to time T

-10-
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Definition. An FR curve is a continuous function
b: [0,t) » 0

(tb may be <©). Moreover:
(i) b is internal if t, =

{ii) b is left (resp., right) up to time Tb € [O,tb]
if (FIL(FZ) hold;

(iii) b extends to 30 if b is right or left up to time

t

b with ¢t

b ¢, and b(tb) E_BO.

Let b: [0,tb) + 1 be an FB curve and let ¢gq: Q= IR. Then

FB conditions with velocity q hold from the left (resp., right)

on b if given any t € (0,t,) at which b is C,

b'(t) = g(bit)¥, ¢) (resp., b'(t) = g(b(t)", t)).

Theorem 3. Let (u,v) be the segregated solution of Problem

(I}). Then there exist FB curves bu,bv,cu,cv with the

following properties:
1

(1) bu < Cu < Cv < bv with bu and Cu forming the

+ . .
boundary of Q (u) in Q, bv and Cv forming the boundary

of Q*(v) in o;

(ii) bu and bv extend to 30, with bu left and bv

right;

I;{ere each inequality is assumed to hold at those times at’' which

the underlying functions are defined.

-11~-
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(iii) ¢ and Cv are internal, and there is a time

—— o —————— — — —— —

u
T € {0,°) such that Cu is right up to time T, Cv is

left up to time T, and
Cu(t) = ¢ (8) =: C(t) on [T,©)
with ¢ € c*(T,); in addition,
(utv) (C(t),t) > 0 for t > T; (2.10)

{iv) FB conditions with velocity -u, hold from the

right on b, from the left on (. ;

(v) FB conditions with velocity —kvx hold from the

right on { , from the left on b,.

Remarks.
l. The curve ( marks that portion of the free boundary on
which the two species are in contact. By (2.10), the functions

u and v suffer jump discontinuities across {; more precisely

for t > T,

u((e)~,8) >0, ulf)t,e) = o,
vige)T,8) =0, vicert, e > o.

Further, (iii)-(v) of Theorem 3 in conjunction with the continuity

of u+v imply that, for t > T,

wtlie)™, v =viginnt, o,

u (6(e) T, 1) = kv (Se)t, 6= (). (2.11)

-12-
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2. The results (iv) and (v) assert that each of the "fronts"
b“(t), Cu(t), Cv(t), bv(t) propagates with the velocity of
individuals situated on it; condition (2.11l) is the requirement

that at the contact front {(t) the two species move together.

Our final result concerns the asymptotic behavior of segregated
solutions. Proceeding formally, suppose that YolX) s, v (x) is an
equilibrium solution of Problem (I). Then (2.1) and the boundary

conditions (2.2) yield

Yol Ve )' = VeolUot Veo)' = 0 in
hence
[(ucc+vm)2]' =0 in Q

and

U + Vo, = constant.

If y. and Vo are segregated with habitats in [-L, &19
and [x_, L], respectively, then there exists a constant p

such that

=15~

'
o
ol

AL

oY
.\ \'\
k




P lf 'x € (-LI xw)

Y (x) = %p if x = X%g
0 if x € (%, L)

(2.12)
0 if x € (=L, %)
VoolX) = %P if x = X
p if x € (x.,L).
Moreover, if the equilibrium solution (qn,'%n) is reached from
the initial data (u,,v,), the conservation law (2.9) implies
that
pxuz—;—\l' ’& -U_;—BE' ‘2_13)
where
U=£uo, v:J{;vo. i (2.14)

That these formal calculations are indeed correct is a

consequence of the following theorem.

Theorem 4. Let (u,v) be the segregated solution of (I).

Then, as t +®,

C(t) =+ %o, ult) *y , vit) + v,

(s @]

the latter two limits being pointwise in 0\[§n]. Here

¢(t) is the contact front (¢f. Theorem 3), while Xer Yo

and v, are defined in (2.12),(2.13).

-16~-
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3. Reformulation of the problem.

Let (u;v) be a sufficiently smooth segregated solution of
Problem (I) and define
X
z(x,t) = -0 + [ [u(y,t) + v(y,t))dy:; (3.1)
-L
z(x,t) represents the total population, at time ¢, in the

interval [-L,x]. In view of the conservation laws (2.9),

z(-L,t) = -U, z(8(t), t) =0, z(L,t) =V, (3.2)

where U and V are defined in (2.14), so that separation curves

g(t) (cf. (2.7)) are lavel curves z(&(t), t) = 0; in fact,

z(x,t) <0 for x < §(t),
(3.3)
z{x,t) >0 for x > §(t).
Further, if we differentiate (3.1) with respect to t and use
(2.1), (2.2), and (2.7), we find that
L for x < §.\t)
z, = (3.4)
kzxzxx for x > §(t).
Thus defining c¢c: R~ R by
(3.5)
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we may use (3.3) to reduce (3.4) to the single equation

C(Z)t = zxzxx

on all of Q. Therefore, if we write

x
%l 2,(x) = -U + | (u.+v.), (3.6)
_ 0 _JL 0*Vo

[
S
3 .
.

we are led to the following problem for 2z(x,t):

c(z)t =2,z in Q,

(M {z(-L,t) =4 z(L,t) =V, t >0,
z(x,0) = zo(x) in Q.

We assume, for the remainder of the section, that ¢

and z, axe defined by (3.5) and (3.6), and that (Al)-(A3)

are satisfied.

Problem (i) under hypotheses more general than ours, has
been analyzed in {10]. We shall simply state, without proof,
a version of the results of [10] appropriate for our use. With
this in mind, we first define what we mean by a solution; in that
definition, and in what follows, ;I}x) designates the unique

equilibrium solution of (3I):

(U+V) (x+L)
ZCD(X) =—TE———"U.

-18~
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- Definition. A (weak) solution of Problem (I) is a function
:: . z € C([0,°); wl’aﬁﬂ)) with the following properties:
] 1
. (i) z(-,t) -z, € HG(D) for t > 0;
. . 2
: (ii) z, €L (QT) for T > 0;
" (1ii) for all y €Cl(@ with y =0 on 30 x (0,0)

and all T > 0,

[ lezmum - cizpp(@) = [ictziy, - 2z0% 1. (3.7
& ] 4 t  2'°x! Vx
T

Theorem 5 ([10)). Problem (II) has exactly one solution z.

Moreover:

(i} z, € C(Q) with z, > 0;
‘g . +
(ii) ec(2)y = 2.2 classically in Q' (z,);

(iii) Q+(zx) is the unjon of the sets

Q := {(x,t) €Q: ~U< z(x,t) <01,

0, := {(x,t) €Q: 0< z(x,t) <V],

and there exist free-boundary curves bl,bz,cl,cz such that p
(i) - (v) of Theoxrem 3 hold with Q {u) Q (v) bu bv'cu Cv :?7
replaced by Ql,Qz,bl,bz,Cl,Cz, respectively, with u+v in (iii) f{f
replaced by z,, and with u, and v, in (iv) and (v) replaced ;f'q
BY Zyx? o
-19- i
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(iv) z(t) » z, in cl(@ as t -+ oo,

(vl given any X, € 0 with za(xo) > 0, there exists

a continuous function §: [0,©) -~ i such that

{x,t) €0 z(x,t) = 25(xg) ) = {ix,0) €Q: x=8(0)};

moreover, § € Cl(0,00) and, for t > 0,

E'(t) = -szx(g(t)l t),

where K =1 or k according as z4(xg) < 0 or z,(x,5) > O

The next result asserts the equivalence of Problems I and

(I) and, when combined with Theorem 5,

yields the validity of Theorems 1-4.

Theorem 6. Problems (I) and (i) are equivalent:

(i) Let z be a solution of Problem (I) and define u

and v on @ by

ulx,t) =z (x,t), vix,t) =0 if z(x,t) <O,
u(x,t) =0, vix,t) =z (x,t) if =z(x,t) > 0, (3.8)

u(x,t)

vix,t) = 3z (x,t) if z(x,t) = 0.

N

Then (u,v) is a segregated solution of Problem (I).

(ii} Conversely, let (u,v) be a segregated solution of Problem

(I) and define z on Q by (3.1). Then 2z solves Problem (I).

~20-
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Proof.

(i) Let 2z be a solution of () and define (u,v) through
(3.8). By Theorem 5(i), the only nontrivial step in showing that
(u,v) solves (I) is proving that u and v satisfy the integral
identities (2.6). We shall only verify the first of (2.6);
the verification of the second is completely analogous.

For convenience, we write b = bl, { = Cl for the FB
curves established in Theorem 5, and we extend b(t) continuously
to (0;2) by defining b(t) = -L for t > t,. By Theorem 5(iii)

and (3.8),
supp u(t) = [b(t), {(t)].

Choose ¢ > 0 sufficiently small and let be(t) and Cs(t),
respectively, be £he level curves z =-U + ¢ and 2z = -¢
(cf. Theorem 5(v)). Then, by Theorem 5(ii) and (3.8),

u, = (uux)x classically and v % 0 must both be satisfied
in a neighborhood of any (x,t) such that be(t) <£x< Cs(t)

and t > 0. Further, Theorem 5(v) yields

bé(t) = -ux(bs(t). t), C;(t) = -ux(Ce(t), t)
for t > 0. Thus, choosing & > 0, the identity

t
{ £r(1)dT = f(t) - £(8)

applied to
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Ce(T)
£(1) = [ u(my(r)
b (T}
E
yields, when § € Cl(a),
[ ¢ () ) £ £6c (M
- J o ouw) - u(6)W(6)=I{ J (uwT-u(u+v)xwx)dx}dv.
b_(t) b_16) o Lb_(7) (3.9)

Next, since bs(t) { b(t) and Ce(t) t ((t) as € ¢ 0 for each
t € {Q,°), it follows from Lebesgue's dominated convergence theorem
that (3.9) holds with b€ and Ce replaced by b and (. Also,

since z, € C(Q), it follows that 2, (8) 2z} in c(0) as

— ——
. A R N

& ¢ 0 and

£(d) C}O)
u(d)y(s) - uOW(O) as & ¢+ 0.
b(%) b(0)

Thus a second application of Lebesgue's theorem yields

Q}t) CJ{O) t YC}T)
u(t)y(t) - ugv(0) = J (uy, - ufu+v) ¥ )dxtdr,
b(t) b(0) o Lvin

and, since u(t) =0 on O\(b(t), C(t)), the first of (2.6) Ly

_.'_~."1

follows. S

(il) Let (u,v) solve (I). We are to prove that z - defined ,

by (3.1) - solves (i). Choose T > 0. Thea u,v € ﬁxRQT) and
e 1

hence, by (2.9) and the definition of Zper 2(,t}) - 2 € HO(Q).

Note also that, since z, =u+v and (u+v)2 € LZ(O,T;HI(G)),

. .,,,.
(DT SR DT Y € VO

AW

it follows that




22 ¢ 1?(0,m;ul (), (3.10)

2 _ 2
where z, (zx) .

Our next step will be to establish the integral identity (3.7).
Thus choose X € Cl(a) with ¥ =0 on 30 x (0,c0) and take

X
vix,t) = [ xly,t)dy
-L

in (2.6); in view of (2.7), (3.1), and (3.6), the result is

(1) £(0) T £(t)
Lanmuvm -7 Lageor = [y, - 3170 cxJaxae,
I {3.11)
L L
'y (0) = - k2
g(jﬂzx(rmr) - g(fmzow(m gg(fﬂ {z ¥, - 3(z)) x]axdt.

Since ‘x = ¥, y(-L,t) =0, and Xx(zL,t) = 0, while =z(x,t) satisfies
{3.2) and (3.3), 1f we integrate (3.1ll) by parts and then add the
first of the resulting relations to k-1 times the second, we arrive
at (3.7) (with § replaced by ¥X).

We have only to show that z, € Lz(QT). But this follows from
(3.10) and the fact that, by (3.7), c(z), = 3(z2)  in the sense

of distributions on Qp- This completes the proof of Theorem 6.
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4. Remarks. Open problems. Conjectures.

1. Problem (I) with nonsegregated initial data is open. Here

the problem does not reduce to a free boundary problem for a single
scalar field 2z, as one must solve the system (2.1) in regions of

interaction (cf. Remark 2).

2. The system (2.1) with k =1 is far simpler to analyze.
There the total density p = u + v satisfies (PM) with initial
data Py = ugy + vy, and once §{ is known (2.1) are linear

hyperbolic equations for u and v:

u, = (up ), Ve (vpx)x

(cf. [5]). Using this reduction one can prove unigueness within
the class of all solutions (as opposed to all segregated solutions), and
one can show that solutions which begin mixed remain mixed for all

time, including t = . |(Details will appear elsewhere.)

3. Assume, in place of (1.2), that the dispersal of each
of the species is driven by a weighted sum of the densities; i.e.,

that (in one space-dimension),

q = -(kpju + kvl
(4.1)

£
I

= —(kyu + kooviy




This constitutive assumption, when combined with the conservation

law (1.1) and corresponding zero~flux boundary conditions, leads

to the problem

ue = lulkyu + kv Jy
in Q. (4.3)

: ve = [v(k21u + kzzv)x]x
(1)

_ _ +
u(kllu + klzv)x = v(kzlu + k22V)x =0 on 3 x IR,

u(x,0) = uo(x), vix,0) = vo(x) in Q.

This formulation is greatly simplified if we define new independent

variables

a({x,t) = kllu(x't) ’ B(x,t) = klzv(xrt)

and new constants

v = F22 _ Kk
’
k12 k11%22

o)
s

¢ = la(aB) 1
in 0, (4.4)

W
[}

kiBlua + B)xlx

a(e + B) = B(ua + B) =0 on 3axR',

w({x,0) = ao(x), p(x,0) = Bo(x) in Q.

with
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4. Consider Problem (II), or equivalently (I¥). The terms on

the right side of (4.3) involving second derivatives are

uk uk

11 12\ [ Yxx

. (4.5)

vk vk

21 22 Ve

Writing A = A(u,v) for the coefficient matrix in (4.5) and
confining our attention to u > 0, v > 0, we conclude from (4.2)
that there are exactly three possibilities for the eigenvalues

A <A, of A, namely:

(i) Xl >0, 12 > 0; (ii) Xl =0, Xz > 0; (iii) Xl < 0( kz > 0.

Moreover, writing K for the matrix

K = (kij)l

it is not difficult to verify that

(i) kl>0, x2>o &= det K > 0,

(ii) ll or kz > 0 = det K = 0,

(iii) Xl <0, kz >0 &> det K < 0.

We consider the three cases separately.

Case (i)} (det K > 0). Here the system (4.3) is degenerate parabolic,

as it is parabolic when u > 0 and v > 0, but not when uv = 0.
Because of this property, we expect that initially-segregated
solutions will eventually mix. We also expect them to mix for

another reason. Indeed, assume to the contrary that Problem (II)

=26~
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has a segregated solution (u,v). For such a solution we would
expect the'two populations to spread until they meet, and then

to remain in contact along a contact front {(t) (cf. Theorem 3
and Remark 2 following it). From (4.2) one might expect that

both kll“ + ky,v and kzlu + kyov would be continuous across

{, and hence both zero along {, a condition which cannot generally
be satisfied (cf. Remark 1 following Theorem 3). We are therefore
led to the following conjecture: for det K > 0 there are no

segreqated solutions of Problem (II). In this regard it would be
1

interesting to look at (IU) with

l+e 1
x-( ,
1 1
€ > 0; in particular, the limit ¢ = 0.

Finally, within the context of the biclogical model, the
off-diagonal elements of K drive the segregation of the species,
while the diagonal elements, by themselves, result in the usual
diffusive behavior. Since det K > 0 yields k11k22 > k12k21'

it would seem reasonable that in this case the two species

ultimately mix.

Case (ii) (det K = 0). Here 4 =1 and Problem (IV) is identical

to Problem (I). Thus all of our results generalize trivially to

populations whose interaction is described by (4.1) with K

singular.

1'I‘his choice of K arose in discussions with R. Rostamian.
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- For the case det K = 0 we would like to call the system (4.3) {:fﬁi
? degenerate parabolic-hyperbolic. Indeed, if we set w = a + B, :Ef%d
. .l
then, assuming k > 1, (4.4) can be written as » :
S
w, = [{w + (k-1)Blw,] , .
B, = k(w,B) S
t XT'x
o
i.e., as a system composed of a degenerate-parabolic equation and .
a hyperbolic equation. The presence of this last equation makes -'f
i the discontinuity of u and v at the contact front less ,f::i
surprising. » |
In this case one can speak of "passive segregation”: if
- the species start segregated, they may remain segregated, as we
> have seen in the previous sections, and if they start mixed,
. . then, when k =1, they remain mixed for all t > 0 (see
y Remark 2 of this section).
- Ccase (iii) (det K < 0). The system (4.3) is now not parabolic,

and Problem (II) is probably not well posed. Since the off-diagonal

terms in K dominate in this case, one might expect a tendency

towards segregation, even in a mixed population.
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f; S. The system (2.1) with k = 0 was studied in {3] and [4]).
There vi(x) = volx) and the problem reduces to solving (2.1)1,
(2.2)1, and (2.3)1. In this case, even with segregated initial
data, solutions eventually mix, an apparent contradiction in
behavior. The limit k = 0 in Problem (I) would therefore be
interesting.
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ABSTRACT (continued)

in conjunction with an initial prescription of the individual densities u

and v together with standard zero-flux boundary conditions. We demonstrate
here the following interesting feature of this model: segregated initial data
give rise to solutions which are segregated for all time.
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