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ABSTRACT

The basic formulation of scattering problems in terms of

integral equations is examined, for the special case of perfectly

conducting bodies of revolution. In particular, the singularities

of the integrals which arise in this context are studied, in

relation to the transition to a numerical solution by means of

the method of moments. For both H-field and E-field equations, it

is found that finite matrix elements can be deduced in a way that

is uniquely determined by the integrals themselves. No ad hoc

procedures are required to secure convergence, but one such

procedure, which is commonly used, is shown to be capable of

giving accurate results for those integrals which tend to diverge

logarithmically. In the H-field solution, other integrals also

arise, which yield finite terms not normally included in the

theory, when the necessary limiting procedures are carried out.

These terms can play a significant role in the case of a body

whose profile contains a corner.....
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I NTRODUJCT ION

The formulation of scattering problems in terms of

integral equations is a well-established procedure, and the

application of numerical techniques to the solution of these

equations has spawned a large and varied literature. The

* integrals in these formulations are generally improper, in the

sense that the integrands, being essentially Green's functions,

* have integrable singularities. The integrals must therefore be

* treated with some care, particularly when the transition is made

to a set of linear equations by means of the method of moments.

The diagonal elements of the resulting matrices are directly

* related to regions of integration where these singularities

manifest themselves. Many analyses have been carried out in which

- divergent integrals are replaced by finite expressions or

convergent integrals in a somewhat ad hoc way, the procedure

being justified by physical reasoning. It is always recognized

* that these divergences arise because of oversimplifications in

the application of the numerical procedure, such as the use of

delta-function expansion or test functions in the method of

- moments. It is assumed that errors due to the approximations used

* will turn out to be small, and indeed this is so when the results

are compared to known cases, such as the sphere. However, one

never knows, a priori, that the calculations will be as acrurate

when the technique is applied to a body of radically different
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shape. It is generally accepted that the method of moments

procedure itself will converge more rapidly (as a function of the

number of points used to represent the body) if its matrix

elements are computed with increased precision, and it may even

be possible to gain assurance that the answers to which the

method converges are-in fact the correct ones. It therefore seems

desirable to formulate the problem in a way that represents the

integrals accurately during the transition to a system of linear

equations.

In this note the singular kernels are examined in the

special case of scattering by conducting bodies of revolution,

and it is found that finite diagonal matrix elements can be

deduced in a way that is uniquely determined by the integrals

themselves. Although the expressions found are slightly different

than those customarily used in the literature, it is not expected

that the numerical results which follow from their application

will be very different, with the possible exception of bodies

with corners. In this case the present evaluations (for the

H-field solution) contain terms not generally used and which are

directly related to the abrupt change of the tangent direction of

the profile of the body at a corner.

The analysis is carried out here in terms of the H-field

equation, since it is an integral equation of the second kind

with no derivatives operating on the unknown function. For these

2



reasons, it has the better chance of numerical stability, at

least away from resonant frequencies of the corresponding

internal problem. In the usual treatment of the E-field problem,

derivatives of the expansion and test functions appear, which are

approximated by difference operations. This adds another element

of inaccuracy to the analysis, producing errors which are

difficult to assess in advance. Here also, divergent integrals

occur, and these can easily be treated by the methods given

here. The E-field solution is discussed in the final section of

this report.
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1. FORMULATION of the PROBLEM.

Let S be a closed surface, covering a perfectly conducting

body, and let Ho(r) be the magnetic field which would be

produced by a system of sources in the absence of this body. With

the body present, the total field produced by this same system of

sources satisfies the equation:

H(r) = Ho(r) + I K(r') x V'g(r,r') dS'0
S

where r' is the variable of integration on the surface, V, is the

gradient relative to r', dS' is the surface element, K = n x H,

g(r,r') is the scalar Green's function:

g(rr') e ikR R = Ir-r 'I

* and k is the wavenumber. The suppressed time dependence is of the

form e- iwt, and only unit vectors, indicated by an underline,

are specifically identified as vectors in this report. The field

point, r, is exterior to the surface in the above equation and K

depends on the unknown values of tangential H on the surface. By

' letting r approach the surface, and taking the limiting value of

the integral, we obtain the Maue [1] equation for K:

K (r) = K(r) - n x I K(r') x V'g(r,r') dS'
S

4
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where Ko = x X Ho. In this integrand, r is on S, and the

surface integral is actually convergent. The formulation of the

scattering problem in terms of this equation for a body of

revolution is well known, [2] but we give the basic steps here

P. in order to make the development reasonably self-contained.

We define the function

G(R) = (1-ikR) (R)

R

so that

V'g(r,r') = (r-r') G(R)

and the Maue equation becomes

K (r) = 1 K(r) + n x [(r-rX) K(r')] G(R) dS'.

We let p represent either of two orthogonal tangential unit

vectors at r, 2' being one of the unit vectors at r', and then

write the integral equation in component form. Indicating vector

components by superscripts, we have:

KP(r) : KP(r) + I j MPP'(r,r') KP(r') dS'0 p'I S

where X sums over the two values of p', and the dyadic kernel has

components

5
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MPP'(r,r') a n kr-rl) p-u] G(R)

Next we specialize the surface to that of a body of

revolution, taking the axis of symmetry as our z-axis, and

introduce a coordinate system for points and vectors on S. The

three-dimensional cylindrical (P,O,z) system will also be

employed, where P is the distance from the z-axis and 0 is the

azimuthal angle. We suppose that the body half-profile is

defined by the relation

P= P(z)

* and introduce the arc-length, t, along the body by means of its

differential element:

2 2
dt = (dz + dP )/

The derivative, dp/dz, is related to ~,the angle which the

tangent to the profile makes with the z-axis, by the equation:

d..tan 0

I

and in terms of B we have

dz = cos$ dt ,dp sinB dt

For our purpose it is useful to think of t as the

I

independent variable, measured from a reference point

*(zON0 0 ) on the body, and to express a as a function of t.

6
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A

Then z and P are obtained as integrals:

t
z =z + J cosO(s) dst

0

t
P = p + I sinO(s) ds.

0. t
0

These equations will play a basic role in the analysis of the

singular portions of the integral equation for K. The coordinates

of a surface point are now t and *, and the surface element

itself is dS = pdtd.

Let t be a tangential unit vector in the direction of

increasing t, and let _ be a similar vector, in the (p,f)-plane,

in the direction of increasing *. Together with the normal unit

vector, n, these form a local orthogonal system. We assume that

the postive t-direction is defined such that

n x t

It is useful to have the notation

q(p) p x n

so that

S(t)= , 0 -t.

Returning to the dyadic, M, we have
I

MPP'(r,r') = [(r-r') x p (p x n) G(R)

7
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q r-r) x p' G(R)

- {(ax r) p' + q (p' xr') } G(R)

The dot products can be conveniently evaluated in the cylindrical

coordinate system, and this is carried out in Appendix 1 for the

more general case in which r is off the surface a small distance

in the normal direction. When specialized to a surface point for

r, we obtain the dyadic elements in the form derived by

Harrington[21 :

Mtt(r,r') = {[(p'-p)cos8' - (z'-z) sinV'] cos*

- 2 P cosB' sin 2('F/2)} G(R)

Mto (r,r' ) = (z'-z) sin* G(R)

M (r,r') =[P'sinO cos8'- p cos8 sinB' - (z'-z) sin8 sin8' ]

sin* G(R)

S(r,r') = {[(pt-p)cosO- (z'-z) sin] cos*

+ 2 p' cosO sin 2( (*/2)} G(R)

In these formulas, = ' -

The dyadic depends on the azimuthal angles only through F,

as a consequence of the cylindrical symmetry, and the next step

0 is the modal expansion. Substituting

KP(r) = I KP(t;m) eimo

m

8



and defining

i'-K~~ ) = I_ 2-eim*d
f o 2--" Kp  (t,*) e

and

2"

= (tt';M) 2 j (r,r') e d4P
0

we obtain the uncoupled modal integral equations

_ KP(t;m) = I KP(t;m) + J pp '(tt';m) KP(t;m)P'dt'.
p'

In R, the argument of G, the introduction of cylindrical

coordinates yields

R = r-r' = [(p-P) + (z'-z)2 + 4pp si2(/2) ]Il/2

Since R is an even function of *, the *-integrals involved

in the components of L reduce to the following:

Tl(t,t':m) = 2 1 G(R) cos* cos(m*) d*

T2 (t,t';m) = 2 j G(R) sin 2(/2) cos(m*) d*.2. 0

II
T 3(t,t';m) =2 i 0 G(R) sin*, sin(m,) dl'.

9
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In terms of these integrals we have the desired expressions for

L, again in Harrington's form:

Ltt= [(p'-P) cosS' - (z'-z) sin'] TI - 2P cos8' T2

Lt = (z'-z) T

Lt= [P'sin8 cos ' - P cos8 sin 0' - (z'-z) sin8 sin B' T

LO= [(P'-P) cos8- (z'-z) sin$] T + 2 P' cos8 T

In the simplest application of the method of moments, the

unknown functions KP(t;m) are expanded in pulse functions and

the error resulting from their use is forced to zero at discrete

points. The pulse functions are each unity over short intervals

of t, and zero elsewhere. They are non-overlapping and together

cover the whole range of t. The test points lie within these

intervals, not necessarily at the mid-points. We are therefore

required to evaluate integrals of the type

. +62

22 1'
" J LPP'ltl,t') O' dt'

- -6

where tI is an arbitrary test point and the integral

corresponds to a pulse function whose non-vanishing range covers

another test point, t2. (From now on the mode number is not

10
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retained explicitly in the notation). Since the quantities LPP'

will be obtained by numerical integration over *, it is

impossible to carry out the subsequent t-integrals analytically,

and hence the integral above is further approximated by the

simple expression

LPP 't l't2) P2 A

Here P2 is the value of P at t2 and A = 61 + 62. If one

wished to use more general test functions, the t-integrals would

in any case have to be evaluated numerically, and one would again

be led to the consideration of integrals of L alone over short

t-segments, as above.

This simple approximation will not suffice when tI =

t2 , because the *-integrals defining the components of L(t,t')

all fail to converge when t and t' coincide. These singularities

are integrable, however, and by considering in detail the

behavior of L(t,t') when t' - t is small, we can obtain finite

expressions for the integrals desired in the case t2 = tI.

11
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2. ANALYSIS of the SINGULARITIES.

In the expressions for the components of the dyadic M,

given in the previous section, many of the terms vanish when t

ti, since this implies that z = z' and P = P1. To determine the

behavior of these terms when t' - t is small, we return to the

formulas for z and P as integrals over t. It is now assumed that

the profile of the body is such that the tangent angle, 8, is

continuous with continuous derivatives, near t, so that the

expansion

2

is possible, where

T= ti - t

and the dots refer to derivatives with respect to t. The

profile may well include corners, but they are modelled as smooth

* curves with very small radii of curvature. When this series is

substituted in the integrals for z and P, we obtain the

expansions:

z z + Coss T 1- sin 0T

0~~ ~ P1=P+siOT+ S :OT2 +
2

where all unprimed quantities are evaluated at t. From these

12
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formulas and the expansion for 8' itself, we obtain

2

(P'-P) cos'- (z'-z) sinB = 1 B + O( 3

ad (p,_p)2 z_) = 2 11(B)24+

Therefore, when t' - t is small, the formulas for the components

of L reduce to the following:

Ltt= 1 8 t2 + ... ) TI(r) - 2P (cosS - B sin8 T + .. ) T2 (T)

L t o= (cose t + ... ) T 3 (r)

iOt
Lt = (-8 P T + .. ) T3 (T)

L - B + ... ) TI(T) + 2(p + sinB T + ... ) cosB T 2 (T)

The higher order terms, represented by the ellipses in these

expressions, will not contribute to the t'-integrals, to the

order of accuracy of interest, as will be seen below.

The T-integrals depend on t and t', and hence on T,

through R. The T-dependence has been recognized in the notation

above, but the fixed parameter, t, is suppressed. We make the

definitions

13



x (p1-p)
2 + (z,-z)2 =

2
a = PIP = p (P4- sin$ T + ... )

and substitute in the formula found earlier for R to obtain

R 2 = x 2 + 4a2 sin 2 (*/2).

Thus, for T = 0 and * very small, x is zero and R is proportional

to *, which is the cause of the failure of convergence of the

T-integrals at this point.

To deal with these integrals, we recall the definition of

G and note that

(1-z) e Z= (,-z)(I+z + 1z2 + 1 Z 2 1 z3 +

We can therefore put

1 3 (l-z)e z = 3 1 + H(z)
z z 2z

L where

H(z) - [(l-z)ez -l + = 1 +
z

3

and express G in the desired form:

14

0'. .



G (R) =(ik )3 1 1 +HiR

-F (ikR) 3 2ikR

or

G(R) 1 +.. k_ +MR

where h is defined by 2 ()

h(R) = (ik) 3H(ikR)

The new quantity, h(R), is a bounded function of R with the value

ik3
3 at R=O. We substitute this representation of G in the

T-integrals to find

1 = _L ' + k+ h(R) I cos. cos(m') d*~0 R

T~ -1 1  k2  22 + M1 R hR)J sin (41/2) cos(m') d*'
0 R

T 1 + k _+ h(R) sin* sin(m*) d

3 G(R 0 R (i3 2ik

The terms of these integrals involving h are convergent for any

value of T, and the singularities obviously arise from the

inverse powers of R.

The next step is the expression of the remaining factors

in each of the integrands as the sum of two terms, one of which

yields a convergent integral even when multiplied by R 3 , while

TI_4] i + +hR o0csm)d

21..,

Ik

l_. -. 3 +.- +hR ] i2 2 csm)d



the other allows the singular portions to be evaluated in closed

form. The key to this separation is the possibility of a change

of the variable of integration, to a new quantity:

u 2 sin(*/2).

Since

du = cos(*/2) d*,

we note that integrals involving a power of R, the factor

cos(*/2) and a simple function of sin(1F/2) will be integrable in

closed form. Starting with T1 , we define the quantity

I2
AI(4) M Cos* cos(m*) - cos(*/2) [1 - 2 sin (4/2)]

and write

cos cos(mf) = cos(*/2)[1 - 24m2+ 2 (*/2)] + A1(*)

The sin 2 (*/2)-term has been supplied and its coefficient so

chosen as to make AI(4) proportional to *4 as * tends to

zero. Then the integral of AI/R 3 is convergent even at T =
i

0, and the divergent portions of TI are completely contained in

the integral

_ . 1 l! k2 [4m+2

U1 12 0+ cos(*/2) [2 sin (/2)] d4.

16
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The new variable is now introduced, and U1 becomes

222U1 1 { 1 k2  4m2+ 3 2
2 2 u 2+x 2 3/2 + 2 u 2 + x 2 1/21(1 u8 ) du.20 (a u +x 2(a u +8

The term involving u2/R is convergent when x=0, and it is

removed to be lumped with the other benign integrals. Since

*222 2 2
2 u2du 1 2 du x 2 du

2 2 23/2 2 2 2 22172 2 2 2 23/2
0 (a u2+x2) a 0 (a u2+x) a 0 (a u2+x),

we need only the integrals

2 du 1 l [2a + (4a +2 ) /2

0 (a2 2+x2 )I/ 2  a log 

and

2 du 2

0 (a 2 u2 +xx2 )3 / 2  x2 (4a2 +x
2 )1 / 2

to complete the evaluation of U1 . Collecting these steps, we

have shown that

_i1 + h(R) ]{cos(*/2)[ 4m2+3sin(*2)12R 1 2
0 R+

+ A1  I)} d*

= 1 + W1

17
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where

u 2 1 8 u k2/2
1 2 0 (a 2u2 +x 2) 3 / 2 + (a 2 u 2 +x 2 ) 1 / 2

1 4m2 +3 x 2 2 1/2

- 2 (a + 8 2) (4a2 + x )

1 4m 2 + 3 2a2 22a + (4a2+x21/2
4 a3 ( 4 k a ) log {2 x I

and

W= 2 j {G(R) cos* cos(m*) 8kR cos(*/2)
0

3 Cos(*/2) [1 - 2 sin 2 (*/2) ] d*.

41R 3  2

The integral W1 is convergent at T=O, and its integral is

well-behaved for all T. For small values of x, we have the

expansion

U 1 1 2423 22 4a
1 a x2 4 a3 4 - "'"

IX )

which can be used to assess the diagonal matrix element terms

containing T1 . Only the leading term of this expansion will be

needed in the end. It should be noted that P, and hence a, is

18



assumed not to be small, so that a thin wire is excluded from our

analysis.

The other two integrals are treated in the same way,

beginning with the definit;.ons

*" A2 ( P) sin2 (1/2) [cos(m*) - cos(u/2)]

A3(4O) E sin* [sin(m*) - 2m sin(u/2)]

sin sin(m*) - 4m cos(*/2) sin2 (/2)

These A-functions are again O(*4 ), and T2 and T3 are4

written

1 k2

T[ + + h(R)]{cos(*/2) sin 2( /2) + A(J)} d*2 2 0 2R 2

and

T 3 = 21r [ R3 + 2-R + h(R)I{4m cos(*/2) sin 2 (/2) + A 3(i)1 d*2w R

The only terms of these integrals which are divergent at T=0 are

U2 = - cos(*/2) sin 2(/2) d*

2 2
- 1 U du

0 (a u +x

1

19



and

U3 = 4im U2

This integral has already been evaluated, and to complete the

analogy to TI , we define

T2= U 2 + W2

and

T3 = U3 + W3

where

1 2 4 2 21/2 1 2 2 -1/2U2  3 i log {2a + (4a 2 + x2)Ia x
8-9a Ix 4 i ra

U3 = 4im U2

W= 2 {G(R) sin 2(i*/2) cos(m*) 1 3 cos(*/2) sin 2(ip/2)} d*
0 4,TR

and

W 2i I {G(R) sin* sin(m ) - cos(*/2) sin (*/2)} d*
0 lrR 3

Like Wl, W2 and W3 are well-behaved and convergent at T=0,

20
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and U2 has the expansion

21
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3. EVALUATION of the MATRIX ELEMENTS.

As mentioned in Section 1, to apply the method of moments

we need to evaluate integrals of the form

2 2
-< ] p p  (tilt') p'dt'

2 1

where t I and t 2 are test points of the procedure. When these

points are distinct, the simple approximation

SLPP'(tI't 2 ) P2  (6 1 +62)

will suffice, and the T-integrals required are obtained by

numerical integration. The original integrands of these integrals

will usually be sufficiently well behaved to cause no difficulty

here. The mimimum value of R attained in such an integral is just

x, and in this case

x = [(p2- Pl2 + (z2 -z) 2 1/2

is the chord connecting the profile points tI and t2 . The

decomposition of the T-integrals into the explicitly evaluated

t-functions and the well behaved W-integrals would be a useful

aid to numerical integration if kx were small, but this is not

likely to be the case unless an excessive number of points had

been used to describe the body.

22



Turning to the diagonal matrix elements, we write the

required integrals over t' in the form

2
J P(T) p'dT

[- 6

where T =t' - t as before, and the t-dependence is suppressed in

the integrand. In evaluating these integrals we shall retain only

terms of the order A 61 + 62 or larger. The formulas of

the preceding Section for LPP are now restated:

Ltt i 1 2

L T t (U 1 +W) 2P cos (U 2 +W2 )

Lt o = cos8 T (U 3 +W3 )

4Ot

L =- p r (U 3 +w 3 )

i L**- 1 8 2
2 T (UI+WI ) + 2 P cos8 (U2 +W2 )

In Section 2 the exact formulas for the U-functions were

expressed in terms of x, which in the present context is
21 _1 ()2 T3

x [p,_p)2 + (z'-z) 2 1/2 - 24(;)2+T ..

42

23
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It is easily verified that x may be replaced by T, and the

leading terms of the expansions of these functions used to

evaluate the integrals over T to the required accuracy.

Similarly, a may be replaced by p in these expressions, which

then become simply

U 1  1 +

U2 _8-* 3 {log -11 +

and

U 3 = 4im U 2

The W-integrals, of course, are 0(1) with regard to T, and hence

the contributions of W1 and W3 to the final matrix elements

which contain them are of lower order than A. Since

T log T dT =1 T2 (log - I

even U3 fails to survive the integration over T, and thus Lt

and Lt are zero to the desired accuracy.

We are left with

Ltt= - SI 8 2 U12 P cos8 (U2+W2)

24



and

L = - Ltt.

Because of the factor T2 , only the leading term of U1

contributes, as already noted, and we can replace p' by p here to

obtain

2 2 1

1
7~ J dT1=-d

• 2

471 4 w
1

where AR = AA is the change in tangent angle of the body profile

over the range of the pulse function in question. The

significance of this term is discussed in the next Section.

There remains the integral

62

2p cosB J [U2 ( T) + W2 2(T)] p'dT
-6i

: 2p2 cos8 W2(O) + COS8 {log - 1} dT,

25
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in which we have again replaced the factor P' by P. In addition,

W2(T) has been replaced by its value at T = 0, since higher

terms in the series expansion of W 2 would not contribute. We

express the logarithmic integral in the following way:

62

J 1og( .l ) dr T 62 log(6 2 /e) + 61 log(6 1 /e)

= uAI log-) + (l-u)8 log[( U)A
e e

where P is defined by the relations

62 =

= (l-u).

Then

62

i log (I-) d

-At= log(A/e) + A to logo + (1-) log(l-P.)]

= log( 
r

4 e

26
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where

The value of the parameter, r, depends on the position of

the test point in question within the range of the pulse function

which contains it. In general, the profile of the body is defined

by a sequence of pairs (zm,Pm), and there is no guarantee

that test points will fall at the mid-points of pulse function

ranges unless this is deliberately arranged. If P happens to be

one-half, then r is also one-half, and in any case

--

Collecting results, we have obtained the following formula

for the diagonal matrix element:

62 tt6
I L (T) P' dT T -

+ COO~ A [log(-.r-A + 1 -8,rp 3W (0)]

27
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In the integral over 'Pwhich defines W2 (0), we have

simply

R =2P sin('P/2)

Using the definitions Of W2 and G(R), we can write

8 7TP 3 W (0) =. JF('P d* 0
2 2 0sin('P/2)

where

FM') (1I ikR) exp(ikR) cos(mP) -cos('P/2)

The complete integrand vanishes at 'P=0, and for the purpose of

numerical evaluation, the leading term of the expansion

FMP (k 2 - m 2  1
sin('P/2T 4)'

may be employed for small CP

0
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4. DISCUSSION of the H-FIELD SOLUTION.

Our results for the diagonal matrix elements differ

from those of Harrington [2 1 because of the treatment of the

divergent integrals. Harrington avoids divergence of all the

T-integrals by moving the test point slightly off the surface, by

a distance equal to A/4 in our notation. Diagonal matrix elements

are then evaluatce by the same approximation as off-diagonals,

but the integrals are now finite even for tI = t2. In the

formulas for LPP', the coefficients of all the T-integrals

except T 2 vanish in this case, yielding Lt = LOt = 0, but

the Tl-term in Ltt and L is lost, and the T 2 contrib-

utions are evaluated somewhat differently. We defer discussion of

the terms ±AO/47r, which are obtained from Tl, and show first

that the two evaluations of the T2-terms are in fact very

similar.

Aside from terms that vanish with T, we have shown that

T2 (T) : -T log(I j) + K
8lrP0

where Ko is a constant, evaluated in Section 3. When we

integrated over T, we obtained

29
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T2(T) dT = - + KoA

which, in turn, is equal to

(r)

AT 2  e

to this accuracy. If we had placed the field point, r, off the

surface by a distance C along the positive normal, we would have

found

R = [x2 + 4a
2 sin 2 (*/ 2) ] 1/2

as before, but where x and a now have the more general

definitions

x 2 = (p,_p) 2 + (z)2

-2C P'-P) cos8 - (z'-z) sin$] + C 2

I
and

a 2 = P'(p+C Cos$)

30
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If now, we let t t', we obtain simply

x 2  2

a 2  P(P + coss)

and since C is small, the asymptotic expansion derived in Section

3 is valid for T2, but now in terms of x. Again neglecting

terms which vanish with C, the value of T2 , with T = 0 and C

small, is the same as the expression above, but with C replacing

* T. Consequently, if C is chosen equal to rA/e, and the T2

integral evaluated numerically, this procedure should give the

same results as our formulas, to the desired accuracy. Recalling

the range of r, we see that

1 r<l

which covers the value 1/4 used by Harrington.

Regarding the new term, ±tA/4v, we combine it with the

diagonal contribution of 1/2 made by the explicit term
6

1KP(t;m)
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in the modal integral equation. This combination is then

1 - Kt

in the t-equation, and

1+ 0

in the o-equation. For a convex portion of the body profile, AO

is negative by our sign conventions. For a smooth surface and a

reasonable density of points, AB/2rr will be small compared to

unity, and the new term will have little effect. It may, however,

be comparable to the remaining part of Ltt or LOO The

comparison here is between A$ and

cosO - [log (±) + K1

where

K' 1 + log(-j) r 8Tp 3 W (0)

0 The ratio A/P will generally be small (thin wires having been

excluded), and the expression

* log

|" .

32
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can not exceed l/e, for values of A less than P. Thus A$ should

be compared to the bound

cosB- + K'-e P

for the remaining terms of this matrix element.

The most likely situation in which the new term could have

an effect is in the immediate vicinity of a corner of the

profile, as at the base of a cone. In order to accomodate this

term, the scheme for describing the body must allow for the

pre-processing of a sequence of profile points to yield pulse

function boundaries, test points and values of A or A$ at the

latter. If a pulse function spans a corner, the corresponding Aa

should equal or closely approximate the actual change in tangent

direction at this point. In this case, the total diagonal matrix

elements can be significantly altered.

The combination of the AR3 terms with the existing 1/2 in

the diagonals yields expressions which are very similar to the

formulas given by Poggio and Miller[3' for the H-field integral

equation, when the field point falls at a corner. In our

notation, their term is

2 27T
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which applies to either value of p. We assumed that the surface

was actually smooth, although the radius of curvature at a

corner' of the profile could be extremely small compared to the

wavelength. Since the limiting process implicit in the derivation

of the Maue equation involves taking the field point right up to

the surface, there is no natural scale against which non-zero

radii of curvature may be compared. In the case of the formula of

Poggio and Miller, a mathematically precise corner is assumed,

and their modified term applies only when the field point falls

at this corner. For the t-equation, our formulation will give the

same result as theirs, but the formulas differ for the

4-equation. This is less disturbing than it might be, due to the

fact that the 0-component of surface current is (integrably)

infinite at a mathematically precise corner. Maue[1 ] makes the

case for this statement in a general context, and he obtains the

same behavior for the component of current along an edge, such as

the junction of a cone with a flat base, as is exhibited by the

exact solution for a wedge.

Returning to the first equation given in Section 1, we

know from potential theory that the tangential component of the

surface integral, as a function of r, is discontinuous at the

* surface, suffering a jump equal to K(r) at this point. We also

know that when r is placed on the surface, this integral is
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convergent, in the sense that the limit approached, when a small

ft region covering r is exluded from the integral, is independent of

the shape of this region, as its maximum chord goes to zero.

Maue's equaton results from the fact that the value to which this

integral converges is the average of its values when approached

from opposite sides of the surface. If we did not know this, we

could still obtain an integral equaton for K by actually taking

the limit of the integral

nx J KWr) xV'g(r,r') dS'
S

as r approached S from the outside. As an exercise, this

procedure is carried out in Appendix 2 for the individual modal

integral equations with the result, of course, that the term

KP(t;m) is replaced by 1/2 KP(t;m), and the remaining

integrals all converge. The validity of this derivation depends

entirely on the integral T, and the asymptotic expansion

derived for it in Section 3. The general technique may be useful

in other situatons, such as the form of the E-field equation

discussed in Section 5, where a similar surface integral is

involved which can be evaluated in finite form as a limit (as r

approaches S), but in which one cannot put r actually on S and

still have a convergent integral.

35
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5. THE E-FIELD SOLUTION.

If Eo is a source field, and r is a point exterior to

the surface S of a perfect conductor, then the electric field

satisfies the equation

E(r)= E (r) + iiw J{K(r') g(r,r') + 1  [K(r') V'] V'g(r,r') }dS'
02

s k

where K is again n x H on the surface and P is the magnetic

permeability. This form, of course, follows directly from the use

of the standard dyadic Green's function [4], and the second term

of the integrand is usually transformed as follows:

I [K(r') V'] V'g(r,r') dS'
s

= - V J K(r') V'g(r,r') dS'

s

V J g(r,r') V'- K(r') dS'.

The field point is now allowed to approach the surface,

* and the boundary condition n x E = 0 is applied, with the result

n x E (r) = Lim n x J g(r,r') K(r') dS'
0 r S S

0 + Lim (nxV) J g(r,r') V' K(r') dS'
k2 r S S
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From potential theory we know that this surface integral and its

tangential derivatives are continuous functions of r, on or off

the surface, hence the limits are taken by simply placing r on S,

and no convergence difficulty arises.

The method of moments is now applied [2 ] , with expansion

and test functions in the Galerkin procedure. The derivative of

the expansion function, inside the integral over r', is

approximated by a difference operation, and the V outside the

integral is transferred to the test function upon integration

over r, where it is also approximated by a difference.

When carried out in detail, the following *-integrals

occur:

S1 = 2 J g(R) cos(m4') d*
0

S2 = 2 g(R) cos* cos(mP) d*
0

and

7t

S3 = 2i I g(R) sin* sin(m*) d'F
0

i

I
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The leading term in the expansion of g(R) for small R is simply

1/4nR, hence S3 is convergent and the others are simple. The

divergent portion of SI and S2 is just

1 j cos(*/2)
2 0 R

1 2 du
0 (a 2 u2 + x 2 1/2

This integral is logarithmic and it can be dealt with just as

T2 was in Section 3. In particular, the field point can be

removed a distance rA/e from the surface and all terms become

finite. No contribution involving A$ arises. This is consistent

with the E-field equation of Poggio and Miller, since the term in

their equation affected by the presence of a corner vanishes when

the boundary condition for a conductor is applied.

Another E-field equation can be obtained from the first

equation of this section by letting r approach the surface and

then equating the tangential components of E to zero:

n x E (r) = Lim n x I {K(r) g(r,r')
r*S S

+ L- [K(r') V'] V'g (r,r')} dS'

0
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The differential operators are now treated exactly, since the

derivatives are carried out explicitly on the scalar Green's

function, at the cost of a more complicated kernel for the

integral equation (see Andreasen[5 1). The integral will be

convergent only if r approaches S after the integrations are

performed.

The methods of this report have been applied to this

equation and it is found that all integrals remain finite, but

the analysis is much more complicated in detail. Nine 4-integrals

occur, many with inverse fifth powers of R, and the asymptotic

forms are more tedious to obtain. A particular feature arises

which may well cause difficulty in a numerical analysis based on

these equations, however. One of the diagonal matrix element

terms turns out to be inversely proportional to A, the pulse

function range in the t-direction. If our surface integral is

used to find the electric field at a point close to a plane

surface, due to a small region near the point, an expression is

obtained which is inversely proportional to the linear dimensions

of that region, as the point approaches the surface. The formula

obtained is strongly dependent on the shape of the region, and in

our case is proportional to 1/A. The problem is not one of

convergence, since A is not infinitesimal, but it may lead to

numerical instability, thus defeating the purpose of this scheme,
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which is to avoid the effects of approximating derivatives by

differences. A report of this method will have to await the

results of trial by actual numerical analysis.

0
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APPENDIX 1. EVALUATION of the DYADIC COMPONENTS.

Let z, P and f be unit vectors in a cylindrical coordinate

system. The directions of P and 0 depend, of course, on location,

and for two points on the surface of the body, the relations

P • P' = 0 • 0' = cos*

and

* P' = - P •0' = sin*
0 in

are valid, where ' = 0' - 0. The normal, n, and the tangent unit

vector, t, are expressed in terms of z and P by the equations

t = cos8 z + sin8 p , n = -sin8 z + cosS p

" If the field point, r, is off the surface, in the direction

of n, by a small amount C, then we can write

r = z z + P P + n = (z - € sinB) z + (p + C cosB) P

* Working out the cross-products such as z x = , we find that

t x r = (P cos8 - z sin8 + )

and

* * x r = (z - sinB) p - (p + cosS) z

At r', the point is on the surface, hence the analogous

41
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quantities are

t' x r' = (p' cos' - z' sin') '

and

0, x r' = zIP ,  - PI z

The dot products required for the components of M are now

*" evaluated:

(t x r) * t' = (P cos8 - z sin$ + ) sin' sin*

(t x r) *' = (P cosB- z sin$ + ) cos*

(0 x r) • t' =- (P+ cos$) cosO' + (z- C sinO) Bin' cos*

(0 x r) •' = - (z - C sin$) sin*'

The corresponding products

(PI x r') _q

are obtained by interchanging primed and unprimed quantities and

omitting terms proportional to C.

These results are combined, and the identity

1 = cos* + 2 sin 2 (*/2)

is used, where appropriate, to obtain the desired formulas

Mtt
= (0xr) e t' + W tr')I ~~G(R) - - -

= (P'-P) cos8' - (z'-z) sinB'] cos- cos(8'-B) cos

- 2 (P + cosB) cos8' sin 2 (*/2)
4
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m ( xr) 0*+**(1xrV

=(z' - z + C sinO) sin*

mot) - (txr) -0 - t (t' xr' )

=(P' sin$ cos~' -PCOS$ sinV' (z'-z) sin$ sin8'

-C sinV'I sin*

moo (txr) t - *xr')
G(R)

-[P'- P) cos8 - z-z) sin8 - C] cost

I2

+ 2 P'cosO i (41/2)
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APPENDIX 2. DERIVATION of the MODAL EQUATIONS as LIMITS.

If the analysis of the main report is repeated with the

field point, r, off the surface by a small distance in the

direction of the positive normal, the modal equations will be

KP(t;m) = KP(t;m) + Lim [ J Lp  (t,t';m) Kp '(t';m) P'dt
0 

(tmo Pd

Using the results of Appendix 1, one finds that the dyadic

components are now given by

* Ltt = [(P'-P) cos0' - (z'-z) sinS' - cos('-8)] T

- 2(P+C cos0) cos0' T

Lt (z'-z + € sin$)

Lot [.P' sinO cos - P cos8 sinB' - (z'-z) sin$ sinB'

- sin8' ] T 3

and

0
L = [(P'-P) cosO- (z'-z) sin8 - 1T

+ 2 P' cos8 T2

0

4
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The T-integrals have the same definitions as before, but

as noted in Section 4, we now have

2 x2 +4 2  2
R x 4asin (*~/2)

where

= (p -P 2 + (z'-z) 
2

-2 C~ [p'-p) cosO (z'-z) sin$] + 2

and

a2 =P, (p+c Cosa)

The entire discussion of these integrals is still applicable,

including the asymptotic expansions for small values of x.

We can simply put C = 0 everywhere, except in the vicinity

of the point t' = t, where we must evaluate the effect of the

c-terms. In those terms of the dyadic components which are

identical to terms already discussed (with r on the surface), we

can immediately put C = 0 for any t', since these terms have all

been shown to be finite after integration over tie Similarly, in

the terms UT2 and T3, the T-factors yield convergent

integrals over t' (T3 behaves just like T2), hence these

terms will vanish when goes to zero.
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The only terms which remain are

AL tt = - C cos(B'-B)T

and

AL - Ti

If we expand cos(B'- ) the second term is proportional to

Tand we know that T2T1 is integrable, so that in the

limit, we need retain only

AL tt -LO C - T

F'or T1 we can take the first term of its expansion:

2 ir ax2

since all others are finite after integration over t'. The

contribution of the new terms thus reduces to

Lim I A Ltt(T) Kt(tI) PI diT
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Kt(t) Lim P'dT
2 -0 -61 a x

with an exactly analogous expression for the *-term. In the

present context, we may think of 61 and 62 as infinitesimal.

Using the expansions derived in Section 2, we have

(eP 1 + O 1 / 2  = 1 + -- 1 (sin O T - OS co C) + . •

a p+ Cco-S-B--

and

2 2 + 2x (- ) T + 2 +

where, as usual, terms of higher order than those explictly

indicated turn out to make no contribution in the limit.

We define

o2 2

and substitute:

62

Lim 2 ] d't
2

0 -6 a x
1
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62
Cos sins

Lim C ( + T)
0 1 8 - 6 2o- 2 + 2 2

Since

62 T dt 1 62 +

] 2 2 log (2 2T61 + a01 +

is finite for a = 0, the corresponding term, when multiplied by

C, will vanish in the limit. We are left with

6
Lim (i -) Co -
C 0 1 2 P T i 2 +  0 2

=Lim 0 dT

a+0 -6 2 + 02

=Lim {tan- I  62) + tan-' 61)

p--

0

*If C had approached the surface from the inside, a would have

passed through negative values to zero, and the result would have

" been -7. This accounts for the discontinuity of the surface

integral. Altogether, we have found

48
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Lim i 2A Ltt (T) K tts W d T Kt t)
+0 - 2

with the same result for the integral of AL~$. The modal

integral equations then revert to the forms derived from the Maue

equation directly.
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