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ABSTRACT

In this report, two-dimensional stochastic linear models are used in

developing algorithms for image analysis such as classification,

segmentation, and object detection in images characterized by textured

backgrounds. These models generate two-dimensional random processes as

outputs to which statistical inference procedures can naturally be applied.

A common thread throughout our algorithms is the interpretation of the

inference procedures in terms of linear prediction residuals. This

interpretation leads to statistical tests more insightful than the original

tests and makes the procedures computationally tractable. This report also

examines a computational structure tailored to one of the algorithms. In

particular, we describe a processor based on systolic arrays that realizes

the object detection algorithm developed in the report.
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I. Introduction

This report describes an approach to image processing in which linear

filtering models are used to represent portions of the image. These models

generate two-dimensional random processes to which statistical inference

procedures are applied. The combination of the linear models with the

statistical procedures leads to practical algorithms for extracting desired

information about an image. Further, although the resulting algorithms may

be computationally intensive, they usually have regular structure, and,

therefore, are ideal candidates for implementation with special computational

architectures and structures that exploit parallelism.

4
This report considers three particular applications in image processing

[I]: image region classification and segmentation, and object detection.

Specifically, many aerial images of natural terrain can be effectively

characterized as composites of textures which can be modeled by

two-dimensional (2-D) random processes. Such textures may represent various

types of fields, water, desert, wooded areas, and so on. The :lassification

and segmentation of these images into regions of known type is important for

a variety of applications, including image understanding and image coding

and, more specifically, crop and land use data collection and cartography.In

4
both problems, using the models cited earlier, one can develop a probability

density function for the image data [2). We use this approach to first

briefly address the problem of classifying regions of known boundaries. This

I
leads naturally into the more complex problem of image segmentation. Here,

the texture model is combined with a Markov random field model to represent

4
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the occurence of textured regions within an image. Segmentation of the image

is then treated as a region estimation problem, and the resulting algorithms

have a clear intuitive interpretation in terms of the output residuals of

linear prediction filters [2].

The problem of detecting small regions of an image which differ from

their surroundings is a third application that is developed. This problem is

of considerable interest in such areas as image understanding and machine

vision, and, more specifically, optical, radar and infrared image analysis,

and medical diagnosis. Detection of such anomalous areas of an image is

often the first step in image analysis systems which perform automatic

4q classification of objects. In this report, we shall address the particular

problem of detecting objects in aerial photographs of natural terrain such as

trees, grass, and fields. The process of deciding on the presence of an

object relies on a significance test which is designed to ensure Constant

False Alarm Rate (CFAR) detection (3,4]. The detection algorithm derives

from the fact that this significance test can be transformed to a test

involving error residuals of an adaptive 2-D linear predictor and an adaptive

threshold. This equivalent representation leads to an algorithm which can be

computationally more tractable and also more insightful than one based on the

original significance test.

The texture models used in our approach to segmentation are not unique to

this report. One-dimensional ARMA (autoregressive-moving average) models for

U
texture images were studied by McCormick and Jayaramamurthy as early as 1974

[51, and two-dimensional linear models have been extensively studied by

I
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Pratt, Faugeras, Gaglowitz, and others [6-Il]. However, the usual approaches

to segmentation, even when based on these models, have centered on the

analysis of texture "features" (such as moments of the co-occurrence matrix)

rather than on estimation-theoretic concepts applied directly to the random

fields. Where estimation-theoretic methods have been used, the results have

been generally successful. Our early experiments [12] on texture images from

a standard data base produced encouraging results that were further validated

in comparative studies by Chen [13]. Cooper, Elliott, and their colleagues

[14-161 approached the problem of boundary estimation for nontextured images

in a manner similar to the way we approach region estimation for general

textured images. More recently [171, Hansen and Elliott examined the problem

of region estimation for images consisting of constant gray level objects in

additive Gaussian white noise. The likelihood equations for this problem

turn out to be similar to the equations for the maximum a posteriori estimate

of textured regions described later in this paper. A significant amount of

other work has been done in random field models for images. However, most of

it has been oriented toward applications of spectral analysis, filtering (for

image restoration and enhancement) and, to some extent, coding. Some of this

work will be cited in the following sections.

The linear filtering approach to object detection is also not unique to

this paper although, as before, most detection schemes are "feature

dependent." Other authors have considered (adaptively) filtering background

clutter to enhance object-to-background ratio [18-221. However, the notion

of close inspection of prediction filter residuals, based on significance

3
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testing and its modification for CFAR, appears to be novel in the area of

image analysis.

This object detection algorithm also serves as a good example of an

algorithm amenable to a special computational structure which exploits

parallelism, such as a systolic array [23]. The various steps of the

algorithm of estimating a correlation matrix, solving the normal equations,

and performing the prediction error filtering can be implemented on arrays

most of whose cells perform the simple inner product step c+c + a-b [24].

The combination of these arrays forms a highly parallel computing structure

where image data flow in and object detection results flow out at similar

rates.

The first two sections of the report deal with modeling and statistical

inference procedures. These sections review the necessary ideas in

stochastic multidimensional filtering and statistical inference and are

intended to be mostly tutorial. Following that, we describe the particular

topics of classification, segmentation, and object detection and derive

algorithms based on the earlier statistical and modeling procedures.

Finally, we focus on one particular algorithm for object detection and

discuss how it could be implemented in a systolic array that pipelines the

computations in a very efficient manner so that results could be carried out

in real time.

4



2. FILTERING MODELS FOR IMAGES

To set up the discussion of image analysis through filtering models, we

first develop a stochastic framework for image representation in which a

pixel ordering and the notion of "past" are defined. With this as a

foundation, two image models are introduced; white-noise driven and

minimum-variance representations. In both models, we view an image as the

output of a 2-D linear filter. In the former case, the input to the filter

is white noise, while in the latter case the input is generally colored.

These models are described and compared in the context of representing a 2-D

random process of arbitrary positive spectral density and are shown to be

equivalent under certain special conditions. While the white-noise driven

model serves as a useful conceptual tool, the minimum-variance 'representation

is more useful in practice.

2.1 Framework

We consider an image x(n,m) as a sample function of a 2-D random field

where n and m range over some finite rectangular grid. To begin, we require

some ordering on this field and define the notion of "past" which is closely

related to the notion of "causality" [25]. Specifically, for any point

(no,m o ) in the image, we define the past to be the set of the points:

{(n,m) n=no, m < ino; n < no, - m } ()

This definition is illustrated in Figure 1. As a matter of notation, if

(nl,m I ) is in the past of (n 2,m2 ), we write (nl,ml) < (n2 ,m2 ).

5
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If we cancatenate the columns (or rows) of x(n,m) into a vector x, the

2-D stochastic field is completely characterized by the probability density

function Px(). The mean and covariance of the vector x can be expressed

in terms of the mean and covariance functions of the random field which are

defined by

ux(n,m)= E[x(n,m)] (2a)

and

r x(n,m;Z,k) = E[(x(n,m)-u x(n,m))(x(n+X,m+k)-u x(n+i,m+k))] (2b)

When the field is wide-sense stationary, (2) is invariant to spatial shift;

that is, ux and rx no longer depend on (n,m).

2.2 White Noise Driven Linear Models

A special case of the image representation of the previous section

occurs when the image x(n,m) is generated by a white-noise driven linear

system as illustrated in Figure 2. When the white noise input w(n,m) is

wide-sense stationary and the linear system is shift-invariant, the resulting

image is also stationary. In addition, since the system is linear, when the

input w(n,m) is characterized by a Gaussian probability density function the

process x(n,m) is also Gaussian.

One white-noise driven representation (WNDR) with which we shall be

concerned is given by the linear difference equation of the form:

(n,m)= a(£,k)x(n-£,m-k) + w(n,m) (3)
X, k cM

7
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where M represents the nonzero support region for filter coefficients

a(X,k) which we shall refer to as the filter coefficient mask, and where

w(n,m) is the white noise input with variance (Ow) 2. Equation (3)

defines an autoregressive or all-pole model (the stability of the recursion

is assumed). Each image pixel of x(n,m) is given by a linear combination of

its surrounding samples and a single white noise sample. The coefficient

mask M in this relationship may take on different shapes and, in general, may

be infinite in extent. For example, when each image pixel is related to the

entire set of points in its past then the shape of the mask M is of the form

in Figure 3a. We shall refer to this mask geometry as a non-symmetric half

plane (NSHP) [25-27] and, in this case, we say a "causal" relation exits

between image pixels. More generally, the coefficient mask M may take on a

geometry which is not a NSHP as illustrated in Figure 3b.

In terms of the second-order mean and covariance statistics, the WNDR

with a NSHP coefficient mask is sufficiently general to characterize any 2-D

random process with a positive definite covariance function [25,281. This is

true regardless of whether the actual generation process is a WNDR. The

sufficiency of the NSHP mask can be seen through the equivalent second-order

spectral density characterization of a random process. The spectral density

function is formally defined as the inverse 2-D Fourier transform of the

covariance function rx(l,k) or equivalently as the 2-D z-transform of

rx(X,k), denoted by Sx(z1 , z 2 ):

9



I

I -k

Sx(z1 ' z2) A r (I,k) z- z~k (4)
x 1 2 k 2

evaluated for ~z I-lz 2l-"1

Suppose now that an arbitrary random process x(n,m) is characterized by

the density function Sx(exp[juI,exp[jv]). Then, if Sx(exp[Ju],exp[jvl)

is strictly positive for all (uv), it can be shown that the 2-D z-transform,

Sx(zIz 2 ), can be written in factored form as

Sx(zl, z2) = ()2 /A(, z2)A(z, z2) (5a)

where we have
I

it -k k-I

A (zl, z2) = (1-i a(X,k) z I z2  (5b)

I,kc4

and where the coefficient mask M is a NSHP and generally infinite in extent

[26]. Furthermore, the zeros of A(z1 , z2) fall within the region

Z11 < 1 and 1z21 < 1 of the z-plane, and therefore A(z,, z2 ) represents a

stable 2-D polynominal. Equation (5b) can be immediately recognized as the

system function of a filter corresponding to the difference equation (3).

Consequently, we have shown that any 2-D random process with a positive

. definite covariance function can be represented by a stable autoregressive

process with a NSHP support. Specifically, suppose a random process x(n,m)

is characterized by a positive spectral density Sx(exp[ju],exp[jv]). Then

Q a stable autoregressive representation (3) can be found with a white noise

input of variance (a )2 and with coefficients a (1,k) having a NSHP mask

I.

10



geometry. This representation exists, regardless of the underlying process

which generated x(n,m).

A highly useful interpretation of the function A(z1 , z2 ) is that of

an inverse filter; i.e., it can be seen from (5) that applying x(nm) as the

input to a filter with transfer function A(z1 , z 2 ) results in a white

noise residual with variance (a )2. This inverse filtering or whitening
w

process is particualrly important in the applications of image segmentation

and object detection.

In practice, the filter parameters a(£,k) must be determined from the

Savailable covariance function or the equivalent spectral density. From (5a),

we see that obtaining this parameter set requires a 2-D spectral

factorization which can be accomplished through a homomorphic transformation

[26]. One practical problem in this computation involves the extent of

a(1,k). As noted, the resulting autoregressive model mask M for an arbitrary

spectral density Sx(exp[ju],exp[jv]) is generally infinitely large. In

image processing applications, however, it is practical to use only a small

number of coefficients. Although we can obtain this small parameter set by

truncation of the coefficient set, this method does not guarantee a stable

0 representation. In addition, it does not necessarily lead to an inverse

filter whose output residual is white or one whose output residual has any

other meaningful interpretation. Furthermore, when the filter parameter set

* is known a priori to be small (as is the case in our applications to follow)

the required 2-D spectral factorization is computationally inefficient

because the entire covariance function rx(£,k) is needed.

11
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An alternate model described in the next section controls the inverse

filter output and the coefficient mask size by guaranteeing a

minimum-variance residual for a finite coefficient geometry. For low-order

models, the minimum-variance representation leads to a more efficient

procedure for solving the factorization problem by specifically using the

finite-order model assumption.

2.3 Minimum-Variance Linear Prediction Models

Rather than viewing (3) as an input-output relation for generating

x(n,m), we can interpret (3) as a prediction operation. In particular, if we

estimate the sample x(n,m) by

x(n,m) = [ a(Z,k) x(n-£, m-k) (6)
Z,k cM

then w(n,m) in (3) is the residual process x(nm) - x(n,m) equal to the error

in prediction. Suppose now that x(n,m) is an arbitrary stationary 2-D random

field. We seek to fit a linear prediction model to x(n,m) that will minimize

the variance of the error between the actual values of x(n,m) and the

predicted values x(n,m) obtained from (6). Thus, we want to minimize

E[(x(n,m) - x(n,m))21 (7)

by varying the linear prediction coefficients a(.,k). Minimization of (7)

yields a set of linear equations, known as the Normal equations, to be solved

for the prediction coefficients [27]. These can be expressed as

r (X,k) - a(p,q) r (L-p, k-q) =(a )2 6 k)(8)
X p,qeMXW

12
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where the rx(l,k)'s are the covariance coefficients defined in (2b). To

solve (8), the geometry of the mask M in (6) associated with the prediction

coefficients must be choosen. As in the WNDR, the choice of the mask M

presupposes a certain relation between an image pixel and its neighbors.

Although this relation need not be a causal one (see Figure 3), we shall

assume (unless indicated otherwise) a NSHP mask geometry, so that each pixel

is related only to neighbors in its past.

We now consider some of the properties of the minimum-variance

prediction representation (MVPR). First, unlike the normal equations for I-D

causal filters, the solution to (8) does not generally result in correlation

matching. That is, x(n,m) in (6) does not necessarily have the specified

correlation rx(i,k) over any region in space (271. Furthermore, again

unlike the I-D case, the solution to (8) does not necessarily yield a stable

filter [271. However, under certain conditions, the solution to (8) does

result in important correlation (and spectral) matching properties which can

most clearly be seen from a comparison of the WNDR and MVPR models.

Let us first define the error residual of linear prediction as

e(n,m) = x(n,m) - x(n,m) (9)

= x(n,m) - a(£,k)x(n-£,m-k)

£, k EM

In general, e(n,m) is not a 2-D white noise process; that is, it has a

correlation function re(Lk) not equal to the 2-D impulse function.

Consequently, a MVPR is generally not a WNDR. In fact, x(n,m) can be viewed

as the output of a linear shift-invariant filter with a colored noise input.

13
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However, there are some conditions under which the two representations are

equivalent.

Consider first the case where x(n,m) can be characterized by a WNDR with

a corresponding NSHP coefficient mask M'. If the mask M in (8) equals M',

the solution to (8) yields the WNDR (3). If M' is infinite in extent then

the MVPR approaches the WNDR as the mask M is allowed to become arbitrarily

large [28]. Thus, the MVPR can always be made aribtarily close to the WNDR.

This implies that for a sufficiently large M the spectral density of the MVPR

can be made arbitrarily close to the spectral density of the WNDR. Therefore,

the factorization in (5a) can be performed indirectly

through (8). In the case where the mask M does not match M' (i.e., M is

smaller than M') the MVPR is not WNDR. In this case, the random process

x(n,m) in (9) is the output of a linear filter with a colored noise input

e(n,m) and so the spectral matching property in (5a) does not hold. As a

final point, we mention that the process x(n,m) may have been generated by an

underlying WNDR having a noncausal coefficient mask M, as illustrated in

Figure 3. However, regardless of this generation process (or any other

generation process) a causal white-noise driven MVPR can always be found

provided its NSHP coefficient mask is made sufficiently large (281.

As pointed out in the previous section, the MVPR provides an efficient

procedure for filter coefficient determination where in our applications a

low-order model is known a priori. A small model order implies a small set

of linear equations. Further, depending on the mask geometry, the matrix

representation of these equations has a block Toeplitz structure and

1
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therefore are amenable to soluton by fast computational methods [29].

2.4 Model Parameter Estimation

In all of the above representations the covariance coefficients

rx(t,k) were required. Since these parameters are not necessarily known a

priori, we must estimate them from the available data. In general, these

estimates are approximate since only a finite data segment is usually

available. Even when an arbitrarily large data set is available, lack of

stationarity may prohibit the use of arbitrarily long averaging.

The estimation approaches typically replace the expectation in (2b) by a

sum of lagged products given by

r (1,k) = ) x(p,q) x(k+p,k+q) (10)
x

p,q

with various limits of summation [30, 31]. One of the following two methods

is most often used. In the first, it is assumed that the data is zero

outside of the given set of points or data "window". In the second, the

limits of summation in (10) are not allowed to run beyond the given data so

that no assumptions about the data are made outside of the data window.

These covariance estimates together with the Normal equations are known as

the "correlation method" and the "covariance method" of linear prediction

respectively [31, 32]. In the applications to follow both methods are used.

The "correlation method" is used in image segmentation where large quantities

of training data are available. On the other hand, the "covariance method"

is used in object detection where the data is nonstationary.

15



2.5 Space-Variant Models

The models discussed in the foregoing sections can be made space-variant

by allowing the model coefficients to be a function of position. For

example, the space-variant WNDR is given by

x(n,m) = a(nm;j,k)x(n-j,m-k) + w(nm) (Ila)
(0,0)<(j,k)

with

w(n,m) aw(nm) wN(n,m) (1ib)

where w N(n,m) is white Gaussian with unit variance and where both the

-O filter coefficients and the noise variance are allowed to vary with

position. The image x(n,m) is now a sample function of a nonstationary

random field with mean and covariance defined by (2). The various forms of

this space-variant representation and corresponding estimation procedures are

not as well established as in the stationary case. Nevertheless, this image

representation can be very useful under a "quasi-stationary" assumption when

the image background is slowly varying. This type of model is used in the

object detection problem of Section 5.

16
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3. STATISTICAL PROCEDURES

In this section, we review some basic statistical procedures which will

be useful in image analysis; namely, estimation, hypothesis testing, and

significance testing. It will later be seen that image segmentation requires

estimation of regions and boundaries, while classification and detection

requires decisions among various hypotheses. We further consider the form of

the likelihood functions when a Gaussian PDF is assumed along with the linear

models of the previous section.

3.1 Estimation

Assume that a set of N random variables represented by the vector x is

described by a multiva-iate probability density function

" Px(x; P) (12)

which is parameterized by a set of M (scalar) variables p. The problem of

parameter estimation is to estimate p from a given set of observations x.

The two approaches referred to in this paper are maximum likelihood

estimation and maximum a posteriori (MAP) estimation [33, 341.

Maximum likelihood (ML) estimation regards S as a deterministic

parameter and chooses its value to maximize the probability that the given

* set of observations occurs. Specifically p M1 is the value that satisfies

Px; p(; - 1) = max Px; (x;p) (13)

When used in this manner the function p (x;.) of is referred to as a

likelihood function.

17
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MAP estimation regards p as a random vector and assumes a prior density

p (p). To emphasize the random nature of p it is conventional in MAP

estimation to denote the density function (12) by p (x p). MAP estimation
Ax I

chooses the estimate MAP to maximize

max [•P.xjI2) . p(P) (14)

which is equivalent to maximizing the posterior density function

'3 XPlx_ (15)

Since both ML and MAP estimation involve maximizing

probabilities of events closely related to the observed data, both procedures

are quite intuitively plausible. Most readers will be aware that these

estimates also have important statistical properties such as consistency and

unbiasedness and satisfy certain bounds on their variance or mean square

error [33,341.

3.2 Hypothesis Testing

Hypothesis testing is another statistical procedure in image

analysis and is useful for image classification problems where the classes

have known statistical characteristics. In the case of classifying images

1

I
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into one of two different categories, various criteria (Bayes,

Neyman-Pearson, etc.) lead to a likelihood ratio test [33]:

Pi( IHI) HI
> T£12 =  <2 H)

12 2IHI2 (16)

where pi(XIHi) is the likelihood function conditioned on Hi, the hypothesis

that the observed data x belongs to class i. The notation in (16) is used to

mean that the decision is Hl when the likelihood ratio is greater than the

threshold T and the decision is H2 when the likelihood ratio is less than

the threshold T.

Generalizations of hypothesis testing to more than two classses are

somewhat more difficult to derive but are nevertheless easy to-apply. The

simplest such test involves choosing the class for which the likelihood

function pi( H) is largest. More generally, they involve decisions

using pairs of likelihood ratios between the various classes [33].

3.3 Significance Testing

Significance testing is probably the least well known of the statistical

procedures in the context of image and signal processing. Nevertheless, it

is a powerful concept and is used in developing one of the algorithms

discussed in this paper. In significance testing a single hypothesis is

checked against all possible alternatives [34]. Thus, the procedure is

important when we have good statistical knowledge about one class of images

and little or no knowledge about the other classes.

19
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The idea can be illustrated with a two-dimensional observation vector x.

Figure 4 shows the probability density function for x based on an assumed

hypothesis HO . A so-called "critical region" of small probability is

chosen arbitrarily. The probability of the event that x falls within this

region is known as the significance of the test. If the observation falls

within the critical region, we reject HO . Otherwise we accept do .

Although the choice of the critical region is somewhat arbitrary, one may be

guided by any weak statistical knowledge about the nature of the other

classes.

3.4 Form of the PDF Based on Linear Models and Gaussian White Noise

The statistical procedures derived in the previous sections require the

use of the data vector x with a specified PDF. Although the observed data

can be used directly within these tests, such use is cumbersome and

computationally inefficient for image processing applications. Furthermore,

it is unsatisfying since it provides for no convenient intuitive

interpretation beyond that of the statistical test itself. Alternately, when

the data x(n,m) is characterized by a Gaussian PDF and follows the linear

models of Section 2, it is possible to transform each test to one involving a

set of independent Gaussian random variables. Under these conditions, the

transformed data set is the output of a filter which is the inverse of the

linear filter used to generate the random process x. This mapping is the key

to the statistical approaches taken within this paper and leads to tests

Fwhich are insightful and simple to implement.

21
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Let the NM-dimensional data vector x be formed by concatenating the

columns (or rows) of a region X of finite size N by M, as illustrated in

Figure 5. Note that in Fig. 5 and the following paragraphs we use

two-dimensional subscript notation to indicate position of points with

respect to the region X. In other words, if X is located so that its lower

left corner is at (n0 , m ) then x ,1 represents the value x(nom 0).

Further, suppose that the elements of X follow an autoregressive WNDR given

by (3) with a finite NSHP mask and are characterized by a Gaussian PDF

p (x) exp [T K -  .] (17)
X (2 v)NM/

2
1KX 1 2/2

where Kx=E[xTx] and where (without loss of generality) we have assumed a

mean level of zero. We shall take two approaches to the problem of

transforming x to a set of uncorrelated Gaussian random variables: the first

is approximate, but insightful and practical, while the second approach is

exact. The difference is in how we handle the boundary conditions at the

border of the observed data.

If the vector w represents the white noise input term in (3) over the

region X then (3) can be written in matrix form as

Ax =w - Aoo (18)
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Figure 6. Illustration of boundary conditions outside the region X.
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where A and Ao are matrices whose nonzero elements are derived from the

terms a(E,k) in (3) andx o represents a set of boundary conditions with

support outside of X illustrated in Figure 6 for a particular coefficient

mask. Observe from (3) that the matrix A is square and lower triangular with

ones along its diagonal. Thus, A is always nonsingular. The matrix Ao in

general, however, is not square and has no special properties. If the

boundary conditions are temporarily ignored, i.e., we assume Xo=O, then we

have the approximate relation

w a A x (19)

Therefore, we can write the PDF of x as

- =(20)

Because of the properties discussed above, the determinant of A is always

equal to one. Then, since w is characterized by a Gaussian PDF, we have

( I p- 1
~x) (211) NMI2 K L/2  [IT2- wj - w = A x

1 ' N M (wn m)2
NM/2 NM exp [- I 1 7 12

(21r) NM2(a NM) n=1 m=l (
ww = A x (21)

where wn,m is an element of vector w and where Kw is a diagonal matrix

with diagonal elements equal to (ow)? Consequently, the likelihood

functions of the previous sections can be implemented approximately with the
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white noise vector w=Ax. In practice, the elements of w can be obtained by

inverse filtering x(n,m) by the filter with transfer function A(zj, z2 )"

The reader should bear in mind that because of (19), relation (21) is

only approximate. An alternate argument that yields an exact result relies

on removing any assumptions about the boundary conditions outside of the

image support X. To achieve the exact result we begin by performing a

triangular decomposition of the covariance matrix Kx* In particular, since

the covariance matrix Kx is symmetric and positive semi-definite, Kx can

be uniquely factored in terms of upper triangular, lower triangular, and

diagonal matrices [351:

Kx=LDLT (22)

In this equation L is a lower triangular matrix with one's along its diagonal

and D is a diagonal matrix. Solving (22) for D yields

L-IKx(L-)T = D (23)

and thus D is recognized as the covariance matrix of a set of Gaussian

uncorrelated random variables v related to x by the linear transformation

v=L-lx (24)

It is straightforward to show that since L is lower triangular with unit

diagonal, L-1 has the same property and thus (24) represents a causal

transformation of the vector x in the following sense. Suppose we consider a

subset x1,1, x1,2, ... , xn,m-1 of the points in X as shown in Fig. 7.
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These points represent the points in the vector x appearing before Xn,m

(see Fig. 7). Then since L- 1 is lower triangular each vector component

Vn,m is a function of only these points and Xn,me

Now proceeding as in the previous derivation, we can write the PDF of x

as

p x)W = JLIpv(v) (25a)

- Iv = L-Ix

and since II= 1, we have

p (x) 1 exp T " - D-1 vI (25b)
x (~2 70NM2IjDj1/2

v-L- x

The factorization in (22) leading to the transformation in (24) is of

interest since it can be shown that the rows of L- 1 are coefficients of the

causal minimum variance prediction solution of orders I through NM and that

the diagonal elements of D are the corresponding prediction error variances

[35]. Figure 7 illustrates how the prediction errors vn,m are generated as

a causal function of the points of X. Thus, each row of L-1 represents the

coefficient set of a minimum-variance model with NSHP mask support.

Finally, then, returning to (25b) we have

1 F N M (v )2

Px(x) = NM/2N M exp 1 2] .(26)
(270) R2 n1 m10l )a -

v n,m v=L x
n=I m- n,m v- -
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The elements Vn,m of v can be interpreted as prediction errors and the

(O Vn,m) 2are the corresponding prediction error variances which generally

will differ as the prediction order changes.

Let us now compare the results (21) and (26). The transformations given

by (19) and (24) and the corresponding PDF's (21) and (26) have the same form

but (24) and (26) represent an exact whitening process. The vector w is

obtained from a fixed inverse (prediction) filter corresponding to the WNDR,

while v is obtained from a growing predictor corresponding to the

minimum-variance representation of increasing order. However, as the order

of the MVPR increases so that its mask support equals that of the WNDR then

the whitened elements of the two transformations and their respective

variances become the same. When the image support X is much larger than the

order of the WNDR this equivalence holds almost everywhere over X except near

its border. For this reason and since computation of growing predictors is

often intractable in practice, use of the vector w is found to be preferred.

It is curious to note that although (22) was derived with no imposed

directionality, (24) implies a causal relation among data elements. This

apparent contradiction can be resolved by noting that the causality of the

growing predictor in (24) arises because of our way of ordering samples

x(n,m) in support X. For example, suppose we order samples in reverse order

L as illustrated in Figure 8. With this ordering, the predictors become

"anti-causal". As before, we can approximate these growing predictors with

fixed-order predictors.
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4.0 APPLICATIONS - CLASSIFICATION AND SEGMENTATION

In this section we consider the two related problems of image

classification and segmentation. We assume throughout this section that the

images to be considered contain one or more regions of homogeneous texture

and are well modeled by the linear models described in the Section 2. This

was found to be the case in dealing with aerial photographs of natural

terrain. In images of natural terrain such regions may represent various

types of fields, water, desert, wooded areas, and so on. The problem of

image classification is as follows. Given an image containing only one of

these region types, determine the class, among several known classes, to

which the image belongs. The problem of image segmentation is similar, but

more complex. Given an image consisting of several different homogeneous

regions, determine the extents of these regions and their classes. We shall

approach these problems by using the linear filtering models to characterize

the images and by applying the statistical methods of Section 3 to develop

appropriate algorithms. Throughout, we will assume that the regions are

large enough that we can ignore the effects of the boundary conditions.

4.1 Image Classification

Assume that it is desired to classify images of a fixed size N by M into

one of two distinct classes. Each class is modeled by an all-pole filter

driven by Gaussian white noise, and all of the model parameters are known.

Then according to Section 3, an optimal procedure for classifying the

images is to use the likelihood ratio test (16) where x represents a

vector of the image data to be classified. Since each class of
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I

images is assumed to have an all-pole linear filtering model, (21) applies.

i
Let Wn,m be the prediction error residual from linear predictive

(inverse) filtering with the filter of class i and let (ai) 2be the

corresponding prediction error variance. Then from (16) and (21) the

likelihood ratio test is

1 2

I(w I)2
(Wpn,m)H

NM/2 NMexp [- m2 ] HI
(2w1) (ai x 2(a> T (27)

10= 0 <

eI [- ex n'm H 0
( NM/2 NM 0

(2n) (a0 ) x 2(a 0)
2

where we have dropped the subscript w on a for notational clarity and added

appropriate class subscripts.

Taking minus twice the logarithm leads to the test

1 2 (w0 )2 2 H

2 - n,m<Wnm ) + NM Iln- -21n T (28)

X (a 2 x (a 0 ) 2 (0) H0

Eq. (28) states that if the sum of the normalized squared errors in linear
I

prediction is lowest for class i, then that class should be selected. This

interpretation is intuitively satisfying. Further, it can be shown that

regardless of the statistical distribution of the residuals, a decision rule

in the form of (28) will, on the average, choose the correct class [2].

I
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When ther are more than two classes of images to deal with, the decision

rule becomes only slightly more complicated. As stated in Section 3.2, the

multiple class problem involves likelihood ratio tests between pairs of

classes. Each of these likelihood ratio tests thus has the general form of

(28).

4.2 Image Segmentation

We now turn to the problem of image segmentation. While the statistical

basis for image classification was hypothesis testing, the statistical basis

for segmentation will be estimation theory. We find that the quantities to

be estimated are a set of class labels or "states" for each of the pixels.

These states collectively determine the regions or segments which we seek to

find.

We shall consider both ML and MAP estimates for the states. Recall that

in order to obtain a MAP estimate of the states, we need to have some prior

density function. It is found that this density function is most

conveniently obtained if the states themselves satisfy a Markov probability

model. This Markov model forms a superstructure for the image built over the

individual linear filtering models that describe the image within each

region. The form of the Markov model is discussed in the next section.

4.2.1 Model Development

Consider an image consisting of multiple regions R1 , R 2 ,...,Rq (see

Fig. 9). It will be assumed that within each region, the image can be

represented by a white-noise driven autoregressive model as in (3). Let the
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image in region Ri be represented by a model of class ki and denote the

probability density function for points in that region by p

where-2_R i is the set of points in region Ri . Since points falling in

disjoint regions are generated by different linear filter models and thus are

independent, we can write the probability for all points x in the image,

given the regions RI, R2 , ... , Rq as

iP(x IRI"'..R q) Pk(XR )'Pk2(4R2 ... Pk (!R) (29)

S 1 ~ 2  2 q q

If we use the relation (21), we can obtain an explicit expression for the

density function in terms of error residuals of linear prediction for each of

the image models. Let us follow the procedure in Section 4.1 and instead

form the log likelihood function -2 In p(xIRl...Rq). Then from (29) and

(21) we have

-2 In p(x IRI ,R2 ,. . . ,Rq)

(W k1 ) 2 2W kq 2 2
Sn,m + ln(ak)l 2 [-~ n,m 2 + ln (aok 2-NMIn 2n

R1(Ok1)2 1 R q(O) q
1wk) q )

42 +n~o -.. 1 ( ink ) 21 -NM In 2
~l R ( k )2q

ki)2
n,m

- (Ok +lin (Ok.) 2 ] -NMin 2n

where _x is the observed data vector, and where wn,m is the error residual

computed using a filter of class ki
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and Oki) is the white noise variance of class ki .

Eqs. (29) and (30) suggest that one can take a maximum likelihood

approach to estimating the regions. For ML estimation, the number of regions

q and the regions themselves are considered to be deterministic parameters of

the density function. An ML estimate for these parameters is obtained by

choosing values that maximize (29) or, equivalently, minimize (30). It is

clear from (30) that the function is minimized if every point (n,m) in the

image is assigned to a region Ri of type ki such that the term in

brackets is minimum. Suppose there are two possible region types so that

ki takes on values 0 and I. Then we are led to a segmentation rule of the

form

0
h < hI (31a)

£>
tI

with

(W k )2

hk=  nm + ln(ak)2  k - 0,1 (31b)' (Ok) 2

g where the number above or below the inequality indicates the region type to

which the point (n,m) will be assigned if the inequality holds.

I.3
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Since ML estimation leads to a decision rule that assigns points to

region types without regard to the assignment of adjacent points, one might

expect this algorithm to produce a number of false assignments and a somewhat

"spotty" result. This, in fact is seen to be the case.

A better procedure is to use MAP estimation as discussed in Section

3.2. For MAP estimation the regions are considered to be random quantities,

and we maximize the probabilty for a given set of regions conditioned on our

observation of the image. From Bayes rule, the a posteriori probability can

be written as

Pr [Ri, R ...,RP(IR 1 R2 .,Rq )Pr q (32)

R2*ni~~q~2Sl p(x) [RR 2 .R

Maximizing (32) requires maximizing the numerator which in turn requires that

we have an expression for the prior probability of the regions. Thus we are

led to the following procedure for modeling the region statistics.

Let us define the "state" s(n,m) of a point (n,m) as the region type to

which that point has been assigned. If there are K region types, the state

will take on values in the set of integers 0,1,2,...K-1. For the subsequent

development, we shall consider the case of K = 2. Generalizations are

possible, of course. Since the set of all possible state assignments for

points in the image is one-to-one with the set of all possible divisions of

the images into regions, the region estimation problem can be viewed as one

of estimating the states of the points. Now, assume the state of a point is

stochastically dependent on some adjacent set of states Sn,m in a symmetric
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adjacent symmetric neighbors.

38

S



support region as shown in Fig. 10. Let Sx represent a chosen set of state

assignments for all points in the image. Let us denote by Pr[Sx] the joint

probability that the points in the image take on the chosen set of state

assignments Sx . We would like to find a probability structure on the

states so that the probability of Sx can be written as

Pr[S I =('i,m) Pr[s(nm) Inm] (33)

where the terms in the product are intended to represent the probability that

the state of point (n,m) takes on a particular value s(n,m) given that the

surrounding points assume the set of values Sn, m C Sx . There is a very

general class of Markov processes that allows the representation (33) and

whose properties have been studied in detail [36]. A particular form that is

allowed is

Pr[s(n,m)S exp[s(nm)+ 1 (t+t')+ 82 (v+v')+y 1 (u+u')+y2 (w+w')}] (34)

where t=s(n-l,m), t' = s(n+l,m) and the other variables are similarly defined

as shown in Fig. 10. The parameters a,81, 62, 'I, and Y2, are

arbitrary constants and D is a normalizing constant. More general forms of

the probability are allowed [see Ref. 36], but (34) will be

sufficient for our purposes here. The terms Pr[s(n,m) ISnm)J are

interpreted as Markov transition probabilities. The constants a,0142,

YI, Y2, provide a fair amount of flexibility since the transition

probabilities can be made dependent on the horizontal, vertical, and diagonal
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directional patterns of the surrounding states to any desired degree. One

particular selection of the parameters, however, namely a - - 4,

Sl=2=Yl=Y2=1 , which gives equal weight to all directions, leads to a

particularly simple and interesting algorithm. In this case, we have

" Pr[ ISnm)- exp, (s(i,j) - 1/2)
(iJ)CSn'm  (35a)

Pr[OJSnmi =1 (35b)

Returning to (32) let us observe that since the set of all possible

region assignments for an image is one-to-one with the set off all possible

state assignments for the pixels, the second term in the numerator of (32)

can be replaced by Pr[Sxl. Thus maximizing (32) is equivalent to

minimizing

2 In p(xjR ... - 2 In PrS_ (36)

. Further, observe that since s(n,m) ki for (n,m) e Ri then by simply

reordering terms in the sums, the double summation in (30) can be written as

(w))

k 22
(w i. s(n,m)2

q nm N n m ) o )2(37)
[ [ 2 + in (Ok)2. nm 2 in(

-0 iI= R (k) i n-l m=I (on )2
Ri i s(nm)

0
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By substituting (33) and (37) into (36) we find that the MAP estimate

requires that the pixel states be chosen to minimize

2N M(w s n m ) )
N n m 2 + In( s(n,m) - 21n Pr[s(nm) IS1n,m]. (38)

n-I mI (Os(n,m))

The minimization of (38) is a very difficult problem, particularly because of

the Markov dependency of a state on all of its immediate neighbors. However,

if we again assume that there are only two possible region types then a

possibly suboptimal solution to (38) can be obtained by requiring the

conditions
S0 2 0 1

(w 0) 20(WI ) 2 2(00m + ln(o0) 2 _ 21n Pr[OS1 < nm + ln(o1 ) -2 In Pr [1Sn,m ](39)
(2 ) n(

to be satisfied simultaneously for all (n,m) . Solution of (39) by direct

methods for any reasonably sized images appears to be hopeless since all of

the NM states are coupled through nonlinear equations. However, we can

attempt to satisfy the inequalities by iteration as follows. An initial set

of states, the maximum likelihood states, are computed from (31) and assigned

llf the Markov transition probabilities are defined by (35), the computing
the terms -2 in Pr[i Sn,m] is equivalent to counting the number of states

in Sn,m that have value i and dividing by the total number of states in
Sn,m.
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to the image points. The Markov transition probabilities are then

evaluated for these state assignments and held fixed, while the inequalities

are evaluated to determine a new set of states. These new state estimates

are then inserted into the inequalities, and the procedure is repeated in an

iterative manner until the state assignments no longer change. Although we

have not yet been able to state conditions for which the iteration will

* converge, convergent solutions have been obtained in most cases after about

ten iterations. This solution procedure bears some resemblance to various

relaxation labeling techniques [37,38] in Lhat the state assignments are

iteratively updated by considering the state assignments of neighboring

pixels.

4.2.2 An Example

*Figure 11 shows a digitized aerial photograph of a rural area containing

trees and fields. The digitized image size is 128 x 128 pixels, with gray

levels represented on a scale of 0 to 255 (eight bits). Filters for each

terrain class were designed using training data and applied to the image to

perform the segmentation [2]. Although a nonsymmetric half-plane filter

should be required, in general, our experiments showed that comparable

results could be obtained by using a 4 x 4 pixel quarter-plane filter.

0 The filter parameters are estimated by computing the covariance matrixI-
from a set of data and solving the Normal equations. In this case, theL

correlation method" of linear prediction was used to compute the covariance

0 matrix.
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5. APPLICATIONS - OBJECT DETECTION

The problem of detecting small areas of images which differ in some

statistical sense from their immediate surroundings is of considerable

interest in a number of image processing applications. This section

addresses the problem of detecting anomalous areas (such as objects) in

backgrounds of grass, fields, or trees in aerial photographs. It was argued

in the previous section that a WNDR provides a useful framework for image

analysis in such stationary textured regions. In order to establish a formal

procedure for detection, we generalize this representation by viewing an

image background as a sample function of a 2-D nonstationary random field.

This model accounts for the possibly space-varying characteristics of the

textured backgrounds. It is assumed that the statistics of object pixels

within this 2-D field are unknown (since it is desired to detect a broad

class of objects), but that the background statistics are known or can be

estimated. Our decision process relies on the significance testing procedure

of Section 3.3 and is designed to ensure constant false alarm rate (CFAR)

detection although background statistics may generally be changing.

5.1 Significance Testing for Object Detection

Let us suppose that an image background process is represented by a WNDR

in which anomalous areas are imbedded. Further, let X denote a small sliding

region in the image. The elements of X are concatenated by columns (or

rows) into the observed data vector x. We want to decide whether the samples

in X correspond entirely to the modeled random process with probability

density function px(x) or whether X contains something other than the

background random field. We shall refer to X as the "decision region" and
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our decision will be associated with the center 2 pixel location (no, mo )

of x.

To make this decision, we shall apply a significance test for which

a critical region R in the space of possible values for x is defined by the

condition

P (X) < X (40)

In this significance test, if (40) is satisfied, i.e., if the data vector x

falls within the critical region, we decide an object is present within

X.

Suppose that after removal of the mean that the background image process

is nonstationary and is given by the space-variant WNDR of (11). In this

case, the covariance matrix KI of the background has no special structure,

but we shall assume it is known or can be estimated. Further, suppose that

the background corresponds to the Gaussian random process in (17). Then by

taking the logarithm of (40) and simplifying, the significance test becomes:

"If ;TKx  > f(Kx, X) , then decide object present" (41a)

with the threshold given by
I

F NM
f(K ,)) = ln[(2T) MIKI ]- 2 In X (41b)

Cx

2We assume x is of size MxM pixels where M is odd.

I
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Note that the size of the matrix Kx is proportional to the size of theI
region X. Because the image background is nonstationary, the matrix Kx

must be estimated at each pixel.

Now consider transforming the significance test (41) to one involving a

set of independent random variables. Observe that the results of Section 3.4

were not limited to stationary data, i.e., the covariance matrix Kx need

not have any special structure to arrive at the modified PDF's (21) and

(26). Then with the exact whitening transformation leading to (26), we can

write the significance test (40) as [3,41

2
v n.,m 2 > f(D,X), then decide object present" (42)

X ( v  )2>

v
n,m

where the function f(-,.) is defined in (41b), where D and avn,m are

defined in Section 3.4, and where the elements vn,m denote the linear

prediction residuals computed from the observation vector x. Recall that the

linear predictors are of increasing order (see (24)) and are derived from a

minimum-variance prediction representation; the v n,m's are the

corresponding prediction error variances. Since the background process is

nonstationary, each predictor and its residual variance is now a function of

the location of the region X, as well as the predictor order.

5.2 Constant False Alarm Rate Detection

Since the image background is assumed to be nonstationary, the covariance

computed for the sliding region X changes as a function of position in the

image. This change in the covariance function corresponds to a change in the
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PDF (17), and thus to a non-uniform probability of false alarm. We formally

define the probability of false alarm, PF, by

P f px(x) dx (43)
FR

where R is a critical region in the observation space specified by (40). In

order to maintain a constant false alarm rate (CFAR), we must vary

X in accordance with changes in the covariance matrix Kx of (17) so that

the integral in (43) remains constant.

To derive the functional form of X required for CFAR detection, we rely

on the whitening transformation (24). As in the previous sections, we assume

6 the mean has been removed. Since the residual vector in (24), derived from

the background process, consists of a set of uncorrelated Gaussian random

variables with covariance matrix D, we can form a vector e with the same

properties, but with unit variance:

e =D-1/2 L-1
=D L x (44)

Then, with the substitution of (44) into (43), it is possible to express the

CFAR condition as [4]

P F = 
f Px(x) dx
R

NM/2 exp [ I e el de (45)

R' (27)
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where PF is constant and where R' is the transformed critical region given

by Px (LDI/ 2e) < X. Figure 12 illustrates the transformation from x to e

for the two-dimensional case.

The integrand in (45) represents the PDF of the transformed vector e and

does not depend on the covariance of x. The boundary of integration,

however, does depend on Kx through L and D, and is given by

p (LDI/ 2e) = X (46)

which, from (17), can be expressed as (see Figure 12)

1 T rNM/2il/2X

e e = ln[(2t)/DI/] (47)

If we can adjust X so that the boundary doesn't vary as a function of L and

D, then the probability of false alarm will be constant. Thus, to maintain a

constant false alarm rate, we must have:

X = constant (48)(27t)NM/2 ID1I/2 (8

Finally, substituting (48) into (42), we obtain the CFAR detector

2

x (o )
nm

then decide object present" (49)
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Figure 12. Pictorial representation of
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Figure 13. The detection algorithm.
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The quantity on the right side of the inequality in (49) is a constant

T(PF) to be determined.

The test (49) represents an exact equivalence to the original

significance test (41) and requires a set of NM growing predictors per image

pixel. A more practical approach utilizes the approximate whitening

transformation based on fixed-order predictors (19). This transformation

leads to (21) and thus to the approximate CFAR detector:

2
n,m > T(P F) , decide object present" (50)

X (a )2
4 w

nm

where Wn,m denotes the prediction residual computed from the observed data

vector x. This decision requires only one (space-variant) predictor per

image pixel. Equation (50) lends itself to a simple intuitive

interpretation. Specifically, in generating the elements wn,m we attempt

to first whiten the data with a fixed-order space-varying inverse filter.

Normalization by the variance (aWn m)2 gives equal weight to each

residual. When anomalies are present, the values of the normalized residuals

will increase, resulting in a higher likelihood of the statistic crossing the

threshold T(PF). The approximate CFAR detection algorithm is depicted in

Figure 13 where the indices (n,m) refer to the coordinates of the entire

image x(n,m) and not the the sliding region X. Before prediction and

normalization, the local mean is first subtracted from the image. The final

smoothing operation performs the summation in (50).
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5.3 Adaptive Estimation

To apply the approximate signifiance test (50) to an image we must first

estimate the autoregressive model coefficients, the local mean, and the

prediction error variance at each image pixel location (no,mo). The

estimated parameters are used to generate the normalized prediction error

residual for just the single point (no, mo). The procedure is repeated

at each point in the image to generate the terms in the sum in (50).

To estimate the parameters at each point we proceed as follows. Suppose

that these parameters evolve slowly over the image. Under this condition, it

is assumed that the image is stationary over a "sufficiently large" region to

obtain a reliable estimate of the model parameters. For estimates at

location (no,mo), this region is assumed square of size BxB and

centered 3 at (no,mo ) aq illustrated in Figure 14. We refer to this BxB

I sliding window as the "estimation window". The support of this window is

distinctly different from that of the decision region X. In particular, the

estimation window will generally be larger than X, and extend as far as

possible about its center while preserving approximate stationarity.

Increasing the size of the estimation window decreases the variance of the

parameter estimates and leads to a better estimate of the parameters since

anomalies will have a smaller effect in a larger region.

To estimate the mean image level u(no,mo ) we simply average the

values under the estimation window centered at (no,mo). To estimate the

* 3We have assumed that B is odd.
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predictor coefficients a(no,mo;Z,k) and prediction error variance

(W(no,mo)) 2in (50), we use the "covariance method". We further

assume for simplicity that the support of the coefficients is a PxQ

first-quadrant mask. The following procedures, however, are clearly

applicable to more general mask shapes. Our goal then is to estimate the

model parameters a(no,mo;k,k) for Z=O,1,2,...,P-1 and k=O,1,2,...Q-1 with

(L,k) * (0,0) and the corresponding prediction error variance

(Ow(no,m0 )) 2from the data under the estimation window. We first

define the prediction error over the estimation window such that only the

data within this region is used in prediction:

P-1 Q-1
e(n,m) = x(n,m) - ' a(j,k;n ,m )x(n-j,m-k), (n,m)eI (51)

j=0 k=0

(j,k)*(0,0)

where I denotes the region [nl, n2]x[ml, m21 in which data elements

are predicted, as illustrated in Figure 15. We then wish to minimize the sum

of the squared errors given by
n2 m2

E[n2 e2(n,m) (52)

01 01
n=n I M=m

* To proceed with the minimization, we define the vector a[no,mo] of length

PxQ as the concatenation of the columns (or rows) of the unknown coefficient

set a(no, mo; £,k), where we have assumed that a(no, mo; 0,0)=1.O.

Minimization of (52) leads to a matrix form of the Normal equations in (8):
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2
"o0 0!)

( w(nm)2

0

K x(no,m ) a[no,m 0I (53)
•S

0 -

where the matrix Kx(no,mo) is an estimate of the covariance matrix Kx

at (nomo), consisting of covariance estimates without assumptions about

the observed data outside the estimation window. The terms a[no,mo ] and

(Ow(nom)) represent estimates of the prediction coefficients and

error variance, respectively. The last PxQ-1 equations in (53) can be u~id

to solve for the elements a[no,mo]. This estimate of the model

coefficients can then be used in the first equation of (53) to obtain an

estimate of the prediction error variance.

5.4 Examples

In this section, we present a number of examples of object detection in

images. In these examples, the size of the estimation window was chosen to

be lOxlO pixels, which we assume is "sufficiently" larger than the size of

most objects and large enough to obtain accurate parameter estimates,

while maintaining approximate stationarity. In addition, we have chosen a

quarter-plane 2x2 pixel coefficient mask support. The adequacy of this
U

support was demonstrated by observing little or no improvement with larger

NSHP supports. Finally, a decision region of 3x3 pixels was chosen as

5
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reasonable for detecting objects of this size normally appearing in the

processed data.

Example 1:

To demonstrate the detection algorithm under ideal conditions, we begin

with a synthetic image generated by the 2-D difference equation of the form:

x(n,m) = O.lx(n,m-1) - 0.9x(n-l,m)

+ 0.lx(n-l,m-1) + w(n,m) (54)

Four objects are imbedded in this image as shown in Fig. 16a. These objects

are of a constant level, close to the background mean, so they are visually

difficult to detect.

Figure 17 shows the square of the prediction error w(no, mo). The

position of all four objects is clearly identified by the peaks in the

prediction error. Fig. 16b shows the normalized prediction error summed over

the decision region and thresholded. This is the result of the object

detection algorithm. Note that all objects except the two most closely

spaced are resolved. The two closely spaced objects are unresolved because

their presence degrades the estimation of the variance at these points. For

this data, which is known a priori to be stationary, the problem can be

resolved by using a larger estimation window or by using one variance

estimate for the entire image [4). The later is illustrated in Fig. 16c

where all four objects are resolved. In general, however, it will not always

be possible to use a very large estimation window or a fixed background

variance.

Example 2:

The photographic image displayed in Fig. 18a is of size 128x128 pixels.

Figures 18a-18d depict the prediction error variance, the prediction error
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and the normalized prediction error summed over the decision region after

thresholding. The algorithm has detected most objects in the different

textured regions. A number of false alarms are observed in regions where

background statistics vary rapidly.

Example 3:

The photographic image displayed in Figure 19a is of size 128x128 pixels.

Figures 19b-19d depict the prediction error, and the prediction error summed

over the decision region with and without normalization. In this case, the

prediction error without normalization gives the most accurate indication of

the presence of objects. As in example 1, this occurs because objects can

introduce a false increase in the local background prediction variance, as

illustrated in Figure 19e. Here the objects take up a sizeable portion of

the estimation window and thus corrupt estimation of the background

statistics.

A characteristic of this detection algorithm is that boundaries between

regions do not show up as anomalous areas. Note that although the linear

models do not apply at the boundaries between regions this seems to pose no

problem. In particular, since the data in the estimation window is split at

boundaries, we can expect that the estimated model parameters represent a

compromise between the model parameters for each region. The corresponding

prediction error is moderate throughout the regions near boundaries. The

variance estimate however is large at a boundary since two different types of
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data are present in the estimation window. Therefore, the normalized

prediction error is low.
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6. CUMPUTATIONAL STRUCTURES

Having described a set of models and some image processing algorithms

based on these models we now turn to the topic of computational structures to

support these algorithms. In particular, we will look more closely at the

computations involved in the target detection algorithm and describe the

architecture of a special purpose machine based on systolic arrays to

implement this algorithm. Since machine architecture is not the main topicI
of this paper, the discussion will be brief. However, we hope that our

treatment will be sufficiently descriptive to convey some of the excitement

we have for this particular area.

6.1 Overview

We begin by reviewing the steps in the target detection algorithm and

detail the mathematical computations involved. We assume here a simpler

algorithm that does not average the squared prediction error over the region

x. The image is scanned along rows and the linear prediction operation is

repeated at each pixel as shown in Fig. 20.
6

The computational steps of the algorithm can be summarized as follows.

First, a 2-D covariance matrix is formed from data in the estimation window.

Next, a system of Normal equations (53) is solved to obtain the

prediction filter coefficients a[no,mo] and the prediction error variance

(OW(notmo)) 2 .  Finally, the prediction error is computed by applying

the filter to the data point (no, mo) at the center of the window and is

I
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7

Lnormalized by Gw(no,mo) . This normalized prediction error is then

compared to a threshold to perform the target detection.

The steps just described can be implemented as a connected set of

systolic arrays as shown in Figure 21. Data enters the lower array and

elements of the covariance matrix are computed. As these elements are

computed, they flow into the next array which begins computation of the

filter coefficients. Finally, the filter coefficients are applied to the

delayed input data to compute the prediction error. Details of the algorithm

and array structures are given in the next two sections.

6.2 Computational Aspects of Target Detection Algorithms

In the following, let it be assumed that the linear predictive filter is

2x2 pixels and the estimation window is 8x8 pixels in size. These parameter

values were found to be suitable for processing of typical aerial

photographs. The image may be of any size and processing is assumed to

proceed along rows.

Computation of the covariance matrix requires data within the estimation

window and in one row above and one column to the left. Some of the required

data points are labeled in Figure 20. For reasons that will become clear

r shortly, we shall be interested in forming the reversed covariance matrix

I
,r Kx. This matrix is formally obtained from Kx by reversing the order of

the elements in both the rows and column directions. The mean is assumed to

be removed from the data prior to the following operations. This could be
I

done in a separate pass through the image or simultaneously with computation
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of the covariance [23]. If the covariance method of linear prediction is

used, the reversed covariance matrix has the specific form

K F F
x 2

where

i X00 X01 X10 X11

X01 X 0 2  X1 1  X 12

•~ F0

X 0 7  X 0 8  X 1 7  X 18  J
X10 X1i X 2 0  X 2 1

l X 1 1  X 12  X 2 1  X 2 2  (55)

FF

X 1 7  X 18  X 2 7  X 2 8

X 7 0  X 7 1  X 8 0  X 8 1

X71  X72  X81  X82
• F7* . F

X 7 7  X 7 8  X 8 7  A8

and where B is the length and width of the estimation window.

By partitioning the matrix F as shown we can further write

K (FT F + JT F +. + T F7) (56)B 2  0 0 1 7

This particular form is advantageous since seven of the terms remain in this

sum when the computation is repeated at the point (not mo+I). Thus they
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will not have to be recomputed. In addition, the reversed covariance matrix

simple cells that perform the scalar operation c + c + a • b. A first array

computes the matrix products FITFi in succession. These terms are then

fed into another array that computes a running sum of eight terms. In this

way, the structure is able to compute one entire new covariance matrix as

each column of data in the estimation window is scanned.

Once the covariance matrix is computed, the filter coefficients can be

obtained by solving the Normal equations (53). If we use the reversed

covariance matrix, these equations take the form

0

0

oKa 0 2 (57)B2  ' -- (a )

Gw
B' -

where for convenience we have dropped spatial dependence and where a is the

vector of filter coefficients also in reversed order.

When written in this form the Normal equations can be solved in a manner

that is especially easy to implement on a set of systolic arrays. In

particular we have seen that the covariance matrix can be decomposed as

*0 in (22). Therefore, Kx can always be written as the product LU where L is

a lower triangular matrix with ones on the diagonal, and U is an upper

triangular matrix. Consequently (57) can be rewritten as

• 0

U a =L 0
(58)

0

* B2( w)2 _
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(The last equality follows from the fact that L- I is also lower triangular

with ones on its diagonal.) Thus, if an LU decomposition is performed on the

covariance matrix, a set of filter coefficients can be found by solving the

triangular linear system. Fortunately, systolic array configurations exist

both for performing the LU decomposition and for solving the triangular

linear system (58). Thus these computations, like those needed to compute,

Kx, can be pipelined through simple processors.

6.3 Systolic Array Processor Architecture

Figure 22 shows the architecture of the systolic array object detection

processor. The computational methods are based on the early work of Kung and

Lieserson [23] and use cells with characteristics described in Fig. 23. The

cells in Fig. 23(a) perform a simple multiply/accumulate operation while

those in Fig. 23(b) perform a division. Data flows through each cell, and

data and computed results are available at neighboring cells for use during

the next time increment (clock cycle). More details of the processor are

given in Ref. 24 and in the general references on systolic arrays

[23, 39-421. The main hexagonal array in the lower left of Figure 22

computes one of the matrix product terms FT F *The four linear arrays to
i

the right of this array computes the running sum of eight such matrix

products to form a complete covariance matrix. The terms of the covariance

matrix flow into the upper hexagonal array which performs the LU

decomposition which in turn feeds into a linear array for computing the

coefficient. Finally, the coefficients are applied to the data points near
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p.

the center of the window to compute the prediction error residual. This last

step is shown in Fig. 24.

The entire set of arrays work in lock step to convert input image data to

target detection results. Currently, throughput is limited by the array that

performs LU decomposition. Since this array has only 1/3 the throughput of

the arrays that compute the covariance, the clock rate for the covariance

array has to be slowed correspondingly.

The total initial delay for processing of a new column of image data is

154T where T is propagation time through a single cell. Thereafter, error

residuals are computed at a rate of 12T. The initial delay can be

represented as an "overhead rate" and is listed as a percentage of the

steady-state processing time in Table I. Table I also gives the throughput

of the processor for various sized images computed for T=Ips.

TABLE I
TARGET DETECTION ALGORITHM

PROCESSING RATES FOR VARIOUS IMAGE SIZES

Image Size Overhead Processing Rate*

64 x 64 22% 16.7 frames/sec

128 x 128 11 4.6 frames/sec

256 x 256 6 1/2 frames/sec

512 x 512 3 0.3 frames/sec

1024 x 1024 1 0.08 frames/sec

*Based on T hls
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6.4 Considerations for VLSI Implementation

The regular structure of the arrays and the use of a large number of

simple cells should allow the entire processor for target detection to be

implemented with emerging VLSI wafer scale technology. These considerations,

in fact, led us to choose the present design for the processor over

alternatives that use fewer, but considerably more complex cells (see e.g.,

Ref. 41).

The target detection processor described here requires 109

multiply/acummulate cells (Fig. 23a), two special purpose divide cells

(Fig. 23b), buffer storage and delay. We believe these requirements could be

met using the wafer scale restructurable VLSI technology currently under

development at Lincoln Laboratory [43] . Restructurable VLSI allows working

cells within a wafer to be utilized and defective cells to be bypassed in

forming the necessary intercell connections.

4A similar system for performing 16-point FFT's at a data rate of 16 MHz has

already been developed and tested [421. this system employed 128 16-bit

cells on a three inch wafer which were implemented with 5-pm, two-level metal

CMOS technology.
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7. CONCLUSIONS

In this report, two-dimensional stochastic linear models were used in

developing algorithms for image segmentation and object detection. To

accomplish this, we have relied on the merger of the stochastic

representation of image textures, statistical inference procedures, and model

identification and estimation. A common thread throughout our algorithms is

the interpretation of the inference procedures in terms of linear prediction

residuals. This interpretation leads to statistical tests more insightful

than the original tests and makes the procedures computationally tractable.

This computational efficiency was demonstrated with the object detection

algorithm which served as a good example of an algorithm amenable to the

special parallelism of systolic arrays.

More specifically, for the purpose of image segmentation this report

developed a class of models for terrain images with two levels of structure.

An underlying structure based on stochastic filtering concepts represents the

texture in local regions of terrain. Superimposed on this structure is a

Markov random field that describes transitions from one region type to

another. Using those models, we considered segmentation as a region

estimation problem and explored maximum likelihood and maximum a posteriori
I

estimation procedures. The ML estimation ignores the Markov structure that

describes the occurrence of regions and produces a "spotty" result. The MAP

estimation utilizes the Markov structure but leads to a difficult

optimization problem. A suboptimal solution can be obtained, however,
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through a procedure that begins with the ML estimate and iterates to a final

result. The region estimate thus produced is quite accurate. Examples of

segmentation were shown for some aerial photographs of a rural area.

The detection algorithm developed in this report relies on a significance

test which adapts itself to the changing background in such a way that a

constant false alarm rate is maintained. This test has a potentially

practical implementation, since it can be expressed in terms of the residuals

of an adaptive two-dimensional linear predictor. In particular, the various

steps of the algorithm of estimating a correlation matrix, solving the normal

equations, and performing the prediction error filtering were shown to be

4 amenable to systolic arrays most of whose cells perform the simple inner

product c + c + a.b.

The approach developed in this report for object detection has recently

been extended to accomplish other tasks In image analysis. In particular,

the method of spatial linear prediction has been extended to detect region

borders in aerial photographs [44, 45]. Such boundary detectors rely on a

0combination of various causal and non-causal linear predictors derived from

an approximate significance test.

Although the object detection algorithm and its more recent extension

were successfuly demonstrated on synthetic and real-world images, a number of

areas need further investigation. For example, improved estimates of the

model parameters and of background variance might be sought which avoid the

1corruptive influence of the presence of large objects or adjacent differing

r
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I

textures. An iterative technique is one possibility. On each iteration, the

background statistics might be estimated from pixels which do not include

current object samples or unwanted textures. Such an approach may lead to

more accurate object and boundary detection.
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