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The field scattered by the reflector is the sum of the elemental field

contributed by each patch, taking into account the polarization of each con-

tributor. The polarization of the field radiated by a patch is determined by

the incident ray polarization and its transformation on reflection which is

given by (Ref. 3):
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ABSTRACT

A general expression for the electromagnetic scattering by an arbitrary

shaped reflector is developed and applied in a computer model of offset hyper-

boloid reflectors. The computed scattering is shown to be in excellent agree-

ment with scattering measurements made on an offset reflector of projected

diameter - 24 cm, at frequencies of 10.35 GHz, 20.7 GHz and 44.5 GHz. Next,

using the computer model, the efficiency of the subreflector in a dual-

reflector antenna is calculated as a function of subreflector diameter and for

two values of illumination taper. For subreflectors truncated at the ray-

S optics boundary the calculated efficiency is 0.83 and 0.91, respectively, for

truncation diameter of 7.7 X and 30.4 X, with 5 dB of illumination taper;

these respective efficiencies increase to 0.91 and 0.95 with 12 dB of illumin-

ation taper. However, subreflectors of diameter about two wavelengths larger

than the ray-optics diameter have very nearly unit efficiency.

/ /

Aoossiotl For

* ITIS GRA&IDTIC TAB
UnannoImced
j u s t i b i f.t I , - -

0 Distribut I

D t

iii

. .



CONTENTS

Abstract ii

Illustrations v

1.0 Introduction I

2.0 Analysis 5

2.1 Basic formulation for computer modelling 5

2.2 Total field 12

2.3 Geometrical optics solution for offset hyperboloids 13

2.4 Application to specific cases 15

3.0 Experimental Offset Hyperboloidal Reflector 19

3.1 Results 24

4.0 Effect of Subreflector Diameter on Gain of Dual Reflector Antennas 28

5.0 Conclusions 33

References 34

Sv

S°

6

J,.V

6



ILLUSTRATIONS

Figure je

1. EHF multiple beam antenna. 2

2a. Arbitrary reflector and feed illustrating typical patch. 6

2b. Reflected wavefront near a patch. 8

3. Geometry for far-field analysis. 10

4. Incident and reflected pencil of rays on offset hyperboloid. 14

5. Patch division for reflector with circular projection. 16

6. Scattering by axially symmetric hyperboloid reflector. 18

• 7. Geometry of offset hyperboloidal reflector and field coordinate

system. 20

8. Feed and reflector arrangement for scattering pattern

measurements. 21

9. Offset reflector and 10.35-GHz horn with alignment template in

S"place. 22

10. Radiation patterns and aperture dimensions of corrugated feed

*horns. The half-angle of the 10.35-GHz horn should read 12.20

and not 24.26. 23

11. Scattering and phase patterns of offset hyperboloidal reflector

at 44.5 GHz (projected diameter - 35.6 X). 25

12. Scattering and phase patterns of offset hyperboloidal reflector

at 20.7 GHz (projected diameter - 16.6 X). 26

13. Scattering and phase patterns of offset hyperboloidal reflector

at 10.35 GHz (projected diameter - 8.3 X). 27

14. Relevant parameters for subreflector efficiency analysis. 29

* 15. Subreflector efficiency as a function of diameter, for two values

of illumination taper. 31

v

t. vi

0'



1.0 INTRODUCTION

Offset, dual-reflector antennas are finding increased applications,

particularly in satellite communications systems. An example is the casse-

grain, EHF, multiple-beam antenna depicted in Fig. 1, which consists of an

offset paraboloid reflector, an hyperboloidal subreflector and a 4 x 4 array

of feed horns. The beam produced by this antenna is shaped to cover a desired

area on the earth from a synchronous altitude satellite.

The subreflector of a dual-reflector antenna is generally made a little

larger than the boundary determined by the intersection of the subreflector

with the focal cone of rays bounding the reflector (ray-optics boundary). The

slightly larger size is required to compensate for the effects of edge dif-

fraction, which would reduce antenna gain if the subreflector was truncated at

the ray-optics boundary. On the other hand, making the subreflector much lar-

ger than the ray-optics boundary is generally detrimental due to either

increased blockage of secondary radiation or increased weight and size. The

determination of the minimum size of the subreflector in a dual-reflector

antenna is a subject treated in this report. It will be shown, in particular,

that truncation of the subreflector at the ray-optics boundary causes appre-

ciable loss of antenna gain, due to subreflector edge diffraction, but trun-

cation at least one wavelength beyond this boundary renders the loss negli-

gible. This result was obtained by physical-optics analysis, using a computer

modelling technique which was also used in a related study of scattering by

-1-



4

Cu
0
0
0
U
C
C

U
a,

.0

a,

0.
WI
U

a

-4

Pt.'

I

N

*
0

C

C

- N N - * -



'

offset hyperboloidal reflectors. The latter study, which was complemented by

an experimental verification in excellent agreement with the computer model,

and a similar study based on ray-optics analysis are also presented here.

In this report, a general expression of the field produced by an arbi-

trary reflector and feed is developed and applied in a computer model of off-

set hyperboloidal reflectors. This expression is an extension of a formula-

tion developed several years ago to determine the effects of surface devia-

tions on the radiation patterns of large reflectors (Ref. 1). In recent years

this expression has been very useful in developing computer models of multi-

ple-beam antennas of various configurations, particularly, offset, single- and

dual-reflector antennas and lens antennas (Ref. 2). These models proved to be

very effective, requiring short computer execution times and providing accu-

rate performance data. An important feature of the modelling technique is

that it applies equally well to symmetric or asymmetric configurations, to

focused or defocused systems, to far-field or near-field characteristics.

Although a large core memory is generally required, the execution time is

short, being about 0.01 second per observation point, using a computer capable

of 10.5 million instructions per second. This value of execution time applies

to collimating reflectors with conventional point-source illuminations and

provides for radiation patterns with an error that increases quadratically

from negligible to about 1 dB at the fifth sidelobe from broadside. For non-

collimating reflectors execution time increases and is a function of reflector

-3-



size in wavelengths. For the largest subreflector included in this study the

execution time was -0.1 second per observation point.

The computer model of offset hyperboloidal reflectors was validated by

scattering measurements made on the subreflector of the antenna shown in

Fig. 1. Corrugated, conical horns were used to illuminate the offset

reflector with a taper of about 5 dB, at frequencies of 44.5 GHz, 20.7 GHz and

10.35 GHz, corresponding to projected diameter-to-wavelength ratios of about

35.6, 16.6 and 8.3, respectively.
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2.0 ANALYSIS

2.1 Basic Formulation for Computer Modelling

Let the arbitrary shaped reflector of Fig. 2a be illuminated by a feed

with input power P and directivity G, and let its surface be divided into N

patches of approximately equal area, ak, and of dimensions small enough so

that over the extent of a patch the incident field is essentially uniform.

The power, Pk, intercepted by the kth patch is then:

PG gk k(nk " r(k)
Pk =Mr (1)1

k ~ 4irr2
k

where G 2gk is the feed directive gain in the directic the patch,

ak(nk rk ) is the area of the patch projected in a plane

normal to the direction of incidence,

nk is the unit vector normal to the patch at its center

rk is the unit vector specifying the incident ray direction,

rk is the distance between the feed and the patch centers.

At the center of the patch, the phase of the incident field is delayed with

respect to the field at the feed aperture by

i . 2t rk/A (2)
k

Consider next the reflected wave at a patch and assume it to be plane in

the vicinity of the patch. This assumption is valid for collimating

reflectors, whatever the patch size. For non-collimating reflectors the con-

dition of a reflected plane wave is an approximation whose accuracy increases

with decreasing patch size. In the vicinity of a patch, the reflected field

can be considered to be the segment a'k of a plane wave, as illustrated in

-5-
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Fig. 2b, where sk is the unit vector specifying the reflected ray

direction. This segment may be treated as a secondary radiator which, at a

far-field distance Rk , gives rise to an elemental field, AE, of power

density

2 2 2 2s eraito
2E P k D kfkI2/4rR (3)

where is the intrinsic impedance of free space, fk is the radiation

pattern of a fictitious radiator replacing segment a', and Dk is its

directivity given by

+ 2

Dk = 4, aknk r()/ (4)

where ak(nk r k ) - ak( k ) a. is the area of the patch projected in the

plane normal to the reflected ray. The field of this fictitious radiator has

a phase which is delayed with respect to the field incident on a patch by:

i r
= 2iRk/X + iT/2 (5)

(The fixed iT/2 delay reflects the quadrature relationship between field and

source and is included to provide the complete phase of the field, for later

comparison with the ray-optics solution.)

Substituting Eqs. (1) and (4) in (3) and expressing the field in complex

form yields:

I
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2E - [1PG/4v 2 ]1/2 + + -J[21(rk+Rk)/ + i/2]
A CG4X a k(a k "rk) gkfk e  

(6)

r kRk

The field scattered by the reflector is the sum of the elemental field

contributed by each patch, taking into account the polarization of each con-

tributor. The polarization of the field radiated by a patch is determined by

the incident ray polarization and its transformation on reflection which is

given by (Ref. 3):

+ + + +

E r = (n k ' Egi ) n k - (n k x E i ) x n k  (7)

where Er and ti are, respectively, the reflected and incident field

on a patch. The field radiated by a patch has complex amplitude given by

Eq. (6) and polarization given by Eq. (7) and must be resolved into three

orthogonal components for summation. However, as the point of observation

recedes from the reflector, all contributions become polarized in the plane

transverse to the direction of propagation, leaving two components of polari-

zation to be summed. In the application that follows the reflected field is

considered polarized in the same direction everywhere and, therefore, the far

field at distance R is (see Fig. 3):

2 21/2
E F[PG /4t R X1 (8)

where

-9-
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-j[ 2 w (rk - k )/X + r/2Jk Pk

Sak(nk rk) gkfke
k-i rk

and Pk is the patch position vector and R is the unit direction vector. The

corresponding power density is

- - PGIF12/ 4rR2A2 ,(10)

which normalized to the isotropic power (-P/47rR 2) yields the directive gain:

+• + -j [2w (r k - p R)/X
N ak(n. rk) g k k 2

X2 kI k

Equation (11) expresses the field characteristics in a form convenient

for computer solution. It should be noted that the formulation is general

and, therefore, applies to any surface or any illumination meeting the condi-

tions of its derivation. When applied to a particular case, a convenient sys-

tem of coordinates is defined and the various parameters in Eq. (11) are

expressed in that system. All variables in Eq. (11) are known or readily com-

puted, except for fk which is the patch radiation pattern. The treatment of

this variable depends on the reflector type and on the desired field charac-

teristics. In cases where the field is collimated into a beam, and the field

characteristics are required only in the near sidelobe region, it is only

necessary to make the patches small enough so that their radiation pattern is

uniform in the region of interest, i.e., fk I 1. In cases where the field

-11-
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produced by the reflector is divergent and the field characteristics are

desired over a wide angular region, the patch size must be made smaller and an

appropriate expression for fk must be used. One such case is the applica-

tion that follows where it was found necessary to make the patch size slightly

smaller than one wavelength, and where the patch radiation pattern was taken

"* equal to cos 6, where 0 is the angle measured from the reflected ray direc-

tion. In this application the patches essentially reduce to Huygens sources.

The number of patches, N, must be chosen so that the conditions of a

plane reflected wave in the vicinity of the patches, and of uniform amplitude

*I illumination over a patch are satisfied, as well as the condition previously

stated for the choice of fk" The number of patches required is best deter-

mined by tests where N is increased until convergence is reached within a spe-

cified error. For the practical case of the collimating reflector with con-

*i ventional illumination taper, and modelled with isotropically radiating

* patches (fk - 1), the error increases quadratically with angle from bore

- sight and is about I dB at an angle equal to .25 N beamwidths.

2.2 Total Field

The total field is the sum of the direct field from the feed and of the

s field scattered by the reflector as given by Eq. (8). However, the field that

exists in the shadow region of the reflector is that caused by diffraction

around the reflector. In this region the field was calculated by applying

* Babinet's principle (Ref. 4) which allows replacement of the reflector by its

complementary aperture in an infinite screen. The field diffracted by this

-12-
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aperture may be calculated by integrating over the surface of the reflector,

thus allowing Eq. (8) to be used, but with the patch normal reversed and with

fk - cos 0, where 0 is now measured from the incident ray direction. The

aperture diffracted field thus computed is subtracted from the incident field

(in absence of the screen) to yield the field in the shadow region, as pre-

scribed by Babinet's principle.

2.3 Geometrical Optics Solution for Offset Hyperboloids

In this section, the field reflected by an offset hyperboloid is calcu-

lated by application of geometrical optics principles, which state that a pen-

cil of rays issued from a feed at the external focus F1 is reflected as a pen-

cil of rays coming from a virtual feed at the internal focus F2 . The relevant

geometry is presented in Fig. 4 where the spherical coordinates 0, specify

the direction of observation. Let the directive gain of the feed be Df(a)

and that of the virtual feed be Ds(8), where the incident ray direction, a,

and the reflected ray direction, 8, are measured from the hyperboloid axis,

then for conservation of energy

Df(a) sin ada - D(8) sin 8 da (12)

The incident and reflected ray directions are related by

tan(8/2) = Mtan(c/2) (13)

where M - (1+e)/(1-e) is the magnification factor, and e is the eccentricity

of the hyperboloid. Taking the derivative on both sides of Eq. (13) yields,

da/d8 - cos2 (a/2)/Mcos2 (8/2) (14)

which substituted in Eq. (12), and after some manipulation, gives

D as(0) - Df(a) cos4 (a/2)/M2 cos 4 (8/2) (15)

-13-
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To apply Eq. (15), the direction of the reflected ray, 8, is first computed

using

Cos 0 = u• v

+ +

where the unit vectors u and v are, respectively, the direction of observation

and the direction of the hyperboloid axis, in the e, coordinate system. The

corresponding incident ray direction, a, is next computed using Eq. (13), and

together with 8 is substituted in Eq. (15) to provide the directive gain of

the virtual feed in the direction of observation.

2.4 Application to Specific Cases

The general formulation (physical optics) given by Eq. (11) is now

applied to the calculation of the field scattered by an offset hyperboloid.

For this, the surface of the reflector is specified by N patches whose areas,

coordinates and normal at their center must be calculated. For reflectors

projecting into a plane as a circle, which is the case here, the patch para-

meters are obtained by dividing the projected circle into rings of equal

width, and further dividing each ring into sectors of width about equal to the

ring width, such as illustrated in Fig. 5. Projecting the sectors back onto

the hyperboloidal reflector surface then yields the coordinates at the center

* of each patch where the patch normal and area are determined. The feed illu-

minating the reflector is modelled by specifying its aperture center, its axis

direction, its directivity and its radiation pattern. A rectangular coordi-

4 nate system with origin at the internal focus of the hyperboloid is chosen to

4

-15-

4



0

w

CL I

Lw

-g-

441

0

1V4

.4
>
V-4

16.



I.

express the geometry of the reflector and feed. The field characteristics are

expressed in a spherical coordinate system with origin also at the internal

focus of the hyperboloid, and therefore at the phase center (geometrical

optics) of the reflected wave. In an initial test of the computer model the

results were found in very good agreement with the analytical results of Rusch

(Ref. 5) for the uniformly illuminated, centered hyperboloid (a special case

of the offset hyperboloid), as indicated by the comparison presented in

Fig. 6.

-17-
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3.0 EXPERIMENTAL OFFSET HYPERBOLOIDAL REFLECTOR

The offset hyperboloid used in the experimental investigation is the sub-

reflector of the offset, dual-reflector antenna presented in Fig. 1. This

hyperboloid is characterized by a distance between focii of 52.1 cm and by an

eccentricity of 1.715. Its perimeter is the intersection with a cylinder of

diameter = 24 cm, whose axis is inclined 17.380 from the hyperboloid axis, as

shown in Fig. 7. The feed is located at the external focus of the hyperboloid

and its axis, at an angle of 15.250 from the hyperboloid axis, is congruent to

the ray which after reflection defines the 8 = 00 direction of the field pat-

tern. Scattering patterns were measured at three frequencies, 44.5 GHz,

20.7 GHz and 10.35 GHz, corresponding to reflector diameters (circular pro-

jection) of 35.6 X, 16.56 X, and 8.28 X, respectively. Measurements were

taken in the principal planes = 0 (the plane of offset), and p = 900 (the

plane of pattern symmetry), and for both parallel and perpendicular polariza-

tions. The feed horn, reflector and mount are shown in Fig. 8. The hyperbo-

loid reflector is mounted on a foam support, and together with the feed horn

rotates about an axis passing through the internal focus as defined in

Fig. 7. In Fig. 9, the reflector is shown with the alignment template used to

ensure correct positioning of the feed at the external focus of the hyperbo-

loid. The feed for each test frequency is a corrugated, conical horn pro-

ducing a taper of about 5 dB at the edge of the reflector. The measured radi-

ation patterns of the three horns and their aperture dimensions are given in

Fig. 10. Also shown in Fig. 10 are the theoretical feedhorn radiation pat-

terns (Ref. 6) used in the scattering calculations, and excellent agreement

is observed over the angular sector subtended by the hyperboloid.

-19-



0

00

LfU)

t c .4-

0

44
0)

CIOU

0

.J

200



FOAM
SUPPORT

Tx -- F

/
69.1 

2 0
/ /

s/ /, / f
F2

Fig. 8. Feed and reflector arrangement for scattering pattern
* measurements.

21

I



0

-4

00

220



FREDUENCv 44 S G"I

de 22 

-

- THEORETICAL
EXPERIMENTAL X

H PLANE

I-(a) 4C "1 8 0

DEGREES

o T I I

'0 FREQUENCY 20 7 GHi

20 X. . . . - 4 32Cn

d8 30

b40

X MEASURED K
H PLANE

50 0MEASURED
EPLANE

- HEORETICAL

0, 25 50 75 0

DEGREES

0

i FREQUENCY 10 35 GH,

0 
<

F

0

0 ES RE '

0
i I ~~ ~ 2 - x03 05 n7 O9

40 K MEASURED
E PLANE 0

MEASURED
N PLANE

50
-THEORETICAL

6 1 (C) I I I I I I I I

Z0 0 20 30 40 50 V 0 w R 90

DEGREES

Fig. 10. Radiation patterns and aperture dimensions of corrugated feed
horns. The half-angle of the 10.35-GHz horn should read 12.20 and not
24.260.

23

I

. ..o



3.1 Results

The principal-plane, calculated and measured (perpendicular polarization)

scattering patterns at 44.5 GHz (35.6 X reflector) are shown in Fig. 11. The

agreement is good, except at the lower angles in the offset plane, where the

effect of feed blockage is substantial. Misalignment, stray reflections,

blockage and scattering by the feed and support are believed to account in

great part for the differences observed. Geometrical-optics analysis is seen

to provide accurately the mean value of the field, except at the reflection

region boundary and beyond. At the boundary the intensity of the scattered

field is about 6 dB less than predicted by ray optics. The calculated (phy-

sical optics) and measured phase patterns are also in excellent agreement.

Since the reflector is rotated about its internal focus, i.e., about the

apparent center of reflected rays, the geometrical-optics phase pattern is the

00-phase line. Near the reflection region boundary the phase of the field

predicted by geometrical optics is in error by about 30% The results of

scattering measurements made with parallel polarization of the field are

nearly identical to those obtained with perpendicular polarization, and are

not presented. The measurement region for the 35.6 X reflector included only

the reflection region and part of the diffraction region. However, for the

16.6 X and 8.3 X reflectors, the principal-plane patterns all around the

reflectors were measured and the results, presented in Figs. 12 and 13, show

good agreement with predictions in all regions. The phase patterns, for these
6

two reflectors were measured only over the reflection region, and exhibit

somewhat poorer agreement with predictions than for the 35.6 X reflector, but

this is likely due to increased blockage by the physically larger feedhorns.

6
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4.0 EFFECT OF SUBREFLECTOR DIAMETER ON GAIN OF DUAL REFLECTOR ANTENNAS

For reasons of blockage of secondary radiation, or of weight and size,

the subreflector of a dual-reflector antenna is, generally, made only as large

as is required to optimize performance, and the design guideline has been to

truncate the subreflector about one wavelength beyond the ray-optics bound-

- ary. In this section, the effect of the subreflector size on the gain of a

dual-reflector antenna is calculated, with results that justify the design

guideline. The calculations are made for a center-fed, cassegrain antenna,

using the computer model previously described. The relevant antenna para-

meters are given in Fig. 14. The directivity of the dual-reflector antenna is

* calculated for values of subreflector diameter in the vicinity of the ray-

optics value, and does not include blockage effects.

Following Silver (Ref. 7), the directivity of the dual-reflector antenna

may be expressed as

D a = cot2 (/2) f E(W) tan (8/2) d8 (17)

where T is the paraboloid half-angle and E(a) is the physical-optics solution

for the field scattered by the subreflector, which according to Eq. 11, is,

1/2 N an k  rk ) gkfke 
k k

E()- Ep) (a)r (18)

0
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Fig. 14. Relevant parameters for subreflector efficiency analysis.
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.- The directivity of the dual-reflector antenna is maximum for the subreflector

of infinite extent. For this limiting case, the geometrical-optics expression

(Eq. (15)) of the scattered field is exact and, the maximum directivity is

obtained by substituting it in Eq.(17), i.e.,
Df1/2a co2(a2

E(8) f E (0) - D 1/2() Df () cos (a/2) (19)
GO 2M cos (a/2)

and the maximum directivity is

Da (max) = cot2(/2) f Dsl/ 2 (0) tan (8/2) d8] 2 (20)
0

I

The efficiency of the subreflector of finite size may be expressed as

* n - Da/Da(max), or

n = f EPO(8) tan (8/2) d8 /Da(max) (21)
0

* The efficiency of a subreflector is a function of its diameter and of the

illumination taper, and was calculated for diameters in the vicinity of ray-

optics diameters of 7.7 X, 15.5 X and 30.4 X, and for tapers at the edge of

the reflector of 5 dB and 12 dB. The results are presented in Fig. 15 where

the ray-optics truncation diameters (in wavelengths), are indicated by the

vertical dotted lines. It is observed that hyperboloid truncation at the

ray-optics boundary causes a substantial loss of efficiency, particularly for

3

pI
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Fig. 15. Subreflector efficiency as a function of diameter, for two values
of illumination taper.
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the smaller subreflectors. With an illumination taper of 5 dB, the efficiency

of the 7.7 X subreflector is about 0.83, and that of the 30.4 X subreflector

is about 0.91. With an illumination taper of 12 dB the efficiency is greater,

being about 0.91 and 0.95 for the 7.7 X and the 30.4 X subreflectors, respec-

tively. It is also observed that making the subreflector diameter about 2 X

greater than the ray-optics diameter is sufficient to achieve unit effi-

ciency. The lower efficiency of subreflectors truncated at the ray-optics

boundary is the result of edge diffraction. As reported in the previous sec-

tion, the effects of edge diffraction is a reduction of about 6 dB, and a

deviation of about 30, of the intensity and phase of the field in edge direc-

* tions. Since, to a first order, these effects are independent of subreflector

geometry, the results obtained for the axially symmetric, dual-reflector

antenna of specific geometry, also apply to other geometries.
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5.0 CONCLUSIONS

The scattering characteristics of offset hyperboloid reflectors with pro-

jected diameters ranging from 8.3 X to 35.6 X were studied analytically and

experimentally with results in very good agreement. The physical-optics

analysis was carried out using a computer-implemented, patch simulation tech-

nique of arbitrary shaped reflectors (computer modelling), which proved to be

time efficient, accurate and simple to apply. The computer modelling techni-

que was also used in a study to determine the minimum value of subreflector

diameter required to optimize gain in dual-reflector antennas, and that value

was found to be about two wavelengths greater than the ray-optics diameter*
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