
rD-R149 223 SPEECH ENHN CEMENT USING 
MULTIPLE MICROPNONES(U) 

/
MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB

U AS W AHARRISON 15 NOY 84 TR-691 ESD-TR-84-040

NCAEE962hEEE-802hE17/hE

Ek EhEL~E



- 2

6

11111L25 4

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURfAU OF1 STANDAROS 11%3 A



.1 . T F .

1 

k4

~ .IN

VV)

CJ7
~A

Al

*_ 7-

~~ri

~H

4 4'.e,

-41r"~

~~ov.
,rU



Thoe "A renhdthi doc* w *Am pmfns a ibL~~w,

see ft an ptau byR Vgdmzta ,sttt of Th , Ih the
mapdn ite Dpeuwe pt Aitl oe.. VdrCsAsfCW

0*: 4W. .

tbl ipp~Kai~~ueoddtjjsi e~ o &~fui~ *~

Tim*-3

C &il 3o a 3 ' *

oowo3



MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

SPEECH ENHANCEMENT USING MULTIPLE MICROPHONES

W'.A. HARRISON

Group 24 -

TECHNICAL REPORT 691

15 NOVEMBER 1984

* Approved for public release, distribution unlimited.

LEXINGTON MASSACHUSETTS



- . '..*.

ABSTRACT*

A new application of Widrow's Adaptive Noise Cancelling (ANC) algorithm is pre-
sented. Specifically, the ambient environment is generalized to include the case where
an acoustic barrier exists between the primary and reference microphones. By updat-
ing the coefficients of the noise estimation filter only during silence, it is shown that
the ANC technique can provide substantial noise reduction with little speech distortion
even when the acoustic barrier provides only moderate attenuation of acoustic signals.
The use of the modified ANC method is evaluated using an oxygen facemask worn by
fighter aircraft pilots. Experiments demonstrate that if a noise field is created using
a single source, 11 dB signal-to-noise ratio improvement can be achieved by attaching
the reference microphone to the exterior of the facemask. The length of the ANC filter
required for this particular environment is only about 50 points long.
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- This report is based on a thesis of the same title submitted to the Department of
Electrical Engineering and Computer Science at the Massachusetts Institute of Tech-
nclogy in June 1984 in partial fulfillment for the degrees of Master of Science and
Electrical Engineer.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Separating a desired signal from an undesired signal is an important and common

problem in signal processing. In many military environments such as fighter airci aft,S

helicopters and tanks, the increasing use of digital communication systems has created

a need for robust narrowband vocoders whose performance is acceptable under a va-

riety of stressful conditions. It is known that the presence of high levels of acoustic

noise in the audio signal leads to substantial reductions in the intelligibility of the

synthesized speech. Although the use of gradient (noise-cancelling) microphones and

oxygen facemasks reduces the noise problem somewhat, the ambient noise levels en-

countered in environments such as high performance tactical aircraft are often severe

enough that the performance of the vocoder is seriously affected. Another application

for which noise reduction is necessary is automatic speech recognition. As military

hardware becomes more sophisticated, it is becoming increasingly important to allow

operational personnel to perform simple tasks by voice command. Reliable recognition

of noise corrupted speech has proved to be a difficult problem and the existence of noise

reduction would be greatly beneficial.

Tinfortunately, single channel algorithms to date [I] have been only moderately

successful in reducing the unwanted signal. A potentially useful method that requires

...... ....... ... .......-.-..-....*



more than one input source is Adaptive Noise Cancellation (ANC) proposed by Widrow

et al [2]. The ANC algorithm uses a second sensor, commonly called the reference, to

gain additional information about the undesired signal. If the reference sensor contains

only a correlated version of the noise component in the primary sensor, one can in

theory derive a linear filter which, when applied to the noise corrupted signal in the

primary, minimizes the noise power while leaving the desired signal unaffected. If the

noise in the reference microphone is related to the noise in the primary microphone by

a linear filter, then it is possible to cancel completely the noise corrupting the desired

signal. Adaptive Noise Cancelling has been applied in areas where a reference signal

which contains only a correlated version of the noise in the primary input is easily

obtained. Examples of such situations are echo cancellation for long distance telephone

calls [3), adaptive line enhancement [4], and adaptive antenna array processing [5].

In order to apply the ANC algorithm effectively it is necessary that the reference

signal contain as little of the desired signal as possible so that the algorithm does not

cancel the speech along with the noise. Previous researchers [61 have met this condition

by placing the reference microphone next to the noise source and placing the primary

microphone close to a weak signal source located far from the reference microphone.

This report presents the results of a study in which the requirement was satisfied by

placing an acoustic barrier between the primary and reference microphones such that

the speech component in the reference was significantly attenuated. This case is of " "

interest since it is not always possible or feasible to place the primary and reference

2

* . . *.**. . .. . . . . . . . .



microphones far apart. In practice, noise reduction techniques may be desirable in

applications where the acoustic barrier can provide no more than a 15 dB difference

between the signal-to-noise ratios at the primary and reference microphones. In these

environments, direct application of the ANC algorithm can produce significant distor-

tion in the processed speech due to the presence of a strong speech component at the

reference microphone. Chapter 3 describes a modification of the ANC algorithm for

use in such situations which involves allowing the noise cancelling filter to adapt only

during silent intervals in the speech. With this modification it is possible to achieve

considerable noise reduction without seriously distorting the processed speech.

A practical consideration when using the ANC algorithm is the size of the adaptive

filter needed for good noise cancellation. A separation of a few meters between the

two microphones requires the adaptive filter either to be able to estimate the delay

between the reference and primary signals or to have a long impulse response in order

to provide good cancellation of the noise in the primary channel. Boll and Pulsipher [61

needed a tapped delay line of 1500 taps to cancel the noise in the primary microphone

adequately. Longer filter lengths require more computation in both estimating the

filter coefficients and in filtering the signals. Also, it has been found [6] that long filter

lengths tend to introduce reverberation in the processed speech due to the feedback
p

of the speech through the adaptive filter. With an acoustic barrier present between

the primary and reference microphones it is possible to place the two microphones in

close proximity on either side of the barrier. The small separation between the two

3
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microphones significantly shortens the filter length required for noise cancellation and

minimizes the presence of reverberation.

The performance of the modified algorithm was evaluated using an oxygen face-

mask commonly worn by military fighter aircraft pilots. Since the facemask provides

only moderate attenuation in an otherwise noisy cockpit environment it appeared to

be an ideal candidate for evaluating the noise reduction methods described in this re-

port. As will be discussed in subsequent chapters, experiments performed in a sound

chamber demonstrated that the modified ANC algorithm can be used to provide noise

cancellation with significantly less distortion introduced into the processed speech tha-

does the direct approach. Furthermore, the facemask permits close placement one

two microphones and requires a filter of only 50 taps. The short filter length reduc..-

the reverberation commonly heard in the standard ANC algorithm.

1.2 Report Organlatlon

The remainder of the report is organized as follows: Chapter 2 contains a brief discus-

sion of the adaptive noise cancelling algorithm used in this study along with a summary

of the least mean squares (LMS) and the recursive least squares (RLS) algorithms. In

Chapter 3, new applications of ANC are presented. In Chapter 4, an application of

ANC to the fighter cockpit environment is discussed. In Chapter 5, experimental re-

suits are presented and in Chapter 6, conclusions and possible extensions of the results

are given.

• o ..- o . . * * o .~ .
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CHAPTER 2

SUMMARY OF ADAPTIVE NOISE CANCELLATION

2.1 Introduction

This chapter covers the basic ideas behind adaptive noise cancellation. Also covered

are two of the more common adaptive filter algorithms used in the implementation of

the Adaptive Noise Cancelling (ANC) method. The ANC method and the Least Mean

Squares algorithm were first proposed by Widrow and Hoff [7]. The ANC algorithm

assumes there are two inputs available, a primary input which contains the desired

speech plus some interfering noise and a reference input which contains only a correlated

version of the interfering noise in the primary and no speech component. As will be

shown in the next section, having speech in the reference sensor may cause the adaptive

filter to cancel the speech signal in the primary instead of the noise. A solution to this

problem is discussed in Chapter 3.

Two common adaptive filters are covered in the rcmaining sections of Chapter

2. These are the Least Mean Squares (LMS) and the Recursive Least Squares (RLS)

algorithms. The former is a gradient based algorithm while the latter directly minimizes

the sum of the square of the output signal and is commonly placed under the category

of exact least squares methods.

2.2 Summary of Adaptive Noise Cancellation

A block diagram of the Adaptive Noise Cancelling (ANC) system is shown in Figure

5
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2.1. For simplicity, the discrete time index will be deleted from subsequent equations.

The signal p at the primary microphone is composed of a desired component 9 and a

noise component to'. The signal r at the reference microphone consists of w, the noise

signal. The filter HI (w) models the relationship between the noise in the reference

and primary inputs due to the separation of the two microphones. The adaptive filter

fl(w) provides an estimate y of the noise in the primary channel such that z = p - y

is an estimate of the desired speech signal 8. The results of Widrow et al 12] show that

minimizing EIz 2], the energy of the output signal, is equivalent to making y be a least

squares estimate of w'.

The assumptions needed for the above results are that s and to are wide sense

stationary, zero mean processes, and that a is uncorrelated with to and to'. The output

z is given by

Z a+to' - y (2.2.1)

Squaring both sides of equation (2.2.1) gives

= 2 2 + 2s(w' - y) + (to' -y)2 (2.2.2)

Taking the expectation of both sides of (2.2.2) and noting that a is uncorrelated with

W1 - y yields

E z 2] = E[s21 + 2E[.s(w' - y)] + Et(w' - y)']

= E[s2 1 + E[(w' - (2.2.3)

-, -' Oo . °o ,o .. . . . . . .- . . . . . . . -. . . . . . o ., o o - . . . o - , - . ° . °-. ... . , " o
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w

Figure 2.1. Block diagram of adaptive noise cancellation
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Adjusting the filter's impulse response to minimize E[z 21 will not affect the signal

energy E[s 2 ]. Hence the minimum output energy is

min Ez 2] = Ele2J + min EI(u/ - y)2J (2.2.4)

Since minimizing E[z 2] corresponds to minimizing E[(u - y) 21, y is the best least

squares estimate of to'. Also, by rearranging equation (2.2.1) as

z-a= w' - Y (2.2.5)

one sees that the output z is a best least squares estimate of the desired signal 9.

Many methods exist to derive an A(w) such that the output energy is a minimum

[8-12]. We will summarize two representative methods which use an FIR filter. Both

recursively estimate the filter coefficients on a sample by sample basis. The Least Mean -

Squares (LMS) algorithm [8] is an iterative, minimum seeking method for determining

the least squares solution. As will be shown in the next section, the LMS algorithm

converges to the minimum of EIz 2] on average. The Recursive Least Squares (RLS)

algorithm [9] solves the covariance normal equations at time n + 1 based on the solution

of the covariance equation at time n. An advantage of the RLS algorithm is that at

each time instance, the filter estimate Af(w) exactly minimizes the error criterion z.

For large n in a stationary, zero-mean environment, minimizing - z2 is equivalent to

minimizing E[z].

2.3 Summary of the Least Mean Square Algorithm

The first adaptive filter algorithm used in this report is the Least Mean Squares (LMS)

-."-....° .. .'.. . -..,.- .,'-'-... ....'.•..... ",. .',. , .- . , ,"- . . •.- , '-,,.'- .."-" ,, ," . . , ,:-" ,".-. ."% .-,,%",8



algorithm first proposed by Widrow and Hoff [7]. The LMS algorithm is a steepest

descent algorithm that uses estimates of the gradient of the error signal. To see under

what conditions we expect the LMS method to converge to the global solution, let us

consider the following.

We constrain our adaptive filter to be an FIR filter implemented with a tapped

delay line. The results obtained can be easily extended to an FIR filter with a lattice

structure [12]. A tapped delay line structure for the adaptive filter is shown in Figure

2.2. The output of the filter y., at time n is given by

- L-1

i=O

= -r, (2.3.1)

Where
ao
a,

a. .J

(aL- it-(L- 1)

The output of the system z., is

Z = Pn - YR

= pa - a1 R (2.3.2)

Using the minimum mean square error as our criterion for optimality, we see that

E[z=] E[(p, a r)]

- E[p2] - 2E[p~r*]a. + ,RE[rr,7 ]a. (2.3.3)

9
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Pn + fl

n ~rfl(L-1)

Figure 2.2. ANC block diagram with a tapped-delay line
filter
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For simplicity, define B = E[z ], p. = E[p.r], and R. = E[r.rT], then equation
I

(2.3.3) can be written as

f.= E[p] - 2p.a. + .TR.a, (2.3.4)
I

What is important to note is that f. is a quadratic function of a. and that there

exists one global minimum. The minimum mean square error , can be found via a

steepest descent method.

If one has knowledge of p, and R, then the optimal weight vector can be found

by differentiating equation (2.3.4) with respect to the weight vector and setting the

gradient to zero. The optimal weight vector is given by

ao=t R" p, (2.3.5) _

In a stationary environment B, = R and p, = p and a. - R-p. As stated earlier,

the Least Mean Squares algorithm uses an estimate of the gradient of the error at each

update of the tap weights. The tap weight a, is updated as

,+,= a. - p OE[Z2) (2.3.6)

Where VOE[z.J is the estimate of the true gradient. Approximating E[z.] as z2 allows

one to compute the gradient estimate as follows
L

V7E[Z2 ] - V:"

= 2zVaz, (2.3.7)

11 "- ".,
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With z. p. - ar,, equation (2.3.7) becomes

Vra[,11 - -2z,.,r. (2.3.8)

Putting equation (2.3.8) into (2.3.6) gives the LMS algorithm

a,+= a. + 2pzn,1  (2.3.9)

Now, our weight vector a., is a function of random variables so is itself a random

variable. It can be shown [8) that a. is an asymptotically unbiased estimate of ao .

The condition for equation (2.3.9) to converge is that [81

0< ;<A (2.3.10)

where ,mex equals the maximum eigenvalue of R. In practice, one does not typically

know the value of the maximum eigenvalue of R. To set the value of p, we note that

the trace of R equals the total input power to the tap weights and because R is positive

definite, tr[R] > ,mex. Therefore, a sufficient condition for convergence of (2.3.9) is

1
0 < < 1 (2.3.11)

tr[R]

The variance of a. as n -o oo is derived by Widrow 121 for the case when z,, and

r, are Gaussian. In this case, the variance of a. is

lim Var [a.] = - j&A) (2.3.12)

12
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where I equals the L x L identity matrix, cmi equals the minimum value of E[z.31, and

A equals a diagonal matrix of the eigenvalues of R. If we assume that A is small such

that u << I, then equation (2.3.12) simplifies further to

lim Var [a.] =j,,I(2.3.13)

Equation (2.3.13) tell us that the variance of our final solution is directly proportional -

to p. Unfortunately, convergence of the LMS algorithm is inversely proportional to IA.

Hence, there is a tradeoff between the convergence rate and the variance in the estimate

of the optimal weight vector.

Widrow f8J introduced a term called misadjustment which is defined as the ratio

of the average excess mean square error to the minimum mean square error. Mathe-

matically, the misgadjuatment M, isnw

M r [a"] (2.3.14)

From (81, it can show that M vrn(Rr. In this report, typical values for M were

between 2.5% and 10%. Empirically, these values for M were found to be close enough

to the optimal solution and to have a reasonable convergence rate for the experiments

conducted in this study.

In closing, the LMS algorithm offers an advantage in its simplicity and efficiency in

recursively estimating the optimal weight vector. A disadvantage with the algorithm

is that its convergence rate is governed by the inverse of the smaest eigenvalue of

R. In non-stationary environments, the LMS algorithm may not be able to track the

13



optimal weight vector. The next section discusses the recursive least squares algorithm

which minimizes a slightly different error criterion but which has excellent convergence

properties at the expense of greater complexity and computation.

2.4 Summary o? the Recursive Least Squares Algorithm

In the previous section, we considered a method which asymptotically approaches the

optimal weight vector for minimizing E[z.I. Now, let us consider a different error

criterion. Let our error criterion be

N-I ..

aZ(a) = (2.4.1)
i=0

where 0 < a < 1. The variable a represents an exponential weighting of past samples.

If the environment is stationary so that all past data is equally important, then one

would select a = I in equation (2.4.1).

Noting that z. = rTa - p,., we can rewrite c(a) as

c(a) = [1Ra - p,]TA. [Ra - p,] (2.4.2)

where
(N-) P,-(N-1)

P=-(p-2)J, Pm

• 0 ... 0 0)0 N- N -2 0 °0
0 0 0

0 4 0... 0
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and p.r is defined as the value of the primary input at time ns. The term r.~ is defined

an the vector of inputs to the individual taps in the adaptive filter at time ns. The

parameter a is defined as the vector of tap weights.

* To minimize (2.4.2), we set the derivative of c(a) with respect to a equal to zero.

The least square solution for a is

-a =[R',A, R.rAp. (2.4.3)

The idea behind the recursive least squares method is to update (2.4.3) in an

efficient manner when a new data point becomes available. Following Monzingo and

Miller 191, we can partition the update signals R.,, and p.+1 as follows

Now define

Pa [RxAnRnjf'

=S+ [Rrg+IAvt+LRn+lf (2.4.6)

Letting yu. be defined as (a + 4.,. I Pnrpb+l I~ the update for a.t+ can be computed

as

an+ a. + oyn+,Pn?1+l [Pn+1 &- ~ l (2.4.5)

P 1I [Ps - 'y+iPnr%+ir"7+iPnI (2.4.6)



Equation (2.4.5) and (2.4.6) are the update equations for the Recursive Least Squares

algorithm.

The initialization of the recursion given in (2.4.5) and in (2.4.6) can be done two

ways. The first method is to take the first n points and solve for a. and P. directly

from

P3 = [RTAnRn]-'

an = P 3 R Anpn (2.4.7)

The second method is to set ao to some arbitrary value and set Po #I where 6

is a large positive scalar and I is the identity matrix. Now, using (2.4.6), P. is [13]

Ps = [P;' + RTAnR,]-' (2.4.8)

and an is

an - P. [RnAnp. + Po'ao] (2.4.9)

To make (2.4.8) agree with (2.4.7), we need to force P-' to zero. This can be done by

letting oo - o since

lim P' = lim I= 0 (2.4.10)

Empirically, with 3 = 1010, the difference in the values of the coefficients from using

(2.4.8) versus using (2.4.7) for the updates was found to be less than one part in 10- .

The value of a chosen reflects on how rapidly the environment is changing. Let

us define the effective distance into the past data as 1/(1 - a). In this study, a was

16
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chosen such that the effective length is ten times the number of taps. For example,

using 100 tap weights, a is set to 0.999. The RLS algorithm converges to a.$ within a

few multiples of L points, where L equals the number of tap weights. The disadvantage

of the RLS algorithm is that updates of a, require O(L 2 ) operations. For comparison,

the LMS method requires O(L) operations per update.

.2.5 Conclusion

This chapter has presented a summary of the adaptive noise cancelling algorithm. Also

covered are two common adaptive filter algorithms, the LMS and the RLS algorithms.

It should be noted that there are exact least squares methods that minimize (2.4.1)

and only require O(L) computations per update point 110,141. This author has found

empirically that these efficient least squares methods are numerically sensitive to their

initial starting conditions. Because of the numerical stability and ease of initialization -

of the RLS method, it was chosen as a representative exact least squares algorithm to

be compared with the LMS algorithm.

17
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CHAPTER 3
S

NEW APPLICATIONS OF ADAPTIVE NOISE CANCELLATION

3.1 Introduction

In the previous chapter, the application of ANC to situations where the reference

input contained no speech components was discussed. Boll and Pulsipher [61 created

a laboratory environment to satisfy this requirement and showed that a significant

reduction of background noise could be achieved using the ANC approach. In this

chapter, a method of applying ANC to a more realistic environment is developed.

Specifically, we consider the case when there is a non-ideal acoustic barrier between the

noise source and the desired signal. In this case the primary and reference microphones

can be placed on opposite sides of the acoustic barrier. An environment which exhibits

these characteristics is the cockpit of a fighter aircraft in which the pilot wears an

oxygen facemask. The application of ANC to this environment will be discussed more S

* fully in Chapter 4.

If the acoustic barrier is not totally effective then both the primary and reference

microphones will contain speech and noise components. The model of the system is

shown in Figure 3.1. Here we have assumed that there is a transfer function relating

the noise in the reference input to the noise in the primary input. Conversely, there "

exists a transfer function that maps the speech in the primary input to the speech in

the reference input. Updating the adaptive filter continuously can produce significant

18~:?
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rw

Figure 3.1. Block diagram of adaptive noise cancellation
with speech in the reference input
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speech distortion since the filter ff(w) will attempt to reproduce a signal containing

speech as well as noise. Unfortunately, this distortion is inversely proportional to the

noise level. In the limit when the noise is zero, there is just speech present and it

is completely cancelled by the system. Clearly, in environments such as in fighter

aircraft where the ambient noise field can vary in intensity by 15-20 dB, adaptive noise

cancellation as was previously used is not a viable method.

3.2 Modified Adaptive Noise Cancellation

To avoid distorting the speech, a system was developed in which the adaptive filter

coefficients were updated only during intervals when there was no speech present. It is

implicitly assumed in this approach that the transfer function H, (W) in Figure 3.1 does

not change significantly when speech is present. During silence, s 0 and the adaptive

filter .&(w) will try to approximate H1(w). When speech is present, the adaptation

of the filter is halted by setting the adaptation constant p in equation (2.3.9) to zero.

Halting adaptation of the RLS method is done by not adding the correction term

Yn+ inPnr+ 1 [Pn+i - anr,,+] in equation (2.4.5) to a.. More details on the speech

detection algorithm used in this report are discussed in Chapter 4.

Using Figure 3.1, the primary input to our system contains speech s plus noise w'.

The reference input also contains speech a' plus noise w. Now, w' << w in energy due
I

to the acoustic barrier. For example, with a pilot wearing a facemask, the rubber of the

mask attenuates the ambient noise such that the sound pressure level (SPL) due to the

noise inside the mask is lower than the SPL due to the noise outside of the mask. Also,

20
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a' << a in energy due to the acoustic barrier. In our example, the oxygen facemask

attenuates the pilot's speech such that the SPL due to the speech inside of the mask is

much higher than the SPL due to the speech outside of the mask.

Now, let us consider the case when no speech is present. For this case, the primary

and reference inputs are given by

p=d,

r =W (3.2.1)

In this case the adaptive filter h will try to minimize the output energy. With no speech

present, the output z is

td /- w h i:

t,*h -W* (3.2.2)

where represents the convolution operator. With the energy of z minimized, w* F -.

or equivalently, h A hl. What the above implies is that the adaptive filter h must

attenuate the noise signal to to make it match wo.

When speech occurs, the update of h is stopped. During speech, the output z is

given by

a2 + I - W -a'*h (3.2.3)
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If we assume that h, does not change significantly when speech occurs, then w' - w •

will still be small compared with .. Now, the output is approximately given by

z P8 - 8 h (3.2.4)

As we have stated earlier, a' << a in energy. The effect of h on a' is to attenuate a'

further such that a', h is much smaller in amplitude than a and z P 8.

In the frequency domain, the Fourier transform of the output Z(w) when speech

is present is given by

Z(wj) =S(w) - S(w)H 2 (W)A'(w) + W(W)H 1 (W) -W((w)fA(w)

SS(w) [1 - H2(w)A(w)] + W(w) [H1 (w) - A(w)] (3.2.5)

Again, assuming A(w) P H, (w) such the W(w)[Hi (w) - .&(w)] is small compared with

S(w)[1 - H2 (w)H^(w)], the Fourier transform of the output Z(w) is approximately

Z(w) f S(w)[I - H2 (w)HI,(w)] (3.2.6)

Intuitively, we want the magnitude of H2 (w)HI (w) to be much less than one for

all frequencies in order for Z(w) to approximately equal S(w). This provides the basis

behind the approach of using ANC in an environment where the combined attenuation

of HI (w) and H2(w) is much less than one for all frequencies. Chapter 4 discusses

an application of ANC in a fighter cockpit environment to test the above approach to . -

noise reduction.
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3.3 Conclusion

This chapter discussed a modification of the adaptive noise cancelling algorithm. The

modification was to adapt the system during the silence intervals in the speech. Two

conditions need to be met in order for this system to work. The first is that H, (w) in

Figure 3.1 does not change appreciably between silence intervals in the speech. The

second is that the magnitude of H, (1 )H2 (w) is much less than one for all frequencies.

This last condition assures that the leakage of speech from the reference input does not

degrade the final output speech. The next chapter discusses an application of the ideas

presented in this chapter to the fighter aircraft environment.
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CHAPTER 4

APPLICATION OF ANC TO THE FIGHTER COCKPIT ENVIRON-

MENT

4.1 Introduction

The condition of IH1(w)H 2 (w)I << I given in the previous section occurs frequently

in practice. For example, the oxygen facemask worn by a pilot in a military fighter

aircraft provides an acoustic barrier which attenuates signals by about 10 dB. This

attenuation applies to both Hi(w) (ambient noise) and 8 2 (w) (speech) so that the

combined attenuation due to H1 , (w)H 2 (w)I is approximately 20 dB. Since appropriate

in-flight data from an actual fighter aircraft was unavailable, the environment was

partially simulated in a laboratory in order to evaluate the modified ANC method

proposed in Chapter 3.

4.2 Experhnental Set-up

Experiments were conducted in a small (10' by 1(Y) partially sound-proofed room.

An Allison 4 loudspeaker mounted on one wall was used to create the ambient noise

field. A subject was seated near the loudspeaker and wore a regulation Air Force

oxygen facemask. Placed inside the mask was a pressure gradient (noise cancelling)

microphone identical to the ones used by Air Force pilots. Attached to the outside of

the mask was an omnidirectional electret microphone. The electret microphone was
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used because of its flat response from 100 to 4000 Hs and because of its omnidirectional

behaviour. The outside microphone was positioned to be as close as possible to the

inside microphone. The smallest separation was 3 cm. The reason for placing the two

microphones as close as possible is twofold. The first is that smaller filter lengths for

the adaptive filter can be used. The second is the potentially improved performance in

a multi-noise source environment. In a complex noise environment with many different

sources distributed over a region, the noise becomes uncorrelated between two points

in space as we move the points further apart. Intuitively, if the microphones were

separated by zero length they would both record the same signal and would be perfectly

correlated with each other. As we separate the two microphones, they contain less and

less common information. Hence, there is a need to place the two microphones as close

as possible to each other.

The microphone outputs were connected separately to a two-channel tape recorder.

Due to the attenuation of the mask and the power limitation of the loudspeaker, record-

ings from the primary microphone inside the mask contained very little noise. As a

result it was necessary to make recordings of speech alone and noise alone and com-

bine the two signals digitally prior to analysis. Although the technique produced an

artificial signal, it had the benefit of allowing a range of signal-to-noise levels to be

evaluated without requiring re-recording. In addition, the availability of the noise-free

speech signal permitted accurate computation of signal-to-noise ratios.

Another difficulty encountered during the recording sessions was that it was not
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possible to determine empirically the actual attenuation function of the facemask worn

by the subject because the gains of the individual tape recorder channels were unknown.

Assuming the frequency response of each of the two tape recorder amplifiers to be

approximately equal, the one unknown parameter was the relative gain between the

primary and reference inputs. This parameter was assumed to be the attenuation

function of the facemask. The attenuation was estimated by referring to the results

of a study performed for M.I.T. Lincoln Laboratory by researchers at Bolt, Beranek,

and Newman [15], who found that the amount of attenuation caused by an Air Force

oxygen facemask varied from 9 to 11 dB. An 8 dB mask attenuation was selected as

a conservative estimate for the current study. As a result, the energy of the speech

signal at the reference microphone was adjusted to be 8 dB lower than the energy of the

speech signal at the primary. Likewise, the energy of the noise signal at the primary

microphone was adjusted to be 8 dB lower than the energy of the noise signal at the

reference. As will be discussed in Chapter 5, with 8 dB set as the mask attenuation

factor, the attenuation associated with the function H, (w)H 2 (w) is sufficient to allow

substantial noise cancellation with minimal distortion of the speech signal.

In Chapter 3 it was shown that by constraining the algorithm to adapt only during

silence it is implicitly assumed that HI (w) does not change significantly when speech

occurs. For the sentences used in this report, the maximum time of speech activity

" was less than 600 milliseconds. This means that adaptation of A!(w) was stopped for

no more than six tenths of a second before a gap in the speech occurred. Since H, (w)
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relates to the position of the speaker with respect to the noise source, it can be assumed

that H, (w) does not change significantly during this interval. The results presented in

Chapter 5 will verify this assumption.

4.3 Detection of Speech

As was previously discussed, the noise estimation filter was allowed to adapt only in the

absence of speech. In general, accurate detection of speech over a range of background

noise levels is a very difficult problem. In this report, an estimate of the energy of

the primary signal was used to determine if speech was present. It is known 116] that

using the energy of the signal is not a reliable way of detecting low energy portions

of the speech such as weak fricatives at the beginning or at the end of an utterance.

Fortunately, adapting the system when there is low energy speech present does not

noticeably degrade the speech. This is because when the energy of the speech is below

the noise level, the noise is the dominant component of the signal and the adaptive

filter is not significantly influenced by the low level speech.

Details of the speech detection algorithm are as follows. The energy of the primary

signal at time n is computed as the sum of the square of p, five milliseconds before

and after time n. In other words

i"650

where the sampling rate of the system is 10,000. A representative plot of E(n) ver-

sus time is shown in Figure 4.1. Superimposed on the graph is the lower and upper
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Figure 4. 1. Representative plot of E(n) versus time and its
use in determining when speech occurs

28



thresholds. For the examples used in this report, the lower threshold was set to 1.2

times the estimate of the background noise power. The upper threshold was set to 1.5

times the estimate of the noise power. The beginning and ending points of speech are

chosen as follows. When E(n) is greater than the upper threshold, we say that speech

is present. The beginning point of speech is arbitrarily chosen to be the point when

E(n) last crosses the lower threshold before it crosses the upper threshold. Looking at

Figure 4.1, we see that the point A would mark the beginning of speech. The ending

point of speech is chosen to be the point when E(n) first crosses the lower threshold

after it crosses the upper threshold. Looking at Figure 4.1, we see that the point B

would mark the ending of speech.

To allow a gradual change in noise power, the estimate of the noise power is

updated by low pass filtering E(n) when no speech is present. The output of the low

pass filter is used as the estimate of the noise power. The initial estimate of the noise

power is computed by averaging the energy of the first second of recorded data which

is assumed to be just noise.

4.4 Conclusion

This chapter covered the experimental set-up to test the modified adaptive noise can-

cellation algorithm discussed in Chapter 3. The oxygen facemask worn by the pilot

provides a moderate amount of attenuation of the speech and noise signals. Direct

application of the adaptive noise cancelling algorithm produces noticeable degradation

of the speech signal. This degradation is most severe when the ambient noise level is
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CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

In this chapter we present the results of using the modified adaptive noise cancelling

algorithm on the data described in Chapter 4. As was noted in Chapter 2, there

exists many ways to design the adaptive filter embedded in the ANC algorithm. This

report will use the Least Mean Squares (LMS) and the Recursive Least Squares (RLS)

algorithms to implement the adaptive filter.

5.2 Experimental Results

With the set-up described in Chapter 4, the test subject spoke the sentence 'He scanned

tbrough the law books.' To allow the adaptive filter algorithms time to initially adapt,

the first one and half seconds of data contain only noise. The last two and half seconds of

data contain the speech plus noise. Using the LMS and RLS algorithms and adapting

during silence as explained in the previous chapter, the signal-to-noise ratio (SNR)

improvement versus time provided by the ANC system for various filter lengths is

given in Figures 5.1a,b. For the examples in Figures 5.1a,b, the initial SNR is 3 dB.

Since the noise and undegraded speech are available, the SNR improvement used

in this report is computed as follows. For both the input and output, the ratio of the

energy in the speech to the energy in the noise is computed over a 100 millisecond
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Figure 5.1a. Improvement in signal-to-noise ratio versus
time for L = 25, 50, and 100 using the LMS algorithm with
M adjusted to equal 5% for each case. Initial SNR equals
3 dB.
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Figure 5.1b. Improvement nu signal-to-noise ratio versus
time for L =25, 50, and 100 using the RLS algorithm with
a adjusted such that 1/(1 - a) equals 10L. Initial SNR
equals 3 dB.
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frame. The log ratio of the output SNR to the input SNR is multiplied by 10 to get

an improvement in SNR in dB. During the interval where only silence occurs, the SNR

improvement in dB is the log ratio of the input noise energy to the output noise energy

multiplied by 10. The initial SNR is computed as follows. The energy of the original

clean speech signal is normalized to have unit energy. The energy of the noise signal

is adjusted such that ten times the log ratio of the speech energy to the noise energy

is 3, 6, or 10 dB. Also, as discussed in Chapter 4, the mask attenuation is set at 8 dB.

Therefore, the signal-to-noise ratio at the reference input is 16 dB below the SNR at

the primary input.

Another observation to be made is that our system must be causal. For example,

if the noise reached the primary microphone first and then after a slight delay, reached

the reference microphone then our system would be non-causal. To force causality, a

small delay is placed in the primary channel. For a filter length of 25 taps, the delay is

1.2 milliseconds. For the filter lengths of 50 and 100 taps, the delay is 2.5 milliseconds.

The exact value of the delay is not critical. The delay only needs to be long enough to

make the system causal.

From Figure 5.1a, the average improvement in SNR is 9.3 for L = 25, 11.0 for

L = 50, and 11.9 for L = 100 when using the LMS algorithm. Using the RLS algorithm,

the average improvement in SNR is 9.7 for L = 25, 11.2 for L = 50, and 11.7 for

L = 100. We see that for L = 25 and 50, the RLS method performs better than the LMS

method. The reason for this increase in performance is due to the compromise between
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the convergence rate and the variance of the filter estimate in the LMS algorithm. For

L -- 100, the RLS method actually performs worse than the LMS method when speech

is present. The reason for this behavior is that the RLS method uses past data to

determine the update of the filter coefficients. As was stated in Chapter 2, the amount

of past data used is proportional to the number of tap weights. When adaptation

resumes, noise corrupted by speech is still being used to update A(w) for larger values

of 1, The net result is that the filter coefficients derived are not correct. The effect is

that for L = 100, there is a slight reverberation in the processed speech. For L = 25

and 50, the above effects are much smaller and no noticeable reverberation is heard

in the processed speech. Another point to be made is that above 50 taps, there is a

marginal increase in performance for a given increase in the filter length.

The results obtained show that a filter length of 50 taps is all that is needed to give

approximately 11.0 dB improvement in SNR. Furthermore, the amount of improvement

in SNR is approximately independent of the input SNR. From Figures 5.2a,b, the

average amount of improvement in SNR is 11.0 dB for an input SNR of 3 dB, 11.0 dB

for an input SNR of 6 dB, and 10.9 dB for an input SNR of 10 dB for the LMS method.

For the RLS method, the average amount of improvement in SNR is 11.2 dB for an

input SNR of 3 dB, 11.1 dB for an input SNR of 6 dB, and 11.1 dB for an input SNR

of 10 dB. The differences in improvement in SNR across the different input SNR's are

due to the speech detection algorithm.
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Figure 5.2a. Improvement in signal-to-noise ratio versus
time for an initial SNR of 3, 6, and 10 dB. LMS algorithm
used with L 50, and M 5%.
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Figure 5.2b. Improvement in signal-to-noise ratio versus
time for an initial SNR of 3, 6, and 10 dB. RLS algorithm
used with L 6 0, and a =0.998.
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5.3 Discussion

To compare the rate of convergence of the LMS and RLS algorithms, let us plot the

output signal for the first 200 milliseconds as shown in Figures 5.3a,b. As was mentioned

earlier, the input data initially contains only noise and no speech. The number of tap

weights was set to 100 and the initial SNR was 3 dB. As the rate of convergence of our

adaptive filters is inversely proportio Jl to the filter length, the convergence rate for

L - 25 and L = 50 will be greater than that for L = 100. For the LMS algorithm, A in

equation (2.3.11) was set such that the misadjustment was 5%. For the RLS algorithm,

a 0.999. It should be noted that for both the LMS and RLS methods, the initial value

for the tap weights was zero. Also, the output of both systems was normalized by the

same constant. In Figure 6.3a, we see that the LMS algorithm requires approximately

120 milliseconds before the energy of the output signal reaches a steady state value. For

comparison, in Figure 5.3b, we see that the RLS method required only 20 milliseconds

to converge. It is interesting to note that for the first 10 milliseconds (or first 100

points), the output using the RLS method is zero. This is because our filter length is

100 taps and for n < 100, we have enough degrees of freedom to set the output error

exactly to zero.

Clearly, in environments that may experience sudden changes, an adaptive filter

that can rapidly adapt should be used. Also, if the -a d of the eigenvalues of R

"* (see Section 2.3) is large, then the LMS algorithm may not converge quickly enough.

In these experiments, sudden changes in the environment did not occur. Also, the
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Figure 5.3a. Normalised output of the ANC system using
the LMS algorithm. Initial SNR = 3 dB. L = 100, and M

(b)

0.5

0

-0.5 -

-1II

0 0.05 0.1 0.15 0.2

TIME (s)

Figure 5.3b. Normalised output of the ANC system using
the RLS algorithm. Initial SNR = 3 dB. L = 100, and
a :0.99.
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spectrum of the noise played through the loudspeaker was flat. Hence, there was not a

large spread in the eigenvalues of R, and overall, the convergence rate of the adaptive

filter was not a critical parameter.

Little speech distortion was heard in the processed speech during informal listening

tests. This is primarily due to constraining the algorithm to adapt only during silence.

The slight distortiun heard in the processed speech can be attributed to the presence

of a speech signal component at the reference microphone.

Even though the results in these experiments are quite encouraging, they cannot

be readily applied to the true fighter cockpit environment. Whereas the noise compo-

nent in this study was derived from a single loudspeaker, the noise inside the cockpit

results from a complicated interaction of many sources and may vary both spatially

and temporally. Since the successful application of the ANC method depends directly

on the degree to which the differences between the signals at the primary and refer-

ence microphones can be modeled by a linear filter, it is intuitively obvious that the

greater the separation between the two microphones in a multiple source environment

the lower the likelihood that the use of a single adaptive filter will suffice to cancel

the noise without introducing distortion. However, a close placement of the micro-

phones on the facemask may be adequate even in a sound field as complex as that of

a fighter cockpit. Validation of this intuition must await further experimentation in

either a more accurately simulated cockpit environment or, preferably, on board an

actual aircraft.
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CHAPTER 6
I

CONCLUSION AND PROPOSED RESEARCH

In this report it has been shown that the modified ANC algorithm can provide substan-
I

tial noise cancellation under conditions which more closely approximate those found in

practice than the conditions used by previous researchers 161. The fundamental require-

ment is that there be sufficient attenuation of the speech signal between the primary

and reference inputs. Results showed that this requirement is met for the case of the

oxygen facemask worn by fighter aircraft pilots and that the facemask allows placement
I

of the reference microphone close to the primary microph. ,re. The resulting short filter

length begins to make it practical to consider real time implementation of the ANC

algorithm.

The experiments reported in this study were conducted using a single noise source - -

in a laboratory sound chamber. It is of considerable interest to determine whether

the proposed technique is effective in a multiple or distributed source environment

more nearly like that of a fighter cockpit. As of yet, no theory exits that predicts the

performance of the ANC algorithm in a general environment. For instance, if one knew

that the ambient noise was isotropic with a certain spectral covariance structure, then

it would be useful to be able to predict the improvement in SNR for a given microphone

configuration.

Because of the limitations discussed in Chapter 4, the noise and speech were

recorded separately in the experiments conducted. In addition, laboratory-generated
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white noise was used as the noise source rather than the noise that arises in an ac-

tual fighter aircraft. Even though it is anticipated that the results will generally hold

when speech and noise are simultaneously recorded and the noise used is noise in a real

cockpit environment, it would be useful to establish this point.
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