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c(z)

DD E' Fl GD n(xDz)

f
8(x,z1%,0)
h(x)

K

k, (K, z)

n(z) = ¢c(0)/c(z),

inversion amplitude (10)

inversion amplitude ratio (28)
velocity below reflector (35)
reference velocity (1)

various integrals) see Appendix A
frequency (53)

Green's function for c(z) medium (2)
cylindrical surface (29)

ray parameter (3)

a2 (2)-* (6)

the index of refraction (7)
reflection coefficient (34)
reflection coefficient (26)
abbreviation; see (33)
observed scattered field (2)
observed scattered field (55)
velocity (1)

the inversion operator (10)
horizontal cartesian (1)
vertical cartesian (1)
unknown perturbation in velocity (1)
reflectivity function (26)
abbreviation; see (32)
abbreviation: see (34)

bandlimited delta function (26)
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E~ p' = |x'-&| offset (11) !
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Carter and Frazer [1584], and Bleistein and Gray [1984] (henceforth BG),

present inversion algorithms which include the effect of a stratified
reference velocity, c(z). Those papers did not address the question of
obtaining accurate values of the reflection coefficienty this is the issue
treated here. Thus, in the language of Bleistein, Cohen and Hagin [1984],

(henceforth BCH), the earlier algorithms provided structural inversions, the

location of the sub-surface layers; whereas the present algorithm also

provides an accurate estimate of the reflectivity function, which depicts

the reflectors and provides an estimate of the reflection strengths across

the layers.

Since we employ a perturbation assumption (the "Born Approximation”), the
constant reference speed inversion first described in Bleistein and Cohen
[1979a] and reviewed in BCH, is often not adequate at depth. Although
recursive use of the algorithm is possible and although the results can be
significantly enhanced by suitable pre- or post-processing (e.g., see Hagin
and Cohen [1984])), extension of the perturbation method to a stratified
reference profile is highly significant. It is far more likely that the
actual velocity function can be well approximated by a stratified referenmce
velocity than by & constant one, which in turn enhances the validity of the
perturbation assumption and the inversion results. See BG for further

discussion of this point.

The algorithm presented here has the same structure as the BG algorithm
and hence it cam be expected to exhibit the same stability and economy. In

particular, we note that the processing times for this algorithm with depth-
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dependent background velocity will be comparable to those for a constant

background k-f algorithm, In addition, we shall show below that the
algorithm can be expected to be quite robust even when the “small”

perturbation assumption is violated.

A key feature of our approach to this problem is repeated application of
high frequency asymptotic methods to obtain an inversion formula valid in
the high frequency regime. Discussion of the motivation and justification
for such high frequency approximation may be found in BG and BCH. 1In
particular, we shnll-nse a ray theoretic Green’s function in formulating our
basic integral equation; equation (2) below. A similar approach was
presented in Clayton and Stolt [1981)]. Furthermore, we cannot determine an
exact inversion of the fundamental integral equation of this method.
Instead, we assume an inversion operator which consists of multiplication of
the observed data by a factor of the form A exp{-2iwr} and integration over
the data set. The phase t is the traveltime in the c¢(z) background medium
between the source/receiver point and the output point at depth. We must
still determine the amplitude, A, in this operator. To do so, we require
that the operator applied to Kirchhoff data from a single reflector produce

the reflectivity functiorn for & single reflector, to leading order,

asymptotically. This leads to the determination of the amplitude of the
inversion integral operator. It is to this extent that we then claim to

have an inversion operator which correctly estimates reflection strength.
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HIGH FREQUENCY STRUCTURAL INVERSION

Here we describe the formalism for determination of an asymptotic
inversion operator, up to the amplitude, A, introduced above. We employ the
same wave equation model as described in detail im BCH. If v is the

velocity in the wave equation, we set

Py 1 = ’1 [1 + a(x, z)] , zx = (x,y) . (1)
v (x,z) ¢ (2)

Here c(z) is the known, stratified reference velocity, while a(x.z) is the

desired perturbation correction to the actual velocity. Furthermore, we

retain the assumption of backscatter (”stacked”) data. In this case the

basic integral equation for a(x,z) is (cf. BCH, equation (8)):

® q(z.z)
ug(lsw) = “’f f a’x Iodz o) 8 (x. 280, &= (&) (2)
c (z

where all unmarked integral signs are over (-=,»), Here us denotes the

backscattered field at the location £ = (&,n) on the observation planme, z =

0 and g (the "incident field”) denotes the Green’s function corresponding to
the stratification, c(z). In contrast to the constant background case, g
cannot be determined exactly: we must use the high frequency assumption.
Fortunately, this assumption is completely justified on the geophysical
exploration scale and has long been used to simplify processing formulas
even when it was possible to derive wide band anmalytic results (see BCH).
We use J. B. Keller’'s [1978] ray method formalism (see also Bleistein
[1984]), which is the multi-dimensional analogue of the WKB method to obtain

a parametric representation of g (see Appendix B):
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g~ (3)

4n [E (K0 £ (K,2) E(K,z) H(K,2)

Here, if we introduce the transverse distance,

p=Ix-¢| . (4)

then the parameter, K, in (3) is defined as a2 function of p and z by the ray

equation:

p = KHK,z) (5)

Further, the quantity k’(K.z) is given by

k(K2 = Yo' () - E . (K¢ 2’2 (6)

where in turn, n, the index of refraction, is

n(z) =L ™M
The travel-time, T, is
z_’P_{
1 n (D4
< a—oTG(po) » G = » (8)

0 K (KD

and finally, the quantities E and H are likewise integrals involving n and
k.. These integrals, as well as others that occur subsequently, are defined
in Appendix A, There, we also derive some needed relations involving these

quantities.
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We shall not need the extension of k' in (6) to the range nz(z) > K

becanse our Fourier transforms are integrals over real wave numbers only.

k
Thus our task is to invert the integral equation, ;
2iwt(K,z) :
o} . a(x,2z) e 4
s = —= | | dx | & GO ELONGLD ) 1
16n o ° (z) 3 ’ 5
3
:! for a(x,z) in terms of the data, us(g.w)- Again, the ray parameter )
K = K(p,z) is defined by (5). j
A
; )
} Since the phase in (9) resembles that of a Fourier transform, we are ]
]
b
t'.- motivated to seek an asymptotic inversion operator of the form: 1
.
.
L - ’ ’
vie.wl e ~ [ [ a'e [ ao Ao,z o2ERENED pp 0 (10)
L :
; with p’ defined as )
Y ]
~ p' = |z - &l . (11) ‘
i :
:_ and K’' defined by ]
; 1
- p' = K'E(K’',2z') . (12)
L]
-

Here we have introduced primes to avoid confusion with the integration
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variables in (9). Applying W to both sides of (9) and writing out the right

poug)

e hand explicitly we have:
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16n’
(13)
olz,2) ,» exp{2iwB(K,z,K’,2')/c(0))
- A(p"Z)—(_ﬁ_—TT—')_r_—TkKOkK ,
’ )z B xpz H x,l
¢ (z) ) s
where we have introduced the phase,
! = G(xoZ) - G(x'pz') . (14)

And K, K’ are defined by (5) and (12) respectively.

We perform four dimensional stationary phase in x = (x,y) and £ = (&,n)
recognizing that K depends on x and { while K' depends &. de present
some of the details here to give the reader the flavor o° the type of
mathematical analysis involved. Those so inclined may skip directly to the
result given by equation (21) below. Noting that (5) and (12) allow
computation of 9K/dx, 9K/dy, 9K/dz, etc., by implicit differentiation, and

using the result of Appendix A, we find

_ ) 4 _ x~& _ x-t _ _X;&
§ =6g3y =G ﬂﬁi;'m i (15)
Similarly,
I . N R S S T A (16)

y- ¥ %R T L ETTET
where we have introduced the short-hand

E = E(K,z), E' = E(K',2) . (17)

Thus the stationarity conditions are
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x=f=x' . (18)

But this and (5) imply (see discussion below following equation 48):

KE=0 . (19)

Similiarly,
K' =0 . (20)

These results greatly simplify the remainder of the stationary phase
calculation (see Appendix D for the details) which yields,

W[us](g'.z') *'%? I dz a(x',2z) A(0,z') n(z)~%%%ii%)
0 ’

(21)

. J'dm exp[Zi-a%)—r a(Daly .
z’

It should be realized that since we have already employed the assumption of
high frequency several times in obtaining (21) and shall use it again before
we finish, the « integration must be construed as a band-limited
integration. These matters have been discassed in Cohen and Bleistein
[1979b], Bleistein [1984], and BCH [1984]. For the present, we shall merely
symbolize the effect of band-limiting by placing a subscript B on the Dirac

delta function which results from the w-integration in (21). Thus,

jam exp(2i(w/c(0)) rn(mn

z

nc(0) SB(Iz a(Dah
z’

’ (22)
GB(z—z )

= ﬂC(O) —n(;)-—

and so (21) becomes
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Wlugl(x',2') ~ ﬁl-(gQA(O,z')a(g'.z') . (23)

Solving for a, writing out the expression for '[us](cf. equation 10), and

dropping the now superfluous primes yields:

alz,2) ~ 20 [ [ o'z [ o gi8r2 o MR (g0 (24)

with K determined by
p = KE(K,z); p = I_; -z - (25)

As discussed in BCH, once we surrender knowledge of the low frequency
input information, we cannot obtain output trend information. It is to be
hoped that (by iteration if necessary) our c{(z) reference velocity is an
adequate approximation of the trend to the depths of interest. What we can
obtain from band-limited information is a perturbation correction
consistent with the model of jumps across a series of interfaces. We
determine the approximate location of these interfaces as well as the
approximate value of the reflection coefficient at the interfaces. This

information is summed up in the reflectivity function,

B = I R;8y(s,) (26)

where 'j is a (local) arclength variable measured normally from the j

interface and Rj is the normal reflection coefficient of that interface.
Clearly, knowledge of § is equivalent to kmowledge of reflector location and
the normal reflection coefficient (see equation (43) below). In turn the

latter allows direct computation of the jump in ¢ across the reflector.
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According to the theory developed in Cohen and Bleistein (1979b) and
reviewed in BCH, we can obtain B from a by inserting a factor of iw/2c¢(z) in

(24) to obtain:

si ] -210’1‘(‘.1)
B(x,z) ~ To(0)elz) I I d°t B(p,z) I do o e us(g.u) (27)

with K determined by (25). Here, since the inversion depends only on the

ratio of A's in (24), we have introduced

B(p,z) -{-;—3—'—%;— . (28)

However, and this is the key point: at this stage of the derivation we have
no information about B(p,z)! Any choice of this quantity gives, in the

language of BCH, a structural inversion, i.e., a migration. In order to

determine a choice of B which will yield an accurate approximation of the
interface reflection coefficients, we will insert in (27), a canonical set
of scattering data, us. and then determine B by enforcing the asymptotic

equality in (27). For this purpose we will use Kirchhoff data for & single

reflecting surface.

P
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DETERNINATION OF THE INVERSION ANPLITUDE

In order to find an amplitude B(p,z) for the inversion formula (27), we
first obtain an expression for the Kirchhoff representation of dsta U,.
Such data employs the high frequency assumption (by using the multi-
dimensional WKB representation of the incident, reflected and transmitted
fields), but does not make the Born approximation of small reflection
coefficient. Thus, if we can determine a B which enforces asymptotic

equality in (27) for such data, our algorithm is likely to be quite robust

for large contrast interfaces.

It remains to decide on the surfaces to use in computing the Kirchhoff
approximation to ns. It turns out that a single surface, such as the tilted

plane, z = 2o " x tan B, would suffice to determine B. However, we carry

out our calculations for the more gemeral cylindrical (i.e. y independent)

surface:
z = h(x) . (29)

One may think of the tilt-plane members (which are included in (29)) as

determining B, while the remaining members confirm this choice of B.

In Appendix C, we show that the back scatter at  from (29) has the

Kirchhoff (high frequency) representation:

ug(f.0) ~ 2iw I [ a’z J1+h"(i) yRS o2ivv(K.D) (30)

subject to
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p=KE(X.z2) ., p=lz-z], =@ . (31)

Here we have used bars to distingnish the spatial variable from the output
variables in the inversion formula (27) and have also introduced the

quantities:

[(L:M- k, (K,2) ]
E(K,2)
1=

’ (32)

[ c(0) y1+n'® ]

s = 1 , (33)

167"k, (K, 0k (K, 2)E(K, DR(E, )

and the (non-normal) reflection coefficient,

R 2 - sen(y) | 42 L oL (34)
7+71 ' 71 gty Y c; cl *

In turn, c,(z) denotes the actual velocity below the reflector, Z = h(X),

that is,
cl(z) = ¢(z) + Ac (35)

where Ac is not accounted for by the stratified reference profile c(z).
Obviously determining R is tantamount to determining Ac or c¢,(z). Combining

(27) and (28), we have

- 11 -
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Our goal is to determine B so0 as to obtain the asymptotic equality.

(36)

We now carry out stationmary phase in X, ¥, &, n (see Appendix D for

details) and obtain the stationarity conditions:

Yy=n=y ’ (37)
X -t = -sgn(h”)K E(K,2) , (38)

and
x - & =- sgn(h’) KE(K,2z) . (39)

These imply:

K = i = -—-—I—l—n(!) h' » (40)

1+p°?

£k (K,3) = —— , (41)

where again Z = h(¥).
Geometrically, these conditions confirm the cylindrical nature of our

reflector and show that the output point (x,z) lies on a specular ray.

Furthermore (37-39) yield
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which, in tura, imply that R reduces to the normal reflection coefficient, N
c, - ¢ j
R=R = ——m (43) -

n c, + ¢

Completing the stationary phase analysis (again see Appendix D) we find

that »

3 3 1
167n* ()  1+0°° R_SB (p,2) ol (R w) — o(E ]
Blx,z) ~ n . ld“’ eZwIt(K.!) ©(K,2)] (44) k
”—!—[ ,
Here, 5
g

Dz 3 »
dotd, = — 1 am)’ | amn [ 11 ] (45} ;
I E(E.2E®E,7 | KE.DHED [{ -5’ LEED EED .

However, the final integration in w, yields a delta function whose argument

can be transformed to srclength along rays:

D O AP ~ gt

Idw 2inle(K,2) - <(K,2)] _ nogl(X,1) - ©(K,2)] b

: = nc(0) 8,(G(K,2) - 6(E,2)] X
: (46) ]
1 k'(loZ) t'
-. = nc(0) - 53[2 -7] ]
n (z) o

nc(0) --;-l('—z-T&B[s(z) - (D] .

—rrrrrey

Here the 1last equality involving the ray arclength variable follows from -1

v

-13 -
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8) and Appendix B. We may note that since z = T when the delta function
"acts,” the stationarity condition (38-39) imply that the output poinmt (x,2)
coincides with the specular point (X, Z) = (X, h(3X)). Furthermore, when

z = ¥ the second term in the square brackets in (45) drops out and hence

using the definition (33), we see that

S 1

= 2 2 - - . (47)
det ii 16n (1+h' )k _(K,0)k (K,Z)
j ] 3
Hence (44) reduces to

[
, R n(Z) B
é:k B(x,z) ~—= 5 6ls(z) - s(2)]
- \1* &, (X0 x, (KD
b, -
Lﬂ RnBs
t_ . = -k—.-(f’—oTSIS(Z)'S(Z)] (48)
o
h RB

ns

5(s(z) - s(z)] .

pr—
/]

1-&°

Here, the middle equality follows from (41), while the final inequality

follows from the definitions (6-7) when z = 0. Also the quantity Bs denotes

]

E,- the value of B at the stationary point and when z = h(x). Thus to emnforce
L .

- asymptotic equality in our inversion algorithm (27), we need to choose a B
f‘; which reduces to Y1-E’ under these conditions: Obviously such a B is

@

o

[ B(p,2) = {1-K* (49)

:.

® where, as usual, the parameter K is determined by (25). Even though the
Y

E“Zi slgorithm (27) depends only on B, and not on the A(p,z) originally
A

v

-

. -

®
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introduced in (10), self-consistency demands that we be able to write B im

the form (28). This is indeed simple to do since, for example, if we pick

Alp,2) = h-x‘ (50)

Then by (25), and (A-7) and (A-15), the unique K corresponding to p = 0 is

K = 0. Thus,
A(0,z) =1 (51)

and (49) verifies (28). The fact that A is non-unique is irrelevant since

(27) only depends on the ratio B.

It should be noted that choosing B as in (49) only guarantees that (27)
gives an accurate estimate of B at the specular point (statiomary point).
While this is asymptotically the most important point, any practical
implementation of (27) involves integrating over a region including the
specular point. It is conceivable that a still more accurate B counld be
discovered by somehow determining it without use of the canonical Kirchhoff
data. We have made a considerable effort to find a suitable generalizatiom
of PFourier inversion which would allow a derivation along the lines
originally presented in Cohen and Bleistein (1979a) and reviewed in BCH.

Unfortunately, to date, these efforts have not succeeded.
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REMARKS ON DATA PROCESSING

The salgorithm for the reflectivity function derived in the previous

sections is

B2 ~ 8 o ey -2iwv (K, z)
22 nc(0) c(z) § ©e

. I at U (t,p) ol (52)
0

p = KE(K,z2) ’ pE l!";l ¢

Here the integrals E and G are defined in Appendix A and Ug ijs the
backscatter data observed on an areal array. For actual data processing, it
is convenient to “"fold” the unphysical negative frequencies onto the
positive omes by replacing & by - on the interval (-=,0). At the same

time, we introduce the physical frequency variable (measured in Hz):
[
f =5 (53)

and explicitly acknowledge the bandlimiting by introducing F(f), a tapered

high pass filter. After these changes, we have:

B(x,z) "H%?‘:%ﬂ'[ldiﬁ 1 -¢

* Im I af £ F(f) o 4mifv(K,z)
0

(54)

[ -]
. I at Ug(e,8) >FHE
0

p=KE(k,2) , p=|x-12] .
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In practice, areal observations are often not available and instead only
a linear set of data is used. In this case we cannot hope to reconstruct a
three dimensional image of the subsurface and instead seek a two dimensional
slice, B(x,0,z) = B(x,z), consistent with the data available. Since the

data is now independent of n,

and we may carry out an additional stationary phase calculation in n. The

stationarity condition is
n=y (56)

and the analogue of (52) is found to be (see Appendix D for details):

Juc(O) c(z) .

B(x,z) ~ at VU-THE(K2) .

dw Ji_(nc -21“(:.1)

[dt Ug(t,3) o,

0
p=KE(K,2) , p= |x2| ,

while (54) becomes:
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Nxm)~——32L——ld§ Ja-r') Bk, .

l:?ﬁ?hc(z)

i -4nifv(K,z)
(Re - Im) df Jf F(f) e
Jor [T
(58)

o [ et ugep S2MEE 1
o -
1
p = KE (K,2) , p = Ix—f,l . i

The basic concepts of reducing (58) to a computer code are the same as

those discussed in BG for the algorithm presented there. Briefly, the t and 1
1 f integrals are performed routinely using an efficient FFT algorithm. The
! main complication in (58) lies in the expressions E(K,z) and <(K,z), both
1 being integrals defined by (A-4) and (8) respectively. This is a bit subtle
| in that the parameter K (see Appendix B) can be viewed as determining the
E! starting angle for & ray coannecting the surface point (¥,0) to data point )

(x,z) in (58). Therefore, for s given offset p = |x—§|, K is defined by the

am

implicit relation p = KE(K,z). In the computation this issue is handled

quite efficiently by two tables for evaluating <t(K,z) and the amplitude

P |

(involving E) in (58) as functions of p and z.

Il S o0 o 4
sl e -
TR S SN el

. The computation time of the resulting algorithm, as pointed out in BG, is

comparable to a standard k-f migration algorithm for constant coefficients.

' We are now developing and testing a very carefully designed Fortran 77

computer code for (58) and expect to present the results of those tests in

the near future.
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CONCLUSIONS 3

We have presented the derivation of an inversion algorithm for
backscattered ("stacked”) seismic data. We made four major assumptions:

(1) the acoustic wave equation is an adequate model, (ii) backscattered

data has amplitude information worth preserving fairly accurately, (iii) the

Il

'™

actual reflectivity coefficients can be adequately modeled as perturbations

from a continuous reference velocity which depends only on the depth

. .
LI
Pray W ar N

variable, (iv) the subsurface can be adequately modeled as & series of

o

layers with jump discontinuities in the velocity (or impedance) at these

e

layers.

Py

The last assumption is unavoidable given the nature of the high pass (om

the exploration scale) data collected in the field. The third assumption is

. X
PP R Y

inherent in our approach although, as pointed out above, the algorithm can

be expected to be robust even when this assumption is violated. Also the

slgorithm presented here represents a considerable improvement over earlier

algorithms, such as Cohen and Bleistein [1979a], which perturbed from «

constant reference velocity. :

On the other hand, weakening of the first two assumptions seems eminently
feasible and we hope to apply the techniques expanded in this article to

both inversion of offset data ("inversion before stack”) and to equations

which more accurately describe the wave propagation in the earth.

It is already known (see BG) that algorithms with the structure of the

one presented here are numerically stable and are computationally efficient




relative to other seismic data processing algorithms.

The essence of the derivation presented is to form an inversion operator
with a suitable pre-specified phase, but unknown amplitude. The amplitude
is then determined by demanding that for high frequency synthetic scattering
data from a fairly general surface, the algorithm asymptotically produce the

correct reflectivity.
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APPENDIX A

NOTATIONS AND IDENTITIES

: Ve define

k n(z) =:—§% , (A-1)
L

L.

i k, (K,z) = o -2, (A-2)

and the integrals,

¢
‘ : D(K,z) = } k (K, D4l , (A-3)
, 9 = [ @Dat

- d -
E(K,z) = -".T‘%’- , (A-4)

0

k(KD

F(K,2) = "—,-‘-’I—— , (A-5)
0

(A-6)

2
(-9
;jfv

3

[

f NS
i. G(KJZ) = kq

0

-

b

y

y

¢

- - 22 -
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3
B,z = | 2Pl | (A-T)
(D
o 3

(Dd
(K,2z) = | 2 . (A-8)
s ]:x,(x. &

Similar quantities occur in the t-p theory, see Diebold and Stoffa
[1981]. Among the many relations which link these quantities, we cite below
those that are useful in carrying out the calculations presented in this

paper and its appendices.

First of sll, from (A-2) it follows that

D+ K'E (A-9)

]
[}

E+KF

]
=-}

(A-10)

Next we cite the kX and z partial derivatives of D, E and G which follow

respectively from use of

W = - .E— (A-ll)
and the Fundamental Theorem of calculus:

p,=-KE , D =k (K,z) , (A-12)
K z ?

- 23 -
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® ...

;.ﬁ
:::; E. = KF E = 1 (A-13)
< K ’ z T,-
r
-
2
=58 -
Gx = KH R Gz = k, . (A-14)

— — s
R H,. .

Finally, from (A-13) and (A-9) it follows that

(KE)x =R . (A-15)

Y

b o o
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APPENDIX B

THE STRATIFIED MEDIA GREEN'’S FUNCTION

Using Keller's [1978] "ray method”, developed in the 1950’'s, we seek a

high frequency approximation,

8x.2) ~ Az o7 E DLy (B-1)
which asymptotically satisfies the Helmholtz equation,

. 2
w
+
Vg 5

c (z)

g = -5(x-¢) 8(z) , & = (&) . (B-2)

To complete the specification of g, we insist that it behave like the free
space (i.e. constant c) Green's function as the field point, (x,z),

approaches the source point, (£,0). This entails the conditions,

1

as R 20, where
R = x|+ 2" . (B-4)

We substitute (B-1) into (B-2) and separately equate the coefficients of

0® and @ to zero (this is the high frequency approximation) giving rise to

the eikonal equation,
E-k=n'(z2) , E=c0 Ve , n=SN (B-5)

and the transport equation,

- 28 -
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2k -VA+(V-p A=0 . (B-6)

The former equation can be solved by the method of characteristics (see
Bleistein, 1984) which reduces the problem to the solution of a system of

ordinary differential equations. The first of these equations are:

dx dz

Tc?g ! » F = k' H ! E (kl'kl) » ; = (!nk.) (8-1)
dK dx,
ESO ’ ?a-—=—nn'(z) (B-8)

which define the rays» o being the ray parameter. The source term in (B-2)

makes
x0) = , z(0) =0 , (B-9)

a natural choice as initial data for (B-7). The data for k(0) conmsists of

an arbitrary unit vector (cf. (B-5), noting that n(0) = 1). To be specific

we choose

K(0) arbitrary , k,(0) = J1—x’ (B-10)

where we have introduced

k=gl =}k +x . (B-11)

From (B-10) and the fact that we are not considering turmed rays here, it
follows that K = (k,, k,) can be viewed as the direction numbers of the rays

initiating from (¢, n, 0).




Aa A o o

dv n
4 T = <10 (B-12) |
-
24 (v, k) A=0 (B-13) r
do - d

-

‘

which together with the data (B-3) completes the specification of g,

A

expressed in (B-1), in terms of a system of ordinary differential equations.

PO Y

ey

Proceeding to the analysis, we first note that by (B-8), K = K(0), so

henceforth we simply write K for this constant vector. Then the eikonal

f. equation (B-5) gives us
L(Kz) = o’ - K . (B-14)
Then (B-7) yields
dx K
2 —— (B-15)
Tz- 2 3
an -K
or
x - ¢ =KE(K,z) (B-16)

where E is defined by (A-3). Similarly, we find

c = ?(11”. G(K,z2) (B-17)

where G is defined by (A-6). )
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If we introduce the ray Jacobian,

3(_!_.2)
J = m (B-18)
and use the fact that
ay
E;— J V * ! » (3-19)
then the transport equation (B-6) can be recast as
A J;-= constant . (B-20)

Thus

AV =1 A {r (B-21)

R—0

which by (B-3) implies that

(B-22)

We now indicate how to obtain the partial derivatives which are the

elements of J.

Implicit differentiation of (B-17) with respect to k,, k, and (A-14)

yields

- 28 -
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k kH
]

9z 3
b-w-maneiiiant » j = 1.2 . (3-23)
akj n’
Similarly from (B-16)
axi "
a—k—=861j+[l7-—7]kikj » J=1,2 (B-24)
j n
ax Jdz |

Since -6% and 35 °fe given directly by (B-7), we are now able to form J.

A short calculation, involving the use of (A-10) yields

J = k’ EH . (B-25)

It is easy to show that as R -0 (equivalently o —0).

T, (B-26)

In the seme limit, (B-16) implies that

k,-k, (K,0) = ﬁ= z/R (B-27)
s0 that
s 2
LR T,‘(gi'.'ﬁT : (B-28)
Then (B-22) gives
- 29 -
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A= 1 . 1 i (B-29)

Jk'(l.z)E(K.z)ﬂ(K.z) 4n If'l!.ﬁj

Since A and vt depend only on K, we need only employ the magnitude of (B-16)

in the seguel:
p=KE(K,2) 3 p=]|]x-¢| . (B-30)
Equation (B-14), (B-17), (B-29) and (B-30) are equivalent to equations (3-8)
of the text.
Finally, we relate our parameter o along the rays to the corresponding

arclength parameter. From (B-7) we have

dx dx dz dz N 2
_.—+__.—=x +k’=n (B"'31)

do do do do

and so

% = n(z) . (B-32)

Using the second equation in (B-7) once more, we find

ds n

%-; or

[
F 1
[ a(Dal

3 g§ = | —m . (B-34)

. K (K5,D

] 0

[ ]

F [
3

L

3

)

hd i
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APPENDIX C

KIRCHHOFF DATA

P\ A et
4 )

The derivation presented in Cohen and Bleistein [1983] applies here with

the constant ¢ Green's function used there being replaced with the c(z)

pp—

Aa aln o0 s'sd L alals ve vy

Green's function derived in Appendix B. Thus, equation (8) of that paper

may be recast in our present notation as

Al fata s

;! us(_z_,u) ~ IdS Raa_n gz(g.z;;m) (C-1)
s

with g defined by equations (3-6) and the reflection coefficient R being

r‘ defined by .
[ 3
i Y - 71 ( "y
R = — c-2 4
E' T+, ) ‘J
where
y=8-.-v , 7, = ssnly) 7’ +%— L’ , (C-3)
c, ¢

and 8 is the upward normal to S. Here c, is defined by (35).

vy T‘_"—?-_’-'-'—‘Y"""
- PRI R

Since g has the form given in (B-1)

RS

( %g’ ~2i0 - ve g* , (c-4)

' sabject to
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p = KE(XIZ) . (C-s)

Hence (B-1), with the definition of y given in (C-3) and that of S given by

(33), yields
g%-gz ~ 2iwyS e2ivt (C-6)

Thus (30) follows from the form, (29), of the surface. It remains to

establish the detailed calculation of y given in (32).

We have:

y=18 .V

1
= <Tov . VG(K,z)

(C-7)
_ 1 (h',0,-1) ok ok ]
i () Jles— [Gxax + G 3y x5zt €
‘1+(h)
1 1 v« 9K 3K _
BI()) [ h'Gp 5% 2~ Ok 9z Gz ]
1+(h')
From the constraint (C-5) we compute
K x-t ) S (C-8)
ax“_(_)'pn:x ) 4 “(“')_KEK

and then (32) follows from (C-7), (C-8) and the results of Appendix A,
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APPENDIX D

STATIONARY PHASE CALCULATIONS

Assuming that the phase, ¥(x), has a single simple statiomary poinmt, x,:

= ¥
VE8(x) =0 . det ’xixj‘Es’ 0 (D-1)

the integral,
I(A) ~ Ia“"‘*’ A®ds , 20 (D-2)

can be evaluated asymptotically by the multidimensional stationary phase

formula, (see Bleistein [1984] or Bleistein and Handelsman [1975]).

3 A
ag n/ s N _
I(A) ~ | — —————— exp{ird + i — sig¥ '} » (D-3)
A s 4 ij
q det!ij

Here A, ¥_, and §,,, denote respectively the amplitude A, the phase &
s, s ij

and the Hessian matrix, § evaluated at the stationary point, x = x_.

i
Further, sig ’ij denotes the signature of !ij’ i.e. the number of positive

eigenvalues minus the number of negative eigenvalues.

If there were several stationary points, (D-5) would be replaced by a sum
over the contributions from these several points. If the Hessian matrix
vanished, (D-3) would have to be replaced by a more genmeral result.

However, only (D-3) is required here.

In our applications, instead of a positive parameter, A, we have the

signed quantity, 2w/c(0). The sign can be accounted for by replacing &

- 33 -
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by — #. In addition, only the case n = 4 occurs in the text, henmce

A

Iw) ~ [ nc(0) 1’

lo]
det ij

i
expl(2i ?(%)— !‘ + -11 sgn(w) sig !ij] . (D-4)

The context for our asymptotic evaluations is
a
J = I I(w) v do (D-5)

(more precisely a bandlimited versiom of (D-5)).

The most important case for us is when sig!ij = 0, so that

7~ [ neo ]'——A’— 5 [!s] . Geghy =0 (D-6)

where & denotes the Dirac delta function. The only other case that occurs

below is sig!ij, = %2, in which case,

iw
?

3 2
() ~ [17-(‘;?’—] C(%§osgat@) e SO Y (g =%2) . (D-T)

ij
and

- n e’ (0) As

det

1
!:- ’ (sigh, = %2) . (D-8)
ij

ij
Although the evaluation of the signature of a symbolic 4 x 4 matrix can

be tedious or impossible, our task is considerably simplified by the fact

that our Hessian matrices have the special form,

- 34 -
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a 0 v 0
§ = 0 [} 0 ]
v 0 v O '
0 u 0 )
whence
det & = (ay - v’) (Bd - uz) .

To evaluate the signature, we need to determine the roots, A,

eigenvalue equation,

det (‘-AI)=O »

where I is the identity matrix., From (D-10), we find at once:

DA s eth M MG S C s e

(D-9)

(D-10)

of the

(D-11)

det (!—}.I)=[Az—(a+y)x+ay—vz] [x’—(g+a)+ss—u’] . (D-12)

Thus,

3
v > ay ., u > Bs = sig!ij =0 .

and similarly,
2
u { gd =

v >ay sig!ij =+ ,

etc.

We now turn to the specific stationary phase calculations

(D-13)

(D-14)

in the text.

We shall freely use the results of Appendix A without explicit citation.

First we examine the phase in (14):

- 35 -
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!(!'i) = G(K.Z) - G(x'.z')

where K(p,z), K'(p’,2') are defined by

KE(K,z2) , p' =K'E(K’',z2’)

©
]

with

lx-&l . o' =]z -¢l .

-
"

Implicit differentiation of (D-16) with respect to x; yields

p K 5xi axi

80
aK _ x, - ti
ax, "~ XE(K,z) B(K, z) .
Similarly,
’
ok - §i - xi K ~ Ci - xi
Ci B s Z K,z ! 5Ei R Ezi'oz';ﬁ‘i"z 5 *

Now using these results, we find that

i - ax=‘i'§i
X, K 5:1 E(K,z)
and similarly
- 36 -
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MR S e omn oo "dr

Phdibading 4

......................

8y - % &=

’;i ~ E(X,2) ~ E(K.zD

(D-22)

From (D-21) and (D-22), we see that the stationarity conditions are:

Hence by (D-15),

Now it is clear that

is a solution of the constraint conditions (D-16).

(KE)x =H>0 |,

(D-23)

(D-24)

(D-25)

Moreover, since

(D-26)

this is the only solution. We obtain for the phase at the stationary point:

’s = G6(0,z) - 6(0,z’) = Iz a(Dat

and for the components of the Hessian matrix:

a 0 -a 0
3. = 0 a 0 -a
ij -a 0 a-a' O
0 -a 0 a-a’
where
- 137 -
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e = 1/E(0,z) , a' =1/E(0,2') . (D-29)

In the notation of (D-7) we have

v -ay=u-p6 =aa’ >0 D-30)
so that
1 3
dot 8, = [m.z) T ] . sighy; = 0 (D-31)

These results allow us to use (D-4) in (13) to obtain (21) and (D-6) to

obtain (22).
We now turn to the stationary phase evaluation of (36). Here the phase
is
§ = G(K,2) - 6(K,2) , (D-32)
subject to the usual constraints
p=|x-¢t] =KE(K,2) , p=]|zx-¢|=KEEKD . (D-33)

This stationary phase evaluation is somewhat more difficult because 2

depends on X:

and hence the !i condition is more complicated than that in (D-21). The

analogue of (D-18) is
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., B -G8+ 0 . (D-35)
] o X k‘

$0

LLINS = - U (D-36)

) & k H

3

where we use notations lils

E = E(X,) (D-37)

for quantities which depend on K and Z. The remaining partials of K and K
have the same form as in (D-18) and (D-19) since X does not depend on ¥, &,

or y, and since z is a completely independent variable:

;X _px

2E=g , — . ... (D-38)
ay ¢ KEH
These results allow one to compute:
- 3K =
i _E:h,+n’£i)
E kK, k,
(D-39)
=‘!:—¢-+E h' ’
B ]
g =30 g 8% x5 _n¥_ny o
M L] " E  E

The ¥, n derivatives give rise to the single stationarity comditionmns:
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Y =n=y (D-40)

Hence the constraints (D-30) reduce to
p = |x-t] = KB(K,2z) , p = |z¢t| = KEEXK,D , (D-41) :

which can be rewritten as

x~f = pkE , H = sgn(x-§) (D-42) %
and
-t =pkE , @ = sgn(%-%¢) . (D-43)
;1 These results allow us to simplify the remaining partials in (D-39) to N
.~ j
L ¥, = ik + kb’ (D-44) !
-~
? and E
[ ;
& IEED B (D-45) ;
4
4
' For stationarity, we must have ]
s p=p=- sga(h’) (D-46) .
L; and then also ¥
g 3
[~ K=F=%kn . (D-47) 3
¢ A
b .
|- -
t1 The latter equality allows to determine that
g ]
C ]
‘ -y
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Finally (D-46) allows us to restate (D-42), (D-43) as
x - ¢ =- KE(K,z) sgn(h’) (D-49)

and

x - ¢ = -KE(K,%) sga(h’) . (D-50)

At the stationary point, the phase is

!3 = G(i.!) - G(K'Z) . (D—Sl)

Further, a number of terms of the Hessian matrix vanish because of (D-40)

leaving us with

4
B, 0 &, O .
', - o &, 0 &, -
D-52
B, 0 &, O ]
0 ’?'I 0 !,m \
which has the form (D-9) with
3 3
v ooy = (3, - &, !“)I, . (D-53)
and
v -y = (8, -8 ) (D-54)
4 Yy am’ s

We observe that (D-36) and the statiomarity conditions yield
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] 4 i _ h'|n’ M '3 '
.a.!_ |s = % - __-L__l = .g» (1+h ) » n = —"n(h ) (D-55)

and similarly

. il . .*"£| . (D-56)
fa C138 CO X 15 gk, q)

These facts allow to evaluate (D-53) as

l’ 2 [ J
v’ - ay = -(_1+h _)_ .16 9) ) 1 ] (D-57) |
H(K,2z)H(K,z) d1+h' H(K,z) H(K.z)

"o and (D-54) as
b
g .
a8 -y s——— >0 . (D-58)
o E(K,z)E(K,%) F
fi Thus, “"near” the reflector, z = Z, both v’>a7. n’)ﬁ& hold and we have

sig!ij = 0. In this regime, (D-6) applies and we see that we have a delta
function "acting®” at the reflector. On the other hand, far from the

reflector, we may have v><ay leading to the distribution, (D-8). However,

since z is "far” from %, this distribution is regular, indeed "small”, so

that the results given in the text follow.
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