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Abstract

A broad range of heuristic programs—embracing forms of diagnosis. catalog selection, and
skeletal planning—accomplish a kind of well-structured problem solving called classification. These
programs have a characteristic inference structure that systematically relates data to a pre-
enumerated set of solutions by abstraction, heuristic association, and refinement. This level of
description specifies the knowledge needed to solve a probiem. independent of its representation in a
particular computer language. The classification problem-solving modal provides a useful framework
for recognizing and representing similar problems, for designing representation tools, and for

understanding the problem-solving methods used by non-classification programs.

1. Introduction

Over the past decade a variety of heuristic programs have been written to solve problems in diverse
areas of science. engineering, business. and medicine. Yet, presented with a given "knowledge
engineering tool," such as EMYCIN [39], we are stiil hard-pressed to say what kinds of problems it
can be used to solve well. Various studies have demonstrated advantages of using one
representation language instead of another—for ease in specifying knowledge relationships, control
of reasoning, and perspicuity for maintenance and explanation [9, 38, 1, 2, 10]. Other studies have
characterized in low-level terms why a given problem might be inappropriate for a given language, for
example, because data are time-varying or subproblems interact [21]. But attempts to describe kinds
of problems in terms of shared features have not been entirely satisfactory: Applications-oriented
descriptions like "diagnosis” are too general (e.g.. the program might not use a device model), and
technological terms like "rule-based” don't describe what problem is being solved [18, 19]. Logic has
been suggested as a tool for a "knowledge level" analysis that would specify what a heuristic
program does, independent of its implementation in a programming language {30. 29]. However, we

have lacked a set of terms and reiations for doing this.

In an attempt to specify in some canonical terms what many heuristic programs known as "expert
systems” do, an analysis was made of ten rule-based systems (including MYCIN, SACON, and The
Dritling Advisor), a frame-based system (GRUNDY) and a program coded directly in LISP (SOPHIE Il1).
There is a striking pattern: These programs proceed through easily identifiable phases of data
abstraction, heuristic mapping onto a hierarchy of pre-enumerated solutions, and refinement within

this hierarchy. In short, these programs do what is commonly called classification.

Focusing on content rather than representational technoiogy, this paper proposes a set of terms

and relations for describing the knowledge used to solve a probiem by classification. Subsequent
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sections describe and illustrate the classification model in the analysis of MYCIN, SACON, GRUNDY.,
and SOPHIE Ill. Significantly. a knowledge level description of these programs corresponds very well
to psychological models of expert problem solving. This suggests that the classification problem
solving model captures general principles of how experiential knowledge is organized and used. and
thus generalizes some cognitive science results. There are several strong implications for the

practice of building expert systems and continued research in this field.

2. Classification problem soilving defined
We develop the idea of classification problem soiving by starting with the common sense notion

and relating 1t to the reasoning that occurs in heuristic programs.

2.1. Simple classification

As the name suggests. the simplest kind of classification problem is to identify some unknown
object or phenomenon as a member of a known class of objects or phenomena. Typically, these
classes are stereotypes that are hierarchically organized, and the process of identification is one of
matching observations of an unknown entity against features of known classes. A paradigmatic
example is identification of a plant or animal, using a guidebook of features, such as coloration,

structure, and size.

Some terminology we will find helpful: The problem is the object or phenomenon to be identified:;
data are observations describing this problem; possible solutions are patterns (variously calied
schéma. frames or units); each solution has a set of features (slots or facets) that in some sense
describe the concept either categoricaily or probabilistically; solutions are grouped into a
specialization hierarchy based on their features (in general, not a single hierarchy. but multiple.
directed acyclic graphs); a hypothesis is a solution that is under consideration: evidence is data that

partially matches some hypothesis; the output is some solution.

The essential characteristic of a classification problem is that the problem solver selects from a set
of pre-enumerated solutions. This does not mean, of course, that the "right answer” is necessarily
one of these solutions, just that the problem solver will only attempt to match the data against the
known solutions, rather than construct a new one. Evidence can be uncertain and matches partial, so

the output might be a ranked list of hypotheses.

Besides matching, there are several rules of inference for making assertions about solutions. For

example, evidence for a class is indirect evidence that one of its subtypes is present. Conversely.
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“ given a closed world assumption, evidence against ail of the subtypes is evidence against a class.
3 Search operators tor finding a solution also capitalize on the hierarchical structure of the solution
x space. These operators inciude: refining a hypothesis to a more specific classification; categorizing
*_-‘ the problem by considering superclasses of partially matched hypotheses: and discriminating among
* hypotheses by contrasting their superclasses [31. 32. 12]. For simplicity, we will refer to the entire
process ot applying these rules of inference and operators as refinement. The specification of this

process—a control strategy—is an orthogonal issue which we will consider later.

g 2.2. Data abstraction

’ in the simplest problems. data are solution features. so the matching and refining process is direct.
For example, an unknown organism in MYCIN can be classified directly given the supplied data of
gram stain and morphology.

ﬁ For many problems, solution features are not supplied as data. but are inferred by data abstraction.
' There are three basic relations for abstracting data in heuristic programs:

e qualitative abstraction of quantitative data ("if the patient is an adult and white blood
count is less than 2500, then the white blood count is low");

e definitional abstraction ("if the structure is one-dimensional of network construction,
then its shape is a beam"); and

e generalization in a subtype hierarchy ("if the client is a judge. then he is an educated
person”).

These interpretations are usually made by the program with certainty; threshoids and qualifying
contexts are chosen so the conclusion is categorical. It is common to refer to this knowledge as

"descriptive,” "factual,” or "definitional.”
2.3. Heuristic classification

In simple classitication, the data may directly match the solution features or may match after being
abstracted. In heuristic classification, solution features may also be matched heuristically. For
example, MYCIN does more than identify an unknown organism in terms of features ot a laboratory
culture: It heuristically relates an abstract characterization of the patient to a classification of

diseases. We show this inference structure schematically. followed by an exampie (Figure 2-1).

Basic observations about the patient are abstracted to patient categories, which are heuristically
linked to diseases and disease categories While only a subtype link with E.coli infection is shown
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HEURISTIC MATCH
Patient Abstractions =  Disease Classes

DATA REFINEMENT
ABSTRACTION

Patient Data Diseases

HEURISTIC
Compromised Host =  Gram-Negative Infection

SUBTYPE
GENERALIZATION

iImmunosuppressed E.coli Infection

GENERALIZATION T

Leukopenia
DEFINITIONAL T
Low WBC
QUALITATIVE T
wBC < 2500

Figure 2-1: Inference structure of MYCIN




hlind I E A BRI AR A S e S Sty e SR A A A A A A A S SRR are Ao She aan andean el et i IR R et S SR f,-—y—'v-_.—_.q-.-—.-_-;..-T

v

-

Y

here. evidence may actually derive from a combination of inferences. Some data might directly match
E.coli by identification. Discrimination with competing subtypes of gram-negative infection might also
provide evidence. As stated earlier. the order in which these inferences are made is a matter of

control strategy.

The important link we have added is a heunistic association between a characterization of the
patient ("compromised host”) and categories of diseases ("'gram-negative infection”). Unlike the
factual and hierarchical evidence propagation we have considered to this point, this inference makes
a great leap. A heuristic relation is based on some implicit. possibly incomplete. modei of the worid.
This relation is often empirical. based just an experience; it corresponds most closely to the “rules of

thumb” often associated with heuristic programs [14].

Heuristics of this type reduce search by skipping over intermediate relations (this is why we don't
call abstraction relations "heuristics™). These associations are usually uncertain because the
intermediate relations may not hold in the specific case. Intermediate relations may be omitted
because they are unobservable or poorly understood. In a medical diagnosis program. heuristics

typically skip over the causal relations between symptoms and diseases.

To repeat, classification problem solving involves heuristic association of an abstracted problem
statement onto features that characterize a solution. This can be shown schematically in simple

terms (Figure 2-2).

This diagram summarizes how a distinguished set of terms (data, data abstractions, solution
abstractions, and solutions) are related systematically by different kinds of relations and rules of

inference. This is the structure of inference n classification problem solving.

In a study of physics problem solving, Chi[8] calls data abstractions “transformed" or "second
order problem features.” In an important and apparently common variant of the simple model, data
abstractions are themselves patterns that are heuristically matched. in essence, there is a sequence

of classification problems. GRUNDY. analyzed below, illustrates this.

2.4. Search in classification problem solving

The issue of search is orthogonal to the kinds of inference we have been considering. "Search"
refers to how a network made up of abstraction, heuristic, and refinement relations is interpreted, how
the flow of inference actually might proceed in solving a problem. Following Hayes [18], we call this

the process structure. There are three basic process structures in classification problem solving:
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HEURISTIC MATCH

7 Data Abstractions = Solution Abstractions
1 DATA REFINEMENT
ABSTRACTION
Data Solutions

Figure 2-2: Classification problem solving inference structure

1. Data-directed search: The program works forwards from data to abstractions, matching
solutions until all possibie (or non-redundant) interences have been made.

2. Solution- or Hypothesis-directed search: The program works backwards from solutions,
collecting evidence to support them, working backwards through the heuristic relations
to the data abstractions and required data to solve the problem. If solutions are

hierarchically organized, then categories are considered before direct features of more
specific solutions.

3. Opportunistic search: The program combines data and hypothesis-directed reasoning
[20]. Data abstraction rules tend to be applied immediately as data become available.
Heuristic rules "trigger” hypotheses, followed by a focused, hypothesis-directed search.

New data may cause refocusing. By reasoning about solution classes, search need not
be exhaustive.

Data- and hypothesis-directed search are not to be confused with the implementation terms
"forward” or "backward chaining.” R1 provides a superb example of how different implementation

and knowledge level descriptions can be. Its rules are interpreted by forward-chaining. but it does a
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form of hypothesis-directed search. systematically setting up subproblems by a fixed procedure that

focuses reasoning on spatial subcormponents of a solution [28].

The degree to which search is focused depends on the level of indexing in the implementation and
how 1t 1S exploited. For example. MYCIN's "goals” are solution classes (e.g.. types of bacterial
memngitis), but selection of rules for specific soiutions (e.g.. E.coli meningitis) is unordered. Thus,

MYCIN's search within each class is unfocused {11].

The choice of process structure depends on the number of solutions, whether they can be
categorically constrained. usefuiness of data (the density of rows in a data/solution matrix), and the

cost for acquiring data.

3. Examples of classification problem solving

Here we schematically describe the architectures of SACON, GRUNDY, ¢ . PHIE il in terms of
classification problem solving. These are necessarily very brief descriptions. but reveal the value of
this kind of analysis by helping us to understand what the programs do. Afte. . statement of the
problem, the general inference structure and an example inference path are given, followed by a brief

discussion.

3.1. SACON
Problem: SACON [3] selects classes of behaviar that should be further investigated by a structural

analysis simulation program (Figure 3-1).

Discussion: SACON solves two problems by classification—analyzing a structure and then
selecting a program. It begins by heurnstically selecting a simple numeric model for analyzing a
structure {such as an arrplane wing). The model produces stress and deflection estimates, which the
program then abstracts in terms of teatures that hierarchically describe different configurations of the
MARC simulation program. There s no refinement because the solutions to the first problem are just
a simple set of possible models. and the second problem is only solved to the point of specifying
program classes (In another software conhguration system we analyzed, specific program input

parameters are inferred in a refinement step )
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Analysis Program
DATA
HEURISTIC MATCH ABSTRACTION
Abstract Structure = Quantitative Prediction
of Material Behavior
DATA
ABSTRACTION
Structure Description
Inelastic-Fatigue
Program
T DEFINITIONAL
. Fatigue
Deflection *  Material
T QUALITATIVE
. HEURISTIC
Size
Beam + gypport = Stress and Deflection
Distribution Magnitude

DEFINITIONAL T

One-dimensional
and Network

Figure 3-1: Inference structure of SACON
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3.2. GRUNDY
Problem: GRUNDY [33] heuristically classifies a reader's personality and selects books he might

like to read (Figure 3-2).

Discussion: GRUNDY solves two classification problems heuristically. lllustrating the power of a
knowledge level analysis. we discover that the people and book classifications are not distinct in the
implementation. For exampie, "fast plots” is a book characteristic, but in the implementation "likes
tast plots” is associated with a person stereotype. The relation between a person stereotype and
"tast plots" is heuristic and should be distinguished from abstractions of people and books. One
objective of the program is to learn better people stereotypes (user models). The classification
description of the user modeling problem shows that GRUNDY should also be learning better ways to
characterize books, as well as improving its heuristics. If these are not treated separately, learning
may be hindered. This example illustrates why a knowledge level analysis should precede

representation.

It is interesting to note that GRUNDY does not attempt to perfect the user model before
recommending a book. Rather. refinement of the person stereotype occurs when the reader rejects
book suggestions. Analysis of other programs indicates that this muitiple-pass process structure is
common. For example, the Drilling Advisor makes two passes on the causes of sticking, considering
general, inexpensive data first, just as medical programs commonly consider the "history and

physical” before laboratory data.
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HEURISTIC MATCH
Self-Description = People = Book
and Behavior Classes Classes
l REFINEMENT
Books
HEURISTIC HEURISTIC
Watches No TV =  Educated = Books with Intelligent
Person Main Character
Stereotype
l SUBTYPE
"Earth Angels"”

Figure 3-2: Inference structure of GRUNDY
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3.3. SOPHIE N
Problem: SOPHIE ! [5] classifies an electronic circuit in terms of the component that is causing

fauity behavior (Figure 3-3).

Discussion: SOPHIE's set of pre-enumerated solutions is a lattice of valid and faulty circuit
behaviors. In contrast with MYCIN. solutions are device states and component flaws, not stereotypes
of disorders. and they are related causally. not by features. Data are not just external device
behaviors. but include internal component measurements propagated by the causal analysis of the
LOCAL program. Reasoning about assumptions plays a central role in matching hypotheses. In spite
of these differences. the inference structure of abstractions. heuristic relations, and refinement fits
the classification model, demonstrating its generality and usefulness for describing complex

reasoning.

4. Causal process classification
To further illustrate the value of a knowledge level analysis, we describe a generic inference
structure common to medical diagnosis programs, which we call causal process classification, and

use it to contrast the goals of electronic circuit and medical diagnosis programs.

In SOPHIE, valid and abnormal device states are exhaustively enumerated, can be directly
confirmed, and are causally related to component failures. None of this is generally possible in
medical diagnosis. nor is diagnosis in terms of component failures alone sufficient for selecting
therapy. Medical programs that deal with multiple disease processes (unlike MYCIN) do reason about
abnormal states (called pathophysiologic states. e.g., “increased pressure in the brain"), directly
analogous to the abnormal states in SOPHIE. But curing an iliness generally involves determining the
cause of the component failure. These “final causes” (called diseases. syndromes, etiologies) are
processes that affect the normal functioning of the body (e.g.. trauma, infection, toxic exposure,
psychological disorder). Thus, medical diagnosis more closely resembles the task of computer
system diagnosis in considering how the body relates to its environment [25]. In short, there are two
problems: First to explain symptoms in terms of abnormal internal states, and second to explain this
behavior in terms of external influences (as well as congenital and degenerative component flaws).
This is the inference structure of programs like CASNET [42] and NEOMYCIN [9] (Figure 4-1).
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HEURISTIC MATCH
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Behavior Lattice
DATA
ABSTRACTION

REFINEMENT
Quantitative

Circuit Behavior
Component Fault

CAUSAL
PROPAGATION

Local Circuit Measurements

HEURISTIC

(VOLTAGE N11 N14) - Variable Voltage
is High Reference is High or OK

CAUSE
QUALITATIVE

Q5 Collector Open
(VOLTAGE N11 N14) > 31V

Figure 3-3: Inference structure of SOPHIE
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HEURISTIC
(CAUSES)
—
HEURISTIC HEURISTIC
(CAUSED BY) (CAUSED BY)
Patient =  Pathophysiologic = Disease
Abstractions States and Classes Classes
DATA
ABSTRACTION REFINEMENT
Patient Data Diseases

Figure 4-1: Inference structure of causal process classification

A network of causally related pathophysiologic states causally relates data to diseases'. The
causal relations are themselves heuristic because they assume certain physiologic structure and
behavior, which is often poorly understood and not represented. In contrast with pathophysiologic
states. diseases are abstractions of processes--causal stories with agents, locations, and sequences
of events. Disease networks are organized by these process features (e.g., an organ system
taxonomy organizes diseases by location). A more general term for disease is disorder stereotype. In
process control problems, such as chemical manufacturing, the most general disorder stereotypes

correspond to stages in a process (e.g., mixing, chemical reaction, filtering, packaging). Subtypes

1F>r<:.grarﬂs differ in whether they treat pathophysiologic states as independent solutions (NEOMYCIN) or find the causal
path that best accounts for the data (CASNET). Moreover, a causal explanation of the data requires finding a state network,
including normal states, that is internally consistent on multiple tevels of detail. Combinatorial problems, as well as elegance,
argue against pre-enumerating solutions, so such a network must be constructed, as in ABEL [31]. In SOPHIE, the LOCAL
program deals with most of the state interactions at the component level, others are captured in the exhaustive hierarchy of
module behaviors. A more general solution is to use a structyre/function device modet and general diagnostic operators. as in
DART [15]
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"c correspond to what can go wrong at each stage (12].

) To summarize. a knowledge level analysis reveals that medical and electronic diagnosis programs
:f are not all trying to solve the same kind of problem. Examining the nature of solutions, we see that in
’b a electronic circuit diagnosis program like SOPHIE solutions are component flaws. Medical diagnosis

programs like CASNET attempt a second step. causal process cl/assification, which is to explain
abnormal states and flaws in terms of processes external to the device or developmental processes
affecting its structure. It is this experiential knowledge—what can affect the device in the world——that
F IS captured in disease stereotypes. This knowledge can't simply be replaced by a model of device
te structure and function, which is concerned with a different level of analysis.

5. What is non-classification problem solving?

° We first summarize the applications we have considered by observing that all classification problem

y——

solving involves selection of a solution. We can characterize kinds of problems by what is being
selected:

e diagnosis: solutions are faulty components (SOPHIE) or processes affecting the device
(MYCIN);

e user mode/: solutions are people stereotypes in terms of their goals and beliefs (first
phase of GRUNDY);

e —— I

— lff"v. g

ot :.' .
LN * 3 .

e catalog selection: solutions are products, services. or activities, e.g., books, personal
computers, careers, travel tours. wines, investments (second phase of GRUNDY);

L‘

e theoretical analysis: solutions are numeric models (first phase of SACON);

e skeletal planning: solutions are plans. such as packaged sequences of programs and
parameters for running them (second phase of SACON. also first phase of experiment
planning in MOLGEN [15]).

A common misconception is that the description "classification problem"” is an inherent property of

t‘ a problem, opposing, for example, classification with design [37]. However, classification problem

¢ solving, as defined here, is a description of how a problem is solved by a particular problem solver. It
E. the problem solver has a priori knowledge of solutions and can relate them to the problem description
E, by data abstraction, heuristic association. and refinement, then the problem can be solved by
E classification. For example. if it were practical to enumerate all of the computer configurations R1

< might select, or if the solutions were restricted to a predetermined set of designs, the program could
[ be reconfigured to solve its problem by classification.
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Furthermore. as illustrated by ABEL . it is incorrect to say that medical diagnosis is a "classification
problem.” Only rout:ne medical diagnosis problems can be solved by classification (32]. When there
are multiple. interacting diseases. there are too many possible combinations for the problem solver to
have considered them all before. Just as ABEL reasons about interacting states, the physician must
construct a consistent network of interacting diseases to explain the symptoms. The problem solver
formuiates a solution: he doesn't just make yes-no decisions from a set of fixed alternatives. For this
reason. Pople calls non-routine medical diagnosis an ill-structured problem [36] (though it may be
more appropriate to reserve this term for the theory formation task of the physician-scientist who is

defining new diseases).

In summary. a useful distinction is whether a solution is selected or constructed. To select a
solution. the problem solver needs experiential ("expert”) knowledge in the form of patterns of
problems and solutions and heuristics relating them. To construct a solution, the problem solver
applies models of structure and behavior, by which objects can be assembled, diagnosed, or

employed in some plan.

Whether the solution is taken off the shelf or is pieced together has important computational
implications for choosing a representation. In particular, construction problem-solving methods such
as constraint propagation and dependency-directed backtracking have data structure requirements
that may not be easily satisfied by a given representation language. For exampie—returning to a
question posed in the introduction—applications of EMYCIN are generally restricted to probiems that

can be solved by classification.

6. Knowledge level analysis

As a set of terms and relations for describing knowledge (e.g. data. solutions, kinds of abstraction,
refinement operators. the meaning of "heuristic”), the classification model provides a knowledge
level analysis of programs. as defined by Newell [29]. It "serves as a specification of what a reasoning
system should be able to do.” Like a specification of a conventional program, this description is
distinct from the representational technology used to implement the reasoning system. Newell cites
Schank’'s conceptual dependency structure as an example of a knowledge level analysis. It indicates
“"what knowledge is required to solve a problem... how to encode knowledge of the world in a
representation.”

After a decade of "explicitly” representing knowledge in Al languages. it is ironic that the pattern of

classification problems should have been so difficult to see. In retrospect, certain views were
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emphasized at the expense of others:

e Procedureless languages. In an attempt to distinguish heuristic programming from
traditional programming, procedural constructs are left out of representation languages
(such as EMYCIN. OPS. KRL (26]). Thus. inference relations cannot be stated separately
from how they are to be used [18, 19].

e Heuristic nature of probiem sotving. Heurnstic association has been emphasized at the
expense of the relations used in data abstraction and refinement. In fact. some expert
systems do only simple classification: they have no heunstics or “rules of thumb." the key
idea that is supposed distinguish this class of computer programs.

e Implementation terminology. In emphasizing new implementation technology. terms such
as "modular” and "goal directed” were more important to highlight than the content of
the programs. In fact. "goal directed” characterizes any rational system and says very
little about how knowledge is used to solve a problem. “"Modularity" is a representational
issue of indexing.

Nilsson has proposed that logic shouid be the lingua franca for knowiedge level analysis {30]. Qur
experience with the classification model suggests that the value of using logic is in adopting a set of
terms and relations for describing knowledge (e.g., kinds of abstraction). Logic is valuable as a tool

for knowliedge level analysis because it emphasizes relations, not just implication.

While rule-based languages do not make important knowledge level distinctions, they have
nevertheless provided an extremely successful programming framework for classification problem
solving. Working backwards (backchaining) from a pre-enumerated set of solutions guarantees that
only the relevant rules are tried and usefui data considered. Moreover, the program designer is

encouraged to use means-ends analysis. a clear framework for organizing rule writing.

7. Related analyses

Several researchers have described portions of the classification problem solving model,
influencing this analysis. For example. in CRYSALIS [13] data and hypothesis abstraction are clearly
separated. The EXPERT rule language [40] similarly distinguishes between "findings" and a
taxonomy of hypotheses. In PROSPECTOR [17], rules are expressed in terms of relations in a
semantic network. In CENTAUR[2], a variant of MYCIN, solutions are explicitly prototypes of
diseases. Chandrasekaran and his associates have been strong proponents of the classification
model: "The normal problem-solving activity of the physician... (is) a process of classifying the case
as an element of a disease taxonomy” [7]. Recently, Chandrasekaran and Weiss and Kulikowski have
generalized the classification schemes used by their programs (MDX and EXPERT) to characterize
problems solved by other expert systems [6, 41].
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A series of knowledge representation languages beginning with KRL have identified structured
abstraction and matching as a central part of problem solving {4]. Building on the idea that "frames™
are not just a computationai construct. but a theory about a kind of knowledge [19], cognitive science
studies have described problem solving in terms of classification. For example, routine physics
problem solving 1s described by Chi (8] as a process of data abstraction and heuristic mapping onto
solution schemas {"experts cite the abstracted features as the relevant cues (of physics principles)”).
The inference structure of SACON. heuristically relating structural abstractions to numeric models. is

the same.

Related to the physics problem solving analysis is a very large body of research on the nature of
schemas and their role in understanding [35.34]. More generally, the study of classification,
particularly of objects. also called categorization, has been a basic topic in psychology for several
decades (e.g.. see the chapter on “conceptual thinking" in{22]). However, in psychology the
emphasis has been on the nature of categories and how they are formed (an issue of learning). The
programs we have considered make an identification or selection from a pre-existing classification
(an issue of memory retrieval). In recent work, Kolodner combines the retrieval and learning process
in an expert system that learns from experience [23]. Her program uses the MOPS representation, a

classification model of memory that interleaves generalizations with specific facts [24].

8. Conclusions
A wide variety of problems can be described in terms of heuristic mapping of data abstractions

onto a fixed. hierarchical network of solutions. This problem solving model is supported by
psychological studies of human memory and the role of classification in understanding. There are

significant implications for expert systems research:

o The model provides a high leve! structure for decomposing problems. making it easier to
recognize and represent similar problems. For example, problems can be characterized
in terms of sequences of classification problems. Catalog selection programs might be
improved by incorporating a more distinct phase of user modelling, in which needs or
requirements are classified first. Diagnosis programs might protitably make a stronger

‘. - separation between device-history stereotypes and disorder knowledge. A generic

knowledge engineering tool can be designed specifically for classification probiem

solving. The advantages for knowledge acquisition carry over into explanation and
teaching.

—p—— ﬂ.r

1 e The model provides a basis for choosing application problems. For example, problems

P can be selected that will teach us more about the nature of abstraction and how other
forms of inference {e.g., analogy. simulation, constraint posting) are combined with
classification.
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e The model provides a foundation for describing representation languages in terms of
epistemologic adequacy [27]. so that the leverage they provide can be better understood.
For example. for classification it is advantageous for a language to provide constructs for
representing problem solutions as a network of schemas.

o The mode! provides a focus for cognitive studies of human categorization of knowledge
and search strategies for retrieval and matching. suggesting principles that might be
used in expert programs. Learning research might similarly focus on the inference and
process structure of classification problem solving.

Finally. it 1s important to remember that expert systems are programs. Basic computational ideas

such as input. output. and sequence. are essential for describing what they do. The basic

methodology of our study has been to ask. "What does the program conclude about? How does it get
there from its input?” We characterize the flow of inference. identifying data abstractions, heuristics,
implicit models and assumptions. and solution categories along the way. if heuristic programming is
h‘ to be different from traditional programming, a knowledge level analysis should always be pursued to
the deepest levels of our understanding, even if practical constraints prevent making explicit in the

implemented program everything that we know. In this way, knowledge engineering can be based on

sound principles that unite it with studies of cognition and representation.
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