"AD-A149 214 ADA_COMPILER VRLIDRTION CRPRBILITV LONG RRNGE PLANCU) 11 .
SOFTECH INC WALTHAM MA 26 NOV 79 16867-1
. MDA9B3-79-C-8687
UNCLASSIFIED F/G 972

(~massooe _ ass

PP

it G i e

L o o e

(@
5

(-
Lo
. [E
——
—
—
A——
—

| EyiEy

FRAPL SN SN

- f122

E

| N

i

L

ll22
22

ll22

o~

MICROCOPY RESOLUTION TEST CHART

NATHINAL BUREAG

CTANDARDS

e A

DR A A

PUDY. WU UL P

Yy

Ty T

o~

)

A 4
s
3
4
.
'
s
F
ERFAR
-~

R M i A A AN A Y A I B A] vvwrw TR

o e e

g R — e T
X A

THE SOFTWRRE TECHNOLOGY COMPRMY

.,_l

ADA COMPILER VALIDATION CAPABILITY:
LONG RANGE PLAN

1067-1

November 26, 1979

-
,_C

Submitted to:

Defense Advanced Research Projects Agency
Arlington, Virginia

Contract MDA903-79-C-0687
Data item 0002AB

Prepared by:
SofTech, Inc.

460 Totten Pond Road
Waltham, MA 02154

460 Totten Pond Roard Waltham Massachusetts 02154 617-890-6900 TWx 710 371 640

ha BB 4 B B B I

| - e, i P PR . SO R SRR PRI WA AT Tl LA A S U S P ST Y T A SO L SO WY

Aol A gb et ek Alnd aalh e Gh i \J Lo Mgl Ml Sadh sefh Anih Saddn el vm"wr""‘?ﬂ""' Ta w e

TABLE OF CONTENTS

1. INTRODUCTION

2. SYSTEM SUMMARY . . R
2.7, ACVC ObJec*lves and ulmltapwons e e
2.2. ACVC Structure e e e e e
2.2.1'. The Implementer's Guide
2.2.2. Validation Test Structure

2.2.2. Validation Suppcrt Tools

2.2.4, Validation Procedures e e
2.2. Validation Activities to be Supported
2.3.7. Validating 2 Compiler .
2.2.7.', Collecting Infermation
2.2.%'.2. Preparing Tests for Submission
2.3.7".3. Executing Validation Tests

2.3.0.4, Qumma;iz*‘ﬂ.g Results . . .

2.3.%.5. Archiving rindings .
2.4. Revising tnhe Validation Capabllltxes

3. PLANS FOR EACH PHASE

2.%. Phase " Plans e e e e e e e
3.2. Phase 2 v o o 0 0 0 e e e
3.3. Phase 3

4, RISK AREAS v v <« v

A. Documentaticon Formats

2 2
no

a2 a
E ot MM N O TN

a o

S AN

il

18
20

£

))

v .- LA Dt SR
LA Aad Gt it Sk Andh SRaECH Lindt” SN M S SRR Ar A S AN P S AN NN A -

SECTION * |

INTRCDUCTION

The objective of the Ada Compiler Validation Capability (ACVC) is to
determine to what extent an Ada compiler conforms to the Ada Standard. The
purpose of this Report is to describe planned validation capabilities, their

relatior to other standardardization activities, and our planned development

14}
(9]
(o}
]
(9]
%))
[$)

b

The ACVC is being developed under a three phase contract, with phases 2
and 3 being vperformec at the option of the Government. The periods of
performance and principal objectives of each Phase are:

Phase ' {25 September '979 through 70 July '980) -- to produce a
baseline set of validation tests, tools needed to support
vaiidation activities, and procedures for using the tests and tools

Phase 2 (1'% July '9€C through '0 July 7981) -- to increase test set
coverage wnlile maintaining the baseline capability

Phase 3 (*'' July '38% through 10 January '982) -- to develop new
validation approaches that attack difficult validation problems nct
fully soived in the earlier Phases, In addition, validation
capabilities provided in earlier Phases will be updated and
maintainecd,

In the next Section of this report, we describe the functions to be
sugported by the ACVC and the generai nature of the capabilities to be
provided. In Section 2, we describe specific plans for each of the Phases
In Sectiorn U, we specify risk areas. In Appendix A, we specify documentation

standards to De arylied toe the ACVC.

e . AP ¢ ata n aana ieSoa_ s -'--L'L_“,mj

Bradi oA A R S L R A T
| SN Sl R4 A G i A v /e A A A SHE A AL S S N AT O TV LT T T E T A e T TR

SECTION 2

SYSTEM SUMMARY

In this Section, we describe the general nature of the capabilities

needed for Ada compiler validation.

: ACVeC Colectives and Limitations

~
-
s

ampiller Validation Capability will be used to check how well Ada
languAge “rarslators adhere to the Ada Report (the official document
specifying thne Ada Language Standard). It should be noted, however, that such
validation tests do not form a complete acceptance test for an Ada translator.
Overall acceptability encompasses more than compliance with a language
standard. Among the 1issues not addressed by the tests that are to comprise
the ACVC are:
the compiler's maintainability, as reflected by its
internal design structure
the implementation standards followed by its source code
the quality of its design and implementation documentation
its interface with other support tools, e.g., as reflected by
its object file format
its symbol table format and options for producing a binary
symbol table for use by a symbolic debugger
the internal format of the program library
the range of options provided to compiler users
its compile-time efficiency
the nelpfulness of its error message format and content
the efficiency of the objiect code it generates
But two important issues the ACVC will address are:

the effectiveness of the validation tests, and

the amount of effort needed to validate a compiler.

61 SOFlecH

=

i T W Sy Uy o P WO AL SN WEURE WOAT W, AT ST G ST W . S WY TSR PN SR SN W Y]

tr,v_‘v—(-—-,‘v_?- hadCRadie Mk Aok Sl lin A Madot Il R e "I S AaC i e S A N R A0 AR A ST A D N .

o

= SR

al "

LAuE)

—~——T ¥

(o

The quality of a compiler validation capability is ultimately measured by
the number and impertance o! ways a validated compiler is later discovered tc
be nonconforming. [If the baseline ACVC is of poor quality, Ada compilers
containing significant errors may be approved for official use. Once such
compilers are in use, it is often costly to make them standard-conforming.
The net result is tne fevelopment of implementation-defined Ada dialects, and

geoal of 1 2ol lommorn Language will not have been achieved.

Jorsegquently, our approach will apply several important design principles
underlying tne construction of high quality tests. Perhaps the most important
is that tests must be Jdesigned so their successful execution implies f{cr at
least maxkes it higsnly likely) that certain implementation errors are absent.

The basis of tnis principle, which has been argued at length in [*'] and {27,

is tha* wunless tests nave been designed so their successful execution rules

D

arned from such success. And of course, a

= PR - PO

[}
(94
T
[
D
"3
cr
W)
+-

5
o

=rrers, .ittle ig
vallidated compiler is one that has passed all its tests! This means that to
cornstruct an effective compiler validation capability, cne nust first
fypetrnesize thne kinds of errors implementers may make and then construct tests

tnat ~an only succeed 1f the errors are absent.

Lt tecste developec In advance of 3 compiler implementation, i.e.,

s
D
(92
ot
]

Pal

tevel czed withnout xnowledee 0f a3 compiler's internal structure (so-czalled

Slanag mox" o testel 2anngt, ir prirciple, detect gll errors a compller may

T Snodenoust ar” Gerrare, . L., "“Toward a Theory of Test Data

Selection)" LREE-TIZ-SE ', © (June 1975), 156-173.

ve D Gnodenougt. J. BL, "A Survey of Program Testing Issues," in HKesearch
- noweftwrre Tronrolosy, P kegner, od., MIT Press, Cambridge,

. . .
> - - e
.

[A P M

e

S0

h i

- w

LIS San S a4

0

ISR SR AR Saan s~ Can g

P

Ty

per

(]

(]

contain, even though, strictly speaking, any errors constitute non-conforming
behavior.¥* Since not all errors can be detected, our objective 1in designing
black box tests will be to ensure that the cost of developing and executing
tests intended to detect certain errors is not greater than the benefit of
detecting the error. For example, undetected errors are non-critical if they

are unigue to a particular application program or programmer and an

alternative wuse o©f tre language provides a satisfacteory "write-around" until
the error is Iixed. Such errors usually reflect the use of rare combinations
cf language features, Moreover, although many implemen!ation errors arise

from failure to deal correctly with certain combinations of language features,
we will not attempt *to detect errors Jjudged unlikely to occur in practice or
whose effect is uniikely to be critical. To achieve this objective, the tests
we develop will be based on a thorough analysis of wide-ranging implementation
problems zand important interactions among language features that must be
successfully dealt with by every conforming implementation. Tests will then

be devised tc check whether these difficulties have been dealt with properly.

Since the validation tests are to be used for compilers executing in a
variety of host environments and generating code for a variety of target

ernvironments, the tests must D

D

easily adapted to cope with these differences.
Thiz means minimizing the amount of manual effort required to adapt tests to

703t 2nd target environments and to analyze the results of test compilations.

¥ T"me possibility of develcpirg tests based on knowledge of a compiler's
-

internal structure will not be addressed at least until Phase of our planned

effort, . and possibly not until Phase 2, since such tests are currently very
AifFi~uly wnd costly o nonstruct.,
e ; SOFJecH

t
r
[
:

>y

L g A o I o aun b

| (

-

) S - aes aue aems 4

v

v

_—— Ty

— Dt o o o e

Lkl Badh ZSh areb gt g Sl Shda A) S Sl o AR e A ST A

2.2. ACNC Structure

The ACVC has three main components:

. An Implementer's guide cdescribing explicitliy the implications of
the Ada FReport. It w11; soecxfluaTLy address implementation issues
that might be overlcoked by an unwary implementer. The purpose of
this Guide 1is partly to peint out the implications of statements
made in the Ada Report and partly to speclf{y conditions tc De
checked Ty vaiidation tests.

est prozrams to be submitted to a compiler.

. NYaiication
execution

that assist in rpreparing tests for
tne results of executiongs,

These components are cescribed in more detail below.

2.2.'. The Implementer's Guide

The primary document to be produced in Phase ' 1is the Implementer's

Guide. This Jocument describes the ramifications of the Ada keport and in
particular, describes implementation issues that must be properiy addressed in
a production compiiler design. The document also specifies objectives,
corstraints, and guidelines for Jdeveloping specific validation tfests. The
decc n will be «eyed to the subsections of the Ada Hepert. For each

subsection, there will be 2n analysis treating the following tepics:

s =-- This section will document
semantics. In cases where fhie
{rom statements in separate =sectionrs
ionale for the interpretation will be
intimately familiar with the Report
the Ada design. wWe will elve
metiors between ada constructa

» D

-

Sy

Lo VArray and Slice Assignments), we
B oare strings witnh index rangos

L . SOFJecH

PP o at " P o

4

R0 TR SR B Ve e

ta)

ent does rnet ralcse
of conzatenation =
nct : there are no index ranges that
overlap. T seceni 1fsisrmment is legal because the number of
elenents ‘ e same and there 1s no requirement tha:
the Ddourd ice satisfy the range constraints for

ng € ay. The third example shows 2 o>iage
nrot be raised even though the =slices

n

e
Ve or im n ney

Jonteax Tidity censtraints implied oy e

spec , of nourse, suggests validation tests *t¢ he

orovi we Wwill note ron-straigzniforward wavs She

constral violated

Exception Londitions -- This section will expiicitly state what
exception conditicns may bYe raised, since these determine what
implementers must provided. For example, in the

run=-time ohecks

case of Zeotion 5.7.7, we wou:d note that RANGE_ERRKCOE and
ACCESZ_ENEDH (when assigzrning to a record component) are the only
exception cenalt ons explicitly associated with Section 5.71.0.

Test Cblectives and Design CGuidelines -- This section will state
west ooiectives, give cehlgn guideline for test case
constructiorn, List implementation errors to be checked fcer, and
list ©oroblems to be kept in mind while designing cr writing test
cases te.g., *o ensure that the tests are as Dor*a*‘e as possible

n they are effective in determining the actual odehavier of

1M
=Sl Borieriine cases “o be ocnsidered bv ar
1 ™m

x comrile
lementa will be noted here with preogram examples when ¢
a straightforward way of I1llustrating -
i These exampliez are candlidates »r Inclusicr o~

This seotion will document those iryestc
icatinn for wnich test objectives have not ye!
hecause ¢t poterntial changes irn tru LANF RN
Lo not alear how Yo construct testc that wil

- ey s e, B A VA NP 3y ” fonoenoe

g

Cotfor whirh further work is needed | ofcher
SRR wr, 1f the preblem 1s ¢ research ygroblem, ¢t
exolains 4“ne Issues for which

further stucy iIs required. In
qd;it‘:n. ‘iz o gection will list guestions for which the
Freoc e e feer not orovide obvious answers, Sur o oinitonl
LR LT e L e et e o Jdent Dy ing sunh Soest o

, SOFlecH

. o P P — - s U S T a

— w.

e 4 s i SRN An o man i J

MR S L o

PpEp—————

o

y g . e e~ S A e A4 D B Shtus I] T e . - ’_T'r . .t * .
o e s
= L loern
roLnee teens

il tfor many reacsons,

nld focus onoa small set ¢of implementation

3 ci tests to be [rones AR,

Lavge rumber of fairly specialired tests In
" - - 4 Pl . ¢ - Y

re: adourl compiler flaws. Althougn

im pringirgle AFAIL L.e., 2ltner the conm conforms to the
Standar: or - . lrn oractice, such a response tc oz validaticorn is 3c

DRASE,T Tust ag compliers are designed to detect more Than one

nonacnformIing

e e T e o immediate use
ny 2t it ke ¢ th oregnent to
oo oot lrate rousay may denlide it 1s costeeffective Lo permit pee of the
S S the errorz are being corrected. The guestion of
Wt e s ise il ne permitted i oo policy decicicn bansed or o the oot
©c o comeenforming pehavior and tne expected uvrce of the complilors s Juch s
AR o e “_‘ oyt I »*r‘-;rr 7o vy 3y t,‘,\‘,,,,.,‘ vy

v RS s i et
cecond, 18 validation stopa after detecticn of tre first error or only !
e S L tpe cempller grtorten oo CRMEeSe tont e omet

Ty LEhate 20 Jgi g St - .. v v
g+ A e, e ot . . -~ T . - e e e
repeated for tne ~orreate’ oomnile: PSSO SN Iroonly C W errarn
Jiscoveren rivie, the oput o e Do oot o (U RSTEE ot
e -~ > Y Ya . RN N . T oereow - . .y - - Nl N - v .o .. -
GOV eErrnIent L8 JI1K0 Ly Ty T Lan A e VL ERS ' R re Wy !
TR a G - Y T N v e Ve < P e ey . . -
anotner:, 1t I=a oot o : . eyt e ot
o~ ey, H ' - oAy . SN N .
12 possibhle L0 redule retost ias G
.
] R T T v e e .) - . . .
s
S
9 e St " ‘. R T N, N e B S - [
3
-
{ PRI e e N . . e - . ..
f - . T - ~ . . . < - £l . " . T
T L UL R N et MBEUEIE I S o s
AR jewaisraz * - e e, S e eyt g
]
3
b - . ;
o oy A - Ao - oo - YA . -
[hL3, We oropoesd e devalorn smzx.. valldaticon st
- ’ v bl R " 3 3 AN oo v Ty
. . g ale arazo of lires of text;. Twe

TR X

-y Vv

Jisadvartage of naving s omy 2Ll tests 1 vrAal o submitting mary small
compilations ls oo Tl CLtmitting fewer o ard Darsar
St Dot ol Learirg teacy ol lange mumhen ol cozts B ir
Tereny 3 e WECS ST vartage of e . Y voled oend AETS
cl ' 2o irend w - Lt slingle cempliAation unid e oasin e
SE moodne vooe s Trus fee ts of Sing larse ocomplliatior anitn
R con L reet e e il iy A w8 small inds ur .
PR T SRR Y oAt el Lsmae T e aman nUs, wWe pLan to oprod RN A
kN T - KO S S o testa o arnd orevide plar: el
: Ty - s - : AR CLoAmEY A hIiE o oapcronriale (oo,
W et e s RS - ERTATTI ard. Inooaodiy . il
fe n T iTas e o mre e v T Tan Tane s D0 T et Wil case the hurie:
. ce e e
=0
: SOFTecH
¥

- - 3 e N e Siieciafn M TN PRGN ~ yTTELERY A T o 7 *
T . Nt m e . PR -~ E. N [
re EI on R - R >0 MANN (A ¢ MESSCRCTAN

A

=, .

e E e b
[. Lo
-~ Rt

woo T LT -

. T et e
- et e
Wy < e -

T age O Lot g

. =t A8 5 PSS

[S=Rel o
T oo o~ 4oy
‘ ST e B
ety oy e
oo e .-
. R
Ty e
- - wWwrnt von
LA N ~L .
. v LB Pt
. AT

PPN T §

Doyne *

[
QRS A TARSIS

proaram rnot Q2oniorT

ent regariing wnat furiner

ERS

errors

some I

nS. A 2Xamp
a package
mpt o

4
e

2 e
rement e

avnmetoea,

permiscive aspects o the
3 T e eme e

(]

[

| K
(R ¢

v

¢ - . A S ™ e (e I e R

L Sva ade A Tie R St b e Mabe LR G "Rl LW At undh el Aol S Al Sl it . R . e -, M N -

result of generic instantiation or inline substitution of
subprograms. Other aspects of an implementation that affect its
interface with the external object computer environment but which
are not currently specified are also checked by these tests, e.g.,
consider

type BIASED is new INTEGER range 0..1%5;
for BIASED use U4;

In interfacing with external devices, it could be important to know
whether 2#1000 represents the value =zero (if a signed biased
representation is used) or the value 8 (if an unsigned
; cntion is used). Other tests in this class will be used to
cermire wnat interpretation an implementation has taken with

znpect to unintended ambiguities discovered in the Ada Report.
Tne results cf these tests are used to inform compiler users and to
improve the Report.

. Class F Tests. These are tests that demonstrate the correct and
complete operation of standard packages, e.g., the INPUT_OUTPUT
package, tne mathematical library package (when one is specified as
a standard), eto.

Additional test Classes may be added as a result of Phase 2 and Phase 3

efforts, e.g., tests of object code efficiency, compiler performance, cte.

Within each class, a test will be given a name corresponding to the
Chapter, Section, and Subsection number of the part of the Report tc which the
test pertains. Since most subsections require more than one test, tests will
be assigned seguential numbers within subsections. £Each source code module
will te in a separate file which will be given the name of the test. There

may also be a number of INCLUDE files used in conjunction with test modules.

There are c¢onnectuz_lv tnree rnvironments relevant to validating 1
compller:
the validation hogt (VH) environment, in which validation tests are

prepared for execurion by an Ada complier and validation resalts
-

T ~- i .
re analyzed:

i " SOFlecH

| e e anas i v ansn e e o e g i e AU e e T S A I Sl Dt I ANl Sl A ek e idnd St el And Aed Aull Sl A i Al Sed il A A S A '1'1

A
the compiler host (CH) environment, 1in which Ada tests are
. compiled. In some implementations, target modules may also be
.‘z r loaded in the CH environment; executable code is then transported
‘ to the object computer for execution;

the obiect host (OH) environment (the target computer) in which Ada
programs are executed.

An important aspect of our approach to the ACVC is the Validator Host concept.

N The Ada validation tests will constitute a fairly large amount of textual
F« material Powerful text editing and file management tools are needed to

:

[.

|
4

create, access, and maintain this material. More importantly, when preparing
to perform a compiler validation, the tests must be adapted to conform to the
conventions of the Compiler Host for submitting text to the compiler and
obtaining output. In addition, a wvariety of test parameters may be
implementation dependent (e.g., tﬁe maximum and minimum integer literal

values). Appropriate values must be inserted into some tests.

All these text handling problems will be dealt with by the validator host
tools, which will consist primarily of text editing tools and macros. If a
SNOBOL processor is not available in the validator host environment, we will
used TECQO and TECO macros to perform commonly needed text manipulations. If
the compiler host is available on the ARPANET, the validation tests, once
adapted to the CH requirements, will be sent to the CH using the Net. 1If the
CH is not on the Net, the tests will be brought to the host wusing an
appropriate physical medium. If a comparable ARPANET host is available, it

might be used to transfer the text to such a medium.

! Text editing tools will also be used to analyze the machine processable

F results of compilations and executions -- to confirm that all required tests

NOEacEY

were 3ubmitted and that 211 test failures are identified.

0871 . SOFJecH

—————— v~ v
|
V
l
]
3
b
b
|
f

-y

The text processing tools we provide will be documented in accordance

with the specifications provided in Appendix A.

2.2.4, Validation Procedures

Usage of the tests and tools will be described in a Validation Procedures
Manual structured in accordance with the specification cited Appendix A. The

general nature of these procedures is discussed in Section 2.3.

2.2. Validation Activities to be Supported

There are two principal activities supported by the Ada Compiler
Validation Capability: ') compiler validation and 2) revising the validation
tests, tools, and procedures. In this Section, we describe the general nature

of these activities since they affect the structure and content of the ACVC.

2.3.1., Validating a Compiler

There are five principal activities performed in validating a compiler.

These are:

1. Collecting information needed to select and adapt the validation
tests for the compiler being tested.

ny

Preparing the tests for submission to the compiler.

La)

Performing the tests, i.e., compiling them, executing the
executabie tests, and collecting the results for later analysis.

L, Summarizing the test results.

5. Archiving the findings.

-
I
o
-3
!
-

> SOFlecH

LAY

[aA A ad St dCR AL S AP AN SO EREE St sl R RS L ~

2.3.1.%, Collecting Information

The principal output of this activity is a Test Plan describing all the
information needed to prepare and conduct the validation. Information is
needed regarding:

the language accepted by the compiler, e.g., the character =set
accepted by the compiler (full ASCII, EBCDIC, 63-character CDC,
etc.), allowed length of input lines, how an "end-of-line" |is
defined, the semantics and restrictions on representation
specifications (Section '3 of the Preliminary Ada Reference
Manual), the syntax and semantics of commands for manipulating the
orogram library (Section 10.4), any language subsetting, the number
of levels of integer, fixed, and floating point precision supported
and their names, ranges associated with numeric types, etc. This
information is used in selecting and adapting the tests to be used,
e.g., some tests do not apply if only a single integer precision is
supported.

compiler options provided, which ones are to be tested, and how
they are exercised.

. the compiler host environment, including file structuring
capabilities, file naming conventions, the method of invoking the
compiler, the method of transferring object code for execution on
the target computer, the methods for linking and loading modules to
be executed, the method for collecting and displaying compilation
results, etc.

. the object host environment, 1including its file structuring
capabilities, file naming conventions, the method for linking and
loading (if this is to be done on the target computer), the method
of initiating object code execution, the method for collecting
execution results in machine-processable form, etc.

in addition, if the validation is being performed on a new version of 3
previously validated compiler, information from the previous validation must
he analyzed “o determine how revalidation costs might be minimized (e.g., by

tombining tect programs irto larger modules, by reusing test preparation

macros, etc.:

ARCYS \E

D O U P S W S - S W S PR WU S VT A S

PR S S L)

)]
-%
i
I

| Samrans sai il AP SrIAE IR R - e T T Ty m LT TR TR R T T e e L et - - T -

p— —p——
‘ﬁ‘ 1'.' .

L]

.

“nis informatiorn is used to prepare a comprehensive Test Plan describing
what tests are to be run, irformation needed to prepare tests for submission
to the compiler, estimates of time required to perform the tests, procedures
for manually and automatically analyzing test results, etc. (see Appendix A).
The Test Plan controls subsequent phases of testing activities. The ACVC will

in2iude a prototype Test Plan to serve as a guide for creating actual Test

2.3.%'. 2. <Preparirng JTests for Submission

The basic purpose of this activity 1is to adapt, and in some caes,
generate, text files ir a form sultable for submission to the compiler being
validated. A number of ACVC text editing macros (and macro templates) will be

provided to automa‘te as much of the preparation process as possible.

In general, the following steps must be performed before the Ada
Validator test files are transported to the compiler host:

generate specific versions of tests for the full range of
capabilities supperted by the compiler (e.g., to test all levels of
numeric precision supported, including interactions among these
levels);

substitute 1implementation-dependent parameters in appropriate
tests, e.g., literal values testing the upper and lower limits of
the numeric ranges supported, string literals that contain all
characters of the supported character set, etc. In general, the
validation tests will contain the equivalent of text macro
invocations S0 implementation-dependent constructs can be
substituted at the appropriate places.

embed the tests in the appropriate job control language for
compiiing, linking, and executing the tests.

. generate file names that satisfy the compiler host's naming
conventions.

tailor Class D tests to the correct size.

10671 "y SOFlecH

T

COREans gur e aut g

L2 on(mm sa s e an an o oy

= 4

Janc 4

b ik 2

D™ R i S i oS A SRt B S A e R e ™ - =
< < P, T S Dl . R P - . P AR

~

prepare text processing macros suitable for analyzing
machine-processable results of compilation and execution.

A file of implementation-dependent parameters must be prepared for every
validation. This file gives values for numeric precisions, values of
attributes of built-in types, and other parameters to be wused in generating
tests that are appropriate for a specific compiler. An important aspect of
e ACVC test set design is identifying places where these parameters should
he used in specific “ests. Unless these parameters are used appropriately, it

will be difficult to adapt the tests to the capabilities of a specific

compiler.

Difficulties in using the test preparation editing tools will be noted

and input to the Tool Revision process.

2.3.1v. 3. Executing Validation Tests

The files prepared in the previous step are transported to the compiler
hcst and compiled. All object code except for Class C, E, and F tests is
discarded. Listings from all compilations are saved in machine readable form
and processed on the Validator host computer to check that all intended tests

were compiled and that expected results were achieved.

The object code is executed on the target computer and res'lts are saved
in machine readable form for automatic analysis on the validator host. Since
people are notoriocusly wunreliable in scanning results for correctness,
extensive effort will be directed during test case design to ensure results

can be automatically checked insofar as possible.

. c . . . - - - .
>, - —— I . W I Sy R P ada® o AP) [WD WL WL Y SN Y - a‘a .‘._;'_‘..1

D e

=

Fhu VU & g Bn A S AR Mg e s
. . -

TP YT YT

=

T T YW

Any difficulties encountered during compilation or execution due to
errors in the tests themselves will be noted and used as inputs to the Test

Revision process.

2.3.'. 4, Summarizing Results

Using editing tools and report templates provided by the ACVC, results of
a validation will be summarized, following the report structure tentatively
outlined in Appendix A. The purpose of the Validation Summary Report is to
concisely describe what compiler was validated and what nonconforming
behaviors were discovered. Since groups of tests may fail for a common cause,
preparation of a validation summary report i1s not a completely automatable
task. BResults must be studied to extract as much useful information as

possible.

2.3.1.5. Archiving Findings

As a last step, all plans, tests, preparation aids, post processing
analyzers, and findings are archived for later use when a revised version of
the compiler may need to be revalidated. The ACVC will recommend archiving

procedures and concepts.

2.4, Revising the Validation Capabilities

In essence, the validation capabilities consist of:
the validation tests
the Implementer's Guide
validation support tools

descriptions of procedures for using the tools

o6 p SOFTecH

ST w T T e T e B B N Oy e T W et T e e D g TR T ETRIETRETRE T ATVEN TR TR VTR R YT
. PO B DR R - . R - . . . N T, |

v

T TITY

15 TSl

-
-

MM~ M

[}

—w

v Ty vy

r—

—_— e —

e ——

L

T N T TR T T R T e T R T T T Te T e

There are a variety of reasons for modifying any of these capabilities:

problems encountered in conducting a validation may lead to
modifications in the validation support tools and/or the test cases
(to remove test case errors).

errors discovered in validated compilers may 1indicate previously
undocumented implementation precblems; both the Implementer's Guide
anc¢ the validation tests must be updated.

ambiguities are discovered in the language specification.
Additional <Class E tests are needed to determine how a given
implemertation has resclved these ambiguities.

%

v

)
4]

idation tests are expanded to cover Known weaknesses,

oF
9]
bt

ot
oy
D

language specification is modified.

After the Baseline Validation Capability is delivered, it will be placed under

configurat

ion control. Procedures will be specified for producing new

releases of the tests, tools, and associated documentation (see Appendix A).

167"

oo

Ty -1
1
Y

La AR A

TY_W v

¢

..

e

PR

L (

PP Ry

\ . on e

v

Y

L AT e e e e o i S S R S

SECTION 3

PLANS FOR EACH PHASE

In this Section, we describe our current plans for capabilities to be

provided in each Phase of the effort.

2,', Prnase 1 Plans

Tre purpose of Phase ' is to produce a baseline validation capability
that addresses all aspects of Ada to some extent and whose weaknesses in
coverage are documented, A prime focus in Phase 1 will be the Implementer's
Guide. A high quality validation test set (i.e, one that detects even subtle
nonconformities) must address interactions among language features (since
these are a primary source of implementation problems and subtleties) and must
cover potential specification misinterpretations and subtle ramifications.
Pointing out implementation problems explicitly will be of considerable
assistance in discouraging Ada dialects. Often dialects arise because of
inadvertent misunderstanding of a specificatiorn. If the Implementer's Guide
points out possible mistakes, implementers are less 1likely to make them.
Hence, producing a thorough implementer's guide is necessary not only to guide
the construction of high quality tests but also to help prevent inadvertent

deviations from the specification.

Trhe approach we are taking in Phase ' is to make three iterations 1in
producing the Implementer's Guide. The iter~tions are needed because Ada is
currently undergoing revision, with a draft revised specification due * March
980 and a final specification due 5 May 1980. To cope with the possibility

cf changes, the first iteration will address only the most stable parts of

10671 SOFlecH

[s g A aca SN At Al D ans e e Al o - S Fadin A

.

-

— YT T T YT W <t T T T S v W .

VY vI vy

T

P

Y

¢

K

S St St SR A _aaatn ELah, Sl ihiteadhh s ol A L T i
- v . - Sl . Pl M -~ v ..v-- ¢ * ’ .

Ada. A draft Implementer's Guide for the stable subset of Ada will be
available in January '980. An intermediate draft for the second iteration
will be available in March 1980. A first draft for the third iteration
(covering all of revised Ada) will be available in May 1980, The final
version will be delivered at the end of Phase ' in July 1980. It is our
irtent to permit limited distribution of these intermediate drafts to people
¢esignated by D2ARPA and to hold design reviews at which recipients of the
drafis will be invited to comment. In this way, we will identify errors andg
omissions 1in our analysis and the validation effort will benefit from the
experiences of those engaged in experimental or production implementations of

Ada compilers.

Not all areas of Ada can be covered with equal thoroughness in the
baseline tests. In particular, more tests are needed to the extent an
implementer has many ways of realizing a required capability. The greater the
variety of implementation approaches and requirements, the greater the number
of tests needed to check that each approach has been carried out successfully.
There are several areas where Ada 1leaves considerable implementation
flexibility. These areas will not be covered thoroughly in Phase . They
are:

tasking semantics for a wide range of target computer
architectures;

the INPUT_OUTPUT package for the full range of 1/0 peripherals Ada
compilers might support;

the correctness of optimizations

other standard packages that may eventually be defined, e.g., the
mathematical functions package.

Only basic capabilities in these areas will be covered in Phase 1.

9 SOFlecH

- hd
AP S - oA dC Bl And Al i N e e S e e - an- T Sie A i e e e Jotn. i AN R A

In Phase ', we will also produce a basic set of tools for adapting tests
!n te the requirements of a particular compiler, and we will provide a
description of procedures to be followed in using these tools to validate a

compliler.

A
9]
3

0

n
D
fro

T wreas specifically deferred for thorough coverage in Phase ' will be
ioZresse? In Phase 2. In addition, the baseline coverage will be updated and
improved based on further analysis ot the official Ada Report. Since the
official Ada PReport is scheduled for approval only two months before the end
of Phase ', it 1s 1likely that further analysis in Phase 2 will show
deficiencies 1in the Phase 1 test coverage that were not recognized at that
time. These deficiencies will be corrected in Phase 2, and all associated

I documentation updated.

A Key Phase 2 activity will be to use the baseline tests in validating an

experimental or production compiler. Past experience with validation tests

!]l indicates that even when considerable care has been taken in test design, more
probilems will be discovered when the validation capability is used the first

time than when it is used on subsequent occasions. Correcting these problems

: will be an important Phase 2 activity.

3.3. Phase 3

Phase 3 will address research issues to further refine the validation
capabilities. Although it is difficult at this time to accurately predict

wha* these issues will be, it is likely that work will continue to improve the

‘ o 1 e SOFlecH

e Reh shSh SRERGRS R

Bt att o on s on o0 SlEERe aash e et SN S0 SUA IR GIAER B -~

MR =2 T by

- Qlads “n i AT g Y Saie e i S Rvan it St e -Thde i A Ttte N S A O ML G S S dRE N AL AultAL Sl A VR S e

capability for wvalidating Ada's tasking semantics and for ensuring that

cptimizations are performed correctly.

In addition, it is likely that the Ada standard will be wupdated during

«t
o
84
o
oy
()
47]
v
.

period to reflect the experience gained in producing the first Ada
lon compilers and in using Ada for some embedded computer applications.
ests will be updated to reflect these changes as well as any

o tlrisnoles rilscovered in the course of validating various Ada compilers.

0
3
i
I

Ce . . e e o a L PR DI . T - P VAL G W W S YN

— e T T T T W W W T aTw e vy . e o, ey R T
e e ———— e T T T T T W VTR N A - - . -

SECTION 4

m RISK AREAS

The primary area of risk in Phase ' is that the schedule for revising Ada

will slip. If the ' March 1980 date for delivering a draft of the Ada Report:

2 S_ion, oroTrme 5 May AR7D date U-r celivering the final version of <the Aida
Tenoer rline, it owill be difficult to ensure that the planned baseline
cso Lz oalnieved Dy 2 July 108D, If the ossibiiit of a3 siip is
- s
certified sufficlerntly early, it may well be possible to lengthen Phase ' by

an woual o amount without incurring substantial additional cost.

A secondary area of risk is that if the Preliminary Ada Reference Manual
is found ‘o be very difficult to interpret, a large number of questions will
have to be asked of the language designers and answers received before
I! analysis of implementation difficulties and test objectives can be undertaxen

productively. CQCur initial analysis of some of the seemingly simpler areas of
the language indicates that this may pose a problem. Our plan is to identify
!]! such guestions as quickly as possible, sco work can proceed on those areas of

the iarguage where the intent is clear.

))

APPENDIX A

Documentation Formats

This Appendix describes the formats to be wused 1in documenting the
fellowing validation capabilities in each Phase of the effort:
tne Implementer's Guide

vr_.idation support tools

Tne content of the Implementer's Guide will feollow the structure
indizated in Section 2.2.7 of this document., It will be formally updated in

Phases ¢ and 3 of this effort.

The validation support tools (i.e., the text editing macros) will be

documented in accordance with DoDI 7935.71-S, dated 13 September 1977, using

ot
o3
D
@]

specification for a Program Maintenance Manual.

Tre set of fest programs will also be documented in accordance with DolI
T335,7-2, wusing the specification for a Program Maintenance Manual., However,
seaticns 2Z2.4c-h and 3 do not apply. The functional description of each test
prograr (Section 2.4b) will reference the appropriate test objectives section

of tne Implementer's Guide.

rrocedurez {or using the validation support tools and tests to validate a
compiier will Dbe described using DI-M-341'0, Users Manual (Computer Program).
As part of tnese procedures, a sample template for a Test FPlan will be

)

neoy led following e genernal outline of DI=T=3703A, CPCL Tost

. . SOFlecH

tad

UL AL U WP R

com Lo

[P WA |

Y . Ty T T T T TS L, Y R TN TR TR T VYT aT Y W LY YT e 8T e e e P
ME S i dieds JhUSFE P s gl bR oA R PR ST T) . Pl . DR T S R - T TeT
r>‘.c_~ Y R S LR . . . -

.-

[]
Plans/Procedures. The format of the Validation Summary Report will be adapted
{r from the format currently used for COBOL Validation Summary Reports provided
by the Federal COBOL Compiler Testing Service.
[xem
1a

10671 ol SOFlecK4

- B R R Ac A fee San A e S e T L A b R SRR SIS ST S B A S e BN I - L.
_.'F~' « I _ - Pl . . v e - . - - . PO .

END

) e

¢

e o AR

. FILMED

1

[

:

C 2—-85
_®

—

L . L W A R Vo AL AL W It S ST S

