
7 D- 149 72 4 ADA COMPILE R V LIDRTION C PBILITY:
LONG R NGE PL N(U)

i/i.
I SOFTECH INC WALTAM MA 26 NOV 79 1867-1
I MDA93-79-C-8687
UNCLAISSIFIED F/G 9/2 NI

mhhhhmhhhhhh
Iimmomom

I I . J...I U I 11111 2 .2IIIII ~0 11111i"° 2.0I I _________ I i 23 __n __

HI111 "5 g .4 1.16

MICROCOPY RESOLUTION TEST CHART
NA*THN:,i BjR f t ,,u 4A:N., k, A#.

'S..

z IVA~J v? 4 s1~f 1A44iw

~ ~ ~\44 4L~ ~ 01

rA ".*

LI~ '21,:

40 '

O il . 'f. * .4 '3.

- a

sOFrecHq
THS SOPTIUJRE TECHflOLOGY COXTPMflY

ADA COMPILER VALIDATION CAPABILITY.

LONG RANGE PLAN

1 067-1

November 26, 1 979

Submitted to:

Defense Advanced Research Projects Agency
Arlington, Virginia

Contract %IDA903-79-C-0687
Data Item 0002AB

Prepared by:

SofTech, Inc.
460 Totten Pond Road

Waltham, MA 02154

4601 Totien Pond] Roadl Wltham Ma,)%achusett,, 02154 617 890-6900 TW< 710 'V-1 6-10'

TABLE OF' CONTENTS

1. INTRODUCTION .

2. SYSTEM SUMM.ARY . 2
2.1. ACVC Objectives and Limitations.
2.2. ACVC Structure.....................
2.2.'. The Implementer's GuIlde.......................
2.2.2. Validation Test Structure...............
2.2.-l. Validation Support Tools............... 1

2.2.4. Validation Procedures..................
2. . Validation Activities to be Supported
2.3;.'. Val idating 2 Compiler
2.-.1.1 Collecting information.
2.31.1.2. Preparing Tests for Submission ,

q..'3 Executing Validation Tests..........
2. . 1.. Summarizing Results..................
2.: .1.5. Archiving Findings. 16

2.4. Revising the Validation Capabilities. 16

3. PLANS FOR EACH PHASE. 1

3..Phase 1 Plans 8
3.2. Phase 2 20

3.3. Phase 3 20

4. RISK AREAS. 22

A. Documentatiorn Formats. 2

SoFreC:H

SECTION 1

INTRODUCTION

The objective of the Ada Compiler Validation Capability (ACVC) is to

determine to what extent an Ada compiler conforms to the Ada Standard. The

pj purpose of this Report is to describe planned validation capabilities, their

-eatioo t- other 3tandardardization activities, and our planned development

The ACVC is being developed under a three phase contract, with phases 2

and 3 being performed at the option of the Government. The periods of

performance and principal objectives of each Phase are:

Phase 1 (2 September 1979 through 10 July 1980) -- to produce a
baseline set of validation tests, tools needed to support
validation activities, and procedures for using the tests and tools

Phase 2 ' July 1980 through 10 July 1981) -- to increase test set
i coverage -,'ile maintaining the baseline capability

Phase 3 (" July 1981 through 10 January 1982) -- to develop new
validation approaches that attack difficult validation problems not
fully solved in the earlier Phases. In addition, validation
capabilities provided in earlier Phases will be updated and

Imaintainec.

In the next Section of this report, we describe the functions to be

su.porte'd by the ACVC and the general nature of the capabilities to bp

provided. In Section 3, we describe specific plans for each of the Phases.

n Sector a, we specify risk areas. In Appendix A, we specify documentation

s*a n'.ar to t. a.rI7e, to the ACVC7.

-SOFTeCH

SECTION 2

SYSTEM SUMMARY

In this Section, we describe the general nature of the capabilities

needed for Ada compiler validation.

U,

. ACVC b eti.e and Limitations

.M:lr-" Validation Capability will be used to check how well Ada

'ia trans tor adhere to the Ada Report (the official document

speclfvy-.g the Ada Language Standard). It should be noted, however, that such

validation tests do not form a complete acceptance test for an Ada translator.

Overall acceptability encompasses more than compliance with a language

standard. Among the issues not addressed by the tests that are to comprise

the ACVC are:

* .the compiler's maintainability, as reflected by its
internal design structure

*.the implementation standards followed by its source code
*-the quality of its design and implementation documentation

its interface with other support tools, e.g., as reflected by
] .its object file format

its symbol table format and options for producing a binary
symbol table for use by a symbolic debugger
the internal format of the program library

the range of options provided to compiler users

its compile-time efficiency

the helpfulness of its error message format and content

.1- efici-ncv ef' the object code it generates

But two important issues the ACVC will address are:

the effectiveness of the validation tests, and

the amount of effort needed to validate a compilrr.

'SOF~ecH

The quality of -a compiler validation capability is ultimately measured by

the number and importance o!' ways a validated compiler is later discovered tu

be nonconforming. if the baseline ACV,- is of poor quality, Ada compilers

containing significant errors may be approved for official use. Once such

compilers are in use, it is often costly to make them standard-conforming.

-e net result is nhe 4evelopm-rnt of' impl ementation-de fined Ada dialects, Pand

0h :zca c f la '_ ma ln g-ag e wil noit have been achieved.

-orsequentlv, o!ur a~proacn , will apply several important design principle-s

u;nderlyin; ostuto of high quali ty tests. Perhaps the most important

is that tests must be designed so their successful~ execution implies (cr at.

.east makes it hiighly liiKev) that certain implementation errors are absent.

The basis of this principle, which has been argued at length in [1]1 and 2'

s that unless tests 1a, e been designed so their successful execution rules

o-ut certainr errors , iit s learned from sod success. And of course, a

~iute:comp>.ier is one t hat has passed all its tests! This means that to

construct an effective compiler validation capability, one must first

nvctr~1cethne kinds of errors Jimplementers may make and then construct tests

*na i- or<: succeed if the errors are absent.

'es- _ pvelopec in, advan - of a compiler implementation. i.e., tePStsf

w4 nw~out kmwl eJ, of~ a compiler's internal structure (so-called

------------- ~ sr~nutr riciie tdtect all errors ai compiler may

inru .~.a. Lrrr L~. . , "Toward a Theo~ry of Test 1Dat a
:r.ect, ion , I~~iL , l' ,une 1'f75) , '56-'73.

rooPjrn cug. ,. ."A _iur-,ey of' Prowram Testing i ssu es" in hesearch
o 4, ran e nro~ P. 'Apgnpr, 'od., YIT Pross, Cambridwe,

sOFrecH.

contain, even though, strictly speaking, any errors constitute non-conforming

P behavior.* Since not all errors can be detected, our objective in designing

black box tests will be to ensure that the cost of developing and executing

tests intended to detect certain errors is not greater than the benefit of

detecting the error. For example, undetected errors are non-critical if they

are unique to a particular application program or programmer and an

alternative use of tre language provides a satisfactory write-around" until

tne error is fixed. Such errors usually reflect the us- of rare combinations

of language features. Mloreover, although many implementation errors arise

from failure to deal correctly with certain combinations of language features,

we will not attemot to detect errors judged unlikely to occur in practice or

whose effect is unlikely to be critical. To achieve this objective, the tests

we develop will be based on a thorough analysis of wide-ranging implementation

problems and imnortant interactions among language features that must be

successfully dealt with by every conforming implementation. Tests will then

be devised to check whether these difficulties have been dealt with properly.

3 Since the validation tests are to be used for compilers executing in a

variety of host environments and generating code for a variety of target

environments, the tests must be easily adapted to cope with these differences.

This eans minimizing the amount of manual effort required to adart tests to

.ost and ta-zet environments and to analyze the results of test compilations.

p The possibility of developing tests based or knowledge ot' compilr's
tnternal structure will not be addressed at least. until Phase 2 of our planned
effr, and D-ssily not until Phase , since such tests , ir currently vtr
.. n4 u,,costlv , construct.

sOFTecH

2.2. ACVC Structure

Ii The ACVC has thiree main compinents:

An lmpj e rEnjter's Ouide describing explicitly t he !implications o f
the Ada Report,. it will specifically address implementation issuer
that might be overlooked by an unwary ;mpiement-r. The purpose of'
this Guide is partly to point out the implications of statements

IPA made in the Ada Report and pa rtlIy t,) specify conditions to b
checaked by val idation tests.

*Test g pram to be submitted to a compil er.

*Valid at ion suoco()rt to ols t hatI assist in 7rep- g,, -F,
exe icaand ;onalycinq the results ofexc ' e-

.iese componrents are cescribed in more detail below.

2.2.1. The- impeenter's Guidle

The primary document to be produced i.n Phase 1 is the Implementer's

juide. This d1ocum en.t dePs cr ib es the ramifications of the Ada 11eport and in

10 particular, describes implementation issues t hat must be properly addressed in

a production comciler d Si-g n. The doc ument also specifies objectives,

constraints, and guidelines for d',veloping specific validation tests. The

31 dcc uien, will be ,<eyed to the subsections o f the Ada Rpot. . _ o r ea h

s u bs e ct io r, erp wl be an r analysis treating the following topics:

* am' i i o ns of the Semnantics -- Th is section will doc um".
ca~~ r 1e language semantics. in cas es where thi

Srr St- are, d -r 4ved from statements in separa1te 'sec-4_'rs
,Iraionale for the interznr-tV'ion wi 1 I be

a,- 1dor y- nq the Ada design. Ae will 7 v~
r , ns t, er. Ah a rn L.nC t

e ~ ~ ~ '' X. u Ar r y in- Ir li c E A s .iqnm e nts S weI
f 1 7 P -JTf t ri ngs 14 ~rdu(x Il" C.

SOFreCH

are I leg a ssigr. ent s. '11'e first aissignment does noCt racr
the ex E- -,I-exceptin s ince the resul t ofonca;)tenation.

neCt aI us Iane n e- ce trne re are n c i nd ex ra ngwes that :

overia,, o -i asignz. mer-n t ~slegal1 because the number of
el e~r :"r -Fc same and there is no requirement tha:,

the Dc (-,u, an emu ty sl ice satisfy the range. constraints for
inrcex4- : el e m e,,ts of tre array-i. The third example shows a~s
hr e 2'E'Aou I not be raised even though tne sl ics

. cvr nn :ommor.

c. c 1 e -t~ 7 cstit This secti -on w-il ex pIic itly stte
- -.n : e cyntact4- and seman t ics constra"n

non oad-time) , i .t i 'c'e -i 4

e2 I egaI t v c -nsra in ts s tated broadl -e 1 da

ec r iMPl ementers, to ensure tn eyov'r
o- ,Lve validity constE Irainrt s imlocked IV r

s ce c:r:lo of -ourse, cu-,gests vaiaintest s tb

pro vie. An- n us-'tL we will note ro-taghfra, w:'vr '
constr' t cc .okatec.

Excqpo -oC 'o o -- This section will explicitly state wha t
exoepm-ion con,' 4- cns m-ay be raised , since these determine wha--t
run-tin, -,neoks im ementers must provided . For example, in thne
case of [Pt i or ol we woul'd note that RANGE'_EHRORF and

AC Ss wn alsa'nirng to a record component) are the cr1I v
ec ect.in " n''r' explicitly aisociated with Section 510

Te st Lb ties andl Desi=p Guidelines -- This secti on will state
test ct*~' ves, Wive design guidelines for test case

contrutio, lst mplmenaton. errors-t be checked for, and
li st crbem o be kept in mind while designing or writing test
cases 'e ..7 , ac ensure that t he tests are as portable as no 5;4b>1

ans d ht "cv are ef fect ive in . determin-ing the actual 1 eha-vi4or o
a com B orde rl ine case-s to be con-sid;ered, by v
implementarir2r will be noted here with prowramr examples when. .
exancrc' aire 'he most straightforward way of ilsrtn
po In' ren adp. These examples are ,3nd ida'tes f1r In ''-

Arab>> ''* s , -tion w4Il document those ct t
cc "'rat r)! for which test obj3ect ices have n

r 1r'o" because ,:f cotential chngc int.;o

* r'., 4 - wh!ich W'cr hr w .rk :s rr'oel r s'

if t proble Is reerc h r obulen
,xe pa S, UPn Sc for w'hich fur ther study is required. i r

w411 I s t aote' 'n" r: 1 wb;? re

- ~~~O r ''e > 'ie:''

3.2.. Vaidation. :'e-' t,,.-

THe issue in neve"atv i oLfvl voP tests is whee4.r 'K''

shouil be few in nunt'er, whic ,,""Fs a given test can fail for many r-asons,

or wnpther indiv idualU tests snoOth focus on a small set of trnplpmentat on

Ircr , 740en itn'nng 10 o rzQr run.Oer of tests t o he :oc-'

7ro-:i-izawfnnvqz l-F rmntr of fat"'ly c-teciali7-t trrt?

-tinnir innttaneuabot copilr faws. A_~uYvaiiin

ire in pr';flew~ .AS1 -!;he O.e comp.Ier conforms to. .te lanruag-

Stanan:or2 !Vor'.l. in practice. suon a response to a validation j i F

_ >cas a :wp me at termnates~ compilation with the single message

PUFAC93 M IN E 11. P ': j s _ compilers are desigred to dletect mone -_tan one

-:rr mira ;:rozr i , itn'Y - LFor validation t esFts to retVe. aas Ma3ny

p.. i~nt of s. onmi.p a-~ -- pcszmble. There are severil reasonr'

rv :T 7rj--: ' I- ~cmple's non'nornities are minor w: th respect tV

Z! mv tpide t iscos-effectilye to permlt tse~ of the

:r :cm' "r wE~' t ~e errora are bew no-reoted. The cuo Co to no

- 2[j5~ 500 :osmitte'is trw tey AeN:: on byp 0- W' h.

S''__ __,o,ior..nj * fC XOPW Unr of tno-c,4

Seni..,if via -tion snaps acter detection of V'- firnst error or oqN

SOFTSCH

~~ t~t to e29

n, lie rI mar cn, valia t i ct rr i 1 c

-i p r oxc z~', t a. Cr5o > xnes A tex t. &

i. rfiat. . r -. F i -ro v crr tlti

-,r C'

us w" p!'4

sOF recH

lit~v z r,. 'ci. F ~ '

ire~~ ~~~~ c7~44 'i4'.''r-.~~

rll

t 4-s p 0 ' rj

z e n W.r al

-)a - r - ,) 4 un n n s- .'

I 'l ' i r 0 3 K a~~ Wtt'l -~wi r V,
m'.orr

4
-- v -i CW 4 4t 'c-mr" 'oc flo, -

used,4- '4 t-'' c-rnt 2a p l e ao no- +

S. v' o' c-

ar. nr f

- ..--.. .-. ~'V~~uto- .cgss .+: rXOc9

result of generic instantiation or inline substitution of
subprograms. Other aspects of an implementation that affect its
interface with the external object computer environment but which
are not currently specified are also checked by these tests, e.g.,
consider

type BIASED is new INTEGER range 0..15;
for BIASED use 4;

fin In interfacing with external devices, it could be important to know
" whether 2#1000 represents the value zero (if a signed biased

.....es_.. on is used) or the value 8 (if an unsigned
-*e3 r:-:tion is used). Other tests in this class will be used to
S'erme wna: interpretation an implementation has taken with
eszect tc unintended ambiguities discovered in the Ada Report.
Tne results cf these tests are used to inform compiler users and to
improve the Report.

Class F Tests. These are tests that demonstrate the correct and
complete operation of standard packages, e.g., the INPUTOUTPUT
package, the mathematical library package (when one is specified as

a standard), etc.

Additional test Classes may be added as a result of Phase 2 and Phase 3

efforts, e.g., tests of object code efficiency, compiler performance, Ctc.

Within each class, a test will be given a name corresponding to the

Chapter, Section, and Subsection number of the part of the Report to which the

test oertains. Since most subsections require more than one test, tests will

be assigned sequential numbers within subsections. Each source code module

wil" te in a separate file which will be given the name of the test. There

may also be a number of INCLUDE files used in conjunction with test modules.

2.2.?. Validation Su2_p(rt Tools

There are con rcqtue 1; tbre r nv rronments relevant to validating a

compiler:

the, v lidaton host (VH) environment, in which validation tests are
preparec Ycr execut ion by an Ada ,ornp iPr i nd validaton re,;iults
-1 3 r-

I

the compiler host (CH) environment, in which Ada tests are
compiled. In some implementations, target modules may also be
loaded in the CH environment; executable code is then transported
to the object computer for execution;

the obiect host (OH) environment (the target computer) in which Ada
programs are executed.

An important aspect of our approach to the ACVC is the Validator Host concept.

The Ada validation tests will constitute a fairly large amount of textual

material. Powerful text editing and file management tools are needed to

create, access, and maintain this material. More importantly, when preparing

to perform a compiler validation, the tests must be adapted to conform to the

conventions of the Compiler Host for submitting text to the compiler and

obtaining output. In addition, a variety of test parameters may beI

implementation dependent (e.g., the maximum and minimum integer literal

values). Appropriate values must be inserted into some tests.

ri All these text handling problems will be dealt with by the validator host

tools, which will consist primarily of text editing tools and macros. If a

SNOBOL processor is not available in the validator host environment, we will

used TECO and TECO macros to perform commonly needed text manipulations. If

the compiler host is available on the ARPANET, the validation tests, once

adapted to the CH requirements, will be sent to the CH using the Net. If the

CH is not on the Net, the tests will be brought to the host using an

appropriate physical medium. If a comparable ARPANET host is available, it

might be used to transfer the text to such a medium.

I

Text editing tools will also be used to analyze the machine processable

results of compilations and executions -- to confirm that all required tests

wer submitted and that all test failures are identified.

I

K 6- 1 O4O .

0

The text processing tools we provide will be documented in accordance

i with the specifications provided in Appendix A.

2.2.4. Validation Procedures

Usage of the tests and tools will be described in a Validation Procedures

Manual structured in accordance with the specification cited Appendix A. The

general nature of these procedures is discussed in Section 2.3.

2.. Validation Activities to be Supported

There are two principal activities supported by the Ada Compiler

Validation Capability: 1) compiler validation and 2) revising the validation

tests, tools, and procedures. In this Section, we describe the general nature

of these activities since they affect the structure and content of the ACVC.

2_..Z. Validating a Compiler

There are five principal activities performed in validating a compiler.

These are:

Collecting information needed to select and adapt the validation
tests for the compiler being tested.

Preparing the tests for submission to the compiler.

3. Performing the tests, i.e., compiling them, executing the

executable tests, and collecting the results for later analysis.

4. Summarizing the test results.

5. Archiving the findings.

67 sOFTecH
o

. .

a

2.3.1.1. Collectinr Information

SThe principal output of this activity is a Test Plan describing all the

information needed to prepare and conduct the validation. Information is

needed regarding:

U . the language accepted by the compiler, e.g., the character set

- accepted by the compiler (full ASCII, EBCDIC, 63-character CDC,

etc.), allowed length of input lines, how an "end-of-line" is
defined, the semantics and restrictions on representation
specifications (Section 13 of the Preliminary Ada Reference

Manual), the syntax and semantics of commands for manipulating the

program library (Section 10.4), any language subsetting, the number

of levels of integer, fixed, and floating point precision supported

and their names, ranges associated with numeric types, etc. This
information is used in selecting and adapting the tests to be used,

e.g., some tests do not apply if only a single integer precision is

supported.

compiler options provided, which ones are to be tested, and how

they are exercised.

the compiler host environment, including file structuring

capabilities, file naming conventions, the method of invoking the
compiler, the method of transferring object code for execution on
the target computer, the methods for linking and loading modules to
be executed, the method for collecting and displaying compilation
results, etc.

the object host environment, including its file structuring
capabilities, file naming conventions, the method for linking and

loading (if this is to be done on the target computer), the method

of initiating object code execution, the method for collecting

execution results in machine-processable form, etc.

In addition, if the validation is being performed on a new version of a

previously validated compiler, information from the previous validation must

be analyzed 'o determine how revalidation costs might be minimized (e.g., by

t 4 r n tezE. rror ams Lrto larger modules, by reusing test preparation

macros, etc..

a

, , sOF~ecH

.n's tnformation is, used to prepare a comprehensive Test Plan describing

what tests are to be run, information needed to prepare tests for submissionr
" to tne compiler, estimates of time required to perform the tests, procedures

for manually and automatically analyzing test results, etc. (see Appendix A).

The Test Plan controls subsequent phases of testing activities. The ACVC will

LP
incuce a nrototvpe Test Plan to serve as a guide for creating actual Test

PLans.

2.q.'.-. Pre pang Tests for Submission

The basic purpose of this activity is to adapt, and in some caes,

generate, text files ir a form suitable for submission to the compiler being

validated. A number of ACVC text editing macros (and macro templates) will be

provided to automate as much of the preparation process as possible.

:n general, tIe following steps must be performed before the Ada

* Validator test files are transported to the compiler host:

generate specific versions of tests for the full range of
capabilities supported by the compiler (e.g., to test all levels of

nuneric precision supported, including interactions among these
levels);

substitute implementation-dependent parameters in appropriate
tests, e.g., literal values testing the upper and lower limits of
the numeric ranges supported, string literals that contain all

characters of the supported character set, etc. In general, the
validation tests will contain the equivalent of text macro
invocations so implementation-dependent constructs can be
substituted at the appropriate places.

embed the tests in the appropriate job control language for
compiling, linking, and executing the tests.

generate file names that satisfy the compiler host's naming
conventions.

tailor Class D tests to the correct size.

106r-" 7E
5 Tecm

S' . . ' ' '

prepare text processing macros suitable for analyzing

machine-processable results of compilation and execution.

A file of implementation-dependent parameters must be prepared for every

validation. This file gives values for numeric precisions, values of

attributes of built-in types, and other parameters to be used in generating

tests that are appropriate for a specific compiler. An important aspect of

the ACVC test set design is identifying places where these parameters should

te used in specific tests. Unless these parameters are used appropriately, it

will be difficult to adapt the tests to the capabilities of a specific

compiler.

Difficulties in using the test preparation editing tools will be noted

and input to the Tool Revision process.

2..1. . Executing Validation Tests

The files prepared in the previous step are transported to the compiler

hcst and compiled. All object code except for Class C, E, and F tests is

3discarded. Listings from all compilations are saved in machine readable form

and processed on the Validator host computer to check that all intended tests

were comIced and that expected results were achieved.

The object code is executed on the target computer and resits are saved

in machine readable form for automatic analysis on the validator host. Since

people are notoriously unreliable in scanning results for correctness,

extensive effort will be directed during test case design to ensure results

can be automatically checked insofar as possible.

' .O F-..

_I- - . •

Any difficulties encountered during compilation or execution due to

errors in the tests themselves will be noted and used as inputs to the Test

Revision process.

2.3.1.4. Summarizing Results

rim

Us,_ng editing tools and report templates provided by the ACVC, results of

a-iation will be summarized, following the report structure tentatively

outlined in Appendix A. The purpose of the Validation Summary Report is to

concisely describe what compiler was validated and what nonconforming

behaviors were discovered. Since groups of tests may fail for a common cause,

preparation of a validation summary report is not a completely automatable

task. Results must be studied to extract as much useful information as

possible.

.2.3.1.5. Archiving Findings

As a last step, all plans, tests, preparation aids, post processing

31 analyzers, and findings are archived for later use when a revised version of

the compiler may need to be revalidated. The ACVC will recommend archiving

procedures and concepts.

2.4. Revising the Validation Capabilities

in essence, the validation capabilities consist of:

the validation tests

the Implementer'S Guide

validation support tools

descriptions of procedures for using the tools

1067-1 16 SOF1ecp#

r

There are a variety of reasons for modifying any of these capabilities:

* problems encountered in conducting a validation may Lead to
modifications in the validation support tools and/or the test cases
(to remove test case errors).

errors discovered in validated compilers may indicate previously

undocumented implementation problems; both the Implementer's Guide
and the validation tests must be updated.

[ambiguities are discovered in the language specification.
Additional Class E tests are needed to determine how a given

-" 2entation has resolved these ambiguities.

4 :he validation tests are expanded to cover known weaknesses.

the language specification is modified.

After the Baseline Validation Capability is delivered, it will be placed under

configuration control. Procedures will be specified for producing new

releases of the tests, tools, and associated documentation (see Appendix A).

K'

43

SECTION 3

pPLANS FOR EACH PHASE

In this Section, we describe our current plans for capabilities to be

provided in each Phase of the effort.

K. Phase I Plans

7he purpose of Phase I is to produce a baseline validation capability

that addresses all aspects of Ada to some extent and whose weaknesses in

coverage are documented. A prime focus in Phase I will be the Implementer's

Guide. A high quality validation test set (i.e, one that detects even subtle

nonconformities) must address interactions among language features (since

these are a primary source of implementation problems and subtleties) and must

cover potential specification misinterpretations and subtle ramifications.

Pointing out implementation problems explicitly will be of considerable

assistance in discouraging Ada dialects. Often dialects arise because of

inadvertent misunderstanding of a specification. If the Implementer's Guide

points out possible mistakes, implementers are less likely to make them.

Hence, producing a thorough implementer's guide is necessary not only to guide

the construction of high quality tests but also to help prevent inadvertent

deviations from the specification.

The approach we are takitg in Phase 1 is to make three iterations in

producing the Impiementer's Guidp. Thp iterftions are needed because Ada is

currently undergoing revision, with a draft revised specification due 1 March

1980 and a final specification due 15 May 1980. To cope with the possibility

of changes, the first iteration will address only the most stable parts of

107 SOFeCH

Ada. A draft Implementer's Guide for the stable subset of' Ada will be

0 available in January 1980. An intermediate draft for the second iteration

will be available in March 1980. A first draft for the third iteration

(covering all of revised Ada) will be available in May 1980. The final

version will be delivered at the end of Phase I in July 1980. it is ourpm

intent to Dermit limited distribution of these intermediate drafts to people

esignated by DAFPA and to hold design reviews at which recipients of the

drafts will be invited to comment. In this way, we will identify errors and

omissions in our analysis and the validation effort will benefit from the

experiences of those engaged in experimental or production implementations of

Ada compilers.

Not all areas of Ada can be covered with equal thoroughness in the

baseline tests. In p.rticular, more tests are needed to the extent an

implementer has many ways of realizing a required capability. The greater the

variety of implementation approaches and requirements, the greater the number

of tests needed to check that each approach has been carried out successfully.

3 There are several areas where Ada leaves considerable implementation

flexibiiity. These areas will not be covered thoroughly in Phase . They

are:

tasking semantics for a wide range of target computer
architectures;

the INPUTOUTPIUT package for the full range of 1/0 peripherals Ada

compilers might support;

the correctness of optimizations

other standard packages that may eventually be defined, e.g., the
mathematic'21 functions package.

r)nly basi2 capabilities in these areas will be covered in Phase 1

12~71SOF1euH

In Phase 1, we will also produce a basic set of tools for adapting tests

to the requirements of a particular compiler, and we will provide a

description of procedures to be followed in using these tools to validate a

ompiler.

-........s secifically deferred for thorough coverage in Phase 1 will be

s in Phase 2. In addition, the baseline coverage will be updated and

mprove J based on further analysis of the official Ada Report. Since the

official Ada Report is scheduled for approval only two months before the end

of Phase 1, it is likely that further analysis in Phase 2 will show

deficiencies in the Phase 1 test coverage that were not recognized at that

time. These deficiencies will be corrected in Phase 2, and all associated

documentation updated.

A Key Phase 2 activity will be to use the baseline tests in validating an

experimental or production compiler. Past experience with validation tests

Iindicates that even when considerable care has been taken in test design, more

protlems will be discovered when the validation capability is used the first

time than when it is used on subsequent occasions. Correcting these problems

will be an important Phase 2 activity.

3~L Phase 3

Phase 3 will address research issues to further refine the validation

capabilities. Although it is difficult at this time to accurately predict

what these issues will be, it is likely that work will continue to improve the

1W SOFfeCH

L i

-•- .- ' -. -

capability for validating Ada's tasking semantics and for ensuring that

optimizations are Performed correctly.

In addition, it is likely that the Ada standard will be updated during

the Phase period t'a reflect the experience gained in producing the first Ada

'Q.: tmo : 2om~ilers and in using Ada for some embedded computer applications.

.. . tsts will be updated to reflect these changes as well as any

S, in. the course of validating various Ada compilers.

SOFTeCH

SECTION 4

RISK AREAS

The primary area of risk in Phase 1 is that the schedule for revising Ada

will slip. if the 1 March 1980 date for delivering a draft of the Ada Heport

F - v ldate -r celivering the final version of the da

- '-- - . w be difficult to ensure that the planned baseline

- 'y July 1981. If the possibility of a slIp is

... f . suflc.env earlv it may well be possible to lengthen Phase 1 by

-a mount without incurring substantial additional cost.

A secondary area of risk is that if the Preliminary Ada Reference Manual

is found to be very difficult to interpret, a large number of questions will

have to be asked of the language designers and answers received before

Kanalysis of implementation difficulties and test objectives can be undertaken

productively. Cur initial analysis of some of he seemingly simpler areas of

the language indicates that this may pose a problem. Our plan is to identify

such questions as quickly as possible, so work can proceed on those areas of

the language where the intent is clear.

S

x

APPENDIX A

7Documentation Formats

This Appendix describes the formats to be used in documenting the

following validation capabilities in each Phase of the effort:
NJ

the implementer's Guide

-. "C.i support tools

*oest Or ofroms

* v <_dation procedures

.-oe content of the Implementer's Guide will follow the structure

indicated in Section 2.2.1 of this document. It will be formally updated in

Phases 2 and 3 of this effort.

The validation support tools (i.e., the text editing macros) will be

documented in accordance with DoDI 7935.1-S, dated 13 September 1977, using

toe specification for a Program Maintenance Manual.

Tne set of test programs will also be documented in accordance with DoDI

935.-5, using the specification for a Program Maintenance Manual. However,

sect ions 2.4c-h and 3 do not apply. The functional description of each test

program 4Section 2.4b) will reference the appropriate test objectives section

of the Implementer's Guide.

. ..rC-ures fur using the validation support tools and tests to validate a

compiler wi1'l be described using DI-M-3410, Users Manual (Computer Program).

An ;,irt of thesp pro:o edurvs, ;i sample template for a To qt PH;n will h c

!, , ,eC h g e ntw , gene.r 1 Dut i ne p D I -'T-,1r A . CI i ,,

* . - sOFTecH

Plans/Procedures. The format of the Validation Summary Report will be adapted

from the format currently used for COBOL Validation Summary Reports provided

by the Federal COBOL Compiler Testing Service.

MW

~'0 24 -9OFTecH

FILMED

0 2-85

• DTIC
S

