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found that the results can be qualitatively explained by a model
based on a Stokes-like layer near the moving wall. This provides
a theory which ca~n be used to guide the selection of parameters.

Considering both viscous and pressure drag components, it was found
that drag reduction is possible under certain conditions of wall
motion. However, work is required to drive the wall motion to ".
produce this effect and the effort expended can be a considerable -
fraction of the reduced through-flow energy requirements. The
major effects of the wall motion are restricted to the viscous
sublayer of the turbulent flow. J
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ABSTRACT

The effects of prescribed wall motion on turbulent channel

flow were examined with the objective of understanding the drag

mechanisms and obtaining a possible means for drag reduction. A S

computer program for large-eddy simulation (LES) of turbulent

flow in a channel was modified to treat the case of time-varying

wall motion using linearized boundary conditions. The code was S

applied to flow in a channel with prescribed wall motion on one

wall. It was found that the results can be qualitatively

explained by a model based on a Stokes-like layer near the moving 0

wall. This provides a theory which can be used to guide the

selection of parameters. Considering both viscous and pressure

drag components, it was found that drag reduction is possible p

under certain conditions of wall motion. However, work is

required to drive the wall motion to produce this effect and the

S_ effort expended can be a considerable fraction of the reduced

* through-flow energy requirements. The major effects of the wall

motion are restricted to the viscous sublayer of the turbulent

flow...
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NOMENCLATURE

a,b dimensions of computational region, Eqs. (53), (54)

a. wave velocity, Eq. (42)

A (au' - wc)/(a - w/C), Eq. (25)W

c wave propagation speed normalized by uT
TS

C damping coefficient, Eqs. (42), (43), (44), and

(47)

CD unperturbed channel drag coefficient

CDp pressure drag coefficient, Eq. (38)

D bending rigidity, Eq. (46), also generalized

vector, Eq. (58)

E spectral density, also modulus of elasticity 6

Ej generalized vector in Eq. (58)

f a function defining the LES filter, Eq. (71)
* 0

F velocity vector, Eq. (58)

G filter kernel function, Eqs. (72) and (73)

h value of vertical coordinate, x2 _at the flexible
surface (Fig. 1) normalized by 6 also thickness
of wall material

J Jacobian of coordinate transformation

k spatial wavenumber in Fourier transform space; also •
spring constant

m mass per unit surface area, Eq. (42)

mass flux
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NOMENCLATURE (continued)

MI, M 2  mass terms, Eqs. (43) and (44)

MI Ml/P6"

n denotes a time step in a numerical scheme

NX, Nz  membrane tension in x and z directions

p pressure fluctuation normalized by pu2

P mean pressure normalized by pu2
T|

p resolvable pressure in LES!2

p* pressure fluctuation at wall

Qj transformed velocity, Eq. (84)

Re T u Tp/v

Rii two-point correlation, Eqs. (50) and (51)

Sij velocity gradients, Eq. (91)

t time normalized by Z/u. T]

ui,i=l,2,3 velocity component (Fig. 1) normalized by uT

2 1/2(u ' <(u'i ) >

u T  friction velocity, VT7 of flow in a rigid wall
channel

um  mass average velocity of channel flow

SUm urm/UT

Uul>/ax 2 ) 'wall

xi,i=l,2,3 coordinate (Fig. 1) normalized by

_x the vector (xlx 2 ,x 3 )
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NOMENCLATURE (continued)

x,y coordinates for analysis of solid wall elastic
behavior, Eqs. (42) thru (47) and associated sketch

Yw distance from a wall

wave number in x, direction of prescribed wall
shape normalized by 1/Z

wave number in x3 direction of prescribed wall
shape normalized by 1/7 S

mean channel half-width

-ij Kronecker delta

AE ratio of change in flow energy to energy of flow

through unperturbed channel

Ai numerical interval, Eqs. (74) and (75)

cijk antisymmetric tensor

n displacement of wall from undisturbed plane
(Fig. 1) normalized by Z

no  amplitude of prescribed wall displacement
normalized by

e direction of travel of wall wave relative to the
x, axis

wavelength of wall shape, normalized by 3

v fluid viscosity

1 - x2 , Eqs. (19) thru (22); also generalized 0
coordinate, Eqs. (48) and (49), Eqs. (61), etc.

p fluid density

a [(W/c)2 - i(wRe )]1/2, Eq. (24)
T
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NOMENCLATURE (concluded)

T w  fluid shear stress at wall

transformed time variable, Eq. (61)

frequency of wall motion normalized by u /

Special Notations

< > denotes an average over an horizontal (X 1 ,x 3 ) plane

for LES calculations plus an average over time for

other calculations

(~) denotes a periodically varying quantity

R denotes a real part of a complex variable

I denotes the imaginary part of a complex variable

a/ax denotes a partial spatial derivative

6/6x denotes a finite difference approximation of a j
partial derivative

A/AT denotes a finite difference approximation of a
partial time derivative

Superscripts

denotes the nonperiodic part of a fluctuating

turbulence quantity

denotes a fluctuating turbulence quantity

+ denotes a length in "wall units,"- e.g., uTx/V

* denotes a dimensional quantity

Subscripts

r, i denote real and imaginary parts when used with the

quantities A and a
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I. INTRODUCTIONr -.

Kramer (references 1 and 2) showed that the application of a

compliant coating to a wall could lead to a considerable reduction

in the skin friction. He focused on reducing the drag by delaying

the onset of transition to turbulent flow. Subsequent attempts to

replicate his work and to determine the causal mechanisms have been

only partially successful.

A number of studies of the interaction between a flow and a

moving wavy surface have been made; these have been principally

motivated by the air-sea interaction problem. Benjamin (reference S

3), among others, showed that the pressure distribution over such a

surface is not in phase with the shape of the surface; this gives

rise to a momentum transfer between the fluid and the surface, the

pressure drag. Although these studies employed an inviscid theory,

they have played an important role in the studies of the air-sea

I.]problem.

Kendall (reference 4) investigated the turbulent flow over a

wavy surface experimentally and verified some of the predictions of

the inviscid theory but also found some differences.

Ffowcs-Williams (reference 5) and Blick (reference 6) studied

the possibility of drag reduction by the introduction of wavy motion

in the wall by means of a theory similar to the one that will be

presented in this report and came to the conclusion that significant ]

reductions in the drag should indeed be possible.
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Hanratty and his co-workers at the University of Illinois have

conducted a number of studies of turbulent flow close to wavy walls

to obtain insight into the influence of a compliant surface on a

turbulent flow field. Progress has been made in calculations of

turbulent flow over small-amplitude stationary waves for which no

flow separation occurs (reference 7) as well as for large-amplitude

waves (reference 8). A critical issue in both cases is the

specification of the wave induced variation of the properties of the

turbulence.

The work reported herein was motivated by the possibility of

using deliberately introduced wall waviness to reduce the drag on a

surface underlying a turbulent flow. The tool used in this study is

a computational one--large eddy simulation (LES)--in which the

large-scale motions of the flow are explicitly computed while the

mall-scale motions are simulated through a model. The method has

been shown to capture most of the important features of turbulent

flow over flat rigid walls including the structural features that

are responsible for most of the turbulence dynamics in the near-wall

region (reference 9).

In this report, large eddy simulations of turbulent flow over a P

prescribed travelling wavy wall will be presented. The simulations

were carried out with linearized boundary conditions. The results

indicate that significant reduction in the pressure gradient needed

to drive the flow through the channel are indeed possible. However,

additional work is required to drive the wall to produce this effect

and the effort expended is a considerable fraction of the reduction

-2-
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in the work needed to drive the through flow. A linear analysis

explaining the principal features of the effects observed will also

be presented.

In the following section, the principal approximations used in

this work will be introduced; these include the linearizations of

the boundary conditions on which the remainder of the work was

based. This is followed by two sections in which the analysis is

presented. The first gives an analysis of the Stokes layer which S

was found to exist near the wall by Ffowcs-Williams (reference 5)

and was also observed in the LES results. This is followed by an

analysis of the effect of the Stokes layer on the pressure gradient 0

and an estimate of the work done by the wall. Then the results of

the large eddy simulations are presented and shown to be in

substantial agreement with the predictions of the analysis. S

Finally, conclusions relating to the possibility of drag reduction

are discussed and directions for future work are given.

U..

2. BOUNDARY CONDITIONS FOR FLEXIBLE MOVING WALLS

2.1 Approximations

Consider flow over a surface which is able to stretch and move

in the direction normal to itself. The surface is described by the

displacement 9(xl,x 3 ,t) from its undisturbed plane shape, where x,

and x3 are the horizontal coordinates in the streamwise and

transverse directions, and t is the time. The exact boundary

conditions for the viscous flow at the surface are that the fluid

-3-
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velocity relative to the surface vanishes. For small amplitude of

the wall moti-)n, a convenient approximation is to expand the -

velocity boundary condition in a Taylor series about the undisturbed

wall plane and apply the boundary conditions on that plane. The

calculations can then be performed in a channel with parallel walls 0

and complicated time-dependent coordinate transformations can be

avoided.

The process of simplification is begun by approximating the

velocity at the flexible wall, whose undisturbed position is x2 = 1,

by two terms of a Taylor series.

au
ui (xl h,x3 ,t) = ui(xl,l,x 3 ,t) + n(x ,x 3 1 t) aw-x2)  (1)

2. 2=

where i=1,2,3 and the coordinates and velocity components are

defined in Figure 1. The coordinates are normalized by the mean

channel half-width. °

The condition of zero velocity relative to the surface at

x2 = h = 1 + n, yields the exact boundary condition:

u i(xlh,x3,t) = 0; i = I and 3 (2) 2
S

u2 (xih,x3,t) = an/at (3)

where tangential motion due to stretching has been neglected. S

-4-
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To obtain the required approximate conditions at x2 =+1

~ Equation (1) is substituted into Equations (2) and (3) to get:

au
u (xI'x t) -TI I ; land 3 (4)

and i 1= ,x 1 )'1

at ax2
2 x2= 1

To simplify the boundary conditions, the velocity is considered as a

combination of the time and horizontal mean value and a perturbation

* about that mean:

Pu (x 1 'x 2 ,x 3 ,t) = u i (X 2 > + u i(X 1 ,x2 ,x3,t);i 1,2,3 (6)

C where < > denotes the horizontal and time average. Then

au. a<u> au.
1 1+ (7)

2  a 2  a 2 0

-5-



It is assumed that <<- and

I.

au!

axi O(n) (8)

Therefore, to first order in -

a< < i>.
U= - n1 >2 i = 1, 3 (9)

x2= 1

and

3r.

= _u (10)
u 2  at

The assumption that au!/ax 2 is small may be a severe

approximation and its validity should be checked by calculations

which do not use it. It should be noted that experimental data for

flow over flat plates show that the rms value of

au-/ax 2 u/ax) 2>/2 is about 25% of 3<u >/ax1u 2. (<(ax2  1U>/ 2

* (reference 10).

The non-zero horizontal velocity component at the wall replaces

the actual surface by one which is being stretched and compressed.

It is important to determine whether such a condition accurately

models the wavy wall. As the flow moves along the actual wall, it

is displaced vertically, while remaining attached to the wall. The

* vertical component given by Equation (10) approximates the vertical

-6-
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motion of the wall. The displacement effect is approximated by

Equation (9) which indicates that the velocity at x2 = 1 is the

linear extrapolation (or interpolation) of the velocity from

x2 = 1 + to x2 = 1. However, Equation (9) produces locally

U reversed flow for u, where (l-x 2 ) is positive.

2.2 PARAMETERS

The calculations performed in this work used the boundary

conditions (9), and (10) with the wall motion prescribed to be a

r progressive wave: _0

* n(Xl'x3't) = 0 Cos (axI + 8x3 - Wt) (11) S

where the wavenumbers a and and the frequency, w are related to

wavelength, A, wave speed, c, and angle, 0, by:

w = 21tc/X

a = (2w/X) cos e ill
B = (2w/X) sin e 0

-7-
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Previous studies, e.g., Norris and Reynolds (reference 11),

Hanratty et al (reference 12), Thorsness et al (reference 7), and

Kelleher and Balasubramanian (reference 13) have shown that under

certain conditions the use of these linearized boundary conditions

may be a poor approximation. However, Norris and Reynolds' work

involved wavelengths and amplitudes much larger than the ones to be

considered here and the other work involved stationary wavy walls so

that generalization should be made with caution. The linearization

of the boundary conditions is the most significant approximation in

this work.

The results of reference 13 indicate that, for calculations of

laminar flow over a stationary wave, using linearized boundary

conditions gives a larger amplitude in the surface shear stress

varation than for calculations using the nonlinear boundary

conditions. As the wave amplitude is increased, the amplitude of

the shear stress variation also increases. The linearized boundary

conditions predict regions of negative surface shear, indicating

separation, for amplitudes for which the nonlinear boundary

conditions indicate that the flow is still attached. At the same

time, the use of the linearized boundary conditions appears to have

little effect on the phase angle of the predicted surface shear

variation. These results are only qualitative and cautionary with *1
regard to the present study since the effects of flow turbulence and

wall motion are not accounted for.

-8- i
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The question of the validity of the linearized boundary

conditions deserves further attention. In deriving equation (9) it "

was assumed that a<u>/Vax2 is of zero order in n while

a/x is of first order so that n(au /ax 2 ) is of second

order. This assumption was based on the observation that

experimental data for flat plates show that the rms value of

aui/ax is about 25% of 3<ui>/ax . The relative magnitude of
1 2 1 2

au'i/ax 2 cannot be determined a priori; therefore, the assumption 0

that it makes a second-order contribution to the boundary condition

can be evaluated only by direct comparison with a solution with

exact, nonlinear boundary conditions. This evaluation is essential

but could not be carried out within the scope of the present work.

3. ANALYTICAL STUDIES

Preliminary numerical simulations indicated that the principal

effects of the wall motion are confined to a thin region near the 0

wall; this will be demonstrated later. On this basis, it was

decided to develop a simplified analysis for the near-wall region.

This analysis was a valuable aid in determining values of the

parameters which could yield effective alteration of the flow and

viscous drag. Although the study began with numerical simulations,

it is useful for the purposes of this presentation to begin with the S

linear analysis.

-9-
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The analysis consists of two parts. First, the effect of the

wall motion on the fluid near the wall was found to produce a

Stokes-like layer. The Stokes-like solution was then used to

estimate the change in the mean flow and the drag reduction. An

energy balance was then used to estimate the benefits and costs of

the wavy wall. Finally, the results of the analysis were used to

choose cases for LES calculations.

3.1 The Linearized Stokes Layer Solution

Solutions to the linearized Navier-Stokes equations with the

boundary conditions eqs. (9) - (11) will be derived here. The

linearized Navier Stokes equations are:

11
at ax. Re u2 i (12)

i .

= 0 (summation implied) (13)ax.

where the velocities are normalized by u , the friction velocity of

a rigid-walled channel, pressure is normalized by pu and the

symbol (~) denotes the periodic solution of the linearized

*problem. The problem is solved by the complex imbedding technique,

that is, the velocity components and the pressure are treated as

complex and are assumed to have the form:

i(ax I + 8x - Wt)
f(xlx 2 ,x3,t) = f(x2 )e (14)

-10-



with the wall motion given by

i( x I1 + Ox 3  t)

n(xlfx 3 Ft) = n0e (15)

The actual solution is the real part of the result.

For the purpose of this analysis, the moving wall is the upper

wall of the channel (x2=l) and the lower wall is considered to be

at - . Substitution of eqs. (14) and (15) into eqs. (12) and (13)

and the boundary conditions:

Sl(x l'lx3't) = -n U' (16)w 1 3

2 2(xlfl,x 3 ,t) _a (17)
at

L 3(xl 1l,x3 ,t) = 0 (18)

3 O1

-11-
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yields

P(X) nl cAe~(/) (19)

u (x )=-n CU- + -2- A)e0"E+n .2-c Ae -(W/c)C (20)
1 2 0ow 0

u (x)= -in (w- A)e_" in~ Ae (W/C)c (21)

u (x2  = A(e-(W/C)E -eO% (22)

r

where

=(a2 + 02 1/2 (23)

a [W,/C) 2 - iwRe )]/2 (24)

and

A=a 1 - (25)
(- W/C



The velocity u. is given by

1

u1 (x1 x 1 3 t R[u (x )eI

-R[u.(x Cos (x+O t

-I[u (x2) sin (aix + ex Wt) (26)

* where R indicates the real part and I indicates the imaginary

part. The Reynolds stress is the average over time and x, and

x3of the product £Ula2 and will be shown later to be the agent of

the principal effect of wall motion on the turbulent flow. From the

above results

(ua 1 G 2 > 2RU 1 R 2 + I(u 1)Mu 2)

1 2 cc+ Uw)[Aie 2 a r (A Cosa. &+A sina.~ e ( +/

2 0 w i r 1

(27)

-13-



where Ar and Ai, Or and ai denote real and imaginary parts of

A and a, respectively. This Reynolds stress is plotted in Figure

* 2. Note that it undergoes a damped oscillation and in the region

nearest the wall is opposite in sign to the unperturbed Reynolds

stress.

3.2 Numerical Solutions for Nonlinear Stokes Layer

In order to evaluate the effect of neglecting the convective •

terms of the Navier-Stokes equations in the Stokes layer analysis, a

numerical solution of the problem was obtained using a computer code

for unsteady viscous incompressible flows (reference 14). The code S

uses a factored semi-implicit solution algorithm that is explicit in

convective terms, and implicit in viscous terms. The method is

second-order accurate in both space and time. For the present p

calculations, the code solved the two-dimensional incompressible .

Navier-Stokes equations in a channel with the lower wall rigid, and

periodicity assumed for the inflow and outflow boundaries. The 0

boundary conditions, Eqs. (9) - (11) were applied to the upper wall

of the channel; calculations were performed both with the complete

nonlinear Navier-Stokes equations and with the convection terms - p

omitted. All quantities were nondimensionalized in "wall units,"

i.e., in terms of friction velocity, u T and viscosity, v. The

reference values were 0

0
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U = 18.848
m

I _o

c = .78 U
m

+

o = noU = 5

= Xu/v = 200

E)= 0

= Re = 640

The results for the wall motion-induced Reynolds stress near

* the moving wall are shown in Figure 3 for three different

computational mesh sizes and the analytical solution

[equation (27)]. The symbols are located at the computational mesh

points. Symbols + and x represent the finest mesh, open symbols

the coarsest mesh. Some discrepancy between the analytical and

numerical solutions results from truncation error in the finite

difference formulation. However, a more significant effect is

produced by the neglect of the convective terms in the linear

solutions. The nonlinearities reduce the amplitude of the response

of the fluid in the Stokes layer. It is important to note that in

the cases shown in Figure 3, the results are entirely due to the

interaction of the wall motion with the adjacent viscous fluid. No

turbulence is included in the computation.

-15-
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3.3 Estimate of Effect of Stokes Layer on Mean Pressure

Gradient

3.3.1 Mixing Length Analysis

The second step in the analysis is to obtain an estimate of the

drag reduction. The velocity and pressure in the channel flow with

a wavy wall can be decomposed into three components (reference 15).

ui(x,t) = <u (x2 )> + u (x,t) + u!(x,t) ; i=1,2,3 (28)

1|

p(X,t) = P(x I) + p(x,t) + p'(x,t) (29)

where <ui> is the mean velocity, ui is the periodic part of the

* solution induced by the wall motion, and ut represents the

turbulent fluctuations: P, , and p' have similar meanings. It

is assumed that the periodic component is nothing more than the

Stokes layer solution derived in the previous two sections.

-16-
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The nondimensional Navier-Stokes equations, averaged over time

and horizontal planes are (reference 11):

Ma ( iu2 + Ulu>) -dP + 1 a2  > (30)

2  12rx ax~

where it has been assumed that <u u + 2 > is negligible, i.e.,

that the turbulence and the Stokes Layer are uncorrelated. Assuming

the <u u> is not affected by the presence of <UlU 2 >, the mixing

length eddy viscosity model with Van Driest correction (reference

16), can be used to yield.

+ - u <U>] = Re (- <U lU 2> + dP) (31)

ax2  ax2  ax2  ax2  dx1

where

-Re (l-1x 21)/26 2
R Min{(K)2 , [.41(1-Ix 2 1)

2] [1-e I 1 (32)

Where K is a constant which will be determined subsequently.

-17-
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Calculations of the <1 a2> profile were performed with the

assumption of symmetry at the channel centerline which implies that

both walls are wavy. Integrating eq. (31) in x2 with the conditions

that c and <UlU 2> are zero at x2 = +i gives

i< > 11- [1 - 4cR (<l a > + x P )]1/2j (33)
-x2< 1 ;E e 1 2 2 ax1

The <Ul> profile (Figure 4) was then obtained by numerical
integration of Eq. (33) using a fourth order Runge-Kutta scheme.

The required values of <u 2 > were obtained from Eq. (27). The

mass flow rate

f <u >dx 2  (34)

was then obtained by trapezoidal rule integration of the calculated

<ul> profile. The value of the constant K in Eq. (32) was

determined by trial and error so that the mass flow rate calculated

from Eqs. (33) and (34) with <ai > = 0 would equal the mass flow
1 2

* rate used in the LES calculations to be discussed subsequently. The

value determined in this way was

K - 0.085

-18-
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3.3.2 Momentum Balance

The effect of the wall motion was determined from the momentum

balance. The time averaged momentum equation was integrated over a

control volume bounded by the channel walls and periodic in-

flow/out-flow boundaries. The first step of the process is

averaging over horizontal planes, which yields Eq. (30).

The next step is to integrate over the width of the channel to get.

12 12 +Ulu -2 2.P- +a 11<U2 + 2dx1 Re ax2 -1
T (35)

Since both the periodic and the turbulent Reynolds stress are zero

at the channel walls, Eq. (35) yields, for symmetric flow

dp - Re au -1U (36)
T X2 = 1 T

It is noted that since the walls are horizontal there are no

horizontal pressure forces in the momentum balance. Thus, the only

effect of the waviness that is felt by the flow is that of the wall

motion on the mean velocity gradient at the wall.

In order to determine the effect of wall motion on the velocity

-19-
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In order to determine the effect of wall motion on the velocity

gradient at the wall, Eq. (33) was integrated using Eq. (36) and

different values of dp/dx I . The value of the dp/dx I was adjusted by

Newton's iteration method so the calculated mass flux given by Eq.

(34) was equal to the mass flux of the unperturbed channel. The S

resulting increment in dP/dx I is assumed to be twice the value that

would be obtained with one moving wall and one rigid wall.

3.3.3 Results

The results for five specific cases are listed in Table 1. The

table includes results from numerical integration of equations (33), 0

and (34) , and from LES calculations which will be discussed

subsequently. The values listed for the changes in dP/dx I , from

Eqs. (33) and (34) are half the values actually calculated in order 0

to compare with the LES results which were obtained for a channel

with one rigid and one moving wall.

The mixing length analysis was used to calculate the wall

motion effects over a continuous range of the various parameters. A

few cases were then selected for LES calculations. Case 1 is the

reference case for which the parameters were listed in section 0

3.2. The value chosen for c corresponds approximately to the

convection velocity of large scale eddies (reference 17). The value

of five wall units for n+ is roughly the thickness of the viscous

sublayer and was considered to be the limit of applicability of the

linearized boundary conditions. The wavelength of 200 wall units

-20-



approximates the streamwise spacing of large eddies near the wall.

Case 2 is the same as Case 1 except for the negative value of c

which corresponds to a wave moving upstream. Case 3 corresponds to _

wall waves rotated 901 and moving in the spanwise direction. Case 4

is similar to case 2 to determine the effects of the magnitude of

the wave speed. o

The effect of the wall motion on the mean velocity profile as

calculated by the integral theory is shown in figure 4 for case 2.

The figure illustrates that the effect of the wall motion on the 0

mean velocity profile is felt throughout the channel. This will be

discussed further when the LES results are presented. The inset in

Figure 4 illustrates that the D<ul>/ax 2 at the wall is lower for 0

the wavy wall than for the rigid wall. The momentum balance shows

that this reduces dP/dx I . This figure also indicates the

resolution required to correctly calculate the flow by LES; the S

computational mesh should have a point 0.2 wall units from the wall.

An important observation is that the wall motion can

significantly affect the pressure gradient. The simplified theory 0

presented here gives a larger pressure gradient reduction than

LES. A major reason for this difference is that the Reynolds stress

is overpredicted by the linear theory (Fig. 3). S

The decrease in the driving pressure gradient can be explained

as follows. The wall motion sets up a Stokes-like layer in its

immediate vicinity. This layer has a "Reynolds Stress" S

<u1u2 > opposite in sign to the Reynolds Stress of the turbulence

itself. The added "Reynolds Stress" acts to decrease the turbulence

-21-
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production near the wall and thereby reduces the turbulent Reynolds

Stress and the shear force on the wall. Reduction of the shearS

stress must, by momentum conservation, be accompanied by a reduced

pressure gradient.

S

3.4 Energy Balance

A method of evaluating the net effect of the wall motion is to

examine the energy balance. The mean energy equation is derived by 0

taking the scalar product of the momentum equation with the velocity

and averaging over time and a control volume bounded by the channel

walls and periodic inflow, outflow and side planes. The resulting 0

energy equation is

-u dP/dx -- > + 1 < + +-
m 1 2 2Re ax2 1 2 3 u3)

T au. au.
f 1 -1 dVT ao V ax

where V is the control volume. In Eq. (37) < > indicates time and

horizontal plane averages evaluated at the moving wall.

In the rigid-walled channel, the energy required to move the -

fluid through the channel is balanced by the dissipation. The

moving wall contributes to the energy balance through the work done

by viscous forces and by the fluctuating pressure at the wall and by

changing the dissipation. Thus, any reduction in the required

- 2
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energy to drive the flow may be offset by the work required to

generate the Stokes layer.

Negative values of the wall pressure-work and positive values

of the viscous-work terms represent energy added to the fluid by the

F4  wall. These must be considered penalties to be deducted from the

reduced through-flow pressure-work requirement.

The various components of the energy balance are shown as

functions of the wave speed in Figure 5. The energy throughput S

increment is the mean velocity, Um times the change in the mean

pressure gradient, dP/dx I from its unperturbed channel (half the

change in dP/dx I found from the mixing-length analysis described in S

section 3.3). The <o2 >  and viscous wall work terms are evaluated

using the linear theory. The change in dissipation was not

U computed; it is estimated that the dissipation is reduced somewhat S

by the wavy wall so the results should be conservative. Clearly, a

large part of the change in the work required to drive the through

U flow is offset by the viscous work done by the wall motion. This is

independent of the direction of the motion. On the other hand, the

pressure work is direction dependent. For downstream wave motion at

moderate wave speeds, the pressure work is negative, indicating that S

the wall absorbs energy from the fluid. Thus, the fluid drives the

wall motion. For upstream wave motion, the wall adds energy to the

fluid through the < 2> interaction. This suggests that upstream •

wave motion is not possible for compliant walls because it cannot be

driven by the flow.

-23-
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The net effect of the Stokes layer on the energy required to

drive the flow through the channel is shown in Figure 6. A small

net decrease in energy required is produced by a wall moving either

upstream or downstream at moderate speeds; note that the change in

dissipation is not included. The theoretical curve shown in Figure

6 displays singular behavior around c = 0. This is an inadequacy

of the linearized theory.

The results shown in Figures 5 and 6 differ from results given

in an earlier interim report (Ref. 18). The reason is that in the

earlier report, the <Cil2 > contribution to Eq. (33) was reduced by

an arbitrary factor of 0.5 to account approximately for 5

nonlinearities (see Figure 3). The arbitrary reduction was not done

here. Also, in the previous work the value of U' used in all

calculations of quantities from the linear theory was the rigid-wall 0

value. Since the slope of the mean velocity profile at the wall

changes along with the mean pressure gradient, the present

calculations also include the correct value of U , given by Eq. 5

(36). Although the approximations used lead to results that are

only qualitative, the results suggest that (a) the effect of a wavy

wall is to reduce the energy required to drive the flow and (b) the

reduction is small.

In addition to the approximations already discussed, the

turbulent pressure fluctuation was not included in calculating the

pressure work term. The effect of including these fluctuations is

-24-
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unknown as the theory does not predict the change in the turbulence

quantities.

As the linear theory predicts a larger magnitude of reversed

Reynolds stress near the wavy wall than the nonlinear theory, it is

expected that the linear theory would overpredict the reduction in

the mean pressure gradient and the viscous work and the pressure

work at the wavy wall. A further illustration of the effects of the

nonlinearities can be seen in the variation of the intensity of the

velocity fluctuations produced in the Stokes layer. Figure 7 shows 0

the variation of the rms velocity fluctuations > near the wall

for the linear and the nonlinear Stokes layer solutions for case

2. The linear solution has larger (negative) slope (a1 u>/ax2 ) 0

at the wall than does the nonlinear solution. This suggests that

the actual viscous work would be smaller than predicted by the

linear theory. However, the errors in the predicted quantities are

expected to be small and to follow the correct trends. Therefore,

the linear theory is believed to be a useful guide for LES

calculations.

This study indicates that, in general, the wall must supply

energy to produce the conditions that result in reduced mean

pressure gradient. The question of whether a significant net e

reduction in the energy required to drive the flow is possible is

the essential one. This investigation indicates that the amount of

energy required from the wall is roughly equal to the amount of 9

energy saved by the drag reduction.

-25-
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I. "13.5 Extension to Compliant Walls

The theory developed above can be extended to provide a method

of estimating the drag in a channel containing compliant walls. As

in the theory presented above, the fluid is considered as a device

which responds to the wall shape by producing pressure fluctuations

at the surface. In a similar manner, one can construct a linearized

approximation to the dynamics of a solid wall, in which the wall is I

represented as a device which responds to the pressure fluctuations

by producing surface displacements. This is essentially a linear

control systems transfer function approach to the problem. In this I

view, the combined system is represented as shown in the figure

below.

I

II
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To make this calculation possible the following elements are

Ki needed:

1. The spectrum in space and time of the pressure

fluctuations on a wall in natural turbulent flow. This

could be obtained from either an experiment or a full or

large eddy simulation. To date, only limited portions of

the necessary data have been published, namely the time

spectra of the pressure fluctuations. •

2. A dynamic linearized model of the wall in which the input

is the pressure fluctuations on the surface and the output 0

is the surface displacement. This is just the dispersion

relation for the surface and needs to be specified from

the dynamics of deformable bodies. A more sophisticated

model might include the effect of the surface shear

stresses; however, these are not likely to be important. . -

3. A model for the effects of the wall surface displacement

on the flow. The Stokes layer model presented above

should be adequate for this task.

The suggested combination of these elements would produce a

model capable of predicting the drag in a compliant wall channel 0

containing a turbulent flow. On the basis of the experience

-27-
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described in this report, it is anticipated that this theory will be

useful in estimating the change in drag and the properties of the _o S

surface which would produce the greatest drag but will not be

quantitatively accurate. Unfortunately, time restrictions

prohibited the present study from investigating this model. S

3.6 Pressure Drag

The momentum balance shows that, under the approximations 0

employed, there is no pressure drag on the wall. However, an

estimate of the pressure drag on the actual wavy wall can be

-Iobtained by assuming that the Stokes layer pressure at the displaced

wall would obtain at the wavy wall. A "drag coefficient" can then

be found by integration.

2S

CD > (38) -

Dp PU 2 x1
mS

Using equations (11) and (19), this becomes

CD = 2 acAi/U 2  (39)

I 

I
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The viscous drag of the unperturbed channel is in equilibrium with -

the pressure drop: .0

CD m4/U (40) -0

so that

2
C /C = -n acA./4 (41)D D o0

p

For cases 1, 2, and 4 of Table 1, the pressure drag from Eq. (41) is

3.9 percent, 10.4 percent, and 13.2 percent respectively. For

spanwise waves, no pressure drag is produced. The LES results shown S

in Table 1 will be discussed subsequently.

4. COMPLIANT WALL DYNAMICS 0

The work on the effects of moving walls with prescribed shapes

on turbulent flow provided considerable understanding of the

interaction between wall motion and the fluid flow. The principal e

purpose of this work was directed at understanding the interaction

of a compliant wall with the flow. In this case, the equations for

the wall motion must be solved simultaneously with the fluid

equations.

-
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If only streamwise variations in wall shape are allowed, the

dynamic equation satisfied by the displacement y = n(x,t) of the 0

plane surface bounding an elastic medium, including linear damping,

is the second order equation (Benjamin, reference 3)

2[ 2

a n 2  2 C - p/m (42)a o x a t at

where

ao is the velocity of free waves

C is the damping coefficient

p is the external pressure applied to the surface

x is the streamwise coordinate

m is the mass of the elastic material per unit surface area

Equation (42) can easily be extended to allow variation in the

spanwise direction.

Yang and Heller (reference 19) analyzed a viscoelastic plate

sandwiched between a rigid plate and flexible membrane. They

obtained a pair of equations similar to equation (42) containing

several additional terms; they allow for variation of the surface 1

displacement in two directions. The major omissions in both of

these approaches are the shearing stresses and rotary inertia in the
dispersive material.

-30-
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Accurate accounting for all possible effects is shown by

E Achenbach (reference 20) to produce a set of three rather -

complicated equations which admit many modes of vibration, each

having its own dispersion curve. However, it is not known whether

W all modes are important in the fluid interaction problem. The modes

associated with shearing and rotational motions are expected to

interact much more weakly with the flow than the modes due to

bending and thickness deformations produced by a fluctuating

pressure.

Under the compliant Coating Drag Reduction Program sponsored by

the U.S. Office of Naval Research, a considerable amount of work has

been done to determine the characteristics of elastic surfaces which

could interact strongly with the fluid flow. Much of the effort has

been directed toward development of mathematical models ;f various

combinations of layers of viscoelastic materials. Duncan and Hsu

(reference 21) studied single-and double-layer viscoelastic

coatings, and estimated the material properties required for maximum

interaction with pressure fluctuations of the flow. Kalnins and

Evrensel (reference 22) demonstrated how a composite, compliant

coating could be modeled by a one degree-of-freedom system, similar

to a membrane. At the time of the present work, a definitive

description of a compliant surface had not been developed. The

viscoelastic sandwich structure studied by Yang and Heller provided

a simple means of testing the feasibility of coupling the LES with a

compliant surface. The equations derived for the surface deflection

-3
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due to an imposed pressure distribution represent in an approximate

way surfaces ranging from simple membranes to viscoelastic layers. --

The compliant wall is assumed to be a laminated structure

composed of a layer of a viscoelastic material between a stiff plate

and a thin flexible plate.

I

The base plate is assumed to be subjected to small deflection, while

the upper plate may undergo large deflections and, in addition, may

be subjected to in-plane forces. According to Yang and Heller,

experiments have shown that the Poisson's ratio, v, of PVC foam

under transverse loads is nearly zero. This allows the assumption

that the middle layer can be treated as a viscoelastic spring. The

equations of motion of the composite pl " then become
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1M T2 + h3 + C a a 20
at at2 3 (t at

2

U + k3 ( I  n + DV4 n l
- ~'VnI  N x ax2

2a NZ - p(x,z,t)
az 2

and

2 2
a n2 1 ani an2  an I

M2 at 2 + 6p3h 3  t2  3 at at

+32 n ) + D2V 4n =0 (44) •

whereM ph + 2 _ 1 + and p hl h

1 3 3 3 P1h1 ' M2  P3h3  P2 h2 ' 1 p2  h 2

nl(x,z,t) and n2 (x,z,t) are the masses per unit volume, thicknesses

and transverse displacements of the upper plates and the base plate,

respectively, and P3  and h3 are the mass per unit volume and

thickness of the viscoelastic medium. The quantity C3 is the

damping coefficient of the viscoelastic middle layer.

-33-
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w The spring constant k3 is related to the elastic modulus and the

thickness of the middle layer by

3

The quantitities D1  and D2 are the bending rigidities of the

upper plate and the base plate, respectively, with elastic moduli

E1 and E2 and Poisson's ratios v, and v2:

Eih i
D. - ; i = 1,2 (46)

1 12(1-v.)2

The function p(x,z,t) in equation (43) is the boundary layer

pressure fluctuation.

If the base plate is completely rigid so that D+ , the base

plate deflection can be neglected, eliminating equation (44).

Equation (43) then reduces to

M 2 3 at + k3 q + DIV 41 at 2  3 t 3 1-

2 2 (47)a2n  a2n =

-Nx 2  NZ 2  - p(x,z,t)

* In what follows, all lengths are nondimensionalized with the

mean channel half-width, 6 , densities with the fluid density, p,

- 4
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velocities with the fluid friction velocity, u = V T /p, and
w

N pressure and stresses with p u2. The values used for the

dimensional quantities are listed in table 2.

With the compliant wall displacement, r , included as a

dependent variable along with the fluid velocity components and the

pressure, equation (47) is solved simultaneously with the channel

flow equations by writing it as two first order equations

S 3t 
(48)

8t [C 3 + k 3n + DjV 4 n N X7

(49)
Nz--7 - P]

which are solved simultaneously with the fluid flow equations by the

(implicit) Crank-Nicolson method.

5. LARGE-EDDY SIMULATION

The large-eddy simulation (LES) code used in this work is

described in Reference 9. The equations for the large-scale flow
.- field are obtained by integration of the filtered, three-

dimensional, time-dependent Navier-Stokes equations. The small-

scale field motions are simulated through an eddy-viscosity model.

The program permits simulation of a turbulent channel flow at

moderate Reynolds number (Re 14000).
T
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The LES code was shown to capture most of the important

features of the turbulent channel flow. Calculated results are in

good agreement with experimental data for statistical quantities.

Low- and high-speed streaks alternating in the spanwise direction

found in the numerical results were in good qualitative agreement

with experimental observations. The calculated production of

turbulence was found to be intermittent in a manner that strongly

resembles that seen in the laboratory.

The impetus for the present work was the capability of the

three-dimensional time-dependent, numerical simulation to provide

detailed, instantaneous information about the flow at many spatial

locations. This information can be used effectively to study the

structure and statistical properties of the flow. For the case of

time- and spatially-varying boundary conditions, this capability

provides a unique opportunity to study the mechanics of the

interaction between the wall motion and the turbulent flow.

The code originally was developed for use on the ILLIAC IV

computer at NASA/Ames Research Center. Some of the calculations for

prescribed wall motion discussed in this report were performed on

tha. computer. The code was modified for use on the NASA/Ames CRAY

computer where the remainder of the calculations were done.
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The LES calculations were made in three stages. First, a

K preliminary calculation was made to evaluate whether the choice of

wall parameters would produce observable effects. Then, after the

analytical studies provided guidelines for the choice of wall

u!s parameters, a second set of calculations was performed. Both stages S

employed a coordinate mesh that consisted of 64 points in the x, and

x2 directions (streamwise and normal to the walls) and 128 points in

the x3 (spanwise) direction. In stage two, both prescribed wall S

motion and compliant wall motion were studied. In the final stage,

102 points were used in the x2 direction to better resolve the near

wall region. Also, the terms of the global energy balance equation "

and pressure drag were calculated.

In the following sections, the results of both the coarse mesh

and the fine mesh LES calculations will be used to illustrate the

effects of the wall motion. Some of the results of the coarse-mesh

calculations were presented in reference 18.

0 i

5.1 LES Results for Prescribed Wall Motion

The four cases discussed previously (section 3 and Table 1)

were computed using the LES code. Since the sign of Reynolds

stress -<ulu 2 >, where u" ui  <ui>, for a steady turbulent

channel flow is negative near the upper wall, wall parameters were

selected for which the linear theory, Eq. (27) gave positive values

of -<U 2> ; this should reduce the production of turbulence and

yield drag reduction.
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The first computational mesh used in the LES code was

approximately the same near the wall as the coarsest mesh shown in

Figure 3. The finest mesh used for LES calculations had 102 points %

in the x2 direction, and near the wavy wall approximately I

corresponded to the finest mesh shown in Figure 3. The details of

the computational mesh are listed in Table 3. Note that the

distance from each wall in wall units is included in the table.

These values are only approximate since they are based on the

friction velocity of a rigid channel. For the channel with

different boundary conditions on opposite walls, the mesh spacing in

wall units will differ slightly for each wall.

Starting from an initial velocity field representing the flow

in the rigid-walled channel, the governing equations were integrated

forward in time with the prescribed moving wall conditions until the

numerical solutions reached statistically steady states. The mass

flux was held fixed while the mean pressure gradient was allowed to

float.

5.1.1 Effect of Wall Motion on Pressure Gradient

In Figure 8a, the pressure gradients for the rigid-walled

channel and for the wavy-walled channels of Cases 1, 2, and 3, of

Table 1 are shown; the coarse mesh was used for these cases. Using

the fine mesh, cases 1 and 2 were recalculated and an additional

case (case 4) with a higher-speed upstream-traveling wall wave was

run; these results are given in Figure 8b. The terms of the energy

balance equation were also computed in the fine mesh calculations.
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All cases have an initial transient period wherein the solution "1

adjusts from the rigid wall solution to the moving wall solution. S

Case 4 was started using the solution from the last time step of

Case 2. This resulted in smaller initial oscillation and faster

VA damping.

The coarse and fine mesh results are similar; the pressure

gradient reductions agree quite well. The coarse mesh produces a

reduction in dp/dx 1 of about 5 percent for Case 1 and nearly 20

percent for Case 2, while the fine mesh produces reductions of about

3.5 and 17 percent, respectively. For case 3, the coarse mesh

calculation produces a 10 percent reduction in dp/dx I . The high

speed case 4 calculated with the fine mesh yields a greater

reduction (20 percent). The trends are consistent with the linear

theory predictions.

5.1.2 Effect of Wall Motion on Turbulence

Examples of the turbulence statistics from LES calculations are

shown in Figures 9-16. All the figures show results of the fine mesh

calculations. All cases show similar effects of the moving wall on

the turbulence statistics.

In Figure 9, the mean velocity profile is shown for Case 2

using the fine mesh; the behavior is similar to that of the Stokes

layer theory shown in Figure 4. Of particular interest is the

expanded inset which shows the high resolution of the fine mesh

which accurately predicts the lower value of the d < ul >/dx 2 at the

moving wall.
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Figure 8 shows only 400 time steps for the coarse mesh cases,

1200 steps for the fine mesh cases 1 and 2 and 900 steps for case

4.The total run length for the coarse mesh cases was 1600 steps; the

profiles of the various quantities shown in Figures 9-16 were

calculated by averaging over horizontal planes and the last 200 time

steps. Profiles from the fine mesh calculations represent averages

over the last 300 steps after a total run length of 1.200 steps for

cases 1 and 2 and 900 steps for case 4. Because of the short time- 0

averaging period, the profiles suffer from some statistical noise.

Nevertheless, certain trends can be discerned which indicate the

effects of the wall motion on the turbulence.

In Figure 10, the horizontally averaged turbulence intensity

components, <u 2 >/2 from Case 1 for the lower and upper halves of

the wavy-walled channel, respectively, are shown. The only

significant difference between the two halves of the flow occurs

very near the upper (wavy) wall, where the uI and u2  intensities
I

increase significantly. The effect is shown more clearly in Figure

11, where the turbulence intensity <u7 2 >1 /2 is compared for the

rigid and moving walls for cases 1, 2, and 4. The intensity is very

high at the moving wall in all cases but rapidly falls to a

variation similar to that near the rigid wall.

In Figure 12 the turbulent shear stress for Cases 1, 2, and 4

is compared for the rigid and moving walls. Near the wavy wall the

shear stress changes sign as expected. Near the channel center,

statistical noise obscures any effects that might be present.

4
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In Section 3 of this report, it was shown (Fig. 3) that the

nonlinear terms of the Navier-Stokes equations have a large role in

determining the effect of wall motion on the flow Reynolds stress

and, consequently, on the drag of the channel. In Figure 13, the

Reynolds stress from the nonlinear Stokes layer solutions for cases

1, 2, and 4 is compared with the LES results. Clearly, turbulence

has an appreciable effect on the moving-wall/flow interaction. In

particular, for the downstream-moving wall, LES produces much less

<u u2> reversal. Also, it is clear why the fine mesh LES solution

yields less reduction in the channel pressure gradient than the

coarse mesh solution. The high resolution mesh, gives a

significantly smaller Stokes layer contribution to <u"u">
1 2

Two point correlation functions

<fi(x ) i (x I + r 1 x 2 ,  x3)
R ii(x2'rl) 1 2 (50)

<f"fxff'("x x + r )>

1-i 1- i ' x3 51
Rii(x2 2rr3) = 2 250

<ff.(x)>)>

Rii (x2r3(f 2 (x)> (1
1 -

where f" represents the fluctuating velocities, ui" for i = 1,2,3,

or the pressure fluctuation, p for i = 4, are plotted in Figure 14 0
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at two vertical locations, one near the lower rigid wall and one

near the upper wavy wall for case l.The channel centerline is

located 640 wall units from each wall. In this section, the < >

indicates an horizontal average. Since the statistics were not

time-averaged, they suffer from statistical fluctuations,

particularly at large separation distance. The longitudinal

correlation near the rigid wall shown in Figure 14(a) is like that

of Reference 9 for the rigid-walled channel. For small separation

distances, the correlation for uY is larger than that for the

corresponding transverse components, u2 and u3 and the pressure, and

it extends over much longer distances than do the other

correlations. This is also true in the upper half of the channel

except very near the boundary. As the wavy wall is approached

(Figure 14(b)], the correlation becomes dominated by the wall

motion. At x2= .914, (yw = 55 for a rigid walled channel) some
2 w

effect of the boundary motion is apparent in u" and p. A smaller

effect is discernible in the u1 , while u3 is completely

unaffected. These comparisons show that the effects of the wall

motion are felt for a considerable distance into the flow.

In the spanwise direction, the two-point correlations show very

little wall motion effect except very near the upper boundary where

the u" u" and p become highly correlated across the entire span
1 u2

of the channel due to the two-dimensional nature of the wall motion.

Energy spectra of the turbulence are shown in Figure 15 for the

same two locations as for the two-point correlations. The effects
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of the wall motion are evident in the spectra of the longitudinal

and vertical energy components [Figure 15(b)] where shar peaks

occur at the wavenumber of the prescribed wall motion.The wall

motion makes a negligible contribution to the spanwise energy

spectra.

The same comments generally apply to the results of case 3

except that the largest effects occur in spanwise two-point

correlations and energy spectra. S

5.1.3 Energy Balance

As shown in Section 3.4, the presence of a moving wavy wall 0

introduces two new terms to the kinetic energy integral equation.

One term is the result of work done by the fluctuating pressure on

the vertical motion of the wall. The other term is the work done by

the viscous forces. These terms represent energy supplied or

absorbed by the wall and must be compared to the reduction in the

U energy required to drive the main flow through the channel. S

In Figure 16, the components of the energy balance from the LES

are compared to the results of the linear theory. Three cases are

represented for the LES: the downstream-traveling wave (case 1),

and two upstream-traveling waves (cases 2 and 4). The LES results

are generally in good overall agreement with the linear theory. The

pressure work term is particularly well predicted by the theory,

whereas the theory estimates the viscous work to be higher than the

LES result. These results are consistent with those discussed
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previously in connection with Figure 7 (Section 3.4), where it was

shown that the inclusion of the nonlinearities significantly reduced

the gradient of the turbulence intensity near the wall. This also

results in a reduction in the viscous work term. It was found that

the intensity gradient was further reduced in the LES. _

The net result of the energy balance is shown in Figure 17.

Again, the results of the linear theory are reproduced for

comparison. The LES results seem to agree with the linear theory in 0

predicting a net decrease in the energy requirement for both

upstream- and downstream-traveling waves in the low-speed range.

However, the calculation of the net energy reduction involves a

small difference between quantities which are of similar magnitudes,

each of which is subject to some uncertainty due to numerical error

and statistical noise. Although, it cannot be stated unequivocally

that a net drag reduction is produced, the fact that both LES and

linear theory predict such a reduction makes it probable that a

small net drag reduction is actually achieved.

5.1.4 Pressure Drag

S
In a manner similar to the calculation of pressure drag by the

linear theory in Section 3.6 of this report, the pressure drag was

calculated in the LES by integrating the pressure fluctuations at

the fictitious wall over the actual wall, i.e., as
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C ' -Xl>  (52)

P P um  1_.

r
where P is the resolvable portion of the turbulent wall-pressure

fluctuation from the LES calculation. The results of this

calculation are included in Table 1 as compared to the drag of the

unperturbed channel. For cases 1 and 4, the pressure drag predicted

by the LES is somewhat smaller than predicted by the linear theory.

These comparisons are only a qualitative estimate of the

channel drag since there is no actual pressure drag with the

linearized boundary conditions. The interaction of the pressure

fluctuations with the real wall cannot be evaluated except by use of

a calculation scheme that employs the complete nonlinear boundary

conditions. This needs to be done if valid results are to be

obtained. 0

5.2 LES Results for Compliant Wall Motion

5.2.1 Effects of Turbulence on Wall Motion

Some calculations were performed for compliant walls using the

coarse mesh LES program coupled to the compliant wall Equations (48) 7

and (49). Several cases were calculated using various values of the

elastic constants, k3 , C3 , and D1 and membrane tension Nx and Nz

(table 4). The first case used values given by Yang and Heller as •

-45-

I -



• . . -..

characteristic of a Mylar membrane and a PVC plastisol substrate.

The non-dimensional tension forces applied to the membrane were

varied from 0 to 104 (corresponding to 0 to 300 n/m). The material

properties from Yang and Heller (reference 19) correspond to the --

following non-dimensional parameters .1

2 = k/(PUJ = 15143 = 3 / Tu

C3 = C3/pu) = .098 1
D DI/(pu 23 1.58.: .u *1i 5

N= N/(pU2 6) = 9082Nx= z = x/uT

Figure 18 shows the time history of the rms wall deflection (in wall

units) and the rms wall velocity, nt/uT for the first case where

S= N= 9082. The calculations appear to have reached a
x z

statistically steady state. However, the magnitude of the wall

deflection is very small, on the order of 0.02 wall units.

As the prescribed wall motion cases had a nondimensional surface

deflection for the prescribed wall shape of five wall units and

produced a small effect, this deflection will produce entirely

negligible effects. As should be expected with such a small surface

response, no effect on the mean pressure gradient was observed.

-46-



Insight into the nature of the interaction is obtained by

examining the dispersion relation for the surface. For the general

viscoelastic composite material described by Eq. (47), with damping

coefficient, C3 = 0, the natural frequency is,

2 n n n n n n!
-3 + 2 + x z 2+ (_ 4] 1/2+_I[- -! +a N(-2) I+ - -i) + ()]}/
M M~ a
1 1 (53)

where nx, and nz = 0,1,2 . ., , = Ml/ p- and a and b are the

length and width of the membrane.

For a simple membrane with k= 0 and negligible stiffness, the

natural frequency becomes

2 n_ bz2 1/2 (54)
2IJ nx) 2+ - nz) 2,

(i= {_---[Nx(--)2 NZ(- ) }( 4

I]M a zTh 11/

In the present case

a = 2b = 2-r
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so
1~ ., 2, il

O -

11_ [x(nx )2+ Nz(2n )2(}/2 (55)
2 X X z.'

The characteristic time for the various modes can be found from S

T 27/wc -

For N/"Mi = N/M = 2000

002 12,
T 27[ 2 (2n 2 ]  (56)*c n2 + (2n) 2

Values of Tc for the first 6 modes are listed in Table 5.

The parameters used for the calculations shown in Figure 18

correspond to a natural frequency of a spring-mass system which is

approximately

TW* 31/2- = (-) _45
u M1
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where w* is the dimensional frequency in Hertz.

An estimate can be made as follows for the frequency of the

turbulence pressure that contains the maximum energy. From

experimental measurements (reference 17) the convection velocity of

the turbulent pressure fluctuations at the wall is estimated to be

.8U m . A nominal value for the mean streamwise extent of the eddies

producing the pressure fluctuations is two hundred wall units; the

corresponding value for the non-dimensional frequency is

w 300

Anticipating that resonance between the turbulent pressure

fluctuation spectrum and the vibration characteristics of the wall

is necessary to produce significant effects, the parameters of the

surface equations were adjusted to make the natural frequency of the

u surface more closely correspond to the characteristic frequency of

the fluid flow. The membrane tensions were set to zero

(Nx = Nz = 0), the viscoelastic damping, C3, was zero, the bending

stiffness D1 was increased and the spring constant, k3, was

increased to raise the vibration frequency (case 2 in Table 4). The

resulting mean rms wall deflection was n+  .013, indicating no

resonance between the wall and the flow, and as before, there was no

noticeable effect on the mean channel pressure gradient. This

indicates that the estimate of the required resonant frequency was

incorrect. For these small wall deflections the linearized
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treatment of wall boundary conditions is accurate.

Other calculations were made with the surface equations

containing only the membrane tension terms. That is,

0

k = C = D = 0

For the first such case (case 3 in table 4) 0

x z 200

M1 M1

This produced a wall vibration response to the turbulent pressure

fluctuations which increased continuously (Figure 19), showing no

tendency to stabilize. The calculation was halted when the

amplitude of the wall deflections reached five wall units due to

anticipated errors from linearization of the boundary conditions. . .

Increasing x/iMl and z to 2000 produced a wall vibration

which increased stepwise (Figure 20). Starting from no vibration,

the wall amplitude increased and appeared to stabilize at an rms

value of two wall units. After about 600 calculation steps (a time S

of about 0.2 2 5 6/u T), the amplitude again began to increase, and then

stabilized at about four wall units. After another short period of -

stability, the amplitude again began to increase. 0
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* In order to obtain more insight into the nature of the

interaction the pressure fluctuations and the wall shapes for the

various cases calculated are examined. In Figure 21, the

distribution of pressure fluctuations on the compliant wall is

plotted for the case of a membrane with x = Rz/M = 2000 at

." integration step 600 (T = .225); this pressure distribution is

typical. It is quite three-dimensional and contains a variety of

wavelengths. Ry contrast, the surface shape is characterized by

longer wavelength displacements and, in most cases, near two-

*dimensionality corresponding to the natural modes of vibration of

the membrane. Figure 22 shows the surface displacement for the Yang

and Heller surface which has an rms displacement of about

* .02 V/u (Figure 18). Figure 23 shows the surface shape for the

modified Yang and Heller surface (case 2, table 4) for which the

damping, C3, was zero, the membrane tensions were zero and the

* spring constant, k3 , was adjusted to increase the natural frequency

of the elastic material. This surface shows more three-

dimensionality but is still dominated by long wavelengths and small

amplitudes. The nearly two-dimensional surface displacement in

Figure 22 corresponds to one of the natural modes due to the

dominant membrane terms of equation (53), whereas the more three-

dimensional displacements in Figure 23 are due primarily to the

spring constant term k3 n and the stiffness term DV4 n. Recall

that in this case, the membrane stretching terms were absent (Nx =

SNz 0).
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These results indicate the need for information about the -

space-timp spectra of the pressure fluctuations in order to "tune"

the surface parameters to achieve resonance with the flow. Such

information would be very difficult to obtain experimentally, but it

could be obtained using LES. Such calculations are suggested as

possible future work.

The largest surface displacements were obtained for the S

membrane surfaces. Figure 24 shows the membrane surface for the

case with N x/l= N z/l = 2000 at five different times. The

membrane deformation is nearly two-dimensional. The stepwise 0

behavior of the rms amplitude of the membrane vibration discussed

previously is found to correspond to a progressive development of

different modes of the vibration. S

The dispersion relation Eq. (55) shows the reason for the two-

dimensionality of the membrane surface. First, the computational

region is rectangular, so that the lowest mode is dominated by the S

lowest mode of the longest side, which is in the streamwise

direction. For integration times shorter than the characteristic

time of the second longitudinal mode, (see table 4) both streamwise --

and spanwise waves develop. Then, as the time for the second

longitudinal mode is reached, at approximately T = 0.142, the

surface develops the wave shown in Figure 24 (a). As the S

integration proceeds further, the subharmonic wave begins to develop

and becomes complete as the integration time exceeds T = 0.28

Figures 24 (b), (c) and (d). Further integration increases the S
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amplitude of the subharmonic wave while the higher frequency waves

in both the streamwise and the spanwise directions are damped,

yielding the smooth, two-dimensional wave shown in Figure 24 (e).

*Comparison of the compliant-membrane calculations with the

prescribed-wall results reveals that while the compliant-wall shape

was roughly two-dimensional and sinusoidal like the prescribed wall,

with comparable amplitude, the dominant wavelength produced (the

region size) was much longer than the prescribed value (.05 x region

size). The prescribed wall motion produced a discernible drag

reduction because it had the proper length scales to interact with

the energy-carrying motions of the flow. The compliant walls had

wavelengths too long to interact significantly with the

turbulence. To match both frequency and wavelength of the 0

turbulence the wall wave will need to have a wavespeed about equal

to the flow speed. This is the essential criterion and requires

very low wave speeds for solids. So the wall will need low tension,

high density, and low stiffness.

5.2.2 Wall Motion Effects on Turbulence

The only compliant surfaces for which noticeable effects were

produced in the flow were the membranes. Results for the case

with Nx /M= NziMI = 2000 are shown in Figures 25-28. In Figure 0

25 the turbulence intensity components, (u1)' (u 2 (u 3 for

the lower and upper halves of the channel respectively are shown.
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As for the prescribed wall case shown in (Figure 9), the only

significant differences occur very near the upper wall, where the

(u")' and (u")' increase due to the wall motion. Here, the1 2

greatest effect is seen in the ul-component, while the u2-component

has only a slight increase in intensity due to the wall motion.

In Figure 26, the turbulent shear stress is shown. In contrast

to the prescribed-wall result, there is no noticeable effect.

Two-point correlation functions as defined by Eqs. (50) ari

(51) are shown in Figure 27 at the same distance (x 2= + .990) from

each boundary. At the lower boundary [Figure 27(a)] the

longitudinal correlations are typical of turbulent flow near a rigid

boundary. Near the upper boundary [Figure 27(b)], the longitudinal
I

correlations for the pressure and the spanwise velocity component,

u3 , are unaffected by the wall motion, while the uI and u2

components clearly show the long wavelength of the boundary shape.

S1As expected, the effect did not propagate very far into the flow.

The next level at which the solution was examined was at x 2= .941

no effects could be seen.

In the spanwise direction, the two-point correlations reveal

the two-dimensional nature of the wall motion. The pressure and u3 -

velocity correlations are unaffected by the wall motion, but the

uI- and u2-components are highly correlated across the entire span

of the calculation.

Energy spectra of the turbulence are shown in Figure 28 for the

same two locations as for the two-point correlations.
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The longitudinal and vertical energy components show a significant

increase due to the wall motion in the energy contained in the lower

wavenumber range.

5.3 LES Results for Other Types of Wall Conditions

5.3.1 "Smart Wall" Experiments ]
In the belief that the optimum drag reduction would result from 0

a wall that destroyed all of the turbulent pressure fluctuations,

cases which imposed such a boundary condition were run. In the

"standard" problem, the three velocity components, ul, u 2, and 0

u3, are specified at the wall and the pressure is computed. In the

modified calculation, the u, and u3 velocity components were

U specified to be zero, and the pressure was specified to be constant S

at the wall while the u 2 velocity component was computed. This

corresponds to a porous wall with a plenum behind it. Calculations

resulted in a higher mean pressure gradient indicating that the

technique actually results in increased drag.

5.3.2 Distr4buted Suction/Blowing 0

A boundary condition which represents a distribution of suction

and blowing through a wall without wall motion is

U= u =0
1 3

u2 = A sin (axl+ ax3 - Wt)

The specific formulation used here has a simple traveling wave form.
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Calculations were performed for this formulation both with LES

and the mixing length analysis. For a value of A which gives the

same u2 amplitude as the moving walls, the Stokes layer Reynolds

stress is smaller than when the accompanying uI boundary condition

is present. As a consequence, the effect on the mean pressure

gradient is less than for the moving wall. Another result was that

the change in the mean pressure gradient was positive for waves -1
moving downstream and negative for waves moving upstream. That is,

downstream-traveling waves produced a drag increase, and upstream-

traveling waves produced a drag reduction. 0

5.3.3 Longitudinal Grooves

6

A drag reduction technique that has been shown to be effective

experimentally is that of longitudinally-grooved surfaces having -

groove depths ard spacings on the order of the turbulent wall-streak 0

and burst dimensions (reference 23).In order to investigate the

applicability of LES, two cases were calculated for longitudinal

grooves of sinusoidal profile. The surface shape was described by _

Eq. (11) with a = 0 and W = 0. The boundary conditions were Eqs.

(9) and (10). The values used for the other parameters were

+
o  5 and 6

-.

=40 and 8
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i The values of a correspond to a wavelength (groove spacing) of 100

and 500 wall units, respectively.

The results were that the short wavelength case produced a

w slight increase in the mean channel pressure gradient, while the

long wavelength case showed essentially no change in the pressure

gradient. Experimental results (reference 23) show that sharp-edged

grooves with spacings of 10-20 wall units are required to produce a

significant effect. The fact that no effects were observed in the

LES with smooth grooves is consistent with those results.

6.0 LES IN GENERALIZED COORDINATES

1 K It was shown in a previous section that the use of linearized

boundary conditions places limitations on the magnitude of the

parameters defining the wall motion and especially, on the

4 1 amplitude. Furthermore, the values required to produce interesting

effects are close to the limits of validity of the model. In this

section, a formulation of the equations for large-eddy simulation of

the channel flow using the exact wall boundary conditions is

presented. The formulation is based on a generalized coordinate

transformation applied to the Navier-Stokes equations and then

specialized to the case of flow in a channel with one flexible

wall. Implementation of the formulation was beyond the scope of the

present project, but is required if LES is to be used to explore the

significant part of the parameter space. This section documents the
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derivation of the equations, provides some analysis of potential

sources of difficulty, and suggests the procedure for completing the

analysis.

6.1 Governing Equations

The complete nonlinear Navier-Stokes equations, with velocities

normalized by the friction velocity, lengths normalized by the
2

channel half-width and pressure normalized by puT , can be written

a Ej _ 1 a aF3 D1 ( _ ( 5 7 )
at ax. Ra3x x

3 e xk k

rd where
pu

Ul 1 j i" u

D u ;E = u + 6 ; F = (58)
2 j 2 j 2j2
uLuu u

3 j 3

and

u

R (59)
e v

T
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i 6.2 Boundary Conditions

The boundary conditions for flow in a channel consist of the

U condition of no-slip at the channel walls and the condition that the 0

velocity components are all periodic at the inflow and outflow

boundaries and at the lateral boundaries: -.

ui(x l,0,x 3 ,t) = 0 for i = 1,2,3

U1 (x,h,x3,t) = u 3 (xl h,x 3 ,t) = 0

u (x h a(x)
ul2 1 h'x 3 't) =t (X 1 'x3't)

ui (x1  + a, x2,x 3 ,t) = u i(x1 ,x 2 ,x 3 ,t )  (60)

u (xlx 2 x 3 + b, t) = u (x x2x 3 t )

* 0

where h is the instantaneous distance between the channel walls and

a and b are the length and width of the computational region (note

I that the definition of x 2 has been changed so that x 2 = 0 is the

lower wall and x2 = h is the upper wall).

6.3 Coordinate Transformation S

Define a general transformation of the form 2
= t (61)

f(xj,t) for i,j = 1,2,3
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where E2 is defined so that E2 =0 is the channel centerline and the

channel walls are at 2 =*~

The chain rule yields

a + j (62)
a t 8 a t a.

and 0

a -

(63)ax.- ax. ac.

The inverse transformation is

a T+ a a (

and

4a-ax j a (65)
a ax.-
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with Equations (62) and (63), Equation (57) can be written

1L + J1 1 a J E( at ax kk)

- JD [L(J 1 ) + I (J- 1 a~
71 J T0

Jk aE~- ( ax R~J)=p D (66)
jk eT

where J is the Jacobian of the transformation

j 1~ a 3.aj ak
6 -ijk -YCmn ax ax (67)

and

v2 D x a aD~ (68)

and after some manipulation, it can be shown that equation (66)

becomes, for incompressible flow,

a j-1 3~ =0 (69)

j k
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and

aT + a ax k k)

-i (70)

+ J C1 P) J V2u
ac. ax 1k R 1j k e T

6.4 Filtering

rS

The next step in developing the flow equations for large-eddy

simulation is to apply a filter to Equations (69) and (70). The

filter used by Moin and Kim (reference 9) will be applied in the

transformed coordinates. This is equivalent to assuming that the

small scale fluctuations move up and down and stretch with the

moving wall. The filter takes the form

43
f(Ei 'T) = fffv f(i 'l) [ n G(Ek- k)d] (71)

k=l

where, for i = 1 and 3
Up

E 6 E/ I 2 2 '--

G(Ei- i) = 6 1/2 exp [-6(E i - ,2 i (72)
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and for i=2 0

I for A)< < +A+

G ( 2 ~ 2  ( ~ ) 0 ( 2  f o r > +2 A (7 3 )

and < A
where

2~( 2 . 2  2.
j+l j

and

K A( 2 ) =~ K.~2 )(75)

U for

*~ ~ + 2i)< <2~2(2 + 2+)(76)

6.5 Generalized Equationsj

It is assumed that the wall shape consists only of large scale

variations. Applying the filter to Equations (69) and (70) yields

the dynamical equations of the large-scale flow field in the

* transformed coordinates.
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The continuity equation becomes:

_a J- i ) Q o(77) ,
aJ axk  k)

and the momentum equations are:

a (a-i) + 1 (- )+ (J-l% T.U

T 1 aT ax k k
(78)

+ (j-2-a ax ik Re  u

k e T

The product u uk contains small-scale components which must

be accounted for. Each component is decomposed into a filtered

(large-scale) part and an unfiltered (small-scale) part, eq., ui = u

+ i Then filtering uiuk yields

Si

U.u = uU + R (79)
1 k i k ik

where

Rik =  iUk i Uk + i Uk (80)

- 4
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The subgrid scale stresses are defined by

ik ik - ' (81) "

and the modified pressure is 0

P +- (82) o

The filtered momentum equation [(equation (85)] then becomes

- - (jl + a ~ -- a j. @ aj1 ~ ___

+~ ~ U + J- x k j k)

(83) •

a - ax T ) +  - k ik ) -R Vk j ike

Numerical solution of Equations (77) and (83) r-quires careful

consideration of the conservation properties; these are discussed in

the next section. 0

The channel flow computer program developed by Moin and Kim has

been thoroughly tested and evaluated and has been found to be

accurate, and stable for channels with flat walls. For channels
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with more general wall conditions, it is desirable to use numerical

methods which reduce to the existing method. As a first step in

developing such a method, define transformed velocity components as

,-l

Qj=J -x uk  (84)

With this definition, equation (72) becomes

6 Q. _ -

• JJ
Using the inverse velocity transformation,

u i = aJ T i (86 )"

and adding appropriate terms to both sides of the resulting

equation, equation (83) becomes, after some manipulation

- 6

0I
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* -i * . 2Qi-r~r rr rr - ~

S[(1+ )<Vt> + v + (87)
15at i2 t ult R e2 (7

e T  2

2- 2-
1 a 5~Q

ii e i 22 - - H.
Re 3 a 12 2 2  aE.

where S

1 2 ax 2Qi

e jJ J j

ax. ax. a .

(88)

_a~ a a( - ~ __

a&T ij ax k ik Dj ax -ik)

a 1J * a Q
a- ax k T_ ik) - [(1+6 <Vt>+6 t ] 21•j xk k i2 il ut 2

Equation (87) is identical in form to equation (5.1) of

reference 9. The terms representing the velocity components and the
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right-hand side of the equation are more complicated and the

turbulent shear stress has not yet been completely defined.

The boundary conditions are:

Qi= 0 at 12 = -1; i = 1,2,3

0 at +2 +1 (

1 2 1 ah
2 J ax2 tat 2 +

Q i = periodic in 1 and 3

The turbulent shear stress in equation (88) is defined in the

same manner as in reference 9. That is

'Tj = 2 vT(Sij - (S.j>) - 2vT <S. > (90)

where VT and v* are the small-scale eddy viscosities which

represent the action of the unresolved scales of motion on those

that are resolved. In the generalized equations, it is appropriate

to describe the shear stress in terms of the transformed velocities

and coordinates. Accordingly,

0

S_ (91)

0 -68-
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6.6 Discretization of the Generalized Equations J
6.6.1 Transformation for a Wavy Wall i <
It has been pointed out by several previous researchers that

when studying flows over wavy walls it is desirable to allow the

eddy viscosity and turbulent kinetic energy profiles to move up and

down with the wall. Also, since measurements are most easily made

with a probe which moves up and down with the wall or is located at

a fixed point, a completely curvilinear coordinate system is not

practical. A coordinate transformation which satisfies these

considerations and allows the calculations to be performed in a

channel of fixed width is

T = t

2x/h(XX,t) (92)

3= x3

Thus, while x2 varies from zero to h(xlx 3,t), E2 varies from -1 -.

to +1. j

6.6.2 Conservation Properties

It is generally accepted that, in the numerical treatment of a

differential conservation law, the equations must be in strong "
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conservation form in order to capture discontinuities properly (cf.

Lax (reference 24), Viviand (reference 25), and Vinokur

(reference 26) and others). This requirement has been primarily

enforced for compressible flows where capturing shock waves is

important. However, these properties are important in

incompressible flows as well (reference 27).

In the incompressible case, because of the uncoupling of the

mass and momentum conservation equations from the thermodynamic

energy equation, the momentum equation carries a second important

property; conservation of kinetic energy. In reference 9, the

momentum equation is written in a particular form which is found to

conserve energy, momentum, and circulation with virtually any

difference scheme. The generalization to the present case, is not

clear. The construction of an energy-conserving difference scheme

in the generalized coordinate problem is crucial, and should be the

next step in completing the analysis. It was not possible due to

time limitations to complete that step in this effort.

The requirements for mass conservation and the time

differencing requirements for momentum conservation are easily

demonstrated. Consider equations (85) and (87) expressed as

difference equations:

70
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- -- .

3F 0 (93)0
6 C

+ ( i + < + 6v + ] 1 V T +
i2T uI e 2 2

(94)

+ +- (6 1) - -] - + H.
R 6 6Qi 6 6 6E iJ

Re 1 1 5 3 63
T

where 6/6C is a finite difference approximation to 3/3C and A

represents the finite difference between time steps n and n-rl,

[ *1
I'.A = ( n+l _ n(95)

Now, conditions which will ensure conservation in a uniform

flow field are examined. If the flow field represented by the

velocity components, ui, is uniform, then Equation (93) with (86)

implies the following difference relation:

6 0-

6(f 1 -- J 1 o(96)
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Similarly, the requiLement that the transformed momentum equation

should numerically conserve momentum in a uniform flow leads to the

following difference equation

A (j1
AT 6 xk

* 1! 6[62 j-l _
"  "

[(1 + 6+ 1V +-]- -(J6i2 )vT> eT eT 6 2 662 6Xk

(97)

6
+ - 6--X + -

et 1 1 k 3 3 k

= H.

Now the term Hi contains terms identical to those on the left-hand

side of equation (97). Thus, for uniform flows, equation (97)

reduces to

AJ 1 +6 -J1 A~j0.98(J
I

3 j-9A) = 0 (98)

AT 6C At

The transformation described in the previous section yields the

following difference relations:
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-i
J : h/2

J x . - h / 2 ; i 1 , 3

6x .

j-1 6 ii 1, j = 2, 3
6x. -i 2, j = 1, 2

3j-1 6 2 i + 6h i " 1,°
6x. 2 < 2 )--

1 1 1 6T- - 2 "+ 1) 6 1

-1 2.

6x2

Expanding equation (93) gives

_ 6 (j-1 6l i + -1 2 6 1 6C3
1 6C1 6x1  2 6 1 6 3 6x1 911

If central differencing is used, then the transformation yields

C j~ 1 1 1 (Cj+l + 1(
1 6 ( 2 + j 1 j [- (2 7)

2 2 j+l
6h (100)

+ I j-1 +6h 1)00
2 6(.-y) E

j-1

0

By rearranging the right-hand-side of equation (100) and using the

fact that 6h/6C1  is not a function of 2' it can be shown that

S 0
SI = 0 -
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--C-

Similarly, it can be shown that if central differencing is used:

S j- + - - C) + 6 J1 "~3 0(1)2 6 x 6E 6X2) 6 6(2 2 2 3 2
I

and

3 6 (j-1 "i) + 6 -1 62) + 6 - 63) (0
3x -- (J --x 6C2 x = 0 (102)

Thus, if central differencing is used, equation (93) will

numerically conserve mass.

The condition for momentum conservation requires

A...

6A-1 6 -1 j

AT+ 6 (j -1_) = 0 (103)
*Az 6 . At

For the transformation, this can be expressed in the following

difference formulation:
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AJ + 6 .j-i n -
A'r n+l [At -

~~1 Ah 6 h n  x2 1 0 -
-2 Ar 2n+l [- 2 ) A-t (hn+l h n

(104)

1 Ah 1 Ah x2 0

Thus, if the time differencing is done in accordance with

equation (104), equation (103) will be satisfied and momentum will

be conserved.

6.6.3 Solution Algorithm

-1°

Since equation (87) has the same form as the equations used in

I Reference 9, the numerical method used in that reference is

% suggested as the one to use first. Thus, the pseudospectral method ii i

Swould be used in the 1 and 3 directions, and central

differences would be used in the 2 direction. Time advancement • 0

would be made using a semi-implicit method wherein the backward-

difference formula would be used for the time derivative of the
velocities, the Crank-Nicholson method for the viscous and pressure

terms and the Adams-Bashforth method for the remainder, H i terms.

7. CONCLUDING REMARKS

A program for large-eddy simulation of turbulent flow in a

channel was adapted to deal with time-varying wall motion through
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the use of linearized boundary conditions. The code was applied to

flow in channels with one wall having prescribed wavy motion, and to

channels with a compliant wall.

A mixing-length analysis employing a linearized Stokes layer

theory capable of qualitative prediction of the change in pressure

gradient was developed and used to guide the selection of parameters

for LES calculations. The results indicate that a small drag-

reduction is possible under certain conditions of wall motion. The

drag-reduction is the result of the creation of a Stokes-like layer

whose Reynolds stress is opposite to that of the undisturbed flow.

This decreases the turbulence production near the wall and reduces

the pressure gradient needed to drive the flow.

Predictions using both the linear theory and LES indicate that

much of the reduction in the energy required to drive the flow

through the channel is offset by the work required to drive the wall

against pressure and viscous stresses. The net effect appears to

yield a small decrease in the energy required to drive the flow.

Estimates of the drag reduction obtained from the mixing length

analysis are generally higher than those obtained from LES.

However, the mixing length analysis provides a simple first estimate

of the net drag reduction due to a wavy wall.

To resolve the rapid variation of the Reynolds stress near the
0I

moving wall a fine mesh is required. For this reason, the mesh was

refined beyond that used in the plane channel; the changes were

small.
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The most significant effects of wall motion on the flow are

[] found within a layer whose thickness is comparable to the viscous

sublayer thickness. To validate the results obtained using the

linearized conditions requires that the exact boundary conditions be

applied at the actual wall location. This in turn requires

transformation to a time-dependent coordinate system which renders

the calculation much more complicated.

Calculations for compliant elastic walls coupled to the flow

were unsuccessful in producing significant effects on the channel

drag for material properties representative of existing foam or

plastisol materials. The only surfaces which yielded a notable

response were thin membranes under slight tension. The membranes

developed low frequency, long wavelength surface shapes which did

not interact with the flow to create drag reducing effects.
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,. S

Change in -dP/dx C C

LES LES P P

Coarse Fine CD CD

CASE o  c/U m  6 Eq. (34) Mesh Mesh (Theory) (LES)
0

5 200 0.78 0 -0.076 -0.050 -0.035 0.039 0.014

2 5 200 -0.78 0 -0.214 -0.200 -0.173 0.104 0.111

3 5 50 0.78 90 -0.219 -0.100 0

4 5 200 -1.10 0 -0.267 0 -0.192 0.132 0.126

TABLE 1

Effects of a Wall with Progressive Waves
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p = 1000 kg/m 3

u = .051 m/secT

6 = .0127 m

+ u

- = 640
V

* 3

P1 = 1025 kg/n

* 3

= 1394 kg/no3

*•

h = .025 mm

h 3 = 20 mm

TABLE 2

Parameters of a compliant wall composed of a mylar

sheet over a PVC foam substrate on a stiff backing

plate. _
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No. of

Coordinate Label Length Grid Points

Xi a 2 r 64 S
x2 2 64,102

b 2 w 128

x Grid Distribution
(Lower Walf of Symmetric Channel)

Coarse Mes;i Fine Mesh
nt Point Y+

2 -0.9972 1.78 2 -0.9997 0.20
3 -0.9940 3.85 3 -0.9990 0.64

4 -0.9902 6.26 4 -0.9982 1.13

5 -0.9858 9.06 5 -0.9974 1.68

6 -0.9808 12.30 6 -0.9964 2.30

7 -0.9749 16.10 7 -0.9953 3.00 0
8 -0.9680 20.50 8 -0.9941 3.78

9 -0.9601 25.50 9 -0.9927 4.67

10 -0.9510 31.40 10 -0.9912 5.66

11 -0.9404 38.20 11 -0.9894 6.79

12 -0.928? 46.00 12 -0.9874 8.05

13 -0.9141 55.00 13 -0.9852 9.47

14 -0.8980 65.30 14 -0.9827 11.10

15 -0.8795 77.20 15 -0.9799 12.90

16 -0.8583 90.70 16 -0.9768 14.90

17 -0.8342 106.00 17 -0.9732 17.10

18 -0.8069 124.00 18 -0.9693 19.70

19 -0.7760 143.00 19 -0.9648 22.50

20 -0.7412 166.00 20 -0.9598 25.70

21 -0.7023 191.00 21 -0.9542 29.30

22 -0.6590 218.00 22 -0.9479 33.40

23 -0.6112 249.00 23 -0.9409 37.90

24 -0.5587 283.00 24 -0.9330 42.90

25 -0.5016 319.00 25 -0.9242 48.50

26 -0.4400 359.00 26 -0.9144 54.80

27 -0.3'41 401.00 27 -0.9034 61.80

28 -0.3044 445.00 28 -0.8912 69.60

29 -0.2314 492.00 29 -0.8777 78.30

U 30 -0. 1558 541.00 30 -0.8626 88.00

31 -0.0783 590.00 31 -0.8459 98.60

32 -0.0000 640.00 32 -0.8275 110.00
33 -0.8071 123.00
34 -0.7847 138.00
35 -0.7601 154.00
36 -0.7332 171.00
37 -0.7038 190.00
38 -0.6718 210.00 0
39 -0.6372 232.00
40 -0.5998 256.00
41 -0.5597 282.00
42 -0.5168 309.00
43 -0.4712 339.00
44 -0.4230 369.00
45 -0.3723 402.00

47 -0.2643 471.00
48 -0.2075 507.00
49 -0.1492 545.00
50 --0.0900 583.00
51 -0.0301 621.00

Table 3 0

Details of the Computational Domain
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CAE3 c3 '1 Ic z M1

1 1514 .098 1.58 9082 9082 .7795

2 70,600 0 15.37 0 0 .7795

3 0 0 0 10 10 .051

4 0 0 0 100 100 .051

TABLE 4

Parameters of Compliant Surfaces
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I i 0

-7

nx z  c

1 0 22.14 .2838

2 0 44.28 .1419

1 1 49.51 .1269

2 1 62.64 .1003

* -
1 2 91.33 .0688

2 2 98.95 .0635

20

TABLE 5

Frequencies and characteristic times

of a rectangular membLane

LS
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Figure l.- Coordinates and velocity comiponents for a
channel with one wavy wall.
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Figure 2.- Comparison of Reynolds stress from Stokes layer
solution with that for turbulent flow

near a rigid wall.
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Figure 3.- Comparison of linear and nonlinear
solutions for Stokes layer.
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Figure 4.- Effect of wall motion on mean
velocity profile in channel.
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Figure 14.- Streaxnwise two-point correlation function for a
channel with prescribed motion on one wall (Case 1).
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Figure 18.- Time history of rms wall deflection and rmsr wall velocity for first compliant wall calculation.
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Figure 26.- Turbulent shear stress distribution in a
channel with one wall compliant.

II -122-

#I

. . . .. - - .
-0.8. . . . . . . ...



4-

00 r

rA (0 r-4

x4 0
-) 0

/1 '-4 u-
4

.q- 0 (
44 4 .

14 0

00

4J 4J

r$.4 004)

4-4

0 rII

-123



00

C)
C%

%, 
4 -1

0 4

"" i N - 4

0 -.

4 0

0 C'4,

I I :

..°.-°° 124-

;.....

m ---T - -- -- - -- r - -

, d o o.oo o g

.HH

-124-

" "- " " " ' ' '"_ "- ; . '" ii' " .- - _ ".i , _ i._ .0o0



* K7

1 0 L

0-0
100

10~

i2

-3
10

10- 4_

106

U 10

ir8

0- 9

101 100 101 10
Wavenumber,k

(a) Yw 6.26 measured from the rigid wall Ux2  -.990)

Figure 28.- Streamwise energy spectra in a channel
with one wall compliant.

-125-



10 1

10~

101

10

10

10-'

108

10 771Ko il

Wavenumber, k

(b) y' 6.26 measured from the compliant wall (x 2  +-990)

Figure 28.- Concluded.

-126-



FILMED

* 2-85

* DTIC


