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found that the results can be qualitatively explained by a model
based on a Stokes-like jayer near the moving wall. This provides

a theory which can be used to guide the selection of parameters.
considering both viscous and pressure drag components, it was found
that drag reduction is possible under certain conditions of wall
motion. However, work is required to drive the wall motion to
produce this effect and the effort expended can be a considerable
fraction of the reduced through-flow energy requirements. The
major effects of the wall motion are restricted to the viscous
sublayer of the turbulent flow.
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ABSTRACT

The effects of prescribed wall motion on turbulent channel

flow were examined with the objective of understanding the drag e
mechanisms and obtaining a possible means for drag reduction. A ®
computer program for large-eddy simulation (LES) of turbulent
flow in a channel was modified to treat the case of time-varying

' wall motion using linearized boundary conditions. The code was
applied to flow in a channel with prescribed wall motion on one
wall. It was found that the results can be qualitatively

E explained by a model based on a Stokes-like layer near the moving
wall. This provides a theory which can be used to guide the
selection of parameters. Considering both viscous and pressure

. drag components, it was found that drag reduction is possible

| under certain conditions of wall motion. However, work is
required to drive the wall motion to produce this effect and the
effort expended can be a considerable fraction of the reduced
through-flow energy requirements. The major effects of the wall

motion are restricted to the viscous sublayer of the turbulent
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NOMENCLATURE

dimensions of computational region, Egs. (53), (54)
wave velocity, Eqg. (42)

(aUQ - ow)/(o - w/c), Eq. (25)

wave propagation speed normalized by u,

damping coefficient, Egs. (42), (43), (44), and
(47)

unperturbed channel drag coefficient
pressure drag coefficient, Eqg. (38)

bending rigidity, Egq. (46), also generalized
vector, Eq. (58)

spectral density, also modulus of elasticity
generalized vector in Eqg. (58)

a function defining the LES filter, Eq. (71)
velocity vector, Eg. (58)

filter kernel function, Egs. (72) and (73)

value of vertical coordinate, xz_at the flexible
surface (Fig. 1) normalized by § also thickness
of wall material

Jacobian of coordinate transformation

spatial wavenumber in Fourier transform space; also
spring constant

mass per unit surface area, Eqg. (42)

mass flux
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NOMENCLATURE (continued)

mass terms, Egs. (43) and (44)
denotes a time step in a numerical scheme
membrane tension in x and z directions

pressure fluctuation normalized by pu%

2

mean pressure normalized by puz

resolvable pressure in LES

pressure fluctuation at wall

transformed velocity, Eq. (84)

qu/v

two-point correlation, Egs. (50) and (51)
veloéity gradients, Eq. (91)

time normalized by ‘8/uT

velocity component (Fig. 1) normalized by u.

w2
i

1/2

<(uft “)>
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friction velocity, /tw7p of flow in a rigid wall

channel

mass average velocity of channel flow

Up/u.

(3a<u,>/3x,)
1 2 wall

coordinate (Fig. 1) normalized by §

the vector (xl,xz,x3)
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NOMENCLATURE (continued)
coordinates for analysis of solid wall elastic
behavior, Egs. (42) thru (47) and associated sketch
distance from a wall

wave number in x; direction of prescribed wall
shape normalized by 1/3

wave number in x5 direction of prescribed wall
shape normalized by 1/3

mean channel half-width

Kronecker delta

ratio of change in flow energy to energy of flow
through unperturbed channel

numerical interval, Egs. (74) and (75)
antisymmetric tensor

displacement of wall from undisturbed plane
(Fig. 1) normalized by 3

amplitude of prescribed wall displacement
normalized by 3

direction of travel of wall wave relative to the
X1 axis

wavelength of wall shape, normalized by §
fluid viscosity

1 - x5, Egs. (19) thru (22); also generalized
coordinate, Egs. (48) and (49), Egs. (61), etc.

fluid density

[(w/c)? - i(wReT)]l/z, Eq. (24)
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NOMENCLATURE (concluded)

fluid shear stress at wall
transformed time variable, Eq. (61)

frequency of wall motion normalized by u./3

Special Notations

3/3x

8§/ 6x

A/AT

Superscripts

Subscripts

r, i

denotes an average over an horizontal (xl,x3) plane
for LES calculations plus an average over time for
other calculations

denotes a periodically varying quantity

denotes a real part of a complex variable

denotes the imaginary part of a complex variable

denotes a partial spatial derivative

denotes a finite difference approximation of a
partial derivative

denotes a finite difference approximation of a
partial time derivative

denotes the nonperiodic part of a fluctuating
turbulence gquantity

denotes a fluctuating turbulence quantity
denotes a length in "wall units,"- e.g., u,/x/v

denotes a dimensional quantity

denote real and imaginary parts when used with the
guantities A and o
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1. INTRODUCTION

Kramer (references 1 and 2) showed that the application of a
compliant coating to a wall could lead to a considerable reduction
in the skin friction. He focused on reducing the drag by delaying ®
the onset of transition to turbulent flow. Subsequent attempts to

replicate his work and to determine the causal mechanisms have been

only partially successful. °

A number of studies of the interaction between a flow and a
moving wavy surface have been made; these have been principally
o motivated by the air-sea interaction problem. Benjamin (reference e
3), among others, showed that the pressure distribution over such a
surface is not in phase with the shape of the surface; this gives
l rise to a momentum transfer between the fluid and the surface, the o
pressure drag. Although these studies employed an inviscid theory,
they have played an important role in the studies of the air-sea

)] problem. ’~ﬁ

Kendall (reference 4) investigated the turbulent flow over a

wavy surface experimentally and verified some of the predictions of

the inviscid theory but also found some differences,

Ffowcs-Williams (reference 5) and Blick (reference 6) studied

- the possibility of drag reduction by the introduction of wavy motion

in the wall by means of a theory similar to the one that will be
presented in this report and came to the conclusion that significant g

reductions in the drag should indeed be possible.
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Hanratty and his co-workers at the University of Illinois have
conducted a number of studies of turbulent flow close to wavy walls
to obtain insight into the influence of a compliant surface on a
turbulent flow field. Progress has been made in calculations of
turbulent flow over small-amplitude stationary waves for which no
flow separation occurs (reference 7) as well as for large-amplitude
waves (reference 8). A critical issue in both cases is the
specification of the wave induced variation of the properties of the
turbulence.

The work reported herein was motivated by the possibility of
using deliberately introduced wall waviness to reduce the drag on a
surface underlying a turbulent flow. The tool used in this study is
a computational one--large eddy simulation (LES)--in which the
large-scale motions of the flow are explicitly computed while the

mall-scale motions are simulated through a model. The method has
been shown to capture most of the important features of turbulent
flow over flat rigid walls including the structural features that
are responsible for most of the turbulence dynamics in the near-wall

region (reference 9).

In this report, large eddy simulations of turbulent flow over a
prescribed travelling wavy wall will be presented. The simulations
were carried out with linearized boundary conditions., The results
indicate that significant reduction in the pressure gradient needed
to drive the flow through the channel are indeed possible. However,
additional work is required to drive the wall to produce this effect

and the effort expended is a considerable fraction of the reduction
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in the work needed to drive the through flow. A linear analysis

explaining the principal features of the effects observed will also

be presented.

In the following section, the principal approximations used in
this work will be introduced; these include the linearizations of
the boundary conditions on which the remainder of the work was
based. This is followed by two sections in which the analysis is
presented. The first gives an analysis of the Stokes layer which
was found to exist near the wall by Ffowcs-Williams (reference 5)
and was also observed in the LES results. This is followed by an
analysis of the effect of the Stokes layer on the pressure gradient
and an estimate of the work done by the wall. Then the results of
the large eddy simulations are presented and shown to be in
substantial agreement with the predictions of the analysis.
Finally, conclusions relating to the possibility of drag reduction

are discussed and directions for future work are given,

2. BOUNDARY CONDITIONS FOR FLEXIBLE MOVING WALLS

2.1 Approximations

Consider flow over a surface which is able to stretch and move
in the direction normal to itself. The surface is described by the
displacement n(xl,x3,t) from its undisturbed plane shape, where x;
and x5 are the horizontal coordinates in the streamwise and
transverse directions, and t 1is the time, The exact boundary

conditions for the viscous flow at the surface are that the fluid
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velocity relative to the surface vanishes. For small amplitude of ff?
the wall motinn, a convenient approximation is to expand the ;.]

s R
velocity boundary condition in a Taylor series about the undisturbed -{ﬂ
wall plane and apply the boundary conditions on that plane. The . ]
calculations can then be performed in a channel with parallel walls 7 ; L

A and complicated time-dependent coordinate transformations can be Z&g

i avoided. - -Eﬁ

The process of simplification is begun by approximating the ;J]

velocity at the flexible wall, whose undisturbed position is Xo = 1, i

b
g by two terms of a Taylor series. o
} e
Dow Y
s *
S -~-':
Y du, !
iy ug (kg hyxg,t) = ui(xg,1,xg,8) + n(x)0x5,t) (330) (1) ]
. 2 x2=1 o]
(] °
tj where i=1,2,3 and the coordinates and velocity components are ;’J

defined in Figure 1. The coordinates are normalized by the mean

channel half-width.

The condition of zero velocity relative to the surface at

'f'—'il".

o e
LRI W {

X, = h = 1 + n, yields the exact boundary condition:

i =1 and 3 (2)

ui(xl,h,x3,t) = 0

LA S | ) glant:
e PR

LR ma dee o o g on o

q where tangential motion due to stretching has been neglected.
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To obtain the required approximate conditions at x, = +1

Equation (1) is substituted into Equations (2) and (3) to get:

' Bui
u,(x,,1,x,,t) = =n (—= ; i =1 and 3 (4)
- i'"™1 3 2%
. and 2 x,=1 i
3u S
U (%, 1,x,,t) = 20 - o (—2) (5) " o
2' 71 3 :
ot ax2 , .
—
la 1 d :
To simplify the boundary conditions, the velocity is considered as a ‘{f“
combination of the time and horizontal mean value and a perturbation fffq
. about that mean: . ?
AR
AR
. SRS
! ui(xllx21x3't) = <ui(x2)> + Ui(xllx2'x3lt);1 = 112I3 (6) ‘;-—.:‘1
¢ where < > denotes the horizontal and time average. Then j
- '
du, acu ;> u.
' —l = — o+ - (7)
{ ax2 ax2 ax2
g
-1
.
: !
l. . 1
-5~
@ L
; | . ,l
LJ - (N ‘I.. ‘‘‘‘‘‘‘‘ ) - '... R -.‘_; I ") VRN P ,-')
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It is assumed that n << T and

1 _
_3;; = 0(n) (8)
i{ Therefore, to first order in n
" u
[ u, = - (2312 i i=1,3 (9
b X
2 x2= l
kgv and
3
= 9n
Y = 3t (10)

The assumption that aui/ax is small may be a severe

2
approximation and its validity should be checked by calculations
which do not use it. It should be noted that experimental data for
flow over flat plates show that the rms value of
' ' 2.1/2 .
ui/ax, (<(aui/ax2) >*/“) is about 25% of a<u, >/ 8%,

{reference 10).

The non-zero horizontal velocity component at the wall replaces

the actual surface by one which is being stretched and compressed,

° It is important to determine whether such a condition accurately

| models the wavy wall. As the flow moves along the actual wall, it

is displaced vertically, while remaining attached to the wall. The

o vertical component given by Equation (10) approximates the vertical
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motion of the wall. The displacement effect is approximated by

l Equation (9) which indicates that the velocity at Xy = 1 is the

(
e haaaate:

linear extrapolation (or interpolation) of the velocity from
X =1+ nto x, = 1. However, Equation (9) produces locally

reversed flow for u; where (l-x,) is positive.

2.2 PARAMETERS
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The calculations performed in this work used the boundary
* conditions (9), and (10) with the wall motion prescribed to be a

t progressive wave: 'Y

l n(xl,x3,t) = nycos (ax1+ Bx3 - wt) (11)

| where the wavenumbers a and B and the frequency, w are related to

wavelength, A, wave speed, ¢, and angle, 8, by:

w= 2nc/Ax

(2n/7) cos #©

[~}
L[}

w
[}

(2n/X)) sin 6

- b
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Previous studies, e.g., Norris and Reynolds (reference 11),
Hanratty et al (reference 12), Thorsness et al (reference 7), and
Kelleher and Balasubramanian (reference 13) have shown that under

certain conditions the use of these linearized boundary conditions A

may be a poor approximation, However, Norris and Reynolds' work
involved wavelengths and amplitudes much larger than the ones to be
considered here and the other work involved stationary wavy walls so ‘;1
that generalization should be made with caution. The linearization
of the boundary conditions is the most significant approximation in
this work.

The results of reference 13 indicate that, for calculations of
laminar flow over a stationary wave, using linearized boundary : .j

conditions gives a larger amplitude in the surface shear stress

varation than for calculations using the nonlinear boundary
conditions. As the wave amplitude is increased, the amplitude of

the shear stress variation also increases. The linearized boundary

conditions predict regions of negative surface shear, indicating
separation, for amplitudes for which the nonlinear boundary o
conditions indicate that the flow is still attached. At the same

time, the use of the linearized boundary conditions appears to have

M| T e.
N R o

little effect on the phase angle of the predicted surface shear

vevwew
.

o
s e

variation., These results are only qualitative and cautionary with

MaiCail
®
-

regard to the present study since the effects of flow turbulence and

wall motion are not accounted for.
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The question of the validity of the linearized boundary
l conditions deserves further attention. 1In deriving equation (9) it .-O
was assumed that 3<ul>/ax2 is of zero order in n while
aui/ax2 is of first order so that n(aui/axz) is of second
- order. This assumption was based on the observation that 0
. experimental data for flat plates show that the rms value of
2 2 S

du',/9x, cannot be determined a priori; therefore, the assumption o

S
aui/ax is about 25% of a<ui>/ax The relative magnitude of ]
4

that it makes a second-order contribution to the boundary condition
can be evaluated only by direct comparison with a solution with
s exact, nonlinear boundary conditions. This evaluation is essential e

but could not be carried out within the scope of the present work.

3. ANALYTICAL STUDIES

Preliminary numerical simulations indicated that the principal

l S L. S s e
et 'ma a e a _ak PSS ML N

‘!- effects of the wall motion are confined to a thin region near the . -
wall; this will be demonstrated later. On this basis, it was
decided to develop a simplified analysis for the near-wall region. _
- This analysis was a valuable aid in determining values of the ;Li»n
parameters which could yield effective alteration of the flow and '?%};
'i viscous drag. Although the study began with numerical simulations, ;iiﬁ
. it is useful for the purposes of this presentation to begin with the 7;,1:
linear analysis. ﬁifji
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The analysis consists of two parts. First, the effect of the yv:jf
- .‘4
wall motion on the fluid near the wall was found to produce a _oe]
- 0.
Stokes-like layer. The Stokes-like solution was then used to ]
© 4
estimate the change in the mean flow and the drag reduction. An :,;
energy balance was then used to estimate the benefits and costs of ;ji
. ..1
the wavy wall. Finally, the results of the analysis were used to 'H}
choose cases for LES calculations. . _{q
B
]
o
3.1 The Linearized Stokes Layer Solution
Solutions to the linearized Navier-Stokes equations with the
boundary conditions egs. (9) - (11) will be derived here. The ® |
. 1
linearized Navier Stokes equations are: '?
au, ~ -
i_ _3p _ 1 2~ _
3t - " ax,  Re. ' % (12) °
i T 3
au L
5 = 0 (summation implied) (13) o
i o
.
where the velocities are normalized by u_, the friction velocity of - ;f:
a rigid-walled channel, pressure is normalized by pui and the Bf]
symbol (~) denotes the periodic solution of the linearized ;:’
plbgx
problem. The problem is solved by the complex imbedding technique, jp1
that is, the velocity components and the pressure are treated as .2
complex and are assumed to have the form: - ;-‘
- - i.(ux1 + Bx3 - wt) )
Eixyixyixg,t) = fx,)e (14) 3
R
L4

-10-
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with the wall motion given by S

i(mx1 + Bx3 - wt)
n(x1,x3,t) = n.e (15) -

The actual solution is the real part of the result.

For the purpose of this analysis, the moving wall is the upper
wall of the channel (x,=1) and the lower wall is considered to be
at -«, Substitution of egs. (14) and (15) into egs. (12) and (13)

and the boundary conditions:

Ul(xl,l,x3,t) = -n U} (16)

~ an .

u, (x Pl X ) = = (17)
2% 3 ot

{13(x1,1,x3,t) =0 (18)
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yields

where

and

p(xz) = n cAe

-

- [}
nO(Uw

-ino(w - A)e-og -

+

w

Bn,C

A(

w

-(w/c)¢

w

in_Ae
"o

o fuw/cle

P ...

-(w/c)g
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The velocity Gi is given by

N R i(axl + Bx3 - wt)
ui(xl,xz,x3,t) = R[ui(xz)e

R[Gi(xz)] cos (ax,+ Bx.— wt)

1 3

I[Gi(xz)] sin (ax + BX,- wt) (26)

1

where R indicates the real part and I indicates the imaginary

part. The Reynolds stress is the average over time and x; and

x3 of the product ﬁlﬁz and will be shown later to be the agent of
the principal effect of wall motion on the turbulent flow. From the

above results

-(or+w/c)€

=208 _ (B coso, £+A_sino E) e )

(27)
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where A, and Ay, o, and o; denote real and imaginary parts of
A and o, respectively. This Reynolds stress is plotted in Figure
2. Note that it undergoes a damped oscillation and in the region

nearest the wall is opposite in sign to the unperturbed Reynolds

stress.

3.2 Numerical Solutions for Nonlinear Stokes Layer

In order to evaluate the effect of neglecting the convective
terms of the Navier-Stokes equations in the Stokes layer analysis, a
numerical solution of the problem was obtained using a computer code
for unsteady viscous incompressible flows (reference 14). The code
uses a factored semi-implicit solution algorithm that is explicit in
convective terms, and implicit in viscous terms. The method is
second-order accurate in both space and time. For the present
calculations, the code solved the two-dimensional incompressible
Navier-Stokes equations in a channel with the lower wall rigid, and
periodicity assumed for the inflow and outflow boundaries. The
boundary conditions, Egs. (9) - (11) were applied to the upper wall
of the channel; calculations were performed both with the complete
nonlinear Navier-Stokes equations and with the convection terms
omitted. All quantities were nondimensionalized in "wall units,"
i.e., in terms of friction velocity, u and viscosity, v. The

T

reference values were

-14-
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U = 18.848
m

c = .78 Um
A" = au_/v = 200
6 =0
§¥ = Re_ = 640

The results for the wall motion~induced Reynolds stress near
the moving wall are shown in Figure 3 for three different
computational mesh sizes and the analytical solution
fequation (27)]. The symbols are located at the computational mesh
points. Symbols + and x represent the finest mesh, open symbols
the coarsest mesh., Some discrepancy between the analytical and
numerical solutions results from truncation error in the finite
difference formulation. However, a more significant effect is
produced by the neglect of the convective terms in the linear
solutions., The nonlinearities reduce the amplitude of the response
of the fluid in the Stokes layer. It is important to note that in
the cases shown in Figure 3, the results are entirely due to the
interaction of the wall motion with the adjacent viscous fluid. No

turbulence is included in the computation,
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F 3.3 Estimate of Effect of Stokes Layer on Mean Pressure »
,. Gradient 3
& {
b 9
h 3.3.1 Mixing Length Analysis ’ .
9
3 '}.:1
L b
The second step in the analysis is to obtain an estimate of the j
‘ drag reduction, The velocity and pressure in the channel flow with » ‘
-
3
: a wavy wall can be decomposed into three components (reference 15).
.
[. -
! i »
ui(ﬁ't) = <ui(x2)> + ui(l(.'t) + ui(l,t) ; i=1,2,3 (28) .
R
4 ,
-
- ~
, p(x,t) = P(x,) + p(x,t) + p'(x,t) (29)
. ’
: .
.
- where <uj;> 1is the mean velocity, C\'i is the periodic part of the |
o solution induced by the wall motion, and u}! represents the »
[ T
turbulent fluctuations: P, P, and p' have similar meanings. It RN
is assumed that the periodic component is nothing more than the -
¢ Stokes layer solution derived in the previous two sections. e h
g :
r’.
»
o
]
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The nondimensional Navier-Stokes equations, averaged over time

and horizontal planes are (reference 11):

~ o~ ' ' - -
;;— (<u1u2 + u1u2>) + <u, > (30)

~

where it has been assumed that <Glué + ui u2> is negligible, i.e.,

that the turbulence and the Stokes Layer are uncorrelated. Assuming
the <ujui> is not affected by the presence of <GIGZ>, the mixing :
length eddy viscosity model with Van Driest correction (reference

16), can be used to yield.

(1 e = <u>) 9 <up>) = ReT(—E— <G> + dp_ (31)
ax2 ax2 ax2 axz dx1

where R

~Re _(l-|x,|)}/26 2
— = Min{(0)?, (.41 (2-]x, %) [1-e T i1 ]

Re
T

(32)

Where K is a constant which will be determined subsequently.
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Calculations of the <Glﬁz> profile were performed with the R

assumption of symmetry at the channel centerline which implies that )

. . el
Y . B
PPEPLY LSPRV LSS UL LN

both walls are wavy. Integrating eq. (31) in x, with the conditions

’i

that e and <5152> are zero at x, = $1 gives ]
i

Y

2 S YR 5o B )y1/2 2
3;;<u1> = 2E{1 (1 4sReT(<u1u2> + x, X7 )] } (33) K

:

JF VR R

The <uy> profile (Figure 4) was then obtained by numerical
integration of Eq. (33) using a fourth order Runge-Kutta scheme. B
The required values of <Glﬁz> were obtained from Eq. (27). The
mass flow rate

.
e
LAWY R N

-

o[, <up>dx, (34) <

i_alr

was then obtained by trapezoidal rule integration of the calculated S
<u;> profile. The value of the constant K in Eq. (32) was ;{

determined by trial and error so that the mass flow rate calculated

from Egs. (33) and (34) with <Glﬁz> = 0 would equal the mass flow S

rate used in the LES calculations to be discussed subsequently. The - ,‘
i{‘ value determined in this way was
L. K = 0.085

j-—
v
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3.3.2 Momentum Balance

The effect of the wall motion was determined from the momentum
balance. The time averaged momentum equation was integrated over a
control volume bounded by the channel walls and periodic in-
flow/out-flow boundaries. The first step of the process is

averaging over horizontal planes, which yields Eq. (30).

The next step is to integrate over the width of the channel to get.
u. -
a<u, > .
30 Y 1 = - gp_ 1 1 1
SUpup *uular T TP I YR Thx ]
1 e. 2 -1 B
(35)
o
»
Since both the periodic and the turbulent Reynolds stress are zero A
at the channel walls, Eg. (35) yields, for symmetric flow '.
dp .1 i = =i u' (36) Lt'
dx Re 9X Re w [ ]
1 T 2 X, =1 T
It is noted that since the walls are horizontal there are no
horizontal pressure forces in the momentum balance. Thus, the only ‘

effect of the waviness that is felt by the flow is that of the wall
motion on the mean velocity gradient at the wall.

In order to determine the effect of wall motion on the velocity °

-]19-
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In order to determine the effect of wall motion on the velocity
gradient at the wall, Eq. (33) was integrated using Eq. (36) and
different values of dp/dx;. The value of the dp/dx; was adjusted by
Newton's iteration method so the calculated mass flux given by Eq.
(34) was equal to the mass flux of the unperturbed channel. The
resulting increment in dP/dx; is assumed to be twice the value that

would be obtained with one moving wall and one rigid wall.

3.3.3 Results

The results for five specific cases are listed in Table 1. The
table includes results from numerical integration of equations (33),
and (34) , and from LES calculations which will be discussed
subsequently. The values listed for the changes in dP/dx;, from
Egs. (33) and (34) are half the values actually calculated in order
to compare with the LES results which were obtained for a channel
with one rigid and one moving wall.

The mixing length analysis was used to calculate the wall
motion effects over a continuous range of the various parameters. A
few cases were then selected for LES calculations., Case 1 is the
reference case for which the parameters were listed in section
3.2. The value chosen for ¢ corresponds approximately to the
convection velocity of large scale eddies (reference 17). The value
of five wall units for n¢ is roughly the thickness of the viscous
sublayer and was considered to be the limit of applicability of the

linearized boundary conditions. The wavelength of 200 wall units

-20-
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approximates the streamwise spacing of large eddies near the wall.
Case 2 is the same as Case 1 except for the negative value of c
which corresponds to a wave moving upstream. Case 3 corresponds to
wall waves rotated 90° and moving in the spanwise direction. Case 4
is similar to case 2 to determine the effects of the magnitude of
the wave speed.

The effect of the wall motion on the mean velocity profile as
calculated by the integral theory is shown in figure 4 for case 2.
The figure illustrates that the effect of the wall motion on the
mean velocity profile is felt throughout the channel. This will be
discussed further when the LES results are presented. The inset in
Figure 4 illustrates that the 3<u;>/3ax, at the wall is lower for
the wavy wall than for the rigid wall. The momentum balance shows
that this reduces dP/dxj. This figure also indicates the
resolution required to correctly calculate the flow by LES; the
computational mesh should have a point 0.2 wall units from the wall.,

An important observation is that the wall motion can
significantly affect the pressure gradient. The simplified theory
presented here gives a larger pressure gradient reduction than
LES. A major reason for this difference is that the Reynolds stress
is overpredicted by the linear theory (Fig. 3).

The decrease in the driving pressure gradient can be explained
as follows. The wall motion sets up a Stokes-like layer in its
immediate vicinity. This layer has a "Reynolds Stress"

<GIG

2> opposite in sign to the Reynolds Stress of the turbulence

itself. The added "Reynolds Stress" acts to decrease the turbulence

-21-
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production near the wall and thereby reduces the turbulent Reynolds

Stress and the shear force on the wall. Reduction of the shear
stress must, by momentum conservation, be accompanied by a reduced

pressure gradient,

3.4 Energy Balance »
A method of evaluating the net effect of the wall motion is to ]
examine the energy balance., The mean energy equation is derived by ®
taking the scalar product of the momentum equation with the velocity
and averaging over time and a control volume bounded by the channel
walls and periodic inflow, outflow and side planes. The resulting - i i
o
energy equation is
~ o 1 3 (2 ~2 ~2
- - + — < £ +
umdP/dx1 <pu2> 2ReT< 8x2(u1 + U, u3)> »
1 7 du; Ay e B
=27 Lo tay
T 'y V voX; 9%, ._.\1
4
£
where V is the control volume. 1In Eqg. (37) < > indicates time and e
horizontal plane averages evaluated at the moving wall. -
In the rigid-walled channel, the energy required to move the - Pfq
fluid through the channel is balanced by the dissipation. The ) ;f?
moving wall contributes to the energy balance through the work done S
¢ by viscous forces and by the fluctuating pressure at the wall and by ?*j
- changing the dissipation. Thus, any reduction in the required o f;
' "
R
¢ )
< =)
.. N
. . .
:‘ o
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energy to drive the flow may be offset by the work required to

‘ generate the Stokes layer.

Negative values of the wall pressure-work and positive values
cf the viscous-work terms represent energy added to the fluid by the
v wall., These must be considered penalties to be deducted from the
| reduced through-flow pressure-work requirement.

The various components of the energy balance are shown as
functions of the wave speed in Figure 5. The energy throughput
increment is the mean velocity, U, times the change in the mean
pressure gradient, dP/dxl from its unperturbed channel (half the
change in dP/dx; found from the mixing-length analysis described in
The and viscous wall work terms are evaluated

section 3.3). <§ﬁz>

using the linear theory. The change in dissipation was not

. computed; it is estimated that the dissipation is reduced somewhat

- by the wavy wall so the results should be conservative. Clearly, a

large part of the change in the work required to drive the through
|1 flow is offset by the viscous work done by the wall motion. This is

independent of the direction of the motion. On the other hand, the

pressure work is direction dependent. For downstream wave motion at

- moderate wave speeds, the pressure work is negative, indicating that

the wall absorbs energy from the fluid. Thus, the fluid drives the

wall motion. For upstream wave motion, the wall adds energy to the

fluid through the <pU,> interaction. This suggests that upstream
wave motion is not possible for compliant walls because it cannot be

driven by the flow.
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The net effect of the Stokes layer on the energy required to
drive the flow through the channel is shown in Figure 6. A small
net decrease in energy required is produced by a wall moving either
upstream or downstream at moderate speeds; note that the change in
dissipation is not included. The theoretical curve shown in Figure
6 displays singular behavior around ¢ = 0. This is an inadequacy

of the linearized theory.

The results shown in Figures 5 and 6 differ from results given
in an earlier interim report (Ref. 18)., The reason is that in the
earlier report, the <Glﬁz> contribution to Eq. (33) was reduced by
an arbitrary factor of 0.5 to account approximately for
nonlinearities (see Figure 3). The arbitrary reduction was not done
here. Also, in the previous work the value of UJ, used in all
calculations of quantities from the linear theory was the rigid-wall
value. Since the slope of the mean velocity profile at the wall
changes along with the mean pressure gradient, the present
calculations also include the correct value of U, given by Eq.
(36). Although the approximations used lead to results that are
only qualitative, the results suggest that (a) the effect of a wavy
wall is to reduce the energy required to drive the flow and (b) the

reduction is small.

In addition to the approximations already discussed, the
turbulent pressure fluctuation was not included in calculating the

pressure work term. The effect of including these fluctuations is
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unknown as the theory does not predict the change in the turbulence

0 quantities.

7. As the linear theory predicts a larger magnitude of reversed ;'.'J
Reynolds stress near the wavy wall than the nonlinear theory, it is . _3

expected that the linear theory would overpredict the reduction in

[V

the mean pressure gradient and the viscous work and the pressure .b"

Y

work at the wavy wall. A further illustration of the effects of the
nonlinearities can be seen in the variation of the intensity of the

velocity fluctuations produced in the Stokes layer. Figure 7 shows °

the variation of the rms velocity fluctuations /<Gz> near the wall B

1
for the linear and the nonlinear Stokes layer solutions for case

hE

2. The linear solution has larger (negative) slope (3¢« Gf>/ax2) ) "'
at the wall than does the nonlinear solution. This suggests that .flff

the actual viscous work would be smaller than predicted by the R

' linear theory. However, the errors in the predicted quantities are ' °
expected to be small and to follow the correct trends. Therefore,

the linear theory is believed to be a useful guide for LES

P’
et et

. calculations.

o lria

This study indicates that, in general, the wall must supply

energy to produce the conditions that result in reduced mean AF

- pressure gradient. The questicn of whether a significant net ‘ '<£

reduction in the energy required to drive the flow is possible is 'j B
the essential one. This investigation indicates that the amount of

energy required from the wall is roughly equal to the amount of . @ ;

energy saved by the drag reduction.
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3.5 Extension to Compliant Walls

The theory developed above can be extended to provide a method
of estimating the drag in a channel containing compliant walls. As . Lﬁ
in the theory presented above, the fluid is considered as a device . l
which responds to the wall shape by producing pressure fluctuations
at the surface. 1In a similar manner, one can construct a linearized : tij
approximation to the dynamics of a solid wall, in which the wall is » |
represented as a device which responds to the pressure fluctuations
by producing surface displacements. This is essentially a linear
control systems transfer function approach to the problem. 1In this ‘ i
view, the combined system is represented as shown in the figure

below, -]
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To make this calculation possible the following elements are

The spectrum in space and time of the pressure
fluctuations on a wall in natural turbulent flow. This
could be obtained from either an experiment or a full or
large eddy simulation. To date, only limited portions of
the necessary data have been published, namely the time

spectra of the pressure fluctuations.

A dynamic linearized model of the wall in which the input
is the pressure fluctuations on the surface and the output
is the surface displacement. This is just the dispersion
relation for the surface and needs to be specified from
the dynamics of deformable bodies. A more sophisticated
model might include the effect of the surface shear

stresses; however, these are not likely to be important.

A model for the effects of the wall surface displacement
on the flow. The Stokes layer model presented above

should be adequate for this task.

The suggested combination of these elements would produce a
model capable of predicting the drag in a compliant wall channel

containing a turbulent flow. On the basis of the experience
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described in this report, it is anticipated that this theory will be

useful in estimating the change in drag and the properties of the

surface which would produce the greatest drag but will not be

quantitatively accurate. Unfortunately, time restrictions

prohibited the present study from investigating this model.

3.6 Pressure Drag

The momentum balance shows that, under the approximations

employed, there is no pressure drag on the wall.

However, an

estimate of the pressure drag on the actual wavy wall can be

obtained by assuming that the Stokes layer pressure at the displaced

wall would obtain at the wavy wall. A "drag coefficient" can then

be found by integration.

A
T

an
— >
axl

Using equations (11) and (19), this becomes

_ .2 2
CDp = -ng acAi/Um

~-28-
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The viscous drag of the unperturbed channel is in equilibrium with ﬁf@k
RN |
the pressure drop: . @
) C
CD = 4/Um (40) ,§ p
so that ‘f::
o
C. /C. = -n° acA,/4 (41) ]
D D o] i
P )
o
-]
For cases 1, 2, and 4 of Table 1, the pressure drag from Eq. (41) is
.
3.9 percent, 10.4 percent, and 13,2 percent respectively. For I
spanwise waves, no pressure drag is produced. The LES results shown L
in Table 1 will be discussed subsequently,

4. COMPLIANT WALL DYNAMICS

The work on the effects of moving walls with prescribed shapes
on turbulent flow provided considerable understanding of the
interaction between wall motion and the fluid flow. The principal
purpose of this work was directed at understanding the interaction
of a compliant wall with the flow. 1In this case, the equations for
the wall motion must be solved simultaneously with the fluid

equations.
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If only streamwise variations in wall shape are allowed, the

dynamic equation satisfied by the displacement y = n(x,t) of the

plane surface bounding an elastic medium, including linear damping,

is the second order equation (Benjamin, reference 3)

where
a, is
C is
p is
X is
m is

the
the
the
the

the

2 2
2 37 37 n In
a —_— - ———— « C — = p/m (42)
© ax 3t 2 3t

velocity of free waves

damping coefficient

external pressure applied to the surface
streamwise coordinate

mass of the elastic material per unit surface area

Equation (42) can easily be extended to allow variation in the

spanwise direction,

Yang and Heller (reference 19) analyzed a viscoelastic plate

sandwiched between a rigid plate and flexible membrane. They

obtained a pair of equations similar to equation (42) containing

several additional terms; they allow for variation of the surface

displacement in two directions. The major omissions in both of

these approaches are the shearing stresses and rotary inertia in the

dispersive material.
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Accurate accounting for all possible effects is shown by
Achenbach (reference 20) to produce a set of three rather
complicated equations which admit many modes of vibration, each
having its own dispersion curve. However, it is not known whether
all modes are important in the fluid interaction problem. The modes
associated with shearing and rotational motions are expected to
interact much more weakly with the flow than the modes due to
bending and thickness deformations produced by a fluctuating

pressure,

Under the ccmpliant Coating Drag Reduction Program sponsored by
the U.S. Office of Naval Research, a considerable amount of work has
been done to determine the characteristics of elastic surfaces which
could interact strongly with the fluid flow. Much of the effort has
been directed toward development of mathematical models of various
combinations of layers of viscoelastic materials. Duncan and Hsu
(reference 21) studied single-and double-layer viscoelastic
coatings, and estimated the material properties required for maximum
interaction with pressure fluctuations of the flow. Kalnins and
Evrensel (reference 22) demonstrated how a composite, compliant
coating could be modeled by a one degree-of-freedom system, similar
to a membrane. At the time of the present work, a definitive
description of a compliant surface had not been developed. The
viscoelastic sandwich structure studied by Yang and Heller provided
a simple means of testing the feasibility of coupling the LES with a

compliant surface., The equations derived for the surface deflection

-31-

A v PUBAT W SR W N Sl e e it - iinbe P T O 2 el B e

. P
'
PGV B 7 Lt

ol




due to an imposed pressure distribution represent in an approximate

way surfaces ranging from simple membranes to viscoelastic layers, R

The compliant wall is assumed to be a laminated structure

composed of a layer of a viscoelastic material between a stiff plate

and a thin flexible plate.

The base plate is assumed to be subjected to small deflection, while
the upper plate may undergo large deflections and, in addition, may
be subjected to in-plane forces. According to Yang and Heller,
experiments have shown that the Poisson's ratio, v, of PVC foam
under transverse loads is nearly zero. This allows the assumption
that the middle layer can be treated as a viscoelastic spring. The

equations of motion of the composite pls" . then become
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M + =p h + C, (s— - =
1 atz 6 3 3 3t2 3 ‘a3t at
4 azn1
* kylng = my) + Dy¥iny = Ny —5 (43)
ax
32n1
- Nz 5 = p(x,z,t)
9z
and
82n2 1 82n1 8n2 anl
My —5= * g3y =5 * C3 (5% T
ot ot
4 -
+ k3(n2 - nl) + D,V'n, = 0 (44)
where M, = 1 p.h. + p_h M, = 1 p,h, + p.h and »p P h h
1 3 "33 171" 72 3 "33 227 1’ P27 1t 2!

n(x,z,t) and np(x,z,t) are the masses per unit volume, thicknesses
and transverse displacements of the upper plates and the base plate,

respectively, and and hy are the mass per unit volume and

3
thickness of the viscoelastic medium. The quantity C3 is the

damping coefficient of the viscoelastic middle layer.
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The spring constant k3 is related to the elastic modulus and the

thickness of the middle layer by -

E3 -4
Ky = + (45) SR
3 h3 S
:-.:1
e
The quantitities D; and D, are the bending rigidities of the
upper plate and the base plate, respectively, with elastic moduli
E; and E, and Poisson's ratios v; and vjy: E]
Dy = ———— i i=1,2 (46)
12(1-v7)
i
The function p(x,z,t) in equation {(43) is the boundary layer y
pressure fluctuation. ")
s
If the base plate is completely rigid so that D, + =, the base fﬂ
plate deflection can be neglected, eliminating equation (44). iy
T
Equation (43) then reduces to -]
b
2 - 1
9™ n an 4
M1 — + C3 3T + k3n + D1V n - =
et
32n 32n (47)
X ax2 z az2 B
In what follows, all lengths are nondimensionalized with the

mean channel half-width, § , densities with the fluid density, o,
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velocities with the fluid friction velocity, u_= v tw7p, and
pressure and stresses with p u%. The values used for the

dimensional quantities are listed in table 2.

With the compliant wall displacement, n , included as a
dependent variable along with the fluid velocity components and the
pressure, equation (47) is solved simultaneously with the channel

flow equations by writing it as two first order equations

an _
== £ (48)
9& 4 32n
5t = - [C38 + kgn + D)V n - N~
ax
(49)
2
Nz__.f p] —
3z M1

which are solved simultaneously with the fluid flow equations by the

(implicit) Crank-Nicolson method.

5. LARGE-EDDY SIMULATION

The large-eddy simulation (LES) code used in this work is
described in Reference 9. The equations for the large-scale flow
field are obtained by integration of the filtered, three-
dimensional, time-dependent Navier-Stokes equations. The small-
scale field motions are simulated through an eddy-viscosity model.
The program permits simulation of a turbulent channel flow at

moderate Reynolds number (ReT = 14000).
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The LES code was shown to capture most of the important
features of the turbulent channel flow. Calculated results are in
good agreement with experimental data for statistical quantities.
Low- and high-speed streaks alternating in the spanwise direction
found in the numerical results were in good qualitative agreement
with experimental observa:ions. The calculated production of
turbulence was found to be intermittent in a manner that strongly

resembles that seen in the laboratory.

The impetus for the present work was the capability of the
three-dimensional time-dependent, numerical simulation to provide
detailed, instantaneous information about the flow at many spatial
locations. This information can be used effectively to study the
structure and statistical properties of the flow. For the case of
time- and spatially-varying boundary conditions, this capability
provides a unique opportunity to study the mechanics of the

interaction between the wall motion and the turbulent flow.

The code originally was developed for use on the ILLIAC IV

computer at NASA/Ames Research Center. Some of the calculations for

prescribed wall motion discussed in this report were performed on
tha” computer. The code was modified for use on the NASA/Ames CRAY

computer where the remainder of the calculations were done.
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The LES calculations were made in three stages. First, a

{ K preliminary calculation was made to evaluate whether the choice of @
wall parameters would produce observable effects. Then, after the
analytical studies provided guidelines for the choice of wall

s parameters, a second set of calculations was performed. Both stages »0“1

employed a coordinate mesh that consisted of 64 points in the x; and

X, directions (streamwise and normal to the walls) and 128 points in

W ¥ o e -

the x3 (spanwise) direction. 1In stage two, both prescribed wall o
motion and compliant wall motion were studied. 1In the final stage,

102 points were used in the x, direction to better resolve the near o

wall region. Also, the terms of the global energy balance equation L

and pressure drag were calculated,

In the following sections, the results of both the coarse mesh
and the fine mesh LES calculations will be used to illustrate the
effects of the wall motion. Some of the results of the coarse-mesh

calculations were presented in reference 18.

KRR .
O PR DT DT R B W

b

S.1 LES Results for Prescribed Wall Motion

The four cases discussed previously (section 3 and Table 1)

N O

., Ot
Aaa o 4 4 A o

el

were computed using the LES code. Since the sign of Reynolds

stress -<qu;>, where ui = uj = <ujp>, for a steady turbulent ;f’

channel flow is negative near the upper wall, wall parameters were e

A

i

selected for which the linear theory, Eg. (27) gave positive values -

o)

of -<GIGZ> ; this should reduce the production of turbulence and

yield drag reduction. B
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The first computational mesh used in the LES code was _T?
approximately the same near the wall as the coarsest mesh shown in e tg:
Figure 3. The finest mesh used for LES calculations had 102 points --EE
in the x, direction, and near the wavy wall approximately :;i
corresponded to the finest mesh shown in Figure 3. The details of - @ ]
the computational mesh are listed in Table 3. Note that the :
distance from each wall in wall units is included in the table. = .
These values are only approximate since they are based on the .u;
friction velocity of a rigid channel. For the channel with ‘
different boundary conditions on opposite walls, the mesh spacing in _”1
wall units will differ slightly for each wall, ¢ K
Starting from an initial velocity field representing the flow ‘
in the rigid-walled channel, the governing equations were integrated : ﬁ
forward in time with the prescribed moving wall conditions until the fg
numerical solutions reached statistically steady states. The mass .3 ;53
flux was held fixed while the mean pressure gradient was allowed to ' ?;E
float. ’ 1
. 3
5.1.1 Effect of Wall Motion on Pressure Gradient ) E
In Figure 8a, the pressure gradients for the rigid-walled .‘1
channel and for the wavy-walled channels of Cases 1, 2, and 3, of
Table 1 are shown; the coarse mesh was used for these cases. Using "‘?xi
the fine mesh, cases 1 and 2 were recalculated and an additional .
case (case 4) with a higher-speed upstream-traveling wall wave was
run; these results are given in Figure 8b, The terms of the energy
¢ balance equation were also computed in the fine mesh calculations. . 1
2 1
: :
¢ -38-
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All cases have an initial transient period wherein the solution

adjusts from the rigid wall solution to the moving wall solution.
Case 4 was started using the solution from the last time step of
Case 2, This resulted in smaller initial oscillation and faster

damping.

The coarse and fine mesh results are similar; the pressure
gradient reductions agree quite well. The coarse mesh produces a
reduction in dp/dx; of about 5 percent for Case 1 and nearly 20
percent for Case 2, while the fine mesh produces reductions of about
3.5 and 17 percent, respectively. For case 3, the coarse m2sh
calculation produces a 10 percent reduction in dp/dx;. The high
speed case 4 calculated with the fine mesh yields a greater
reduction (20 percent). The trends are consistent with the linear

theory predictions.

5.1.2 Effect of Wall Motion on Turbulence

Examples of the turbulence statistics from LES calculations are
shown in Figures 9-16. All the figures show results of the fine mesh
calculations., All cases show similar effects of the moving wall on

the turbulence statistics.

In Figure 9, the mean velocity profile is shown for Case 2
using the fine mesh; the behavior is similar to that éf the Stokes
layer theory shown in Figure 4. Of particular interest is the
expanded inset which shows the high resolution of the fine mesh
which accurately predicts the lower value of the d < u; >/dx, at the

moving wall.
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Figure 8 shows only 400 time steps for the coarse mesh cases, }i
1200 steps for the fine mesh cases 1 and 2 and 900 steps for case i ,«;
4.The total run length for the coarse mesh cases was 1600 steps; the . ?
profiles of the various quantities shown in Figures 9-16 were L;E
calculated by averaging over horizontal planes and the last 200 time t;ﬁ
steps. Profiles from the fine mesh calculations represent averages if%
over the last 300 steps after a total run length of 1200 steps for .i
cases 1 and 2 and 900 steps for case 4. Because of the short time- ',
averaging period, the profiles suffer from some statistical noise.
Nevertheless, certain trends can be discerned which indicate the .;
»

effects of the wall motion on the turbulence.

In Figure 10, the horizontally averaged turbulence intensity

components, <uiz>1/2

from Case 1 for the lower and upper halves of
the wavy-walled channel, respectively, are shown., The only
significant difference between the two halves of the flow occurs
very near the upper (wavy) wall, where the u; and u, intensities
increase significantly. The effect is shown more clearly in Figure
11, where the turbulence intensity <u12>1/2 is compared for the
rigid and moving walls for cases 1, 2, and 4, The intensity is very
high at the moving wall in all cases but rapidly falls to a
variation similar to that near the rigid wall.

In Figure 12 the turbulent shear stress for Cases 1, 2, and 4 -

is compared for the rigid and moving walls, Near the wavy wall the
shear stress changes sign as expected. Near the channel center,

statistical noise obscures any effects that might be present,. 1
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In Section 3 of this report, it was shown (Fig. 3) that the
nonlinear terms of the Navier-Stokes equations have a large role in
determining the effect of wall motion on the flow Reynolds stress
and, consequently, on the drag of the channel. In Figure 13, the
Reynolds stress from the nonlinear Stokes layer solutions for cases
1, 2, and 4 is compared with the LES results. Clearly, turbulence
has an appreciable effect on the moving-wall/flow interaction. 1In
particular, for the downstream-moving wall, LES produces much less

<u;u;> reversal. Also, it is clear why the fine mesh LES solution
yields less reduction in the channel pressure gradient than the

coarse mesh solution. The high resolution mesh, gives a

significantly smaller Stokes layer contribution to <u;u5> .

Two point correlation functions

. (x § ) ) <fi(£)fi(x1 + rl, Xy
iivt2'"1 w2 (50)
g (x)>

x3)>

<f;(5)fg(xl, Xyr X3 + r3)>

R..{(x,,r,) = (51)
1177273 <gn? (x)>
1 —
where f" represents the fluctuating velocities, u;" for i =1,2,3,
or the pressure fluctuation, p for i = 4, are plotted in Figure 14
-4]1-
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at two vertical locations, one near the lower rigid wall and one
near the upper wavy wall for case 1.The channel centerline is
located 640 wall units from each wall. 1In this section, the < >
indicates an horizontal average. Since the statistics were not
time-averaged, they suffer from statistical fluctuations,
particularly at large separation distance. The longitudinal
correlation near the rigid wall shown in Figure 1l4(a) is like that
of Reference 9 for the rigid-walled channel. For small separation
distances, the correlation for ui is larger than that for the
corresponding transverse components, uj and uj and the pressure, and
it extends over much longer distances than do the other
correlations. This is also true in the upper half of the channel
except very near the boundary. As the wavy wall is approached

[Figure 14(b)], the correlation becomes dominated by the wall

motion., At X 5= .914, (y; = 55 for a rigid walled channel) some
effect of the boundary motion is apparent in ug and p. A smaller
effect is discernible in the u; , while ug is completely

unaffected. These comparisons show that the effects of the wall

motion are felt for a considerable distance into the flow.

In the spanwise direction, the two-point correlations show very
little wall motion effect except very near the upper boundary where

”n "
the uj v

of the channel due to the two-dimensional nature of the wall motion.

and p become highly correlated across the entire span

Energy spectra of the turbulence are shown in Figure 15 for the

same two locations as for the two-point correlations. The effects
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of the wall motion are evident in the spectra of the longitudinal
and vertical energy components [Figure 15(b)}] where sharp peaks

occur at the wavenumber of the prescribed wall motion.The wall .fi
motion makes a negligible contribution to the spanwise energy "t}

spectra.

The same comments generally apply to the results of case 3

except that the largest effects occur in spanwise two-point

PUPIPSE BTG R

correlations and energy spectra. °

5.1.3 Energy Balance

As shown in Section 3.4, the presence of a moving wavy wall
introduces two new terms to the kinetic energy integral equation.
One term is the result of work done by the fluctuating pressure on
the vertical motion of the wall., The other term is the work done by
the viscous forces. These terms represent energy supplied or
absorbed by the wall and must be compared to the reduction in the

energy required to drive the main flow through the channel.

In Figure 16, the components of the energy balance from the LES

ac

are compared to the results of the linear theory. Three cases are - 8
represented for the LES: the downstream-traveling wave (case 1),
! and two upstream-traveling waves (cases 2 and 4). The LES results *ﬂ?
é are generally in good overall agreement with the linear theory. The
pressure work term is particularly well predicted by the theory,

whereas the theory estimates the viscous work to be higher than the ]

LES result. These results are consistent with those discussed

3 - -43-
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previously in connection with Figure 7 (Section 3.4), where it was
shown that the inclusion of the nonlinearities significantly reduced
the gradient of the turbulence intensity near the wall., This also
results in a reduction in the viscous work term. It was found that

the intensity gradient was further reduced in the LES.

The net result of the energy balance is shown in Figure 17.
Again, the results of the linear theory are reproduced for
comparison. The LES results seem to agree with the linear theory in
predicting a net decrease in the energy requirement for both
upstream- and downstream-~traveling waves in the low-speed range.
However, the calculation of the net energy reduction involves a
small difference between quantities which are of similar magnitudes,
each of which is subject to some uncertainty due to numerical error
and statistical noise. Although, it cannot be stated unequivocally
that a net drag reduction is produced, the fact that both LES and
linear theory predict such a reduction makes it probable that a

small net drag reduction is actually achieved.

5.1.4 Pressure Drag

In a manner similar to the calculation of pressure drag by the
linear theory in Section 3.6 of this report, the pressure drag was
calculated in the LES by integrating the pressure fluctuations at

the fictitious wall over the actual wall, i.e., as
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C. = - <p 2> (52) L
Dp pu2 9%y e
m '.-_"v-'j
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where P 1is the resolvable portion of the turbulent wall-pressure R
fluctuation from the LES calculation. The results of this f;
RS
calculation are included in Table 1 as compared to the drag of the 4’;“1
unperturbed channel, For cases 1 and 4, the pressure drag predicted "*?
by the LES is somewhat smaller than predicted by the linear theory. f;i%:
. . T

These comparisons are only a qualitative estimate of the °®
3
channel drag since there is no actual pressure drag with the 5
linearized boundary conditions. The interaction of the pressure » _{
fluctuations with the real wall cannot be evaluated except by use of '”. :

a calculation scheme that employs the complete nonlinear boundary ,f-;f
conditions. This needs to be done if valid results are to be

obtained.

5.2 LES Results for Compliant Wall Motion )

)
2

5.2.1 Effects of Turbulence on Wall Motion

Some calculations were performed for compliant walls using the
coarse mesh LES program coupled to the compliant wall Equations (48) e
and (49). Several cases were calculated using various values of the

elastic constants, k3, C and Dy and membrane tension Ny and N,

3’

o ) A}
YO AW AR

(table 4). The first case used values given by Yang and Heller as N ,_,
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characteristic of a Mylar membrane and a PVC plastisol substrate.
The non-dimensional tension forces applied to the membrane were
varied from 0 to 10% {corresponding to 0 to 300 n/m). The material
properties from Yang and Heller (reference 19) correspond to the

following non-dimensional parameters

K, = ky5/(pu?) = 1514

63 = C3/(puT) = ,098

D, = D,/(pu?F) = 1.58

Ne= N, = N /(pu’ §) = 9082

Figure 18 shows the time history of the rms wall deflection (in wall

units) and the rms wall velocity, ng/u. for the first case where

Nx= Nz = 9082. The calculations appear to have reached a
statistically steady state. However, the magnitude of the wall
deflection is very small, on the order of 0.02 wall units.

As the prescribed wall motion cases had a nondimensional surface

deflection for the prescribed wall shape of five wall units and

produced a small effect, this deflection will produce entirely

negligible effects, As should be expected with such a small surface

response, no effect on the mean pressure gradient was observed.
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: Insight into the nature of the interaction is obtained by '-.'...:_'ji
! l examining the dispersion relation for the surface. For the general .
- viscoelastic composite material described by Eq. (47), with damping .
coefficient, C3 = 0, the natural frequency is, ~j_;' g
) A.i—
Ky 42 N, "z, 2 Tr4131 x4 . "x"z,2 "z 4,172
w= { =+ = IN(F)H NAF) T + —= [() " + ( 5 * () 1} R

M M M
1 1 (53) ‘

®
e where n,, and n, = 0,1,2 . . ., M, = M;/ p§ and a and b are the . -
length and width of the membrane. R -.f-:
For a simple membrane with k3 = 0 and negligible stiffness, the .
. natural frequency becomes .' .‘
- 2R 2, (22)2) 172 (54)
)| v ¥ x a z' b o
In the present case ®
a = 2b = 2n
,. -

] @
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1 1 = 2, = 2,11/2
w=3 {a [N (n )%+ N_(2n )]} (55)
1

The characteristic time for the various modes can be found from

Tc = 21/ w
For Nx/ﬁ1 = NZ/Ml = 2000
- .002 1/2
Tc— 27 [ 5 ] (56)

2
n_+ (2nz)

Values of To for the first 6 modes are listed in Table 5.

The parameters used for the calculations shown in Figure 18
correspond to a natural frequency of a spring-mass system which is

approximately

- 13
*
o= 39 (13,172 4
Ye M
1
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where w* is the dimensional frequency in Hertz.

An estimate can be made as follows for the frequency of the
turbulence pressure that contains the maximum energy. From
experimental measurements (reference 17) the convection velocity of
the turbulent pressure fluctuations at the wall is estimated to be
.8Up. A nominal value for the mean streamwise extent of the eddies
producing the pressure fluctuations is two hundred wall units; the

corresponding value for the non-dimensional frequency is

w ~ 300

Anticipating that resonance between the turbulent pressure
fluctuation spectrum and the vibration characteristics of the wall
is necessary to produce significant effects, the parameters of the
surface equations were adjusted to make the natural frequency of the
surface more closely correspond to the characteristic frequency of
the fluid flow. The membrane tensions were set to zero
(N, = N, = 0), the viscoelastic damping, Cj3, was zero, the bending
stiffness D; was increased and the spring constant, k3, was
increased to raise the vibration frequency (case 2 in Table 4). The
resulting mean rms wall deflection was n+ ~ 013, indicating no
resonance between the wall and the flow, and as before, there was no
noticeable effect on the mean channel pressure gradient. This

indicates that the estimate of the required resonant frequency was

incorrect. For these small wall deflections the linearized

-49-

]
‘«
.
1
«

-....%
® .

v

AR I A B
AR SRRPUN

Y

@
nlieiondendiondibl e




»»»»

treatment of wall boundary conditions is accurate.

Other calculations were made with the surface equations

containing only the membrane tension terms. That is,

This produced a wall vibration response to the turbulent pressure
fluctuations which increased continuously (Figure 19), showing no
tendency to stabilize, The calculation was halted when the

amplitude of the wall deflections reached five wall units due to

anticipated errors from linearization of the boundary conditions.

Increasing ﬁx/ﬁl and ﬁz/ﬁl to 2000 produced a wall vibration

which increased stepwise (Figure 20). Starting from no vibration,

the wall amplitude increased and appeared to stabilize at an rms

value of two wall units. After about 600 calculation steps (a time
of about 0-2253/u1), the amplitude again began to increase, and then

stabilized at about four wall units. After another short period of

stability, the amplitude again began to increase.

-50-

BN . b e S . . - . . . - - N ¢ .
- P . - . . . . - .

. e e

.
R - o « . RIS .l - . . . * .
N ) e [ IS - TN S VIS TP SO S SR L i LN, W VN ST V. SO WA/ S WA, W W S

R ARC A B e Sie ~B e 2t 2/ T S S it ma S A A A LA Wil St AU A e O-10 2000 S S-S arat ruit or s apue o LANNL St gre sy et ety ase

LI
-t
k. N SV,

.
' acs A

A



CRafNA - A Ul Rl Wt (e e " CHMC S 2 S g Janer T | e aas e aan oo o TV Y AEEA SRR e ~a o aa g a4 T
A A y PRIEN e v B DAl . A . . A . T ,-

"1

P

. ' N
\ R L
PUTGTRTSY LT LT G PP

.
LR

1 S B
Lo
. N o
. . . S
L A T
Ce % St

In order to obtain more insight into the nature of the

interaction the pressure fluctuations and the wall shapes for the
various cases calculated are examined. 1In Figure 21, the
distribution of pressure fluctuations on the compliant wall is :.

plotted for the case of a membrane with ﬁx/ﬁl = Nz/ﬁl = 2000 at
integration step 600 (T = .225); this pressure distribution is
typical. It is quite three-dimensional and contains a variety of
wavelengths. B8y contrast, the surface shape is characterized by
longer wavelength displacements and, in most cases, near two-
dimensionality corresponding to the natural modes of vibration of ‘@
the membrane. Figure 22 shows the surface displacement for the Yang - f
and Heller surface which has an rms displacement of about

.02 v/uT (Figure 18). Figure 23 shows the surface shape for the
modified Yang and Heller surface (case 2, table 4) for which the
damping, C3, was zero, the membrane tensions were zero and the

spring constant, k3, was adjusted to increase the natural frequency

WP PPN W WY

of the elastic material., This surface shows more three-
dimensionality but is still dominated by long wavelengths and small
amplitudes. The nearly two-dimensional surface displacement in

@

Figure 22 corresponds to one of the natural modes due to the
dominant membrane terms of equation (53), whereas the more three- Z??

dimensional displacements in Figure 23 are due primarily to the

PPEP TGy W

spring constant term k3n and the stiffness term pv4n. Recall

that in this case, the membrane stretching terms were absent (N, =

N, = 0). .
-51-
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These results indicate the need for information about the
the surface parameters to achieve resonance with the flow. Such

could be obtained using LES. Such calculations are suggested as

possible future work.,

3 The largest surface displacements were obtained for the
membrane surfaces. Figure 24 shows the membrane surface for the
case with NX/M1= Nz/ﬂl = 2000 at five different times. The

membrane deformation is nearly two-dimensional. The stepwise

T —

behavior of the rms amplitude of the membrane vibration discusse

different modes of the vibration.

dimensionality of the membrane surface. First, the computationa

lowest mode of the longest side, which is in the streamwise

time of the second longitudinal mode, (see table 4) both streamw
and spanwise waves develop. Then, as the time for the second
longitudinal mode is reached, at approximately T = 0.142, the

surface develops the wave shown in Figure 24 (a). As the

and becomes complete as the integration time exceeds T = 0,28

Figures 24 (b), (c) and (d). Further integration increases the

-52-

.y : ‘A o LAt tal PR S — [P " A&’ a2 a & _a O 2ot won

A e R M AT ARt T B ach icas Bavine s Al S A A A A ara MR ot St S i AR et el S S A A A A TP R R R L S T I

space-time spectra of the pressure fluctuations in order to "tune"

h
b
[
b information would be very difficult to obtain experimentally, but it
X

d

previously is found to correspond to a progressive development of

The dispersion relation Eqg. (55) shows the reason for the two-

1

region is rectangular, so that the lowest mode is dominated by the

direction. For integration times shorter than the characteristic

ise

integration proceeds further, the subharmonic wave begins to develop
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amplitude of the subharmonic wave while the higher frequency waves
in both the streamwise and the spanwise directions are damped,
yielding the smooth, two-dimensional wave shown in Figure 24 (e).
Comparison of the compliant-membrane calculations with the
prescribed-wall results reveals that while the compliant-wall shape
was roughly two-dimensional and sinusoidal like the prescribed wall,
with comparable amplitude, the dominant wavelength produced (the
region size) was much longer than the prescribed value (.05 x region
size). The prescribed wall motion produced a discernible drag
reduction because it had the proper length scales to interact with
the energy-carrying motions of the flow., The compliant walls had
wavelengths too long to interact significantly with the
turbulence. To match both frequency and wavelength of the
turbulence the wall wave will need to have a wavespeed about equal
to the flow speed. This is the essential criterion and requires
very low wave speeds for solids. So the wall will need low tension,

high density, and low stiffness.

5.2.2 Wall Motion Effects on Turbulence

The only compliant surfaces for which noticeable effects were
produced in the flow were the membranes. Results for the case
with ﬁx/ﬁ1= ﬁz/ﬁl = 2000 are shown in Figures 25-28. 1In Figure
25 the turbulence intensity components, (uI)‘, (ug)', (ug)' for

the lower and upper halves of the channel respectively are shown.
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As for the prescribed wall case shown in (Figure 9), the only
significant differences occur very near the upper wall, where the
(u;)‘ and (ug)' increase due to the wall motion. Here, the

greatest effect is seen in the uj-component, while the uj;-component

has only a slight increase in intensity due to the wall motion.

In Figure 26, the turbulent shear stress is shown. 1In contrast

to the prescribed-wall result, there is no noticeable effect.

Two=-point correlation functions as defined by Egs. (50) ar-i
(51) are shown in Figure 27 at the same distance (x2= + .990) from

each boundary. At the lower boundary [Figure 27(a)] the
longitudinal correlations are typical of turbulent flow near a rigid
boundary. Near the upper boundary [Figure 27(b)], the longitudinal
correlations for the pressure and the spanwise velocity component,
u3, are unaffected by the wall motion, while the wu; and u,
components clearly show the long wavelength of the boundary shape.
As expected, the effect did not propagate very far into the flow.
The next level at which the solution was examined was at X = .941 ;
no effects could be seen,

In the spanwise direction, the two-point correlations reveal
the two-dimensional nature of the wall motion. The pressure and uz-
velocity correlations are unaffected by the wall motion, but the
uj- and u,-components are highly correlated across the entire span

of the calculation.

Energy spectra of the turbulence are shown in Figure 28 for the

same two locations as for the two-point correlations.
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{ n The longitudinal and vertical energy components show a significant P
increase due to the wall motion in the energy contained in the lower
wavenumber range,

». o
5.3 LES Results for Other Types of Wall Conditions

5.3.1 "Smart Wall" Experiments

In the belief that the optimum drag reduction would result from L4
a wall that destroyed all of the turbulent pressure fluctuations,
cases which imposed such a boundary condition were run. In the

"standard” problem, the three velocity components, Uy, Ups and o

modified calculation, the u; and wuj velocity components were R
l specified to be zero, and the pressure was specified to be constant ..'
at the wall while the u, velocity component was computed. This \535
corresponds to a porous wall with a plenum behind it. Calculations .

)| resulted in a higher mean pressure gradient indicating that the _P_

technique actually results in increased drag.

Y ST U P

5.3.2 Distributed Suction/Blowing .9

A boundary condition which represents a distribution of suction

uy, are specified at the wall and the pressure is computed. In the RN

and blowing through a wall without wall motion is  .73
®
U ouy = 0 ]
u, = A sin (ax1+ Bx3- wt)
’ [

The specific formulation used here has a simple traveling wave form.
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Calculations were performed for this formulation both with LES
and the mixing length analysis. For a value of A which g;ves the
same u, amplitude as the moving walls, the Stokes layer Reynolds
stress is smaller than when the accompanying u; boundary condition
is present. As a consequence, the effect on the mean pressure
gradient is less than for the moving wall. Another result was that
the change in the mean pressure gradient was positive for waves
moving downstream and negative for waves moving upstream. That is,

downstream-traveling waves produced a drag increase, and upstream-

traveling waves produced a drag reduction.

5.3.3 Longitudinal Grooves

A drag reduction technique that has been shown to be effective
experimentally is that of longitudinally-grooved surfaces having
groove depths ard spacings on the order of the turbulent wall-streak
and burst dimensions (reference 23).In order to investigate the
applicability of LES, two cases were calculated for longitudinal
grooves of sinusoidal profile. The surface shape was described by
Eq. (11) with a = 0 and o = 0, The boundary conditions were Egs.

(9) and (10). The values used for the other parameters were

N, = 5 and 6
g = 40 and 8
-56-
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:.1 [1 The values of B correspond to a wavelength (groove spacing) of 100 —.
? and 500 wall units, respectively.

. The results were that the short wavelength case produced a

* ta slight increase in the mean channel pressure gradient, while the ) )
E long wavelength case showed essentially no change in the pressure i
E gradient. Experimental results (reference 23) show that sharp-edged fié
; grooves with spacings of 10-20 wall units are required to produce a ';f‘

significant effect. The fact that no effects were observed in the

LES with smooth grooves is consistent with those results,
6.0 LES IN GENERALIZED COORDINATES
It was shown in a previous section that the use of linearized o

boundary conditions places limitations on the magnitude of the

parameters defining the wall motion and especially, on the ﬁlﬂ

amplitude., Furthermore, the values required to produce interesting ®
effects are close to the limits of validity of the model. 1In this .
section, a formulation of the equations for large-eddy simulation of

the channel flow using the exact wall boundary conditions is ®
presented. The formulation is based on a generalized coordinate
transformation applied to the Navier-Stokes equations and then
specialized to the case of flow in a channel with one flexible ;
wall. Implementation of the formulation was beyond the scope of the

present project, but is required if LES is to be used to explore the

significant part of the parameter space. This section documents the °
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:( derivation
sources of difficulty,

analysis.

6.1 Governing Equations

normalized by the friction velocity,

channel half-width and pressure normalized by

L 1R S W IS L
9 9X. R X X
j e k k
T
where
pu |
o)
u u u + 8§ o
1 1 3 13
D =/ u ;E = u u + 48 p ; F
2 j 2 j 2)
u u u 8
3 3 3 30
]
and
u_»§
R = —
e v
T
_58..

2
pu_

S Jhat Sielh St Sk S B S A S Sk T

The complete nonlinear Navier-Stokes equations,

4

of the equations, provides some analysis of potential

and suggests the procedure for completing the

with velocities

lengths normalized by the

can be written

(57)

(58)

(59)
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6.2 Boundary Conditions

The boundary conditions for flow in a channel consist of the
condition of no-slip at the channel walls and the condition that the
velocity components are all periodic at the inflow and outflow

boundaries and at the lateral boundaries:

ui(xl,O,x3,t) =0 for i=1,2,3

ul(x,h,x3,t) = u3(x1,h,x3,t) =0

_ 9dh
Uz(xlrh1x3rt) Y (xl'x3rt)
ui(xl + a, x2'x3’t) = ui(xllxz’x3,t) (60)
ui(xl'lex3 + b, t) = ui(xl'x2,x3't)

where h is the instantaneous distance between the channel walls and

a and b are the length and width of the computational region (note

that the definition of x, has been changed so that x, = 0 is the
lower wall and x, = h is the upper wall).
6.3 Cocrdinate Transformation
Define a general transformation of the form
T =t (61)

g, = f(xj,t) for i,j = 1,2,3
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where €2 is defined so that £ = 0 is the channel centerline and the

channel walls are at £y = & 1.

A ala 4 o

The chain rule yields

PPN, T WY

. ag

~ 8 _3 ..’ _3

- 2t - 3T T 3t I (62) - .
and [

(63)

|
[N (WS
@

PPy

The inverse transformation is

- X .
L:L-{-——ll
It at 3T axj

SN

(64) -

S
e
SR e )

LIy

and

MG (\ SR
L J

o e
2ogl

f
»‘ _ J (65)
g 9k . agi axj

—

1 9
9 1
.. . 1
& .

-
e
.

-
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—
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with Equations (62) and (63), Equation (57) can be written

JE, -y 96,

3 (571 B (g7ly 3 —J
JaT[J D)+Jan (3 D o=+ J axkEk)
-Jp [ (J'l) + =2 (37! iE—1)]
9T agj ot
3 -1 2%y 12
- JE, = (377 52) = x— VD (66)
£. aX R
j k e
T
where J is the Jacobian of the transformation
9, d9E. 0f
21 i 3j k
J =% €ijk ®amn 3Ix. Ix_ 39X (67)
L m n
and
X3 L33
2 L 9 m 9D
v°D = ( ) (68)
8xk 8&2 axk agm
and after some manipulation, it can be shown that equation (66)
becomes, for incompressible flow,
€
3 -1 j
— (" ~—=—u ) =0 (69)
agj axk k
-61~
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6.4 Filtering

The next step in developing the flow equations for large-eddy
simulation is to apply a filter to Equations (69) and (70). The
filter used by Moin and Kim (reference 9) will be applied in the
transformed coordinates., This is equivalent to assuming that the
small scale fluctuations move up and down and stretch with the

moving wall. The filter takes the form

- ! 3 ] [l
BCegon) = JJ, £Ce0m) L1 Glemg )dey] (71)
where, for i =1 and 3
t 6 1/2 ' 2 2
G(Ei-gi) = ( TA. ) exp [_6(51‘_ = gi) /Ai] (72)
i
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and for 1 = 2 ®

f%%
.;-'.J
1 - ' +
— for (£,-27) < £, < £, + &
. 8t (e 407 (k) 2 22 .
Sleymea) = ' + (73) .
0 for £y > (52 + A) ‘;_}
and £, < (g,= 2 ) ::i
where ' J
1
()
+ 1 2
A (e,) == (& - £, ) (74) \
2 2 2j+1 2j j
... j
and bR
AT(E,) = % (e, - &, ) (75) * 5
J i-1 ]
for »’
1 ( 1
= (¢ + £ ] < g, <= (g, + & ) (76)
2 2y 25y 2 ° 2 tray 2541

6.5 Generalized Equations

It is assumed that the wall shape consists only of large scale
variations. Applying the filter to Equations (69) and (70) yields
L the dynamical equations of the large-scale flow field in the ®

transformed coordinates.
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The continuity equation becomes:

E .
2 (g7t 13 =
e (0 3 U) =0 (77)
Jj k
and the momentum equations are:
3§ 3
9 -1—- 3 -1— Jj 3 -17%) ——
Y (g ui) v (3 u; —?—) * e (3 T uiuk)
’ ’ " (78)
AE -1
3 -1 3 = J 2~
+ — (I = §, P) = =— Vu,
agj 8xk ik ReT i

The product u uy contains small-scale components which must

be accounted for. Each component is decomposed into a filtered

(large-scale) part and an unfiltered (smali-scale) part, eq., uj = u

L N . .
i + uj. Then filtering wu,u, yields

= u.u +
Ujue T oupue Ry (79)
where
— - T T T
le = uuy + u Uy + u,uy (80)
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The subgrid scale stresses are defined by - j

[} ] @
X >
C - - 1 .
Tik T Rik T3 SikRee (81) R
1
and the modified pressure is ® 1
4
P =T +1iR (82) ‘0
3 g : ‘f
The filtered momentum equation [(equation (85)] then becomes ]
T g

K e
o€ . 14 o
3 -1- 3 -1— j 3 -1 - - Sl
7 ) e 0 ) e (07 e uyyy) —

J J k

) | °
N 1 s 1 IS (83) =
taes U e T e U s S B T Ty e

J kK J k e :
. o
o
Numerical solution of Equations (77) and (83) requires careful *ﬁ
X
consideration of the conservation properties; these are discussed in iq
the next section, _._1
3
A
The channel flow computer program developed by Moin and Kim has l

been thoroughly tested and evaluated and has been found to be

®
accurate, and stable for channels with flat walls. For channels !
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with more general wall conditions, it is desirable to use numerical N
methods which reduce to the existing method. As a first step in
developing such a method, define transformed velocity components as

g .

05 = J—lﬁluk (84)
k

With this definition, equation (72) becomes

F SN

30. )
___-l-_-o =
85j

s ey

(85)

AR S

. Using the inverse velocity transformation,

o

axi
t Ui = J -3-6— OJ (86)

J
L.
o
and adding appropriate terms to both sides of the resulting ]

- equation, equation (83) becomes, after some manipulation .
@
K

[V e ey |
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CIoH . 1 370,
T 2
( 32.(3].. 82-le ) 3=
+ + - _ 4+ H
R 2 2 k. i
eT agl 352 i
where
2
X, 370,
_ 1 -1_2 i< i
By =g~ 9 V0559 ) - 5y
eT 3 J 7]
ax X, 9§,
3 (5.-—-Lpo 1 _ 7]
57 (G 9 0;) 5E ( 5g, ot o)
(88)
o€ . o9&
9 -1 ] 9 -1 j = =
+ = [(6,., - J 8, )Pl- — (J TT—=" u.u )
agJ 1] axk ik gj axk ik
2—
9L . 370,
I N e SR - R
7eo 0w Tik) T L(1¥855)<v >48, vy )
J k 3¢t

Equation (87) is identical in form to equation (5.1) of

reference 9. The terms representing the velocity components and the
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right-hand side of the equation are more complicated and the -
turbulent shear stress has not yet been completely defined.

f The boundary conditions are: ‘ :1

»‘: 61= 0 at 62 = -1; i = 1'2,3 . : -3
b . ..
4 e} = 0 = = e
;G 0p =03 =0at g, =+l (89) -
3E ‘
= _ 1 2 1 3h _ Y
{ O =F ax. T3¢ 2t &, = 1
2 6

; Qi = periodic in gl and 53 |
. )

The turbulent shear stress in equation (88) is defined in the

same manner as in reference 9. That is

.","',-"

r-
o 2v_ (S <S,.>) 2*<s > (90)
! T.. = v . - . . - v .
{ 1j T 1) 13 T 1)
-
[ ]
VT

% where vy and ¥ are the small-scale eddy viscosities which .
E represent the action of the unresolved scales of motion on those

that are resolved. 1In the generalized equations, it is appropriate

[ ]
f to describe the shear stress in terms of the transformed velocities
: and coordinates. Accordingly,
i ~
30, 0.
i 1 I\
. T o= |+ —
sIJ 5 ( t 3T (91)




! 6.6 Discretization of the Generalized Equations T .

6.6.1 Transformation for a Wavy Wall

[

It has been pointed out by several previous researchers that
when studying flows over wavy walls it is desirable to allow the
eddy viscosity and turbulent kinetic energy profiles to move up and
down with the wall. Also, since measurements are most easily made
with a probe which moves up and down with the wall or is located at
a fixed point, a completely curvilinear coordinate system is not
practical. A coordinate transformation which satisfies these
considerations and allows the calculations to be performed in a

channel of fixed width is

T =t
E = X 1
» 1 1 °
£, = 2x2/h(xl,x3,t) -1 (92)
53 7 %3
] °_
_ R
Thus, while x, varies from zero to h(x;,x3,t), £, varies from -1 ;c-}
. ")
to +1. o
®
A 1
]
i
6.6.2 Conservation Properties '1
° It is generally accepted that, in the numerical treatment of a .'
differential conservation law, the equations must be in strong
L
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conservation form in order to capture discontinuities properly (cf.
Lax (reference 24), Viviand (reference 25), and Vinokur

(reference 26) and others). This requirement has been primarily
enforced for compressible flows where capturing shock waves is
important. However, these properties are important in

incompressible flows as well (reference 27).

In the incompressible case, because of the uncoupling of the
mass and momentum conservation equations from the thermodynamic
energy equation, the momentum equation carries a second important
property; conservation of kinetic energy. In reference 9, the
momentum equation is written in a particular form which is found to
conserve energy, momentum, and circulation with virtually any
difference scheme. The generalization to the present case, is not
clear. The construction of an energy-conserving difference scheme
in the generalized coordinate problem is crucial, and should be the
next step in completing the analysis. It was not possible due to
time limitations to complete that step in this effort.

The requirements for mass conservation and the time
differencing requirements for momentum conservation are easily
demonstrated. Consider equations (85) and (87) expressed as

difference equations:
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2 =09 (93)
SE.
]
—. §0.
AQL * 1 8 i
ar = (L *+ 85o)<vp> *+ 65yvp + g1 557 3¢
e_ 2 2
(94)
80, 0. =
1 8 i § i §
+ [ ( ) + —/— (=—=—)]- — + H.
ReT 651 6&1 653 653 Ei 1
where §&§/8¢( 1is a finite difference approximation to 3/3% and A
represents the finite difference between time steps n and n-l,
a= ()Mo )n (95)

Now, conditions which will ensure conservation in a uniform
flow field are examined. If the flow field represented by the
velocity components, uj, is uniform, then Equation (93) with (86)

implies the following difference relation:

-1 6&;
Eﬁ— (g 1 (96)
3

o
x
[
p—
1}
(o]

-71-

,,,,
ciela el e e

PSS




el aen s - ———— rad — — T Aodindi Riate ShathSnds Jiats Jauin Jtnil BRadiEhadh S 3
PE=mmE el e s 5 A Jatirniaan s 3 i oA R S . . B B Py

Similarly, the requirement that the transformed momentum equation
should numerically conserve momentum in a uniform flow leads to the

following difference equation

§¢.
A -1 i
At (J ka)
$E .
* 1 ) ) -1 i
- [(1 + 8, )<v > + 6. v + ] ( (J ]
12 T il T Re égz 6&2 ka
(97)
) SE 8¢ .
1 s -1 i § 8 =1 1
+ { [ (J )] + —I[— (J — )1}
ReT 651 651 éxk 653 653 ka
= H

Now the term Hy contains terms identical to those on the left-hand

side of equation (97). Thus, for uniform flows, equation (97)

reduces to

f .
i

-1 AE . .
Ad 8 -1 3 _ }
IX; + —EJ_ (J _AT:_) = 0 (98) °

TR P

The transformation described in the previous section yields the

following difference relations: _
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Expanding equation (93) gives

§E- §¢g
$ -1 i $ -1 2 $
S, = — (J —_—) + — (J —_—) 4+ —

1 6?,1 le 652 le 653

If central differencing is used, then the transformation yields

-8 (h 1 _1 j+1 sh
ST e (20 ST (- 5 (370 + 1)(651)|
2 2 j+1
(100)
1 j-1 sh
+§- (52 + 1) (Wl)| ]
j-1

By rearranging the right-hand-side of equation (100) and using the

fact that Gh/dgl is not a function of Epr it can be shown that

Sl=0
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Similarly, it can be shown that if central differencing is used:

8¢ §¢g §¢
8 -1 1 s -1 2 § -1 3
S, = — (J —) + — (J —) + — (J —) =0 (101)
2 651 6x2 6&2 ze 653 6x2
and
§¢ 33 §¢
§ -1 1 § -1 2 § -1 3
S, = — (J —) + — (J —) + — (J —) =0 (102)
3 6&1 6x3 6&2 6x3 653 6x3

Thus, if central differencing is used, equation (93) will

numerically conserve mass.

The condition for momentum conservation requires

-1 AE
Ad -1 I, _
IX; + '3"5—] (J _A-t—) =0 (103)

For the transformation, this can be expressed in the following

difference formulation:
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AJ 8 -1 n Ag
AT n+l (s ") K?]
§E.
j
_lah s ot 0¥ 1 1,
2 AT 652n+1 2 At hn+1 hn
(104)
_lsh o1 a2
2 At n+l Bt n+l
h sg,

Thus, if the time differencing is done in accordance with
equation (104), equation (103) will be satisfied and momentum will

be conserved.

6.6.3 Solution Algorithm

Since equation (87) has the same form as the equations used in
Reference 9, the numerical method used in that reference is
suggested as the one to use first. Thus, the pseudospectral method
would be used in the 51 and 53 directions, and central
differences would be used in the 52 direction. Time advancement
would be made using a semi-implicit method wherein the backward-
difference formula would be used for the time derivative of the
velocities, the Crank-Nicholson method for the viscous and pressure

terms and the Adams-Bashforth method for the remainder, Hi terms.

7. CONCLUDING REMARKS

A program for large-eddy simulation of turbulent flow in a

channel was adapted to deal with time-varying wall motion through
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the use of linearized boundary conditions. The code was applied to
flow in channels with one wall having prescribed wavy motion, and to -
channels with a compliant wall.

A mixing-length analysis employing a linearized Stokes layer
theory capable of qualitative prediction of the change in pressure
gradient was developed and used to guide the selection of parameters
for LES calculations. The results indicate that a small drag-
reduction is possible under certain conditions of wall motion. The
drag-reduction is the result of the creation of a Stokes-like layer
whose Reynolds stress is opposite to that of the undisturbed flow.
This decreases the turbulence production near the wall and reduces

the pressure gradient needed to drive the flow.

Predictions using both the linear theory and LES indicate that
much of the reduction in the energy required to drive the flow
through the channel is offset by the work required to drive the wall
against pressure and viscous stresses. The net effect appears to

yield a small decrease in the energy required to drive the flow.

Estimates of the drag reduction obtained from the mixing length
analysis are generally higher than those obtained from LES.
However, the mixing length analysis provides a simple first estimate -

of the net drag reduction due to a wavy wall,

To resolve the rapid variation of the Reynolds stress near the
moving wall a fine mesh is required. For this reason, the mesh was
refined beyond that used in the plane channel; the changes were

small.
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The most significant effects of wall motion on the flow are
found within a layer whose thickness is comparable to the viscous
sublayer thickness. To validate the results obtained using the
linearized conditions requires that the exact boundary conditions be
applied at the actual wall location. This in turn requires
transformation to a time-dependent coordinate system which renders
the calculation much more complicated.

Calculations for compliant elastic walls coupled to the flow
were unsuccessful in producing significant effects on the channel
drag for material properties representative of existing foam or
plastisol materials. The only surfaces which yielded a notable
response were thin membranes under slight tension. The membranes
developed low frequency, long wavelength surface shapes which did

not interact with the flow to create drag reducing effects.
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Change in -dP/dx
Cp )
LES LES P P
Coarse Fine CD CD 3
+

CASE n A c/U, 6 Eq. (34) Mesh Mesh (Theory) (LES) )
1 5 200 0.78 0 -0.076 -0.050 -0.035 0.039 0.014 *?-
2 5 200 -0.78 0 -0.214 -0.200 -0.173 0.104 0.111

3 5 50 0.78 90 -0.219 -0.100 0

4 5 200 -1.10 0 -0.267 0 -0.192 0.132 0.126

g TABLE 1

Effects of a Wall with Progressive Waves <
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3 S
p = 1000 kg/m "
®
u_= .051 m/sec
T = .0127 m ]
- ®
_+ u §
§ = —— = 640
v
* 3
P = 1025 kg/m
b
* 3 -
Py = 1394 kg/m ]
-
*
hl = .025 mm C
. -
* -
h3 = 20 mm o
9
TABLE 2 ]
- !_1
Parameters of a compliant wall composed of a mylar '1
sheet over a PVC foam substrate on a stiff backing N
plate. _ ]
¢ »
[ .
! »
i' R
b A
b o
- - ’
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! No. of

‘ : Coordinate Label Length Grid Points
\ Xy a 2 64
| x5 2 64,102
\ x5 b 2 x 128
x, Grid Distribution
{Lower ﬁ%lf of Symmetric Channel)
- Coarse Mesi Fine Mesh
Point LD Yy Point Xy Yy
2 -0.9972 1.78 2 -0.9997 0.20
- 3 -0.9940 3.85 3 -0.9990 0.64
’ 4 -0.9902 6.26 4 -0.9982 1.13
— 5 -0.9858 9.06 5 ~0.9974 1.68
6 -0.9808 12.30 6 ~-0.9964 2.30
7 -0.9749 16.10 7 -0.9953 3.00
8 -0.9680 20.50 8 ~-0.9941 3.78
9 -0.9601 25.50 9 -0.9927 4.67
10 -0.9510 31.40 10 -0.9912 5.66
11 -0.9404 38.20 11 ~-0.9894 6.79
12 -0.928? 46.00 12 -0.9874 8.05
. 13 -0.9141 55.00 13 ~-0.9852 9.47
L 14 -0.8980 65. 30 14 -0.9827 11.10
15 -0.8795 77.20 15 -0.9799 12.90
16 -0.8583 90.70 16 -0.9768 14.90
17 -0.8342 106 .00 17 -0.9732 17.10
18 -0.8069 124.00 18 ~0.9693 19,70
19 -0.7760 143.00 19 -0.9648 22.50
20 -0.7412 166.00 20 -0.9598 25.70
21 -0.7023 191.00 21 -0.9542 29,30
. 22 -0.6590 218.00 22 ~-0.9479 33.40
23 -0.6112 249.00 23 -0.9409 37.90
24 -0.5587 283,00 24 -0.9330 42.90
25 ~0.5016 319.00 25 -0.9242 48.50
26 -0.4400 359,00 26 -0.9144 54.80
27 -0.3741 401.00 27 -0.9034 61.80
28 -0.3044 445.00 28 -0.8912 69.60
29 -0.2314 492.00 29 ~-0.8777 78 .30
u 30 -0.1558  541.00 30 -0.8626 88.00
31 -0.0783 590.00 31 -0.8459 98.60
32 -0.0000 640.00 32 -0.8275 110.00
33 -0.8071 123.00
34 ~-0.7847 138.00
35 -0.7601 154.00
36 -0.7332 171.00
37 -0.7038 190.00
38 -0.6718 210.00
39 ~0.6372 232.00
40 -0,5998 256.00
41 ~0.5597 282.00
42 -0.5168 308.00
43 -0.4712 339.00
44 -0,4230 369,00
. 45 -0,3723 402.00
47 -0.2643 471.00
48 -0.2075 507.00
49 -0,1492 545,00
50 -~0,0900 583,00
51 -0.0301 621.00
)

Table 3

Details of the Computational Domain
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CASE IZ3 c D N N M _7

1 1514 . 098 1.58 9082 9082 .7795

2 70,600 0 15.37 0 0 .7795

3 0 0 0 10 10 . 051

4 0 0 0 100 100 .051

TABLE 4

Parameters of Compliant Surfaces
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1 0
2 0
1 1
2 1
1 2
2 2
TABLE 5

22.14

44.28

49.51

62.64

91.33

98.95

.2838

.1419

.1269

.1003

.0688

.0635

Frequencies and characteristic times

of a rectangular membrane
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FLEXIBLE
SURFACE

RIGID, FLAT SURFACE

Figure 1l.- Coordinates and velocity components for a
channel with one wavy wall.
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Figure 26.- Turbulent shear stress distribution in a
channel with one wall compliant.
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