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Abstract

Given three disjoint n-sets and the family of all weighted triplets that

contain exactly one element of each set, the 3- index assignment (or 3-

dimensional matching) problem asks for a minimum-weight subcollection of

triplets that covers exactly (i.e., partitions) the union of the three sets.

Unlike the common (2-index) assignment problem, the 3-index problem is NP-

complete. In this paper we examine the facial structure of the 3-index

assignment polytope (the convex hull of feasible solutions to the problem)

with the aid of the intersection graph of the coefficient matrix of the
I

problem's constraint set. In particular, we describe the cliques of the

*- intersection graph as belonging to three distinct classes, and show that

cliques in two of the three classes induce inequalities that define facets of

our polytope. Furthermore, we give an O(n4 ) procedure (note that the number

of variables is n3 ) for finding a facet-defining clique-inequality violated by

a given noninteger solution to the linear programming relaxation of the 3-*
index assignment problem, or showing that no such inequality exists.
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1. Introduction

The (axial) three-index assignment problem, to be denoted AP3, also known as

the (axial) three-dimensional matching problem, can be stated as follows: given

three disjoint n-sets, I, J, and K, and a weight cijk associated with each

ordered triplet (i,j,k) e I x J x K, find a minimum-weight collection of n

disjoint triplets (i,j,k) e I x J x K.

An alternative interpretation of AP3 is as follows. A graph is complete

if all of its nodes are pairwise adjacent. A maximal complete subgraph of a

graph is a clique. A graph is k-partite if its nodes can be partitioned into k

subsets such that no two nodes in the same subset are joined by an edge. It

is complete k-partite, if every node is adjacent to all other nodes except
I

those in its own subset. The complete k-partite graph with ni nodes in its

ith part (subset) is denoted Kn1,n2,... n*

Consider now the complete tri-partite graph Kn,n, n with node set

S = I U J U K, III = 1JJ = IKI = n. Figure 1 shows Kn,n, n for n=2 and

nn~n~nn=3. Kn,n~n has 3n nodes and n3 cliques, all of which are triangles

containing exactly one node from each of the three sets I,J,K. Let (i,j,k)

denote the clique induced by the node set {i,j,k}. If a weight cijk is

associated with each clique (i,j,k), then AP3 is the problem of finding a

minimum-weight exact clique cover of the nodes of Kn,n,n, where an exact

clique cover is a set of cliques that partitions the node set S.
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Figure 1

AP3 can be stated as a 0-1 programming problem as follows:

max 1iIjJkK CijkXijk

s.t. IjEJlk K xijk 1 V iI

li.IlkK Xijk 1 V jEJ

Ii~IjEj xijk 1 V keK

xijk E [0,11 V i,j,k

where I, J and K are disjoint sets with III = IJI = IKI = n. The coefficient

matrix of AP3 for the case n=3 is shown in figure 2.
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Figure 2

One interpretation of the constraints is in terms of an nXnXn cube in

three-space made up of n3 unit cubes, each to be assigned a value of zero or

one so that the following conditions hold: if the cube is viewed as a set of

j,k-planes stacked up in the direction of the i-axis, the first set of

constraints requires that the total value of the variables in each such plane

be exactly one; and a similar interpretation holds for i,k-planes (the second

group of constraints, corresponding to the j-axis) as well as for ij-planes

(the third group, corresponding to the k-axis). Figure 3 illustrates this for

n=3.

er k

Figure 3

I
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We will denote by AP3n the (axial) 3-index assignment problem of order n

(i.e., defined for n-sets), by An the coefficient matrix of its constraint

set, and by In , Jn' Kn the 3 associated index sets. The row and column index

sets of An will be denoted by Rn and Sn respectively. Clearly, IRnI = Inl +

IjnI + JKn1 = 3n and Sn = JIn! x IJnl x JKn1 = n3 .

In terms of Kn,n,n , An is the incidence matrix of nodes versus cliques

(triangles): it has a row for every node and a column for every clique of

Kn,n,n-

As usual, the support of a (row or column) vector is understood to mean

the index set of its nonzero components. Each element of S (that indexes a

column of An and a clique of Kn,n,n) will also be used to denote the support

of the given column of An and the node set of the given clique (triangle) of

Kn,n, n . Thus, if as has support (i,j,k) (i.e., if clique s of Kn,n, n has node

set (i,j,k}), we will write s = (i,j,k) or as = aijk, meaning that column as

has ones in positions ieI, jcJ and keK.

AP3 is a special case of the (axial) 3-dimensional transportation

problem, in which the right-hand sides of the constraints can be any positive

integers, the sets I,J,K are not necessarily equal in size, and the

integrality constraints are relaxed. This is in turn a generalization of the

well-known transportation problem, a special case of which is the simple

assignment problem.

Our problem is called axial to distinguish it from another 3-dimensional

assignment problem, called planar, which can be formulated as follows:

max 7ii1j J k k K c..kxijk

s.t. iel xijk = I V jeJ,keK

Ij,-j xij k 
= I V ieI,keK

x = I V isI jej
LkK ijk
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x ijk O,1' V i,j,k.i 1I

The coefficient matrix of the planar problem for n=3 is shown in figure 4.
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IP

This problem is a special case of the planar 3-dimensional transportation

problem. If we view the cube as a plane of n2 columns of unit cubes, then the

constraints of the planar problem require that the sum of the values of -

variables in each column be exactly one, in each of the three possible

orientations. This is illustrated in Figure 5.

k

Figure 5

The 3-dimensional transportation problem (TR3) in these and other

formulations was first studied by Schell [201. The literature on this problem
ID

includes the references {2,4,5,9,10,12,13,14,15,18,19,20,211. The original

motivation for considering this model was a problem in the transportation of
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goods of several types from multiple sources to multiple destindtions.

Applications of AP3 mentioned in the literature include the following

(Pierskalla j18,19]).

0 In a rolling mill with III soaking pits (temperature stabilizing

baths), schedule IKj ingots through the pits so as to minimize idle-

time for the rolling mill (the next stage in the process).

* Find a minimum cost schedule of a set of capital investments (e.g.,

'arehouses or plants) in different locations at different times.

• Assign troops to locations over time to maximize a measure of

capability.

• Launch a number of satellites in different directions at different

altitudes to optimize coverage or minimize cost.

AP3 is known to be an NP-complete problem [i. Obviously, AP3 is a

special case of the set partitioning problem (SPP):

max cx (1)

s.t. Bx = e

X E (0,Ij
q

where B = (brs) is a matrix of zeroes and ones and e is a vector of ones. The

set being partitioned in this case is R = I U J U K, with the rows of B

corresponding to the elements r c R. The subsets s = (i,j,k} from which the

partition is to be selected are those subsets (of cardinality three) which

contain one element from each of the sets I, J and K. Each column bs of B is

the incidence vector of one such subset (i.e., bs has a one in each row

corresponding to an element in the subset and zeroes elsewhere). The set

packing relaxation (SP) of (1) is the program:

max cx (2)

s.t. Bx< e



9

4D

X E {O,1)q.

For properties of SPP and SP see the survey '31.

Let PI denote the convex hull of feasible solutions to AP3 n, i.e.,

3
P1 = conv.x xn IA = e 'n

The intersection graph CA = (V,E) of a 0-i matrix A has a node s for every

column as of A, and an edge (s,t) for every pair of columns as , at such that

aS at O. The intersection graph GAn of An is the clique-intersecti- -raph of
Kn,n,n i.e., GA has a node for every clique (triangle) of nn' and an

edge for every pair of triangles that share some node of Kn,n, n .  GAn

for n=2 is shown in figure 6.

1 2

40 3

7 4

6 5

GA

Figure 6
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Although the 3-4ndex assignment problem has a sizeable literature, 7o

work has been done on describing the polytope PI. In this paper 6e apply the

tools of polyhedral combinatorics to AP3 n  and obtain a partia!

characterization of the facial structure of P . In particular, in secticn 2

we identify three classes of cliques of the intersection graph of An and sho4

that they are exhaustive. These cliques are known to define facets of the

polytope

P = conv~x 09i1,n JA x s e,1 n

the set packing relaxation of the set partitioning polytope P1. In section 3

we show that two of the 3 classes of cliques also define facets of P1 (whereas

the cliques in the third class define improper faces), and that these facets

are all distinct. Finally, in section 4 we give an O(n 4) procedure for

detecting a clique inequality violated by some solution to the linear

programming relaxation of PI, or showing that no such inequality exists.

I4

2. The Cliques of GA

in this section 4e identify all the cliques of GA, the intersection graph

of A.

For any sunset V Z S of the node set of G4, we will denote by <V> the

subgraph induced by V. For r E R, we will denote by Sr the support of row r

of A, i.e., Sr: =  s.Slars =  11.

Procosition 2.1. For each rzR, the noce set Sr induces a clique (-f

carlinality n2) in GA.



" Proof. The subgraph <Sr> is obviously complete. To see that it is

maximal, assume w.l.o.g. that rel (an analogous reasoning holds if rEJ or

rEK). Now let sES\Sr be arbitrarily chosen, and let s = (io,jo,ko). Since

sjS r , rPio; and Since Sr contains all triplets whose first element is r,

there exists teSr, t = (r,j,k), such that r~io , j#Jo, kiko. Hence Sr U {si

does not induce a complete subgraph of GA; and since this is true of any

sFS\Sr, the subgraph of GA induced by Sr is maximally complete, i.e., a

clique. Furthermore, jsrj = n2 for ali reR.II

The set of cliques defined by Proposition 2.1 will be called class I and

denoted QI. Clearly, 1QIj = 3n. In terms of Knn,n, the clique of class 1

corresponding to row r of A contains those nodes of the intersection graph GA,

whose associated triangles in Kn,n,n share node r of Knn,n .

Proposition 2.2. For every sES, let

T(s) = it e S\(s}IaSeat = 2}.

Then the node set {s} U T(s) induces a clique of size 3n - 2 in GA.

Proof. Let s = (io,jo,ko), and let t1 ,t2 e T(s) be chosen arbitrarily,

with t1#t2. Since each of tI and t2 contains two of the three elements

io ,jo,k o , tI and t2 must have at least one element in common. Hence the node

set {s} U T(s) induces a complete subgraph in GA. Now let

u e S\((s} U T(s)). Then the triplet u = (i,j,kj contains at most one

element of s. If auoas = 0, we are done. Assume now that auea s = 1, with i

=io (a similar reasoning holds if J=Jo or k=ko). Then J#Jo and k#ko . Now by .

definition, T(s) contains some t = (i*,j0,k0 ) such that i * io(=i). But then

aueat = 0, i.e., (u} U fs} U T(s) does not define a complete subgraph of

GA. Since the choice of u was arbitrary, the subgraph defined by {s} U T(s) .I

is maximal complete. I
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For each seS and for each of the three pairs of the triplet s =

(iojo,ko), there are n-1 other triplets in S containing the same pair; hence

IT(s)I = 3(n-1), and thus {s} U T(s) has 3n-2 elements.II

The set of cliques defined in Proposition 2.2 will be called class 2 and

denoted Q2. There is exactly one clique of class 2 for every column of A, and

there is no double counting; hence IQ2 1 = n
3. In terms of Kn,n,n , the clique

of class 2 corresponding to column s = (iojo,ko ) of A contains the node of GA

corresponding to the cliqUe (iojo,ko) of Kn,n,n , along with the 3(n-1) nodes

of GA corresponding to those cliques of Kn,n, n that share an edge (a pair of

nodes) with the clique (iojo,ko).

Proposition 2.3. For every ordered pair s,t e S such that aS'at = 0,

let ti , t2 , t3  e S \ {s,t} be the (uniquely defined) triplets such that

aS.a ti = 1, at.a i = 2, i = 1,2,3.

Then the node set (s,tl,t 2 ,t3} induces a (4-)clique in GA-

Proof. Let s,t e S, with aS.at = 0, and let s = (isjs,ks), t =

(it,jt,kt). Then tj = (isjt,kt), t2 = (it,js,kt) and t3 = (it,jt,ks) are the

only 3 triplets in S\(s,t} that satisfy the requirements of the Proposition ,
t.

i.e., they exist and are unique. Further, aS.a t1 = 1 for i=1,2,3 and
t* t.

a 1, = 2 for all ij c {1,2,31; hence (s,tl,t 2 ,t3} induces a complete

subgraph in GA. To see that this subgraph is maximal, note that any triplet

u c S\{s} that contains an element of s, either contains two elements of t

(and hence is identical to one of the triplets ti, t2 or t3), or else contains
t.

at most one element of t. But then aUea 1 = 0, where ti E (tl,t 2 ,t3 } is the

triplet containing those two elements of t not contained in u (besides the

element of s). Thus (s,tl,t 2 ,t3} induces a maximal complete subgraph, hence a

4-clique in GA.I1

S
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The set of cliques described in Propositions 2.3 will be called class 3
and denoted Q3" In terms of Kn,n,n , every class 3 clique of GA is associated

with an ordered pair (s,t) of disjoint triangles of Kn,n,n , and its node set

contains (a) the node of GA corresponding to the triangle s, and (b) the 3

nodes of GA corresponding to those triangles t1, t2, t3 of Kn,n,n that share 1

node with s and 2 nodes with t.

As to the cardinality of Q3, every ordered pair (s,t) such that

aSeat = 0 gives rise to a clique of class 3. Since ISI = n3 and for every

s E S that are (n-i)3 indices t E S such that aSeat =0, the number of

ordered pairs (s,t) with a Sat = 0 is n3(n-1)3.

To determine the number of cliques of class 3 we also need to know how

many different ordered pairs give rise to the same clique. Let s =

(is,Js,ks), t = (it,jt,kt), tI = (is,jt,kt), t2 = (itjs,kt), t3 = (it,Jt,ks),

and denote by C(s,t) the node set of the clique (of class 3) corresponding to

the ordered pair (s,t), i.e. let C(s,t):= ts,t 1,t2,t31. Further, let

*I= (itgJs'k s), t2 = (is'Jtk s ), E3 = (isjskt). Then we have

Proposition 2.4. C(s,t) = C(tiEi) for i = 1,2,3.

Proof. Consider the ordered pair (t1,E1). From the definitions, the 4

triplets of the set C(tI,19 ) are (is,jt,kt) = t1, (isJs,ks) = s, (it,jt,ks)

0 = t3 , and (it,js,kt) t2; thus C(t1,lE) = C(s,t). By symmetry, C(ti, i)

= C(s,t) for i = 2,3. II

Corollary 2.5. The number of cliques of class 3 is n3(n-1) 3/4.

Proof. Every clique of class 3 arises from 4 distinct ordered pairs, and

the number of the latter is n3(n-1)3 . II

Next we show that GA has no other cliques than the ones described

above. But first we need a property of GA.
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3 4
Proposition 2.6. GA is regular of degree 3n(n-1) and has n (n-1)

edges.

Proof. Let as be an arbitrary column of A. There are (n-1) 3 columns at

st3
of A such that aa = 0, hence there are n3-1-(n-1)3 = in(n-1) columns au

of A such that aS.au 0. Thus the degree of node s in GA is 3n(n-1), and

by symmetry this is true of all s e S. Since the number of edges of a graph

is one half of the sum of the degrees of its nodes, GA has

1 3 34x n x 3n(n-1) 2 n4 (n-1) edges. II

Let Q denote the set of cliques of GA.

Theorem 2.7. The only cliques of GA are those of classes 1, 2 and 3;

i.e., Q = Q1I U Q 2 U Q 3"
Proof. We will use induction on n. For n = 2, the statement is found to

be true by listing all the cliques of GA (see Fig. 4). In fact, because of

symmetry, it is sufficient to list the cliques containing a given node, say 1,

and they are (1,2,3,41, [1,2,5,61, (1,3,5,71 (of class 1), (1,2,3,51,

(1,2,4,61, (1,3,4,71, (1,5,6,7) (of class 2), and (1,4,6,7) (of class 3).

Suppose now that the statement is true for n = 2,...,k and let n =

k+1 t 3. Consider the relationship between GAn_1 and GAn. Note first that

Kn,n,n is obtained from Kn_1,nl,n1 by (a) adding three nodes i., j*, k., to

the three sets I, J, K, respectively, so that

I In = In-1 U {i.} Jn = Jn-1 U {j.} and Kn = K n-1 U (k.};

: and (b) adding new edges (i., z) for all % J U Kn, (j., 9) for all

I n U K and (k., z) for all 2 E In U Jn"

This creates 3n(n-1)+1 new triangles, namely:

(i) one new triangle (i*,j*,k*) that shares no node with any triangle of

Kn-l,n-l,n-l;

(ii) 3(n-1) new triangles of the form (t,j.,k.) for all z Inn-i'

n

1 i
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(i.,i,k.) for all i n Jn-' and (i.,j.,i) for all 2 e Kn l and

(iii) 3(n-l) 2 new triangles of the form (p,q,k.) for all

(pq) c I x Jn-i' (p,j*,q) for all (p,q) e x KnI , and

(i*,p,q) for all (p,q) e Jn-1 x K n_.

In terms of the coefficient matrix of AP3, An is obtained from An_, by

adding 3 new rows, one to each of the sets In-i' Jn-l, Kn-1, with zero entries
in the positions indexed by Sn-1; and adding 3n(n-l)+l new columns (of

dimension IRni = IRnilI+3), with supports corresponding to the new triangles

of Kn,n,n described under (iii) above.

It then follows that GA is obtained from GAnI by adding 3n(n-l)+l new

nodes corresponding to the triangles described under (i), (ii), (iii), and a

new edge for every pair of nodes (s,t) of GA such that (a) at most one of s

and t is a node of GAn, and (b) the two triangles of Kn,n,n corresponding to
n-i'

s and t have at least one node (of Kn,n,n) in common. It also follows that

GAnI is an induced subgraph of GA.

Consider now the node set C of an arbitrary clique of GAn. The

restriction C of C to GA induces a clique of GAnI, hence by the induction

hypothesis <C> belongs to one of the three classes described in Propositions

2.1, 2.2, 2.3. With an argument analogous to the one used in the proof of the

corresponding Proposition to show that a complete subgraph of the given class

is maximal, we will show for each of the 3 cases that <C> belongs to the same

class as <C>. Since <C> was chosen arbitrarily, this will prove that the

three classes of cliques are exhaustive for GAn = GAk+l, thus completing the

induction.

Suppose first that <C> QI" Then C is of the form

C = SnI E S n S aij = 1} for some i c Rn_. W.l.o.g. we may assume

that i I n-1 (an analogous reasoning holds if i Jn-1 or i E Knl).



16

Now suppose <C> J Q1 " Then <C> has a node s : [iojo,ko } such that io
i. conaincal thSo
SSince - contains all the triplets ofSnI whose first element is i,

it certainly contains some t = (ij,k) such that j $ Jo and k $ ko . But then

a Seat = 0 (where as and at are columns of An), hence we obtain the

contradiction that <C> is not a clique.

Suppose next that <C> e Q2 " Then C is of the form (s} u T(s), where

S C S and T(s): {t e Sn \{s}IaS.a t = 2} (as and at being columns of

An-O. Let s = (io,jo,ko). Now suppose <C> J Q2 " Then <C> has a node u =

(ij,k), such that as.au s I (where as and au are columns of Ad' Since <C>

is a clique, aS.au # 0, hence aseau = 1. W.l.o.g., assume that the common

element of the triplets s and u is i0 (a similar reasoning holds if the common

element is Jo or ko). Then j # Jo and k # ko . By definition, T(s) contains

some t = (i,, Jo, ko) such that i, $ io(=i), and t E T(s) implies t E C.

But then aU-at = 0, contradicting the assumption that <C> is a clique.

Finally, suppose <C> c Q3" Then C is of the form (s,t1 ,t2 ,t3), where

s, t1 , t2 , t3  Sn1 are distinct and such that

S t. ti 

a = I, at.a = 2, i = 1,2,3,

for some t e Sn-1 such that a Seat = 0. (Here as, at and all a are

columns of An-). Let s = (is,js,ks), t = (it,Jt,kt), and tI  (isJt,kt), t2

=(it,js,kt). t3 = (it,jt,ks). Now suppose <C> i Q3" Then <C> has a node

u E S n\Sn-l, say u = (i,j,k), such that aUoa s > 0, au*,  > 0, i = 1,2,0
t.

(here au, as and all a 1 are columns of An). Since u j S n I  at least one

of the elements i, j, k is not contained in any of the 4 triplets s, t1 , t2 ,

t3. W.l.o.g. assume k is such an element. Then each of s, tI, t2, t3 must

contain either i or j. There are four cases: i = is, j = Js; i = it, j =t;

i = is, j =Jt; and i = it, j = Js. In each case at least one of the four

• -. . S
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triplets s, t1, t2, t3 does not contain either i or j, which contradicts the

assumption that <C> is a clique.

Thus every clique of GAn GAk+1 belongs to either Q1, or Q2, or Q3, and

the induction is complete. II

3. Facets of PI Induced by Cliques of GA.

If C is the vertex set of a clique of GA, then obviously every x P

satisfies the inequality

(3.1) C x s <1.

Such inequalities are known to define facets of Pl the set packing polytope

associated with PI[17]; but Since P1 itself is a face of PI it is an open

question whether an inequality (3.1) also defines a facet of P1. In this

section we answer this question exhaustively.

First, some definitions and basic concepts. For any polyhedron P, let

dim P denote the dimension of P (defined as the dimension of the affine hull

of P, i.e. of the smallest subspace containing P). An inequality Tx ! I

is said to define a facet of P, if it is satisfied by every x e P and the

polyhedron Pl: = (x e PIrx = I} has dimension dim P-I. If +x = for all

this case of course dim PT = dim P. To show that ix 5 does not define
o

an improper face, it is sufficient to exhibit a point x E P such that

-x < I0 . Once this is ascertained to be the case, dim P < dim P-I, since

(a) dim P is the number of variables in the system defining P, minus the rank

of the equality system of P (i.e. of the system of linear equations satisfied

S.
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by all x P); and (b) the addition of the equation -x : o not implied

by the system defining P, increases the rank of the equality system by at

least 1. Thus showing that 7x ! r defines a facet of P essentially

amounts to showing that the dimension of PT, known to be bounded by dim

P-i, is actually equal to this bound. The most commonly used procedure for

doing this is to exhibit dim P affinely independent points x c P". Another

way of doing it is to show that the addition of ix = 1o to the constraints

defining P increases the rank of the equality system of P by exactly one; in

other words, that any equation satisfied by all x E P is a linear

combination of the equations in the system defining P7. In this paper we

will take the latter approach, and will use it also to establish the dimension

of PI itself. We will implement this approach via a technique similar to that

used by Maurras [161, as well as by Cornuejols and Pulleyblank [5], (see also

Cornuejols and Thizy [6]).

We first establish the dimension of P1.

Let P denote the feasible set of the linear programming relaxation of PI,

i.e.

P = {x e Rn Ax = e, x ? 0}.

Lemma 3.1. The rank of the system Ax = e is 3n-2.

Proof. The rank of Ax = e is at most 3n-2, since equation 2n is the sum

of the first n equations, minus the sum of equations n+l,...,2n-1; and

equation 3n is the sum of the first n equations minus the sum of equations

2n+I,...,3n-2. On the other hand, the rank of Ax = e is at least 3n-2, since

we can exhibit 3n-2 affinely independent columns of A. Consider the three

sets of columns indexed by the following triplets:
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The first two sets contain n-i columns each, the last one contains n

ah columns. The matrix formed by these columns (in the order of their listing),

after deletion of the first row of set I and the first row of set J, becomes a

square lower triangular (hence nonsingular) matrix of order 3n-2, with each

diagonal element equal to 1 and all elements above the diagonal equal to 0. II

Corollary 3.2. dim P = n3 - 3n + 2.

Proof. The dimension of P is the number of variables in its defining

* system (n3), minus the rank of its equality system Ax = e (3n-2).

We are interested in dim Pi. Since P, c P, dim P1 I n3-3n+2, and

strict inequality holds if and only if there exists an equation ax = C0

a satisfied by all x E PI' that is not implied by (not a linear combination

of) the equations Ax = e. We will show that no such equation exists.
3

Theorem 3.3. Suppose every x E PI satisfies ax = 0o for some a e Rn,

P" R. Then there exist scalars Ai, V i e I, uj, V j e J, and

vk' V k e K, such that

Oijk Xi + Wj + V k' V(i,j,k) e I x J x K

and

CLo r i X + I '4j + 1 9k
L i kK

n3

* Proof. Let x e P11 x E {0,1 n be such that xj Xi~ - 1,

and let Y' E (0,1i n be defined by

x jk 1  = xij = 0,

0
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and x xi for all other (i,j,k). It is easy to see that x P11ijk 'ijkI
implies x' e PP. and Since ax = ax'(=aO) by assumption, we have

(3.2)+ = a + ai Jk(3.2) +i~k 3J2k 2 = 3Jlk I  l2

n 3

Next, let x 3 PIS X E (0,1} be such that xi x = 1, and

let x' E {0,1} be defined by
ii = x' - 1,
x i3Jk I  i2J2k2

1  2 ijk = 0

and x' for all other (i,j,k). Again, x P1  implies x' PI'
ad xijk = xijk I

and since ax = a ', we have

(3.3) a i2j1k + a 3jk = c3i + i 2  k2

Subtracting (3.3) from (3.2) gives

(3.4) ai  - ai 2 Jlk = - ai1Jjkj I"2 1k cJ2 k2 (12j2 k 2

If in the definition of x, x' and of x, x' we replace the pairs (j2,k 2)

by arbitrary (j,k) J x K, we obtain (3.4) with (j2 ,k2 ) on the right hand

side replaced by (j,k). Thus the meaning of (3.4) is that two components of

whose index-triplets differ only in their first element, differ by an

amount depending only on the values of those first elements, i.e.

(3.5) ('i jk - i k = const., V(j,k) J 3 x K.

0

S
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By symmetry we have equations analogous to (3.5) for components of

whose index-triplets differ only in their second or only in their third

element.

Now let us denote

i Ii 2  ai IJk i32 Jk

(3.6) aij lk - iJ2k

kk j - ijk2k1 k2 ijk1  2

Then we have

ijk - i =k1  ijk - iljk + li jk - lk i jk -

aii1 + YJJl Skk1I

or

(3.7) ijk 1 + Y + ',kk + "i j k V(i,j,k) E I x J x K.

Next we fix uj. and vk arbitrarily, we let Xi I ll 1 -

and define

xi - i + E \( i
1 1

(3.8) .j + Yjjl

Skl+ 9 k E K\{kl}.1 "k 1 kkI

Then

(3.9) 3ijk =  i +  Ljj + Vk' V(i,j,k) E I x J x K.

Further, let i be defined by

Sif i = j = k

tijk 0 otherwise.
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I,-

iC 1 +~ L +~

Proof. From Theorem 3.3, the smallest aff ine subspace containing Pi is

the one defined by the system Ax = e; the dimension of P. is therefore the

same as that of P. i

Next we turn to the constraints defining P and ask the question, which

ones among these define facets of Pi*

Theorem 3.5. Every inequality x5 s 0 for some s e S defines a facet of

P.

Proof. The statement is true if and only if the polytope

P = lx Prjx =.0. has dimension dim P1 - 1 =n 3  3n + 1. Clearly,

dim Pr Io n I - r, where r is the rank of the system Ax = e, and As is

the matrix obtained from A by removing the column as. The rank of As is

easily seen to be the same as the rank of A, i.e. r = 3n-2. This is immediate

in the case when as is not among those columns used in the proof of Lemma 3.1,

and follows Dy symmetry for the other case. Hence the dimension of P is at

most n _ 3n + 1. To show that this bound is actually attained, one can use

the same argument as in the proof of Theorem 3.3 to show that any equation

aix = C (other than x. = 0) satisfied by every x - is a linear

dicombination of the equations AAx = e. The argument goes through essentially

unchanged.

As to t e equations of the system Ax e, each of them defines an

aimproper face of P (i.e. is satisfied by every x -P).

intecs4hna i o mn hs clmsue nte ro fLma31
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We now turn to the inequalities (3.1) defined by the cliques of GA.

Each clique of class I induces an inequality whose left hand side

coefficient vector is one of the rows of A. Hence each such inequality is

satisfied iith equality by every x P[ and therefore defines an improper

face of PI.

Next we consider the inequalities (3.1) induced by the cliques of class

2. Each clique in this class is defined relative to some index (triplet)

s E S, and has a node set of the form [s} U T(s) (see Proposition 2.2). Let

C(s) denote the node set of the clique of class 2 defined relative to s.

Theorem 3.6. For n ? 3, the inequality

(3.10) xt S 1
* tEc(s) -

defines a facet of P1 for every s - S.

Proof. Let PC(S) = (x E Pt (xt = 1i and let n 2 3. We will show

that dim p (S) I P1 . Let s = (io,jo,ko); then every triplet in C(s)\[s)

contains two of the three elements of s. Hence any x £ P1  whose support
I I I IIII II i l

includes (io,j ,k ), (i ,jo,k) and (i ,j ,ko), for any i , i $ io, j', j #

oand k k k, satisfies xt = 0 < 1. Thus (3.9) does not define

tEt (S)
an improper face of P1, i.e., dim PC(s) < p[_l"

* To show that this last inequality holds as equality, we prove that an

arbitrary equation ax = a0 satisfied by all xePC (s)  is a linear combinationII
of the equations of the system Ax = e and

* (3.11) xt  = 1.

Let~~~1 wherex O } n

Let C(s), xJO, , be such that xilJlk = xi3j2 = , where

* (il,jl ,ki), (i3,j2 ,k2 ) i C(s). Since n > 3, there exist at least 3 disjoint

tr4plets (JJ,k) such that x; k I, and at most one of these can belong to

L



24

C(s); hence the vector xpC(s) postulated here exists. Note that x is of the

same form as the vector x used in the proof of Theorem 3.3, ard nence the same
(|

reasoning can be used to derive the relation

3 i jk - ''i2 jk = const., V(j,k)EJxK:(i,,jk) (i2
,j,k) / C(s)

gD

for all i1,i2 - I, analogous to (3.5). Using the notation (3.6), we then

obtain

=ijk + Y jj** + 6kkl + i k I V(i,j,k) SC(s),

and defining \i, iEI, j, jE:J, Yk' kEK as in (3.8) we get the relation

(3.12) 'ijk =  ki + j + jk' V(i,j,k) E S\C(s)

analogous to (3.9).ID

Now let us define

II = 'k i " - k ' V iEI
i j0 k0 -0 0 k

J
(3.13) -7 = "i"k - - j- V .JEJ

0oJ 0 0 0

Kk - "- k' V kEK

vhere (iojo,ko) = s.

Since tEC(s) if and only if t is either of the form (i,J0 ,ko), or

(ioj,ko) ,  or (io,jo,k), (3.13) defines 2 ijk for all (i,j,k) z C(s). We
ll sho that [ J K

q 4 show ta = j 7 ' ik9, J, k£K. From (3.13) it is easily

I J K I J K
seen that 0 = 0 7k o hence, denoting 7C(s):= >i0 (= 7o = -0 ) it is

sufficient to show that 7i = 7C(s)' V iA[: it then follows by symmetry -nt
J 'K
j k = C(s)' 14 j{J, k K.

j k
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L(S) xwn3 here
Let Rp , ie(0 ,1} be such that xijk 1, where

n3
(i ,j ,k ) C(s) is chosen arbitrarily; and let x'exO,1} be defined by

X1I X1

i j0k0  i0j k

oj k = i =0,
0 00 i jk

and i' x for all other (i,j,k). Then from X PC(s) it follows that

xeP (s)^  , and from ax = ax'(=aO) we obtain

=iojokJ + CL , I j , = CL , + a , j , .

Substituting for ai j k 9 a from (3.13) and a , I I from
0 0 0 i jok io jk i j k

(3.12) (since ioJo,ko),(i ,jo,ko) e C(s) and (ioj,k), (i,j,k) C(s))

we obtain
I I

I + X + u + v + , ,+ V ,= ,+ X I+ U + + x + 1+ 1 or
io io j0  ko i j k i i j0  k0  i0  j k

I I

, ; and since i was chosen arbitrarily (subject to the condition
i i

0

I I I i
that (i ,j ,k) C(s)), this proves that I i:C(s) V iCl.

J K 0
Furthermore, as mentioned above, j= = C(s)' V jeJ, keK follows by

symmetry.

We have thus proved that

xi + "j + "k + 'C(s)' V (ij,k) E C(s)

ijk = i + j + k' V (i,j,k) e S\C(s)
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3S

n3
Now let 9 0 1,1 be defined by

:if i=i0 + J=j 0 + , k=k0 + (mod n) for e=O,1,...,n-i

Rijk = 0 .
otherwise

Then R e PCs) hence ax = a0, i.e.,

i I jeJ k + keK

This proves that the equation ax =a is a linear combination of the

equations of the system defining p (S); hence dim pC(S) = PI - 1 and thus

the inequality (3.10) defines a facet of PI.

Finally, we turn to the inequalities (3.1) induced by cliques of class

3. Remember that each clique in this class is defined relative to an ordered

pair (s,t) of disjoint triplets, and has a node set of the form (s,t1,t2,t3],

where each ti, i = 1,2,3, contains one element of s and two elements of t (see

Proposition 2.3). Let C(s,t) denote the node set of the clique of class 3

defined relative to the ordered pair (s,t).

Theorem 3.7 For n > 3, the inequality

(3.14) u£C s )xu S 1

defines a facet of P, for all s,t c S.

Proof. The proof of Theorem 3.6 can be used to show that dim PC(S~t) <

PI-I, and to derive the relation

(3.15) aijk = xi + ',j + YkI V (i,j,k) £ S\C(s,t).

analogous to (3.12).

. . . .:- -.. " --" -.i " - ", "
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Now let s = (isjs,ks), t = (itjt,kt), and define

is 1ijk -is ujs  k

st s tk s sJ sk

(3.16)

t2  jtskt 'it -js -kt

=i i -xk -ii" -v
t 3 C tit ks t PJ t Vs

consider ~ oi 3  
-C(s,t)

To show that n = s' i = 1,2,3, consider e {0,1) , Ps such

that x " =1 k and define i' by
s s stt

xt. x =1'

Rtjsk s  isJtkt -1

=x' =0O,

Xs sks  it tk

and Rijk = Xij for all other (ij,k). Then i'CPC(s't) follows from

and xjk Xijk X 1 flosfo
~~C(s,t)
ep t and ax = cx' implies

CLi " a i +
s js ks ' i tit kt  tjs k s ' isit kt,

Since (isjs,ks), (isjt,kt) e C(s,t)

and (isJs,kt),(itjs~ks) J C(s,t), we have (from (3.15) and (3.16)

*s+ xi + ujs+ vk + Xi + i + = t t ~+i "j+ vk .X .+ P + vkss s t + t1 s u~+ t t J s

or it,= iss. By symmetry, 7t S = s = it3, and we are done.II

Theorem 3.8 The inequalities (3.1) induced by distinct cliques define

distinct facets when n i 3.

To prove this theorem, we require the following auxiliary result:
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Lemma 3.9 For n 3, there is a feasible solution x with xs = xt : Xr 1

and a pair of cliques with vertex sets C1 , C2 , such that 1. S e C1 \C2 ;

2. t e C2\C1 ; 3. r e S\(C 2 U C1); 4. if C2 = C(to) then t to and to n r = 0;

and if C2 = C(t,r0 ) then r # ro.

Proof. (i) Suppose C1  = C(so), C2  = C(to) where

s0=(i5 0 gok~ ).0 to = (i " ,kt 0 If to e C1  then w.l.o.g. let

SisO = it and js =s t, and choose s = (is,jso,ks) and t = (isojt,kt ) with
*O 0 0 0 0 0

i? is 0 t # Jso "  If to j C1 then there is an s E C1\C2 such that

* to = 0. W.l.o.g. let s = (is is o k) where k kto , and choose

s =(iSoisokt ) and t = (itoJtok). Finally, select r such that

r n s = r n t = 0. Then x satisfies conditions 1-4.

(ii) Suppose C1 = C(so), C2 = (to,ro), where to i C1 , so and to are as above

and r° = (ir 'Jr 'kr ) If ro e C1 then let s = ro, t = to and select any r
0 0 0

such that r n s = r n t = 0. Suppose instead that r 0  C1 . If

to n So then there is a t £ C2  such that t n so =0 and a

corresponding r such that C2 = C(t ,r ); thus w.l.o.g. we can assume

to n so = 0. Now, w.l.o.g., assume iro# is 9ro# iso. Then there is an
A r0 0 r0 s0

s e C1 such that s= (is ,Js ,k) with k # kr k # kt (in particular,

if kr  ko then we can take k = ks , otherwise there is at least one
0 

0

element of K which is not equal to kt or to kso= kr , and we can choose this
0 0 0

element to be k). Choose s = (iS is kr ) t = to and r = (i roJr ,k)
o 0 0 0

Then x satisfies conditions 1-4.

(iii) Suppose C1 = C(so,wo), C2 = (to,ro) where so , to and ro are as above, so

C2, to i CI, s0n to = 0 and wo = (i w' Jwo kw o) Suppose first that

w0n to = 0. If w0 # ro, choose s = so, t = to, r = wo . If wo = r0 then

C1n C2= 0 so we can write C1 = C(s ,w) with s # so, w # ro . Then we S

choose s = s , t = to, r = w . Now suppose w0q to 0. It follows that

" . .
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wo# ro. Define a new triplet w by selecting the element or elements of

Wo\to and taking the remaining element or elements from ro. By defintion

w t

If w n so  0 and w # ro , choose s = so , t = to, r = w

If w s = 0 and w ro  then choose s = to, t =s o

r w exchanging the roles of C1 and C2.

If w n s 0 then it follows from the definition of w that r0n S 0

and that the common elements are in positions in which wo and to share

common elements. W.l.o.g. suppose i , = = I and iw 0 t. Then
w 0o

there is an i e I such that i r= isand i iw = it . The same
I 0 0

holds for other elements of w n s0 , if any. Define the triple w from

w by replacing i ,= 0 with i and doing the same for any other
W ro

a I!

elements of w n S0. Choose s = so, t = to, r = w

For each of the above cases, the resulting x satisfies conditions 1-4.il

Proof of Theorem 3.8. Let C1 and C2 be distinct cliques. Then C\C2  0

and C2\C1 0 0. From Lemma 3.9, there exists a feasible solution x such that

Xs = I and ! xt:1
sC I  tC 2

We will show next how to modify that solution to produce a solution x' with

Z x 1 and ! x 0
s5C1  tEC 2

6-
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We construct x' by exchanging one element of t and the corresponding element

of r, denoting the triplets thus created t', r'. It follows from condition 4
S

of the lemma that for at least one of the three possible t', r' pairs,

t IC2 and r' i C2. Since x= x3  for all j except xs =x, x = 1

and x = X' = 0, x' is feasible and satisfies the inequality corresponding

to C1 with equality and the inequality corresponding to C2 strictly. Since x'

lies on the facet corresponding to C1 but not on the facet corresponding to

C2, it follows that C1 and C2 define distinct facets of PI1II

It is easy to see that each inequality xs > 0 also defines a facet

distinct from those defined by other trivial inequalities or by clique-

inequalities.

4. Detecting Violated Clique-Facets

It is of great interest in terms of algorithm development to be able to

determine, for an arbitrary noninteger solution to the LP-relaxation of an

integer program, whether that solution violates a facet of the convex hull of

integer solutions. One may solve the LP-relaxation, then identify a facet-

defining inequality that cuts off the solution obtained and either add it to

the constraint set of the LP, or take it into the objective function with a

4 Lagrange multiplier. In general, for an NP-hard problem the facet- _

identification problem is also NP-hard, but for some subsets of the facets it

may be possible to efficiently identify which, if any, members of the subsets

are violated by an LP solution. Recent efforts to implement algorithms based

on this strategy (and employing branch-and-bound techniques when a fractional

solution is reached that does not violate any of the facets under

consideration) have met with marked success [11, [81. In this section we

describe an efficient algorithm for detecting clique-facets violated by an

*D
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arbitrary xeP, i.e., an arbitrary solution to the LP-relaxation of AP3.

Although the cardinality of the set of clique-facets is O(n ), (namely, n3

3 3
facets from cliques of class 2, and n (n-1) /4 from cliques of class 3), the

proposed algorithm can be shown to have a worst-case running time of 0(n4).

In terms of the number ISI of variables, this is 0(1S14/3).

We first remark that given a noninteger x e P, it can be detected in

0(n4 ) steps whether any inequality induced by a clique of class 2 is

violated. Indeed, each of the n3 cliques of class 2 is associated with some s

S, and is induced by a node set of the form (s} U T(s), where T(s) is the

set of those triplets that differ from the the triplet s in exactly one

element. Since the cardinality of T(s) is 3(n-1), for each seS it requires

0(n) steps to identify and add all Xijk such that (i,j,k) e C(s), in order to

check whether the sum exceeds I (in which case the corresponding inequality is

violated) or not. To execute this for all sES therefore requires 0(n x n3) =

0(n4 ) steps.

For cliques of class 3 (whose number is 0(n6)) the complexity bound is

not so straightforward. However, we will give an algorithm which performs

that task too in 0(n4 ) steps. This is possible due to the following fact:

Each clique of class 3 is of cardinality 4; therefore any x E P that violates

some inequality induced by a clique of class 3 must have at least one

component of value > 1/4. On the other hand, we have

Lemma 4.1 For any x E P and any positive integer k, the number of

components with value 
> 1/k is < kn.

Proof. The value of the linear program

(L) max (ex I x e P)

is easily seen to be n, since the vectors x E R and U R defined by

xs = I/n2 , V s S
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and

Ur = 1/3, V r E R,

are feasible solutions to (L) and its dual, respectively, with the common

value of n; hence they are optimal.

Now if x has more than kn components with value > 1/k, then ex > n, a

contradiction.11

Theorem 4.2. It can be determined in O(n4) steps whether a given x P

violates a facet defining inequality induced by a clique of class 3.

Proof. Let C(s,t) be the node set of a clique of class 3. Since

IC(s,t)l = 4, if x e P violates the facet-inequality corresponding to C(s,t),

then from Lemma 4.1 x has at least one component > 1/4. Further, if

C(s,t) = (s,tl,t 2 ,t3}, from Proposition 2.4 there is no loss of generality in

assuming that this happens for the component indexed by s, i.e., that

xs > 1/4. Thus, instead of examining all ordered pairs (s,t) such that aSeat

= 0, we can restrict ourselves to examine those ordered pairs (s,t) such that

xs > 1/4 and aSeat = 0.

Consider now the following algorithm.

1. Order S according to nonincreasing values of xs, seS.

2. For each of the first 4n elements s = (is,js,ks) of the ordered set S

such that xs > 1/4 and each of the (n-i)3 triplets t = (it,Jt,kt) E S such

that it $ is, it $ is and kt # ks , calculate the sum z(s,t) = xi jk

+ xi + x + Xi"k" If z(st) > 1, stop: the inequalitySsit kt i t js kt tit s

associated with (s,t) is violated; otherwise continue.

Since the algorithm examines all pairs (s,t) such that aSeat = 0 and

x > 1/4, it either finds a pair whose corresponding facet inequality is

violated by x, or it stops with the conclusion that x satisfies all facet-

inequalities induced by cliques of class 3. Step I is executed once and it

I. -.
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requires O(n3log n3) operations. Step 2 is executed at most 4n(n-1) 3 times,

ard each execution requires 3 additions. Hence, the overall complexity of the

algorithm is O(n
4).It

I I

!_
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Given three disjoint n-sets and the famnily of all weighted triplets that

I contain exactlv one element of each set, the 3- index assignment (or 3- dimen-;
sional matching) problem asks for a minimum-weight subcollection of triplets
that covers exactly (i.e., partitions) the union of the three sets. Unlike

i the con-mon (2-index) assignment problem, the 3-index problem is NP-complete. :
* In this paper we examine the facial structure of the 3-index assignment

polytope (the convex hull of feasible solutions to the problem) with the aid of
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A3S 7LACT (continued)[tne intersection graph of the coefficient natri4: of the problem's constraint ;et.

in Darticular, we describe the cliques of the Lntersection graph as belongin2 to

three distinct classes, and show that cliques in three of the three classes induce

inequalities that define facets of our polvtooe. Furthermore, e given an

Drocedure (note that the number of variables is n3 ) for finding a facet-defining

clicue-inequality violated by a given noninteger solution to the linear programn-ina

relaxation of the 3-index assignment problem, or showing that no such inequality

exists.
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