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Abstract

Given three disjoint n-sets and the family of all weighted triplets that
contain exactly one element of each set, the 3- index assignment (or 3-
dimensional matching) problem asks for a minimum-weight subcollection of 1
triplets that covers exactly (i.e., partitions) the union of the three sets. A
Unlike the common (2-index) assignment problem, the 3-index problem is NP-
complete. In this paper we examine the facial structure of the 3-index 1
assignment polytope (the convex hull of feasible solutions to the problem)
with the aid of the intersection graph of the coefficient matrix of the
problem's constraint set. In particular, we describe the cliques of the
intersection graph as belonging to three distinct classes, and show that
cliques in two of the three classes induce inequalities that define facets of
our poiytope. Furthermore, we give an O(na) procedure (note that the number )
of variables isvn3) for finding a facet-defining clique-inequality violated by
a given noninteger solution to the linear programming relaxation of the 3- 1

index assignment problem, or showing that no such inequality exists. N ' 1
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1. Introduction

The (axial) three-index assignment problem, to be denoted AP3, also known as
the (axial) three-dimensional matching problem, can be stated as follows: given

three disjoint n-sets, I, J, and K, and a weight Cj ik associated with each

J
ordered triplet (i,j,k) ¢ I x J x K, find a minimum-weight collection of n
disjoint triplets (i,j,k) ¢ I x J x K.

An alternative interpretation of AP3 is as follows. A graph is complete
if all of its nodes are pairwise adjacent. A maximal complete Subgraph of a
graph is a clique. A graph is k-partite if its nodes can be partitioned into k
subsets such that no two nodes in the same subset are joined by an edge. It
is complete k-partite, if every node is adjacent to all other nodes except
those in its own subset. The complete k-partite graph with n: nodes in its

3
ith part (subset) is denoted Kn

1,nz,...,nk'
Consider now the complete tri-partite graph Kn n.n with node set
S=1UJUK, || = {3} = |K|] = n. Figure 1 shows Kn,n,n for n=2 and
n=3. K has 3n nodes and n3 cliques, all of which are triangles

n,n.n
containing exactly one node from each of the three sets I,J,K. Let (i,j,k)
is

denote the clique induced by the node set {i,j,k}. [f a weight i jk

associated with each clique (i,j,k), then AP3 is the problem of finding a

minimum-weight exact clique cover of the nodes of K where an exact

n,n,n?

clique cover is a set of cliques that partitions the node set S.
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AP3 can be stated as a 0-1 programming problem as follows:
max  Dierljealkek C1 i sk
s.t. EjsdzksK Xjg = LV del
Lietdek Xigk = 1 ¥ Jed
Lietljeg Xij = 1 ¥ keK
xigk € (0,1} V 1,5,k
where I, J and K are disjoint sets with |I| = [J]

23

13

2,22

matrix of AP3 for the case n=3 is shown in figure 2.
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Figure 2

One interpretation of the constraints is in terms of an nXnXn cube in
three-space made up of n3 unit cubes, each to be assigned a value of zero or
one so that the following conditions hold: if the cube is viewed as a set of
Jjsk-planes stacked up in the direction of the i-axis, the first set of
constraints requires that the total value of the variables in each such plane
be exactly one; and a similar interpretation holds for i,k-planes (the second

group of constraints, corresponding to the j-axis) as well as for i,j-planes

(the third group, corresponding to the k-axis). Figure 3 illustrates this for

t‘ n=3.
o K
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We will denote by AP3, the (axial) 3-index assignment problem of order n

bttt e

(i.e., defined for n-sets), by An the coefficient matrix of its constraint

set, and by I,, J,, K, the 3 associated index sets. The row and column index b .

sets of A, will be denoted by R, and S, respectively. Clearly, |Rn| = |I.] +

n l
- - = n3
[3al + IKal = 3nand S, = |1, x [J3,] x [K,| = n°.

In terms of Kn.n.ne An is the incidence matrix of nodes versus cliques 4
L ] ]

(triangles): it has a row for every node and a column for every clique of

P WO I

I(n,n,n'

As usual, the support of a (row or column) vector is understood to mean
the index set of its nonzero components. Each element of S (that indexes a

column of A, and a clique of K } will also be used to denote the support

n,n,n

of the given column of A  and the node set of the given clique (triangle) of {

K Thus, if a° has support (i,j,k) (i.e., if clique s of K has node -]

n,n,n° n,n,n

set {i,j.k}), we will write s = (i,j,k) or as = aijk, meaning that column as
has ones in positions iel, jed and keK.
AP3 is a special case of the (axial) 3-dimensional transportation 1

problem, in which the right-hand sides of the constraints can be any positive

integers, the sets [,J,K are not necessarily equal in size, and the

integrality constraints are relaxed. This is in turn a generalization of the

4.4 4 4 4

E well-known transportation problem, a special case of which is the simple

-l
-

assignment problem.
! Our problem is called axial to distinguish it from another 3-dimensional
[ assignment problem, called planar, which can be formulated as follows: ]
max it jealek kg
s.t. zisl Xigk = 1V jed,keK
] std Xig = LV TelikeK , 1

r - o
Teek Xigk = 1V dsl,ged

)

4
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a The coefficient matrix of the planar problem for n=3 is shown in figure 4. . j
1 »
' h
- - 1
111
111 3
111
fi 111 ’
: 111
111 !
111 1
111 j
y 111
‘ 1 1 1 *
1 1 1
1 1 1
111 4
1 1 1 ]
1 1 1 ‘
‘ 1 1 1 ’
1 1 1
1 11
1 1 1
1 1 1 1
- 1 1 1 .
( 1 1 1 4
1 1 1 ]
1 1 1 i
1 1 1
1 1 1
:. 1 1 1 ’»
L _
Figure 4 B
| ’
‘ »
b
.
R
E
(] [ ] )
1
‘ > |
_a . — e m e A A e e Ao a P 2 a w;;.h‘:‘;""m‘“;___;‘"-;.;_, i a-m_a_. = . A




[ )

This problem is a special case of the planar 3-dimensional transportation
problem. If we view the cube as a plare of n2 columns of unit cubes, then the
constraints of the planar problem require that the sum of the values of
variables in each column be exactly one, in each of the three possible

orientations. This is illustrated in Figure 5.

Figure 5

The 3-dimensional transportation probiem (TR3) in these and other
formulations was first studied by Schell [20]. The literature on this problem
includes the references [2,4,5,9,10,12,13,14,15,18,19,20,21]. The original

motivation for considering this model was a problem in the transportation of

—
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gcods of several types from multiple sources to multiple destinations. '
| Applications of AP3 mentioned in the Jliterature include the foliowing
[ (Pierskalla {18,19]). .
e In a rolling mill with |I| soaking pits (temperature stabilizing ]
baths), schedule |K| ingots through the pits so as to minimize idle- ‘
[' time for the rolling mill (the next stage in the process). *
e Find a minimum cost schedule of a set of capital investments (e.g.,
warehouses or plants) in different locations at different times.
‘ e Assign troops to Tlocations over time to maximize a measure of y
capability.
¢ Launch a number of satellites in different directions at different
altitudes to optimize coverage or minimize cost. *
AP3 is known to be an NP-complete problem [11]. Obviously, AP3 is a 4
special case of the set partitioning problem (SPP):
i;‘ max Cx (1) ¢ ]
i s.t. Bx = e _ ?
;f x ¢« (0,1}9 ) :
¢ o . 3
‘7 where B = (b..) is a matrix of zeroes and cnes and e is a vector of ones. The
’, sat being partitioned in this case is R =1 UJ U K, with the rows of B
N corresponding to the elements r ¢ R. The subsets s = {i,j,k} from which the . 1
partition is to be selected are those subsets (of cardinality three) which ]
contain cne element from each of the sets [, J and K. Each column bS of B is
the incidence vector of one such subset (i.e., b has a one in each row . ]
corresponding to an eiement in the subset and zerces elsewhere). The set }
packing relaxation (SP) of (1) is the program: J
max cx (2) o
s.t. Bx < e l
y
°
: %
L T o
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x ¢ {0,119,
For properties of SPP and SP see the survey '3].

Let P[ denote the convex hull of feasible solutions to AP3n, i.e.,

3
PI = convix ¢ -0,1:" jAx = e}
: n ;

The intersection graph G4 = (V,E) of a 0-1 matrix A has a node s for every
column aS of A, and an edge (s,t) for every pair of columns as, al such that

asoat#O. The intersection graph GA of A is the clique-intersecti~~ ~raph of
n

n

¢

$hon.ne i.e., Gy has a node for every clique (triangle) of and an
b} , n

.,n,n?

edge for every pair of triangles that share some node of K, he raph Gp
’ n

sn°

for n=2 is shown in figure 6.

] 2
8 3
7 4
6 5
G
Az
Figure 6
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E Although the 3-‘ndex assignment prcb'em has a sizedble literature, n9 9
é work has been done on describing the polytope PI‘ [n this paper ~e apply tha ;
'( tcols of polyhedral combinatorics to AP3n and obtain a partiai ' ]
characterization of the facial structure of PI' In particular, in secticn 2
§ we identify three classes of cligues of the intersection graph of A, and shcw ]
F‘ that they are exhaustive. These cliques are known to define facets of the ’ J
' polytope ]
{ 9
'f | | -n3 | ,
f Py o= convix = (0,17 JA x s e,
L the set packing relaxation of the set partitioning polytope PI' In section 3
t‘ we show that two of the 3 classes of ciigues also define facets of PI (whereas '
]
the cligques in the third class define improper faces), and that these facets
,( are all distinct. Finally, in section 4 we give an O(na) prccedure for ,
i detecting a clique inequality violated by scme solution to the linear ,
| programming relaxation of PI, or showing that no such inequality exists. 7
t! »
2. The Ciiques of Gy
L' In this section w~e identify all the cliques of GA, the intersection graph R
of A. !
For any sudset V = S of the node set of GA, we will denote by <V> the
. subgraph induced by V. Fer r = R, we will dercte by ST the support of row r ’ ]
r of A, i.e., STi= [s:Sla,. = 1}. }
4
] Proposition 2.1, For each rzR, the ncce set S" ‘nduces a clique (zf ’ 1
cardinality n?) in Gy.
' »
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Proof. The subgraph <S"> is obviously complete. To see that it is
maximal, assume w.l.o.g. that rel (an analogous reasoning holds if red or
reK). Now let seS\S" be arbitrarily chosen, and let s = (1gsdgskg). Since

séSr, r#io; and Since S" contains all triplets whose first element is r,
there exists teS", t = (r,j,k), such that r#igs J#gs k#ky. Hence ST U (s
does not induce a complete subgraph of GA; and since this is true of any
seS\S", the subgraph of Gy fnduced by S™ is maximally complete, i.e., a

The set of cliques defined by Proposition 2.1 will be called class 1| and

clique. Furthermore, [S"| = nZ for all reR.

denoted Qy. Clearly, |Qll = 3n. In terms of K the clique of class 1

n,n,n’

corresponding to row r of A contains those nodes of the intersection graph G,

whose associated triangles in K share node r of K, .

n,n,n ,n°

Proposition 2.2. For every seS, let

T(s) = {te S\{s}lasoat = 2}.

Then the node set ({s} U T(s) induces a clique of size 3n - 2 in G,.

Proof. Let s = (i5,j5:ky)s and let ty,t, ¢ T(s) be chosen arbitrarily,
with ty#t,. Since each of t; and t, contains two of the three elements
io,jo,ko, tl and tz must have at least one element in common. Hence the node
set {st U T(s) induces a complete subgraph in G,. Now let

u e S\({s} U T(s)}. Then the triplet u = {i,j,k} contains at most one
element of s. If aY%eaS = 0, we are done. Assume now that aYeaS = 1, with i
=io (a similar reasoning holds if j=jo or k=k°). Then j#jo and k#ko. Now by
definition, T(s) contains some t = (i*,jo,ko) such that i* # iy(=1). But then
aYeat = 0, i.e., {u} U {s} U T(s) does not define a complete subgraph of
GA- Since the choice of u was arbitrary, the subgraph defined by (s} U T(s)

is maximal complete.

...........
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For each se¢S and for each of the three pairs of the triplet s = .
(io,jo,ko), there are n-1 other triplets in S containing the same pair; hence ;’i
IT(s)| = 3(n-1), and thus s} U T(s) has 3n-2 elements.|| >
The set of cliques defined in Proposition 2.2 will be called class 2 and fi
denoted 02. There is exactly one clique of class 2 for every column of A, and ] i
there is no double counting; hence |02| = n3. In terms of Kn,n,n’ the clique ?:}
of class 2 corresponding to column s = (io,jo,ko) of A contains the node of Gp -
corresponding to the clique (i,,J,:ky) Of Kn,n,n’ along with the 3(n-1) nodes .';
of Gy corresponding to those cliques of Kn,n,n that share an edge (a pair of ]
nodes) with the clique (io,jo,ko).
Proposition 2.3. For every ordered pair s,t ¢ S such that aS-at = 0, j
let ty, t,, €3 e S {s;t} be the (uniquely defined) triplets such that ’ f
aSea T, 1, at-a.i =2, i=1,2,3. -
Then the node set {s,tl,tz,t3} induces a (4-)clique in Gj. .
Proof. Llet s,t e S, with aSeat = 0, and let s = (gsdgakg)s t = ' ;
(Tgdgoke). Then t = (ig.dpake)s ty = (Tgsdgaky) and tg = (iy,Jg.kg) are the s 1
i only 3 triplets in S\{s,t} that satisfy the requirements of the Proposition , ;'Q
$> j.e., they exist and are unique. Further, as-ati =1 for i=1,2,3 and ]
: ati-atj =2 for all i,je (1,2,3}); hence {s,tl,tz,t3} induces a complete 3
g subgraph in GA. To see that this subgraph is maximal, note that any triplet » 4
3 u e S\{s} that contains an element of s, either contains two elements of t ?fj
(and hence is identical to one of the triplets tl, t, or t3), or else contains -?
\ at most one element of t. But then au-ati = 0, where ts e [tl,tz,t3} is the » '
triplet containing those two elements of t not contained in u (besides the ?
element of s). Thus {s,tl,tz,t3} induces a maximal complete subgraph, hence a *
L 4-clique in Gy.|| . 3
: ]
! .
' ®
]
R S N R T
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The set of cliques described in Propositions 2.3 will be called class 3
and denoted 03. In terms of Kn n.ne every class 3 clique of GA is associated
s'ls
with an ordered pair (s,t) of disjoint triangles of Kn n,n’ and its node set
contains (a) the node of G corresponding to the triangle s, and (b) the 3
nodes of G, corresponding to those triangles t, t,, t3 of Kn,n,n that share 1
node with s and 2 nodes with t.

As to the cardinality of Q3, every ordered pair (s,t) such that

Seal = 0 gives rise to a clique of class 3. Since |S| = n3 and for every

s ¢ S that are (n-l)3 indices t ¢ S such that asoat

d

0, the number of

ordered pairs (s,t) with aSeat = 0 is n3(n-1)3.

To determine the number of cliques of class 3 we also need to know how
many different ordered pairs give rise to the same clique. Let s =
(Tgedgskg)s t = (Tgadpake)s £ = (igadake)s tp = (padsake)s t3 = (Tgadeaks)s
and denote by C(s,t) the node set of the clique (of class 3) corresponding to
the ordered pair (s,t), i.e. Tet C(s,t):= [s,tl,tz,t3}. Further, let

B = Gpadgkg)s T = (10K )s By = (ig,dG,k).  Then we have

Proposition 2.4. C(s,t) = C(ti’fi) for i = 1,2,3.

Proof. Consider the ordered pair (tl,fl). From the definitions, the 4

triplets of the set C(t;.E;) are (ig,dske) =ty (fgadgakg) = o (Tgadpaks)

t3, and (ig.dg.ky) = tps thus C(tl,El) = C(s,t). By symmetry, c(ti’fi)
C(s,t) for i = 2,3. ||

Corollary 2.5. The number of cliques of class 3 is n3(n-1)3/4.

Proof. Every clique of class 3 arises from 4 distinct ordered pairs, and

Next we show that G, has no other cliques than the ones described

the number of the latter is n3(n-1)3.

above. But first we need a property of GA.
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Proposition 2.6. G, is regular of degree 3n(n-1) and has g n4(n-1)
edges.

Proof. Let a% be an arbitrary column of A. There are (n-l)3 columns at

of A such that aSeal = 0, hence there are n3-1-(n-1)3 = 3n(n-1) columns aY
of A such that a“ea' # 0. Thus the degree of node s in Gy is 3n(n-1), and
by symmetry this is true of all s e¢ S. Since the number of edges of a graph
js one half of the sum of the degrees of its nodes, GA has
é x 3 x 3n(n-1) = g n4(n-l) edges. ||

Let Q denote the set of cliques of Gj.

Theorem 2.7. The only cliques of G, are those of classes 1, 2 and 3;
i.e., Q= 01 uQ, ua;.

Proof. We will use induction on n. For n = 2, the statement is found to
be true by listing all the cliques of G, (see Fig. 4). In fact, because of
symmetry, it is sufficient to 1ist the cliiques containing a given node, say 1,
and they are ({1,2,3,4}, {1,2,5,6}, {1,3,5,7} (of class 1), {(1,2,3,5},
(1,2,4,6}, (1,3,4,7}, (1,5,6,7} (of class 2), and {1,4,6,7} (of class 3).

Suppose now that the statement is true for n = 2,...,k and let n =

k+1 > 3. Consider the relationship between GAn-l and GAn. Note first that

Kn,n,n ijs obtained from Kn-l,n-l,n-l by (a) adding three nodes ix, Jjxs, Kuxs tO
the three sets I, J, K, respectively, so that

In B In-l

and (b) adding new edges (i,, t) for all ¢ ¢ Jn u Kn’ (Jus &) for all

U {i,}, Jn = Jn_1 U {J,} and Kn Kn_1 U {ky}s
el UK., and (keo 2) forall 2 el UJ.
This creates 3n(n-1)+1 new triangles, namely:
(i) one new triangle (is,jx,k«) that shares no node with any triangle of

Kn-1,n-1,n-1%

(ii) 3(n-1) new triangles of the form (%,j,,k,) for all ¢ ¢ In-l’

:
Ad

[ P

]
P
o ad Maaaaa

" L
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(Tgs2,k,) for all ¢ ¢ Jn-l’ and (i, ,j.,2) for all 2 ¢ K_,; and ,}
4

(iid) 3(n-1)2 new triangles of the form (p,q,k«) for all

LA 4 o rﬁ‘_"-_’

(p,q) € In-l X Jn-l’ (Psjxsq) for all (p,q) ¢ In_1 X Kn-l’ and :
. (ixsp,q) for all (p,q) ¢ Jn_1 X Kn-l‘ i
) In terms of the coefficient matrix of AP3, An is obtained from An-l by i
!i adding 3 new rows, one to each of the sets I, ;, J,_1, K,_1, with zero entries ’ i
3 i
{‘ in the positions indexed by S5, y; and adding 3n(n-1)+1 new columns (of :
Ei dimension [R,| = [R,_1[+3), with supports corresponding to the new triangles }

)

q of K, n.n described under (iii) above.
| 9tls

It then follows that G, is obtained from G, 1 by adding 3n(n-1)+1 new
n-

nodes corresponding to the triangles described under (i), (ii), (iii), and a

e R

[P VAP DI S

new edge for every pair of nodes (s,t) of G, such that (a) at most one of s
An

corresponding to

and t is a node of G L’ and (b) the two triangles of Kn n,n
n- [}

s and t have at least one node (of K in common. It also follows that

n,n,n)

»
Gp is an induced subgraph of Gp . K
n- n ]
Consider now the node set C of an arbitrary clique of GA . The 1
n
restriction T of C to Gy induces a clique of Gp .’ hence by the induction
n- »

hypothesis <CU> belongs to one of the three classes described in Propositions
2.1, 2.2, 2.3. With an argument analogous to the one used in the proof of the
corresponding Proposition to show that a complete subgraph of the given class
is maximal, we will show for each of the 3 cases that <C> belongs to the same
class as <0C»>. Since <C> was chosen arbitrarily, this will prove that the
three classes of cliques are exhaustive for GAn = GAk+1' thus completing the
induction.

Suppose first that <C> ¢ Ql' Then C is of the form

. W.l.0.9. we may assume

S - .
C=5,1=W-e Sn-liaij 1} for some ieR

that i e In-l (an analogous reasoning holds if i ¢ Jn-l’ or i ¢ Kn-l)'

ko P W - e CUPR. ol Y A S o a Al ai m aNatha om L A Namate e el
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.

Now suppose <C> ¢ Ql' Then <C> has & node s = [io,jo,ko} such that i/ ¢#
i. Since S;-l contains all the triplets of S, ; whose first element is i,
it certainly contains some t = (i,j,k) such that j # Jo and k # ky. But then
aSeat = 0 (where aS and at are columns of A,), hence we obtain the
contradiction that <C> is not a clique.

Suppose next that <C> ¢ 02. Then T is of the form (s} u T(s), where

t

S ¢ Sn_1 and T(s) = (t e Sn_l\{s}lasoa =2y (a°% and at being columns of

Apo1). Let s = (io,jo,ko). Now suppose <C> ¢ 02. Then <C> has a node u =

(i,3,k), such that aSed’ < 1 (where a% and aY are columns of Ap). Since <C>

S

is a clique, asea! # 0, hence a oa = 1. W.1.0.g9., assume that the common

element of the triplets s and u is iy (a similar reasoning holds if the common
element is jo or ko)' Then j # jo and k # kg By definition, T(s) contains
some t = (ia, Jos ko) such that i, # i,(=1), and t e T(s) implies t e C.
But then au-at = 0, contradicting the assumption that <C> is a clique.
Finally, suppose <CU> ¢ Q3. Then T is of the form {s,tl,tz,t3}, where ~ ]
S, t1, ty, t3 Sn_1 are distinct and such that ]
t.

aSea ' = 1, at-a . 2, i=12,3, T

t.
for some t ¢ Sn-l such that asoat =0, (Here aS, at and al1 a ' are

columns of Ap ). Let s = (ig,dg.kg)s t = (igadpake)s and ty = (ig,dgake)s to

AN I‘r

= (1t,js,kt), ty = (it,jt,ks). Now suppose <C> ¢ 03. Thsn <C> has a node

L ue Sn\Sn 10 Sy u = (i,j,k), such that aleds > 0, a%« a >0, i -= 1,2,3
- - t

(here aY, aS and all a ' are columns of An). Since u ¢S, at least one

of the elements i, j, k is not contained in any of the 4 triplets s, t1, to,

t3. W.l.0.g. assume k is such an element. Then each of s, t;, t,, t3 must

contain either i or j. There are four cases: 1 = ig, j= jg5 1= i¢, § = i3

i= is' Jj = jt; and i = it, j = js. In each case at least one of the four 3,1

<
<
Ao L L. - P . . S S I AV P --J
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~
triplets s, L1 t2, t3 does not contain either i or j, which contradicts the X
9
assumption that <C> is a clique. :
Thus every clique of GAn = GAk+l belongs to either 01, or Qz, or 03, and ,f
the induction is complete. ||
3. Facets of P1 Induced by Cliques of G,.
If C is the vertex set of a clique of GA, then obviously every x ¢ P
1
satisfies the inequality
(3.1) Y ox. < L. 4
seC s 1
'i
Such inequalities are known to define facets of PI the set packing polytope x
associated with PI[17]; but Since P itself is a face of PI, it is an open
question whether an inequality (3.1) also defines a facet of Py. In this
section we answer this question exhaustively. -
First, some definitions and basic concepts. For any polyhedron P, let
dim P denote the dimension of P (defined as the dimension of the affine hull :
4
of P, i.e. of the smallest subspace containing P). An inequality nx < "

is said to define a facet of P, if it is satisfied by every x ¢ P and the

polyhedron P": = (x ¢ P|nx = n_} has dimension dim P-1. If nx = T for all

0

X ¢ P, the inequality =x < T is said to define an improper face of P. In
this case of course dim P" = dim P. To show that ax < A does not define
an improper face, it is sufficient to exhibit a point x ¢ P such that
™ < T Once this is ascertained to be the case, dim P"< dim P-1, since
(a) dim P is the number of variables in the system defining P, minus the rank

of the equality system of P (i.e. of the system of linear equations satisfied
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by all x ¢ P); and (b) the addition of the equation ax = not implied

Ty
by the system defining P, increases the rank of the equality system by at
least 1. Thus showing that ax < A defines a facet of P essentially
amounts to showing that the dimension of P', known to be bounded by dim
P-1, is actually equal to this bound. The most commonly used procedure for
doing this is to exhibit dim P affinely independent points x ¢ P".  Another
way of doing it is to show that the addition of ax = T to the constraints
defining P increases the rank of the eqhality system of P by exactly one; in
other words, that any equation satisfied by all «x ¢ P" is a linear
combination of the equations in the system defining P". In this paper we
will take the latter approach, and will use it also to establish the dimension
of PI itself. We will implement this approach via a technique similar to that
used by Maurras [16], as well as by Cornuejols and Pulleyblank [5], (see also
Cornuejols and Thizy [6]).

We first establish the dimension of Pj.

Let P denote the feasible set of the linear programming relaxation of PI,
i.e.

P= (xeR"|Ax = e, x > 0}.

Lemma 3.1. The rank of the system Ax = e is 3n-2.

Proof. The rank of Ax = e is at most 3n-2, since equation 2n is the sum
of the first n equations, minus the sum of equations n+l,...,2n-1; and
equation 3n is the sum of the first n equations minus the sum of equations
2n+l,...,3n-2. On the other hand, the rank of Ax = e is at least 3n-2, since

we can exhibit 3n-2 affinely independent columns of A. Consider the three

sets of columns indexed by the following triplets:

T
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(2,1,1), (3,1,1), ..., (n,1,1);

(1,2,1), (1,3,1), ..., (1,n,1);

(1,1,1), (1,1,2), ..., (1,1,n)
The first two sets contain n-1 columns each, the 1last one contains n
columns. The matrix formed by these columns (in the order of their listing),
after deletion of the first row of set I and the first row of set J, becomes a
square lower triangular (hence nonsingular) matrix of order 3n-2, with each
diagonal element equal to 1 and all elements above the diagomal equal to 0. ||

Corollary 3.2. dim P = nd - 3n+ 2.

Proof. The dimension of P is the number of variables in its defining
system (n3), minus the rank of its equality system Ax = e (3n-2). ||

We are interested in dim P;.  Since PI c P, dim PI < n3-3n+2, and
strict inequality holds if and only if there exists an equation ax = ay
satisfied by all x ¢ PI’ that is not implied by (not a linear combination

of) the equations Ax = e. We will show that no such equation exists.

3
Theorem 3.3. Suppose every X e PI satisfies ax = ay for some a ¢ Rn,
ay < R. Then there exist scalars Ais Viel, uje ¥V jeld, and
Vi V k ¢ K, such that
aijkz)\i +Uj+\)k, V(i,j,k) € I XJXK
and
e
Q = . As + u. + z VI
° iel ! jed o keK k
n3
Proof. let x ¢ P[, x e {0,1} be such that Xi v X jok, T 1,
B 3 19149 3922

and et »' ¢ (0,137 be defined by
X! . = x! .
T3dik o TTd;

Xt . = x! ., =
EEAS RS PLY

a A _ e - - PR Wy T T

\d
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and X%jk = xijk for all other (i,j,k). It is easy to see that «x ¢ P[

implies x' ¢ PI, and Since ax = ax'(=a0) by assumption, we have

(3.2) [+ S + a. . E R S + a.s .
Tk Tigdaky ik Ti1dk,
- - n3 - -
Next, let x ¢ PI’ x e (0,1} be such that X5 g T Xs s F 1, and
i 3 2911 1392%2
let x' ¢ (0,1} be defined by
.. =X .. =1,
1301k Tiadok,
; . _o,

X' . = X! .
Tadiky "33k,

and x%jk = xijk for all other (i,j,k). Again, Xx ¢ PI impiies x' ¢ PI’

and since ax = ax', we have

(3.3) as + a; . = a, + a; . .
Tadiky T3l Ti3dgky  Tipdk,

Subtracting (3.3) from (3.2) gives
(3.4) s s - a; . = a, . - @, .

fdgky  Tipdgky o Tk TiRdok,

If in the definition of x, x' and of x, X' we replace the pairs (j,,kj)
by arbitrary (j,k) = J x K, we obtain (3.4) with (jp,kp) on the right hand
side replaced by (j,k). Thus the meaning of (3.4) is that two components of

1 whose index-triplets differ only in their first element, differ by an
amount depending only on the values of those first elements, i.e.

(3.9) a s - Ay T const., ¥(j,k) ¢ J x K.

P A S W b i Sae S d & S TP SN W U S W SR Y

K
g
i
1
i
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By symmetry we have equations analogous to (3

whose index-triplets differ only

.5)

in their second

or only in tneir third

V(i,,k) ¢ I x J x K.

. = Q. . -
T Tk

element.
Now let us denote
2., . = Q. Qs
1112 113k 12Jk
) = a; . - Q.
| klkZ 1Jk1 1Jk2
Then we have
Q. s - s . = Q. - Qs . + Q. + a
ijk 1131k1 ijk 11Jk 11Jk 1131k
= 8.. + Y. + 3 R
1y AN kk1
or
(3.7) Qsap = 8.z + ys:: + 38 + o .
ijk 111 3y kk1 11J1k1
Next we fix uj and Vi arbitrarily, we let
1 1
and define
\: = A: + 8. ie Ingiyr,
i 11 111 . 1
(3-8) hj = .le Yle ’ J € \J\{Jl}o
] =y + & N k € K\{k }.
k k1 kk1 1
Then
(3-9) aijk = \_i + '..Jj + \)k, V(‘i,,j,k) € I X \J X K-

Further, Tet x be defined by

Rije =

(Lifi=4=x

0 otherwise.

for components of

. T
Tk Tipdik

J

- s

1

a

P S Ad b oAb b

A
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Then R ¢ I hance af = ag, or
a = ) A+ p, + z v H
° jer ! Jed ke K

Corollary 3.4. dim Py = nd - 3n + 2.

Proof. From Theorem 3.3, the smallest affine subspace containing Pp is
the one defined by the system Ax = e; the dimension of P; is therefore the
same as that of P. ||

Next we turn to the constraints defining P and ask the question, which
cnes among these define facets of P;.

Theorem 3.5. Every inequality Xg 2 0 for some s ¢ S defines a facet of

Proof. The statement is true if and only if the polytope

P?= X ¢ PI|xs = 0} has dimension dim PI -1 = n3 - 3n + 1. Clearly,

dim P? cnd -1 - r, where r is the rank of the system ASx = e, and AS is

the matrix obtained from A by removing the column as. The rank of AS is
easily seen to be the same as the rank of A, i.e. r = 3n-2. This is immediate

S

in the case when a> is not among those columns used in the proof of Lemma 3.1,

and follows Dy symmetry for the other case. Hence the dimension of P? is at

3. 3n + 1. To show that this bound is actually attained, one can use

most n
the same argument as in the proof of Theorem 3.3 to show that any equation
ax = ag (other than x, = 0) satisfied by every x P? is a linear
combination of the equations ASx = e. The argument goes through essentially

unchanged. ||
As to the equaticns of the system Ax = e, each of them defines an

improper face of Py (i.e. is satisfied by every «x ¢ P[).

fy

e
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We now turn to the inequalities (3.1) defined by the cliques of Ga-

Each cligue of c¢lass 1 induces an inequality whose 1eft hand sige
coefficient vector is one of the rows of A. Hence each such inequality is
satisfied w~ith equality by every «x ¢ PI and therefore defines an improper
face of Pp.

Next we consider the inequalities (3.1) induced by the cliques of class
2. Each clique in this class is defined relative to some index (triplet)

s ¢S, and has a node set of the form {s} U T(s) (see Proposition 2.2). Let
C(s) denote the node set of the clique of class 2 defined relative to s.
Theorem 3.6. For n > 3, the inequality

(3.10) y Xy < 1
tel(s)

defines a facet of Pp for every s ¢ S.

Proof. Let P%(s) = {X e PI' g Xy = I} and let n 2 3. We will show
teC(s)
that dim P%(S) # PI. Let s (io,jo,ko); then every triplet in C(s)\{s]

contains two of the three elements of s. Hence any «x ¢ PI whose support

includes (1o, .k ), (1 ,dg.k ) and (1,3 .kg), for any i, i # i, i, 3 #
jo and k', K # ko, satisfies Y x, =0 <1, Thus (3.9) does not define

tet(S) t

< PI—l.

an improper face of PI’ i.e., dim P%(S)

To show that this last inequality holds as equality, we prove that an

arbitrary equation ax = ag satisfied by all XEP?(S) is a linear combination

of the equations of the system Ax = e and

(3.11) x, = 1.

tzé(S)

9

Let x:C(s), x:{0,1} : R™, be such that x, . =x, .. =1, where
Tk 13929
(11501.%1), (13,12.k2) £ C(s). Since n > 3, there exist at least 3 disjoint

triplets (7,j,k) such that x;y, = 1, and at most one of these can belong to

<o

)

e dedondededn Ao

e

A _a

PN W S 2P
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C(s); hence the vector XSPC(S) postulated here exists. Note that x is of the

same form as the vector x used in the proof of Theorem 3.3, and nerce the same
reasoning can be used to derive the relation

°11jk - aizjk = const., V(j,k)eJxK:(il,j,k),(iz,j,k) { C(s)

for all i;,i, ¢ I, analogous to (3.5). Using the notation (3.6), we then

chbtain

Yii, = 8. + yi:. + 3 +a. ., 5 ¥(i,3,k) = S.C(s),
ik 11 3 kkl 1131k1

and defining ., iel, 45 jed, Yy keK as in (3.8) we get the relation

(3.12)

= . + + v

153k i k>
analogous to (3.9).

V(i,j,k) £ S\C(s)

Now let us define

[ .
T, = Q.. - X = UL = v V el
i 1J0k0 i Jg kO
(3.13) Wq = ag s T Ao ui ot Vv ¥V jed

J 03% 0 J 0

K b .
Te T gk T M T g Ty YkeK

0%0 0 0

shere (i5,JgsKg) = S-

Since teC(s) 1if and only if t 1is either of the form (i,jo,ko), or

(fgsdekg)s OF (igydgak), (3.13) defines gy for all (i,j.k) = C(s). We

4711 show that XE = wg = wi, Voicl, jed, k:K. From (3.13) it is easily
seen that f£ = 74 = 7K ; hence, denoting -~ 1= 1¥ (= 14 - K y, it is
i k C(s) i j k
o) 0 0 0 0 0

.. [ .
- \ =T
sufficient to shcw that T TC(S)' ¥ i:z1:
J .
-4 , ¥ Jzd, k:K.
j J

[

.
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Let isP%(S), ie{O,l}n , be such that ii D T X, .. =1, where
0J0%0 ijk

3
1 ] ]
(i ,j .k ) # C(s) is chesen arbitrarily; and let x'¢{0,1}" be defined by

X', =x' ,, =1,
i jOkO ‘Ioj K

x} = iil v = 09

and X'y g = %yy for all other (i,3,k). Then from REPE(S) it follows that
)-('sP(I:(S), and from ax = a>-('(=<10) we obtain
Qs +a , 4 =T a, + a tone
i jk A AR s
0“0 0 ijk ij k° iy k
Substituting for a; jk» o from (3.13) and «  (y &, , , from
o'oo i joko ioj k ijk

(3.12) (since igsdosko)s (1 sdgskg) € C(S) and (19,3 ok')y (1,3 4k') £ C(s))

we obtain
ﬂI + A 4+u +v +X +uy+v = ,+r +u +v + 2 +u vy, or
LPR PR A ko i Jj k i i Jo k0 iy J k
[}
nI = wI.; and since i was chosen arbitrarily (subject to the condition
i i
0

that (i',5',k') £ C(s)), this proves that i = T "esys ¥ il
0
Furthermore, as mentioned above, ng = nt = C(s)® V jed, keK follows by

symmetry.

We have thus proved that

Ay o+ 4 oo "C(s)® v (i,3,k) € C(s)

1Jk A: + u.

i j + v ¥ (i,3.,k) € S\C(s)

.. .
ad a0

PYIT
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Now let & ¢ (1,137 be defined by

1 if i=io + €, j=j° + e, k=ko + ¢ (mod n) for ¢=0,1,...,n-1

Re sy =
13k 0 otherwise

Then R ¢ P%(s), hence a% = ag, i.e.,

)

A + Z us + z v, + T .
el 7 ey 3 kex K Cs)

This proves that the equation ax = is a linear combination of the

%
equations of the system defining P?(S); hence dim P%(S) = PI - 1 and thus
the inequality (3.10) defines a facet of Py. ||

Finally, we turn to the inequalities (3.1) induced by cliques of class
3. Remember that each clique in this class is defined relative to an ordered
pair (s,t) of disjoint triplets, and has a node set of the form {s,tl,tz,t3},
where each t;, i = 1,2,3, contains one element of s and two elements of t (see
Proposition 2.3). Let C(s,t) denote the node set of the clique of class 3
defined relative to the ordered pair (s,t).

Theorem 3.7 For n > 3, the inequality

(3.14) x, s1

Usc%s,t) u
defines a facet of PI for all s,t ¢ S.

Proof. The proof of Theorem 3.6 can be used to show that dim P <

C(s,t)
[

PI-I, and to derive the relation

(3.15)  ayq = A; + uy

ijk J + Yo v (iyjok) € S\C(S,t).

analogous to (3.12).

e tm e A M A aaemea e et a A maarm MM i lEamm ;e A Aaa e a s s a Tt o a s [ T
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(3.16)

3
1. = 192,39 conSider i 4 {O’I}n , iEP?(S’t)

To show that My =T such

that X; ., =X; :, =1, and define X' by
1stks 1t‘]tkt
XL . = X', .. =1,
Todgkg 7 Tgdiky
Xt .. = X! = 0,
1stks 1tjtkt

! - s -, oC(s,t
and Xijk = xijk for all other (i,j,k). Then x'ePI( )

follows from
ieP%(s’t) , and aX = ax' implies

+
S

a a

i gk T 5.k

= s s [« P .
s¥s s 1tJt t 1tJ k 1thkt

Since (isyjsvks)’ (isajtokt) € C(S,t)

and (is,js,kt),(it,js,ks) ¢ C(s,t), we have (from (3.15) and (3.16)

7, + A, +u.,+ v, + A, +u.ty =7+ A, +tu,+v + A +tu.+ v
s 's js ks vt kt t1 s Jt kt v s ks
or "t = ng. By symmetry, "tz =g = nt3, and we are dore. ||
Theorem 3.8 The inequalities (3.1) induced by distinct cliques define

distinct facets when n > 3.

To prove this theorem, we require the following auxiliary result:
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temma 3.9 For n 2 3, there is a feasible solution x with xg = *t = Xp =1
and a pair of cliques with vertex sets C;, Cp, such that 1. s ¢ Cl\Cz;
2. t ¢ CZ\CI; 3. re¢ S\(C2 U Cl); 4, if C2 = C(to) then t = t| and t  nr = @;
and if C2 = C(t,ro) then r # o
Proof. (i) Suppose C; = C(sgy), C, = C(ty) where
s°=(iso,jso,kso), t (1 ,Jt . to). If t, ¢ C; then w.l.0.g. let
i = it and jS = jt , and choose S = (is,jS ,kS and t = (is ’jt’kt ) with

. So o . 7o 0 o "o , ) 0
is # is , jt # jso. If t, # C; then there is an s ¢ Cy\C, such that
! ]
sat =0. W.l.0.g. let s = (i_ ,j. ,k) where k # k, , and choose
0 o "So to
(i, oJ. ki ) and t = (3, ,3, k). Finally, select r such that
50 %o to to to

s
rans=rant=0@. Then x satisfies conditions 1-4.

(11) Suppose C; = C(sy), Cp = (ty,ry), where ty £ Cy, s, and t, are as above
and re = (i ro,Jro,kro). If ro e C; then et s = r,, t = t, and select any r
such that rnans=rnt=0. Suppose instead that r, ¢ C;. If

a]
] ]

ty n so# @ then there is a t ¢ Cp such that tn Sg = @ and a

corresponding r' such that Cr = C(t',r'); thus w.l.0.g. we can assume

t0 n sy = @. Now, w.l.0.9., assume 1r°# 130, Jro# JSO. Then there is an
1 ]

s ¢ Cp such that s = (iso,jS ok) with k # ke s kK # kt (in particular,

0 (o} 0
if kr # kS then we can take k = kS , otherwise there is at least one
0 o} 0
element of K which is not equal to kt or to ks = kr , and we can choose this
(o} 0 0
element to be k). Choose s = (i ., J. k. ), t =t andr = (i ,j. ,k)
sO $o” To 0 LS

Then x satisfies conditions 1-4.
(111) Suppose C; = C(sgsWg)s Cp = (ty,ry) where sg, t, and ro are as above, s,

£ Cr, ty # Cis S0 to = @ and Wy = (iwo, jwo,kwo). Suppose first that

w_n to = (. If Wo # Tos choose s = s t = tgy T =W

o If Wg = Ty then

0° 0°
Cl” C2= @ so we can write C; = C(s',w') with s' £ Sgs " # ro. Then we

choose s = s , t = t,, r = w. Now suppose Wo? to # Q. [t foilows that

- - e . .t . . -~ - .
. P ca Ve aNa e el o8 PR S S Oy TR, WP P TS I a A -—




29

wo# Tor Define a new triplet w"by selecting the element or elements of

Wo\t, and taking the remaining element or elements from r,. By defintion

i

Wnt°=¢.

If wan S = g and w # Fo choose s =s ,t=¢t ,r=w.

o’ o’

) ]
If wan So = @ and w = r_ then choose s = tgs t =5

0 e

r = w', exchanging the roles of C; and Cp.

If wan So # @ then it follows from the definition of w' that r.n sof @

0
and that the common elements are in positions in which w, and t, share

common elements. W.l.0.9. suppose i , = ir = is and iw = it . Then
W 0 0 o] 0
there is an i ¢ I such that i #1i_=4_and i #1 =1, . The same
' s 5o o to
n
holds for other elements of w n So? if any. Define the triple w from
wl by replacing i ,= ir with i and doing the same for any other
W 0

t = to, r=w.

1]
elements of w n So* Choose s = Sg»

For each of the above cases, the resulting x satisfies conditions 1-4. ||

Proof of Theorem 3.8. Let Cl and CZ be distinct cliques. Then Cl\Cz $0

and cz\cl # 0. From Lemma 3.9, there exists a feasible solution x such that

x. =1 and X, =1
séc1 s tgc2 t

We will show next how to modify that solution to produce a solution x' with

x' =1 and z x! =0
seCy ° teC, t
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We construct x' by exchanging one element of t and the corresponding element
of r, denoting the triplets thus created t', r'. It follows from condition 4
of the lemma that for at Tleast one of the three possible t', r' pairs,

t' ¢ C2 and r' ¢ CZ‘ Since xj= xj for all j except x; = x{. = x;. =1
and xé = x; =0, x' is feasible and satisfies the inequality corresponding
to C; with equality and the inequality corresponding to C, strictly. Since x'
lies on the facet corresponding to C1 but not on the facet corresponding to
C,, it follows that C; and C, define distinct facets of Py.|]|

[t is easy to see that each inequality Xg > 0 also defines a facet

distinct from those defined by other trivial inequalities or by clique-

inequalities.

4. Detecting Violated Clique-Facets

It is of great interest in terms of algorithm development to be able to
determine, for an arbitrary noninteger solution to the LP-relaxation of an
integer program, whether that solution violates a facet of the convex hull of
integer solutions. One may solve the LP-relaxation, then identify a facet-
defining inequality that cuts off the solution obtained and either add it to
the constraint set of the LP, or take it into the objective function with a
Lagrange multiplier. In general, for an NP-hard problem the facet-
identification problem is also NP-hard, but for some subsets of the facets it
may be possible to efficiently identify which, if any, members of the subsets
are violated by an LP solution. Recent efforts to implement algorithms based
on this strategy (and employing branch-and-bound techniques when a fractional
solution is reached that does not violate any of the facets under
consideration) have met with marked success [1], [8]. In this section we

describe an efficient algorithm for detecting clique-facets violated by an
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arbitrary xeP, i.e., an arbitrary solution to the LP-relaxation of AP3.

Although the cardinality of the set of clique-facets is 0(n6), (namely, n3

facets from cliques of class 2, and n3(n-1)3/4 from cliques of class 3), the
proposed algorithm can be shown to have a worst-case running time of O(n4).
In terms of the number |S| of variables, this is 0(|S|4/3).

We first remark that given a noninteger x ¢ P, it can be detected in
0(n4) steps whether any inequality induced by a clique of class 2 is

3 cliques of class 2 is associated with some s

violated. Indeed, each of the n
¢ S, and is induced by a node set of the form (s} U T(s), where T(s) is the
set of those triplets that differ from the the triplet s in exactly one
element. Since the cardinality of T(s) is 3(n-1), for each se¢S it requires
0(n) steps to identify and add all X3 jk such that (i,j,k) ¢ C(s), in order to
check whether the sum exceeds 1 (in which case the corresponding inequality is
violated) or not. To execute this for all seS therefore requires O(n x n3) =
0(n4) steps.

For cliques of class 3 (whose number is 0(n6)) the complexity bound is
not so straightforward. However, we will give an algorithm which performs
that task too in 0(n4) steps. This is possible due to the following fact:
Each clique of class 3 is of cardinality 4; therefore any x ¢ P that violates
some inequality induced by a clique of class 3 must have at least one
component of value > 1/4. On the other hand, we have

Lemma 4.1 For any x ¢ P and any positive integer k, the number of
components with value > 1/k is < kn.

Proof. The value of the linear program
(L) max {ex | x ¢ P}
is easily seen to be n, since the vectors x ¢ R”3 and u ¢ R3", defined by

xg = 1/n?, ¥ses

. - w L J
s C o
- e e aa ea s Aok s . e

RSP NV § la_a _a _.

y g
| S U S S



Cagiiin o0 e G sy |

Lani gan)

T T T T AT T A T AT AT TR, T TG Y LT e T i w s wy iw = wowS W — W W

32

and

U, = 1/3, ¥ r e R,
are feasible solutions to (L) and its dual, respectively, with the common
value of n; hence they are optimal.

Now if x has more than kn components with value > 1/k, then ex > n, a
contradiction. ||

Theorem 4.2. It can be determined in 0(n4) steps whether a given x ¢ P
violates a facet defining inequality induced by a clique of class 3.

Proof. Let C(s,t) be the node set of a cligue of class 3. Since
|C(s,t)| = 4, if x ¢ P violates the facet-inequality corresponding to C(s,t),
then from Lemma 4.1 x has at Teast one component > 1/4. Further, if
C(s,t) = [s,tl,tz,t3}, from Proposition 2.4 there is no loss of generality in
assuming that this happens for the component indexed by s, i.e., that
xg > 1/4. Thus, instead of examining all ordered pairs (s,t) such that aSeat
= 0, we can restrict ourselves to examine those ordered pairs (s,t) such that
xg > 1/4 and aSea® = 0.

Consider now the following algorithm.

1. Order S according to nonincreasing values of Xgs SeS.
2. For each of the first 4n elements s = (is,js,ks) of the ordered set S
such that xg > 1/4 and each of the (n-l)3 triplets t = (i¢,J¢.k¢) € S such

that 1t # Tes jt # js and kt # ks’ calculate the sum z(s,t) xiSjSkS

+ + X, . + If z(s,t) > 1, stop: the inequality

Mgk T ik T kg
associated with (s,t) is violated; otherwise continue.

Since the algorithm examines all pairs (s,t) such that aSeal = 0 and
Xg > 1/4, it either finds a pair whose corresponding facet inequality is
violated by x, or it stops with the conclusion that x satisfies all facet-

inequalities induced by cliques of class 3. Step 1 is executed once and it

voww v e w e r w w w ¥
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requires 0(n31og n3) operations. Step 2 is executed at most 4n(n-1)3 times,

and each execution requires 3 additions. Hence, the overall complexity of the |

~

algorithm is O(nd).||
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20. ABSTRACT (Continue en reverse oide I neceseary end identify oy dlock mamesr)

Given three disjoint n-sets and the family of all weighted triplets that

contain exactlv one element of each set, the 3- index assignment (or 3- dimen-

sional matching) problem asks for a minimum-weight subcollection of triplets

that covers exactlv (i.e., partitions) the union of the three sets.

Unlike

]
the common (2-index) assignment problem, the 3-index problem is NP-complete.
In this paper we examine the facial structure of the 3-index assignment i
polvtope (the convex hull of feasible solutions to the problem) with the aid of
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ABSTRACT (continued)

the intersection graph of the coefficient matrix of the problem's constraint set.
In particular, we describe the cliques of the intersection graph as belonginz to
three distinet classes, and show that cligues in three of the three classes induce
inequalities that define tfacets of our polvtope. _rurthermore, we given an 0in™)
orocedure (note that the number of variables is n9) for finding a facet-defining
clique-inequality violated bv a given noninteger solution to the linear programming
relaxation of the 3-index assignment problem, or showing that no such inequality

exiscs.
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