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Abstract

Let p = c/n where c is a large constant. We show that the random graph

Gn,p a.s. contains a matching of size n(1 - (1+e(c))e-c)/2 and a cycle of

size n(l-(l+c(c))ce-c) where e(c) is some function satisfying

lim C(c) - 0.
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1. In this paper -we-st d , the size of the largest matching and cycle in

random graphs with edge probability c/n where c is a large constant. -We

continue the analysis of BollobAs [2], BollobAs, Fenner and Frieze [31 and " •

confirm the conjecture in the final paragraph of the latter paper.

We shall let Gn,p denote a random graph with vertex set = {12...,n}

in which edges are chosen independently with probability p. We say that Gn,p

has a property Q almost surely (a.s.) if lim Pr(Gn,p e Q) = 1.

For c > 0 define a(c), s(c) by

(1.1) a(c) = sup(a _ 0: Gn,c/n a.s. contains a matching of size at

n- ..

least an/2)

and

(1.2) s(c) = sup(a a 0: Gn,c/n a.s. contains a cycle of size at

least on).

Our main result is an improved estimate of s(c). However the same

methods can be used to estimate a(c) and we shall do this first as the

analysis is marginally simpler.

In what follows p = c/n and £i(c), e2 (c) are unspecified functions

satisfying lim ci(c) = 0, i=1,2.

Theorem 1.1

(1.3) a(c) = 1 - (1 +l(c))e

and this remains valid if c-.

-. ".



As far as we know the only other paper dealirg with this question is by

Karp and Sipser [71 who prove some strong results about a simple heuristic for

finding a large cardinality matching.

There has been more work done on estimating s(c). Ajtal, Koml6s and

Szemer~di [11 and Fernandez de la Vega [61 showed that a(c) 1-c /c. Bollob~s

made a significant step forward by showing that Gn,p a.s. contains a large
Hamiltonian subgraph and that s(c) ~~ 24e-c/ 2  B eiigti

analysis, Bollob&s, Fenner and Frieze 131 showed that s(c) I 1ceC. The

main result of this paper is

Theorem 1.2

(1.4) a(c) I (1+e2() &

and this remains valid if c--

Corollary 1.3

A random digraph with edge density c/n a.s. contains a directed cycle of

size n(1 - (e())ce-C).

* Notation

The following notation is used throughout. Let G be a graph. V(G), E(G)

denote the sets of vertices and edges of G.

For S QV(G) we let GISI (S,E(S)) where E(S)={e c E(G): e!;S}.

* ~N(S {w : there exists v £S such that jv,w}£E(G)}j.

G(S) w E S
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For v £V(G) we write NG) for NG(v}) and dG) for the degree of v.

u(G) is the maximum cardinal ity of a matching of G.

BS(x,m) L. k r-
k=O

As the case c > logn is well known we shall assume for convenience that

ce!$ 3logn.



2. Lemma 2.1

Let G Gn,p and let vertex v be small if dG(v) :5 c/10 and large

otherwise. Let SMALL, LARGE be the sets of small and large vertices

respectively.

Let W = W1 UW 2 where for k=1,2

Wk = (v • v is small and there exists a small w such that v and w are

joined by a path of length k}

Then for c _ 300 G a.s. satisfies the following:

(2.1) Lv Vn: dG(v) _ c/1O + I}1 5 ne-2C/3

(2.2) there does not exist S Vn with ISI >_ ne-  and

I{e e E(G): ef)S , 2t 4c ISl;

(2.3) dG(v) 5 4logn for v e Vn;

(2.4) IWI < c2e4C/3n;_

(2.5) t SsVn, ISI 5 n/14 and SCLARGE implies ING(S)! 1_ 6 ISI ;

(2.6) SGVn) n/14 s ISI s n/2 implies

I{{v,w} e E(G) : v e S, w c SI 1 c ISI/10;

Proof

To prove (2.1) note that for n large

Exp( Itv E Vn:dG(V) < d/l + 1} ) = n BS(c/10 +1, n-i) < ne-.669 c

...... -7
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Now the variance of this set size can be shown to be s ne-2c/3 .

Thus one can use either the Chebycheff or Markov inequality depending on

whether or not c remains bounded as n tends to infinity.

Next note that the probability there exists a set S violating (2.2) is no

more than

>11111 n (n(sn 1p4cs I
s>_ne

s 2:n 4cs
fnnee 5  snep

-C r
s z ne

~~~ (e+1/c\ cs - ()

s z neC 5

To prove (2.3) we observe that

Exp(j{v VfA > 4logn}I) n _p)n-in dG(V) > 1 =k -"
"" k~>41 ogn 2:.

S n = o(1)
k>41ogn

as ce 5 3logn.

Next let Pk= (paths of length k in G with small endpoints } . Now clearly

(2.7) 1WkI :5 2 IPkI for k=1,2.

Furthermore

(2.8) Exp(IP 11) = (n)p.2

where x = BS(c/1O - 1, n-2) <_ e- 669c

Now

Exp(IPt11 )  Exp(Iptl )  (n)(n22)p2 X 2(n-2)(E)p2xX

where



. . . ..___ ___ :::'..-.

I Pr(SMALLD{1,2,3,4} IE(G)t{1,2}, {3,4}})

s Pr(ING(1) n {5,6,...,n}t _ c/10 - 1)

2 4<_ (x,(1-p)-) 4

and

= Pr(SMALL {1,2,3} E(G) {1,2}, {2,3}})

_(x(l-p)l) .

This gives

(2.9) Var(IPiI) _< ce-4C/3n for n large.

Similar calculations give

3 22(2.10a) Exp(1E21) = (1+o(1))n p x2 12

and

(2.10b) Var(1E 2 1) < n3p2x2  for n large

(2.4) now follows from (2.7), (2.8), (2.9) and (2.10).

To prove (2.5) we first consider S for which 1 5 s = 15 - n/35000e4. Let

T=S LJ NG(S) and t= ITI. If (2.5) does not hold for S then ITI

< m, = n/5000e and T contains at least m2= Fct/1401 edges of G. The

probability that such a T exists is no more than

t 11 t F\m 2  m

I  • .:49e1 t ct/280 )

)(n) pm2* 4900e t t00) 2  -.

1 ' n/ n

tm t =1

using c >_ 300.
For ISI z m3= Fn/36000e 41 we can ignore the fact that the vertices of S

are large. The probability that such an S exists violating (2.5) is no more

than

o~ * , o =



Ln/14J n s(n-s)
()s 6sS = 3

Ln/14J (ne ne) eCS/25 X --ne (n)
S =m i3

* -3

Lnl14J • s ();< (8 .121 e35 ec/2)s-

which proves (2.5).

The probability that (2.6) does not hold is not more than

Ln/2] n
z (s)BS(cs/10, s(n-s))

s=rnl141

Ln/2j s cs/10 CS/1O
< 2 s(fle) ("4s(n-s)e) (C) e-CS/3

s= 1n1141 s Csn

< 2 I (14e(0e)c/loec /3 ) = o(1).
s=rn/141

The proofs of our theorems rely on the removal of a certain set of

vertices. We must show that this set is not too large. The following Lemma

deals with part of this set.

Lemma 2.2

Let X0 = SMALL and let the sequence of sets X1, X2,...,X s be defined by
i-1

Xi = {v E Vn : ING(v) fl Xt _ 2}
t=o

I 5°s

and let s be the smallest i 1 1 such that Xi+ I = Xi. Let X = UJX i , then

(2.11) lXI < 2e4c4e-4C/3n a.s.

-1.2|

I -
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Proof

For x £ XUX0 let i(x)=min{i:x e Xi} and let 0(x)=(V(x), A(x)) denote a

digraph inductively constructed as follows: for x e X0, D(x) = ({x},)

and for x e X let y,, y 2 be 2 distinct neighbours of x satisfying i(x) >

i(Yl), i(Y2). Then

D(x) = (V(y) U V(y2) U {x}, A(y) UA(Y2 )U {(x, y), (x, y2)1)

Each D(x) is acyclic, (weakly) connected and satisfies

(2.12) each v e V(x) has outdegree 0 or 2 and x is the unique vertex of

indegree 0.

Let

k = the number of vertices of outdegree 2 = IK(x)I, where K(x)=S(x)-X O .

and let

= the number of vertices of outdegree 0 = IL(x)l, where

L(x)=S(x) C XO.

It follows then that

(2.13a) IA(x)I = 2k

and we will show

(2.13b) z s k+1 and if i=k+l then D(x) is a binary tree rooted at x.

This is most easily proved by in,4jction on k. A digraph satisfying (2.12)

has at least one vertex y whose outneighbours z1 , z2 both have outdegree
ID

zero. Removing arcs (y, z) and (y, z2 ) and any vertex which becomes isolated

we obtain a smaller digraph satisfying (2.12).

We obtain from the above that we can associate with each x c X, a set

V(x) of vertices and a partition of V(x) into K(x), L(x) satisfying

I " -" "._
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(2.14a) x x' implies V(x) V(x');

(2.14b) if k= IK(x)I, i : IL(x)I then 2 5 1 5 k+1;

(2.14c) L(x)QSMALL;

(2.14d) G(x)=G[V(x)] is connected and has at least 2k edges;

(2.14e) if i=k+l and G(x) has 2k edges then G(x) is a tree with leaves

L(x).

We estimate IXs - X0 by counting sets of vertices satisfying (2.14). For

a given k, z, m let xk,t,m be the expected number of sets K, L with IKI=k,

ILI =z satisfying (2.14) above, where G[Kj LI has m edges. Then

2, (( p mBS(c/lO, n-k-%)'

ek e (k+) 2 ece- 2c(/3 1 c-i(k+z)

km 9. 2m n
2inn-

Now if c 5 2logn, k, i s n1 3 then wk,z,m+l/Pk,z,m 5 n for n large.

Thus -+..k+q .-
2

(2.15) = 2 k ,m - (1+0(1)) 1Aki,2k

m=2k

• "With the same bounds on c,k,z and with n large and z 5 k+1 we have

• (2.16) k < 21n%-k(e 4c 2k)k-ze- 2cz/3  which implies-. •Pk {,2k -i.

k+1 k k+1 2c/3
1k,i,2k : 21(e 4c2k/n) Z (n/te c )t=2 i=2 "



s n(e4c2) ke-2ck/3

: ne- /2  as c 300.

It follows that s 5 logn a.s., and we can assume k s logn. Now, using

(2.16),

logn k logn 4 2 k c/
k=g k uki,2k < 21 5 (e c) e-c
k=2 z=2 --- k=2

4c2)4 -4c/35 22(e c ) ec/

and so

(2.17) the number of sets K, L with 2 5 z s k is a.s. less than n/ 2e-4C/3.

We only need to consider the case %=k+l from now on. But as

kk+l1m+1iUkk+lm_5 3ck/n we have

(2.18) '-Uk,k+l,m :5 (l+o(1))4k,k+t,2k

So we are finally reduced to estimating

tk = the number of vertex induced binary trees with k leaves (k-b-trees) in

which eacn leaf is small.

Let ek  be the number of (vertex labelled) k-b-trees contained in a

complete graph with 2k-i vertices. (Clearly 9k < (2k-l)
2k 3) Then

2kk1

n 2k-2 2 ')-2k+2k

(2.19) Exp(Tk)= (2knl)kpk(-p) BS(c/10-1,n-2k+l)k

: n(e c /3) for n large.

. .......
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To estimate Var(Tk), lec {T1,T2 ,...,TB}, B=(2knl)ek, be the set of k-b-

trees contained In a comolete graph with n vertices. Let Ai be the event that

Ti is a vertex induced subgraph of G in which all leaves are small.

Next let Yp = {(i,j): IV(Ti)UV(T )I =p} for p=2k-l,...,4k-2 and let

Zp,q {(lJ) c YP IE(Ti)UE(Tj)I =q}. Then

(2.20) Exp(r) = Exp(tk) + Al + A2

where

aI1 (i,j) YUk-2 P(AI A)

and

4k-3
S -- Pr(A 1('A.)
p=2k-1 (i,j)£Yp

Now 
.

2k-1
nl)2 2k-2l 2 - )-2k+ 272

a 2k-1 (0k (1-P) ) a

where

a = BS(c/10-1, n-2k+l)k BS(c/IO-1, n-4k+2) 
k

is an estimate of the probability that all leaves of 2 particular disjoint

trees are small.

It follows that

s x t 2" "2k2
(2.21) A 1 5 Exp(-k) (

,. . -.
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Now for p 5 4k-3 we have

4k-4Pr(Ai A (I~jc Pr(Ai Aj)""
(i~j)EYp A )=p- (ijcp~q

-4 (n)((P))(2ql)2(-Cn)q e-2ck/)(1-p)-8k 2

4k4 p (2k-kn
q=p-1

(2.22) s ne-ck/2  for n large.

(2.19), (2.20), (2.21), (2.22) plus the Chebycheff inequality implies that

Tk is a.s. within a factor (1+o(1)) of the R.H.S. of (2.19). This together

with (2.17) and (2.18) proves the result.

a

For a positive integer k, the k-core Vk(G) is defined to be the largest

set S gv such that a(G[SI) a k. This is well defined, for if

n

a(G[S i)>k for i=1,2 then 6(G[S 1  S2]) k. We let Gk denote the subgraph

of G induced by Vk(G).

The k-core can be constructed using the following algorithm:

begin

H:=G;

while 6(H) < k do

begin

Y:= {v V(H) : dH(V) < k;

H: = H[V(H) - Y"

end

end
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On termination H=Gk. This is because one can easily show inductively that

each iteration removes vertices that are not in Vk(G) and as

* 6(H) a k we have V(H) C-V(G).

Clearly any matching of G is contained in Gl(= G minus isolated vertices)

and any cycle of G is contained in G2.

Now for k=1,2 let Ak = Ak(Gn,p) =Vk(Gn,p)-IWuXuyk) where W,X are as

defined in Lemmas 2.1, 2.2 respectively and

Y k =fy E Vn : d Gn (y) = k and N G n(p () n x 4

Let Hk =Hk(Gn,p) =Gn,p[Akl, then we have

Lemma 2.3

For k=1,2 let M be any matching of Gnp[AkI which is not incident with any

small vertex. Let Ak=Hk-M, then (2.5) implies':

*(2.23) S 4~ k IS s~ n/14 implies IN. (S)I kist.
Hk

Proof

Let G=np H=Hk and for a given S let S1 S IN SMALL and S2 =S-Sl. Now

(2.24) IN H(S)I 2: INH(Sl)I - IS21 + IN H(S2)1 min( IS1IIS21
We can write min( IS11, IS21 ) in place of IS11 as no vertex of S2 is

adjacent to more than one vertex of S1, as S2 flX

Also, we claim

(2.25) IN H (S1)I - klS11.

Note first that v c S~ implies dG (v)t k and no pair of vertices of S1
k

are adjacent, since S 1 (1 W1 , Note that no pair of vertices of S1 have a

common neighbour as S1 W2 =. Also NG(I f(UY) as
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S, (W, Furthermore v sS 1 implies IN G(v) t) XI 5 1 as S1 n X
Thus to prove (2.25) we need only show that if

v S1 and dG -)k then NG v) X =i. But this follows from S1 A Y

We claim next that if (2.5) holds then

*(2.26) INH(S2)I 41S21

For then ING(S2)I 2: 61S21 and for each v S S29 INGMvI

s INH(v)I + 2. This is because v is incident with at most one edge of M and

*is adjacent to at most one vertex of W X Yk* It is a simple matter to verify

-(2.23) from (2.24), (2.25) and (2.26) by considering 1SII1 - I S21 and

* IS11 < IS21 as separate cases.
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3. Matchings

Let H1 be the subgraph of G defined in Lemma 2.3. We are going to prove

that M1 a.s. has a perfect or near perfect matching. We first establish that

* H1 is large.

* Lemma 3.1

(3.1) IV(H1)i n(1 (1+F-1(c))e ) a.s.

where el(c) ->0 as c ->-

Proof

JV(H 1)l a 1V1(G)I -W Jwi - x Y1-WI

It is well known that

(3.2) 1V1(G)J (1+o(1))n(1-e-c) a.s.

*where the o(l) term in (3.2) could for example be taken tob

*using the Chebycheff inequality.

Lemmas 2.1 and 2.2 give a.s. upper bounds on jWj 1 XI and (3.1) will

* follow from

(3.3) 1Y 1-WI !5 lxi

*For y e Y there is, by definition, a unique x(y) £X such that y is

*adjacent to x(y) in G. Now for distinct Y19 Y2

E W we have x(yl) 4x(y2) else y, W2 and (3.4) follows.

We establish next the following condition that goes with a graph not

having a (near) perfect matching.

. .. . . . . . .
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Lemma 3.2

Suppose P(H) < LIV(H)I/2J. Let Tlbe the set of maximum cardinality

matchings of H. Let U=(u1, u2,...,u t be the set of vertices left isolated

by some M RI 1. For i=1,2,...,t there exists a set Ui  U satisfying

(3.4a) !NH(Ui)I <Ui;

(3.4b) w C Ui implies e={ui,w} k E(H) and u(H) < u(H+e).

Proof

Let u, e U and let some Mi C lleave ui isolated. Let Si # 0 be the set

of vertices, different from ui, left isolated by Mi. Let Ui' be the set of

vertices reachable from Si be an even length alternating path w.r.t. Mi. Let

UI  Si U Ui SU. Then (3.4b) holds otherwise Mi has an augmenting path.

If u c NH(Ui) then u X S and so there exists Yj such that

{u,yl} £ Mi. We show that y£ e Ui  which will prove (3.4a). Now there

exists Y2 £ U1 such that {u,y 2} e E(H). Let P be an even length alternating

path from some s c Si  terminating at Y2. If P contains {u,yj} we canII
truncate it to terminate with {u,y 1} , otherwise we can extend it using

edges IY2,X} and {x,y 1}.

We are now ready for the

Proof of Theorem 1.1

We use a coloring argument that was introduced in Fenner and Frieze [5.

Suppose that after generating G=Gn,p all its edges are colored blue, and then

each edge of G is re-colored green with probability p'=logn/cn and left blue

with probability 1-p'. These recolourings are done independently of each

...........................................

• -. . . . . . . . ,-. .o.-
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other.

Let Eb, Eg denote the blue and green edges respectively and let Gb -

(Vn, Eb), H1  HI(G) and Hb = HI(Gb

1• 1

Remark 3.1

It is important to note that for a fixed value of Eb, Eg is a random

subset of -b where each e -b is independently included in Eg with

probability pj=pp'/(1-p(1-p')) and excluded with probability l-pl.

Consider next the following 2 events:

G - G satisfies the conditions of Lemmas 2.1, 2.2 and
np

S(Ht)<IIV(H,)11/2.

E (a) S'4 5 AI(Gb), IS, : n/14 implies IN (S)l SI;H1

(b) u(H) < LIV(H )I/2]; H1

(c) there does not exist e={v,w} c Eg, e SAl(Gb) such that some

maximum cardinality matching of H leaves both v and w isolated.

In consequence of what has already been proved, we need only prove

(3.5) lim Pr( ) 0. a

To prove (3.5) we shall prove

(3.6a) Pr(( I )  a (1 -o(1))( p')2n13

2
(3.6b) Pr( ) ( 1 p,)n /392

which together imply (3.5).

Proof of (3.6a)

Let GO  t be fixed and let M0 be any fixed maximum cardinality matching

of H1 . We prove

7



(3.7) Pr( LI Gn~ GO) G-' (1 i2n/3 -16(logn) 
4/C 2n.

We can readily verify this once we have shown that

where

Eg is a matching of G0

E 2 no green edge meets any vertex of degree less than c/10+2 in

Gor any vertex in W X Y1

83 =Mor)Eg ,

For 'S1 r S2 implies

(3.9) A (G b) =A 1(G0)

and then 1 implies (see Lemma 2.3) that (2.23) holds, which

verifies E (a). £(b) follows directly from (3.9) and Go c £3

implies iU(H~) i i 1) and FJ(c).

Now it follows from (2.3) that

(3.10) Pr( 5 16(logn) 4/C n.

From Lemmas 2.1, 2.2 and (3.3) we find that the total number of edges of

* Go that are excluded by the conditions in C-2, F-3 is no more than

n((c/1O + 1)e-2c/3 + 4nce-ce)n + n/2 5 2n/3

* Thus

Pr( UE e ) ~ 1 .2n/3 +16(logn) 4/ 2n

*which proves (3.7).

* Proof of (3.6b)

Now
b b~r

(3.11) Pr(E E . Pr( CIG =r)Pr(G )
r

. . . .. .. ... .... . ... .. .-

.. .. .. ... ................................
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where r is an arbitrary graph with vertices V

Now if H1(r) 'fails to satisfy &(a), £(b) then Pr(&EIGb = )=0. So0

let us assume that 8(a), Fjb) hold.

Now if U, Ui,...,Ut are as defined in Lemma 3.2 with H=H1, then each set

is of size at least n/14 and for 8(c) to hold no green edge can join

U1 c U to w e U1. But then in view of Remark 3.1 and 8(a) we have
b 2

Pr( E(c) IG' = r) 5 (1_P)n /392

which implies (3.6b).

We have thus shown that

u(G) : n(1 - (1+e1(c))ec )/2 a.s.

On the other hand (3.2) implies

u(G) s n(l+o(1))(1 - ec)/2 a.s.

and Theorem 1.1 follows.

If we put c=logn + wwhere wmthen we have c(c)=1-(1+o(1))e nl and

then Gn,p a.s. has a matching of size at least (n - (1+o(1))ew6)/2. This is

Erdos and Rtnyils result [41, (what we have proved is that HI a.s. has a

matching of size LIV(Hl1/21 and one can see that when c=logn+w tHl=Gn,p
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*4. Cycles

Let H2 be the subgraph of G defined in Lemma 2.3. We are going to prove

that H2 a.s. has a hamiltonian cycle. The proof is very similar to that of

section 3 and as such we will only give the essential differences.

Lemma 4.1

(4.1) IV(H2)1 = n(1 - (1+e2(c))ce-) a.s.

where E2 (c)-0 as n.-

Proof

IV(H2)1 a IV2(G)l - IWI - IXI - IY2-WtJXI

Now

IY2-w jxl 5 lx I-.S I -

follows by a similar argument to (3.3). Now let Z0 be the set of vertices of

degree 0 or 1 in G and let Z1, Z2 ,... be the sequence of sets removed in each

iteration of the 2-core finding algorithm of section 2. Now, corresponding to

(3.2), it is also well known that

ZO = (1_o(1))n(1ce-C) a.s.

We complete the proof of the lemma by showing that

Zi S X _/W1 U Y2  1-1929...

Thus assume inductively that Z1 , Z2,...Z.1X-WUY 2  for some I -

1-i

a 1 (true vacuously for i=1) and let T = ,..J Zt.t=O

Then y £ Z1 implies dG(y) a 2 but ING(Y)-TI 5 1.

*.*•-. . v
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Case 1: ING(Y)nT I a_ 2

By assumption T C X UJSMALL and so y e X.

Case 2: ING(Y) n TI = 1.

Then dG(Y)=2 implies y £ X C)W1 .Y 2.* I

Lemma 4.2

If c is large enough and G satisfies the conditions in Lemmas 2.1, 2.2 then H2

is connected.

Proof

If H=H 2 is not connnected then there exists a nonempty S jV(H) such that

NH(S) = 0. We show that this is not possible for c large enough. (2.23)

implies that 1S i_ n/14. (4.1) implies that, for c large, fewer than 2ce-Cn

vertices are deleted from G in producing H. Then (2.2) implies that at most

8c2e-Cn edges are lost in the construction. But then (2.6) implies that not

all edges with one vertex in S have been deleted.

The analogue of Lemma 3.2 is

Lemma 4.3

Let H be a connected graph which is non-hamiltonian. Then

(a) (4.2) no edge of H joins the endpoints of any longest path of H.

(b) Let U=[u I, u2,...,ut} be the set of vertices which are endpoints of

longest paths of H. For i=1,2,...t there exists Ui !5U satisfying

(4.3a) INH(Ui)I < 2 IUII;

(4.3b) w c U1 implies {ui,w} E(H) and there is some longest path of H

S.- . , _ ,'_ .-- . . , .. . .. .-, .. ... .. ..- --. . ".. -.-..-.-... * --. ,..--'- - '"._
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that joins ui to w.

Proof
(4.2) is straightforward and (4.3) is from PosA 111

We can now give an outline of the

Proof of Theorem 1.2

We define Eb, Eg  and Gb as in the proof of Theorem 1.1 and let

H H2 (Gb) Let now

G = Gnp satisfies the conditions of Lemma's 2.1, 2.2 and H2 is

not hamiltonian, which implies that (4.2) holds with H=H 2 .

We have only to show that (3.5) holds with this definition of . Let now

(a) S4 SIA2 (Gb), ISI 5 n/14 implies IN ( 2 I;
H2

(b) there does not exist e={v,wleEb UE g  such that v, w are the
bm

endpoints of some longest path of H .

We replace (3.6) by

(4.3a) Pr(
n  ;)

(4.3b) Pr(e) (l-p) /392

This will prove the theorem.

To prove (4.3a) let Go  c be fixed and let Po be some longest path of H2.

We define F1, E2 as before and define 03 PO Eg ="

Now E1' 2 implies that A2( Gb ) = A2 (GO) and then (3.8) and (4.3a) will
0ow (mt

.. . . . . . . . ... . ,-
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follow in the same way as (3.8) and (3.6a) previously.

To prove (4.3b) we use (3.11) and concentrate on the case where H2 (r)

satisfies S(a). We note that for '(b) to hold there is no

{v,w} e Eg , vi E U, w C Ui where U, U1, U2,...Ut are defined by (4.3) w.r.t.

H=H 2 (r). (4.3b) follows from Remark 3.1 and E(a) as before.

We note that if we put c~logn+loglogn+ w where w-- then we obtain the

result of Koml6s and Szemer6di [8jand Korsunov [9].

Finally note that our Corollary follows from the Percolation Theorem of

McDiarmid [101.

0i~i
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