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Abstract
Let p = c¢/n where c is a large constant. We show that the random graph

Gn,p 3.5. contains a matching of size n(l - (1+c(c))e”®)/2 and a cycle of

size  n(l-(l+e(c))ce™ ) where  e(c) is some function satisfying ;
lim e(c) = 0. o
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1. In this paper -we—study- the size of the largest matching and cycle in

random graphs with edge probability c/n where c fs a large constant.F:!§
continue the analysis of Bollobds [2]), Bollobds, Fenner and Frieze [3] and
confirm the conjecture in the final paragraph of the latter paper.

We shall let G p denote a random graph with vertex set V_ = {1,2,...,n}

in which edges are chosen independently with probability p. We say that Gn’p

has a property Q almost surely (a.s.) if 1lim Pr(Gn p € Q) = 1.

Nexo

For ¢ > 0 define a(c), 8(c) by

(1.1) a(c) = sup(a 2 O: Gn c/n a.s. contains a matching of size at
least an/2)
and
(1.2) g(c) = sup(s 2 O: G, c/n 3:5¢ contains a cycle of size at
least an).

Our main result is an improved estimate of 8(c). Hoyever the same
methods can be used to estimate a(c) and we shall do this first as the
analysis is marginally simpler.

In what follows p = c/n and el(c). ez(c) are unspecified functions

satisfying 1im ei(c) = 0, i=1,2.

C+o

Theorem 1.1

(1.3) alc) =1 - (1+ sl(c))e'c

and this remains valid if Coo.

~
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As far as we know the only other paper dealing with this question is by
Karp and Sipser [7] who prove some strong results about a simple heuristic for
finding a large cardinality matching.
There has been more work done on estimating &g(c). Ajtai, Komldés and
Szemerédi {1] and Fernandez de la Vega [6] showed that s(c)zl-co/c. Bollobas
made a significant step forward by showing that Gn,p a.s. contains a large
Hamiltonian subgraph and that 8(c) 2 1-c24e'c/2. By refining this
analysis, Bollobds, Fenner and Frieze [3] showed that s8(c) = 1-c6e'c. The
main result of this paper is
Theorem 1.2
(1.4)  8(c) = 1 - (l+ey(c)) ce™©
and this remains valid if c+= .
Corollary 1.3
A random digraph with edge density c/n a.s. contains a directed cycle of
size n(l - (1+52(c))ce’c).
Notation
The following notation is used throughout. Let G be a graph. V(G), E(G) -
denote the sets of vertices and edges of G. E
For ScV(G) we let G[S] = (S,E(S)) where E(S)={e ¢ E(G): eCS}. :":3
Ng(S) = {w e S: there exists v ¢ S such that {v,w}cE(G)]. ] ;;
. -
0
2

.......................



For v ¢ V(G) we write NG(V) for NG({v}) and do(v) for the degree of v.

u(G) 1s the maximum cardinality of a matching of G.
x|
BS(xam) =>— (Mp¥(1-p)™*

As the case ¢ > logn is well known we shall assume for convenience that

ce g 3logn.
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2. Lemma 2.1

Let G = Gn,p and let vertex v be small if dg(v) < ¢/10 and large
otherwise. Let SMALL, LARGE be the sets of small and large vertices
respectively.

Let W = Wi YWy where for k=1,2

T e

We = {v : v is small and there exists a small w such that v and w are

joined by a path of length k}
Then for ¢ > 300 G a.s. satisfies the following:

(2.1) |iv e Vi dg(v) = ¢/10 + 1}} = ne~2¢/3,

& (2.2) there does not exist SV, with [S| 2 ne ¢ and

|{e e E(G): eNS # ¢}| > 4c |S];
(2.3) dG(v) < 4logn for v ¢ Vn;
(2.4) W] < c2e'4c/3n;
(2.5) §#SCV_, IS| £ n/14 and SCLARGE implies Ng(sy! 2 6 ISI 3

(2.6) SEV., n/14 < |S| < n/2 implies
| {{vow} ¢ E(G) : veS,weS} =2c |S|/10;

Proof
To prove (2.1) note that for n large

Exp( |{v e V,ids(v) s ¢/10 + 1} ) = n BS(c/10 +1, n-1) < ne-+669¢
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Now the variance of this set size can be shown to be < ne'zc/3.

l Thus one can use either the Chebycheff or Markov inequality depending on
whether or not c remains bounded as n tends to infinity.

Next note that the probability there exists a set S violating (2.2) is no

more than

= (2)<|§Ss|)p’4csl

‘RY

Sszn

S 4cs
STy (2
S 2 ne
- ()" - o,
S 2 ne

To prove (2.3) we observe that

IA

IA

8 Exp(|{v ¢ V_:dg(v) > 4logn}|) = n 25::::(";1)pk<1-p)"'k‘1
- k>41logn
k
< n Z (%5 = o(l)
l k>4logn

as ce < 3logn.

Next let Py = (paths of length k in G with small endpoints } . Now clearly

(2.7) |wk| s 2 |Pk| for k=1,2.
Furthermore
(2.8)  Bxp(lP)]) = (Do

where 1\ = BS(c/10 - 1, n-2) < e-.669c
Now
EXP(IPIIZ) = Exp(|Py) + (g)(“éz)ple ’ 2("-2)(g)p2x2

where -
=




..........................

= Pr(SMALLD(1,2,3,4} |E(6) = {{1,2}, {3,4}})
Pr(INg(1) (V{5,6,....n}] < c/10 - 1)*

M

IA

< (x(1-p)72)
and
x, = Pr(SMALL D {1,2,3} |E(®)2 ({12}, {2,31])
. < (a(-m7hH3
This gives
(2.9)  var(|Py]) = ce~4¢/3, for n large.

Similar calculations give
(2.100)  Exp(lE,]) = (1+0(1))np%a?/2
and
(2.10b) Var(IEZI) < n3p2x2 for n large
(2.4) now follows from (2.7), (2.8), (2.9) and (2.10).
To prove (2.5) we first consider S for which 1 < s = |§| < n/35000e4. Let
T=S \UJ NG(S) and t= |T]. If (2.5) does not hold for S then |T|
sm o= fn/5000e4] and T contains at least mp= [ct/140] edges of G. The

probability that such a T exists is no more than

A

m m
1 ty\ m 1 t,.2. \m
Y () PREPID wl CON G
t=1 2 t=1 2
m
1 4, ct/280
552:1(329%2_2) = o(1)

in

m
1 t ct/140
< = @

4 using ¢ > 300.
For |S| 2 m3= [n/36000e™] we can ignore the fact that the vertices of S

are large. The probability that such an S exists violating (2.5) is no more

than

S - e e e
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P IIN
et e e

Ve

Ty

..................................................................

.......................................
------




kY

8
o (M0 (1-p) S(n-75)
S = m3
[n/14j s 6s _ /2
< = ) g e
3
/14
. L:‘___:J (68 . 102! . &35 . e-c/z))s - o)
s=m

3

which proves (2.5).
The probability that (2.6) does not hold is not more than

2l
p (S)BS(cs/IO, s(n-s))
s=[n/14]
/2 /10 /10
R e
s=|n

/2
2 'nzj (14e(10e)c/1°e'°’3)s= o(1).
s=[n/14]

IA

u
The proofs of our theorems rely on the removal of a certain set of
vertices. We must show that this set is not too large. The following Lemma

deals with part of this set.

Lemma 2.2

Let Xg = SMALL and let the sequence of sets Xj, X2,...,Xg be defined by
i-1
Xp = {vev t [Ng(V) (\t:é Xl 2 2}

S

and let s be the smallest i =2 1 such that Xj41 = X3. Let X = X; » then
i=1

(2.11) IX] < 2e%cle~d¢/3, a.s.
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Proof
For x e XUXq let f(x)=min{i:x ¢ X;} and let D(x)=(V(x), A(x)) denote a

; digraph inductively constructed as follows: for x e XO’ D(x) = ({x},¢)

and for x ¢ X0 let Yo Yy be 2 distinct neighbours of x satisfying i(x) >

i(y1), 1(y2). Then

D(x) = (V(y;) U V(y,) U {x}, Aly)) UAWY,) U {(xs ¥1)s (x4 ¥5)))

Bw . .

Each D(x) is acyclic, (weakly) connected and satisfies
(2.12) each v ¢ V(x) has outdegree 0 or 2 and x is the unique vertex of

indegree 0.

Let

|K(x) |, where K(x)=S(x)-Xg.

x
1]

the number of vertices of outdegree 2

and let

T Y

the number of vertices of outdegree 0 = |L(x)]|, where

%

L(x)=S(x) M Xg-
It follows then that
(2.13a) |A(x)| = 2k
and we will show

(2.13b) ¢ < k+1 and if g=k+1 then D(x) is a binary tree rooted at x.

}. This is most easily proved by in“uction on k. A digraph satisfying (2.12)
; has at least cne vertex y whose outneighbours 2zj, 2z both have outdegree
| zero. Removing arcs (y, 21) and (y, zp) and any vertex which becomes isolated
f we obtain a smaller digraph satisfying (2.12).

; We obtain from the above that we can asscciate with each x ¢ X, a set

V(x) of vertices and a partition of V(x) into K(x), L(x) satisfying




(2.14a) x # x' implies V(x) # V(x')s

(2.14b) if k= |K(x)]|, 2 = |L{x)] then 2 < & < k+1;

(2.14c) L(x)E SMALL;

(2.14d) G{x)=G[V(x)] is connected and has at least 2k edges;

(2.14e) if a=k+l and G(x) has 2k edges then G(x) is a tree with leaves
L(x).

We estimate |Xg - Xg| by counting sets of vertices satisfying (2.14). For

a given k, 2, m let a be the expected number of sets K, L with |[K|[=k,

k,2,m
L] =2 satisfying (2.14) above, where G[K\J L] has m edges. Then

k+2
< () )( ) p"BS(c/10, n-k-2)*

( e (ne) (§k+z) ) ( ) e-2c2/3(1 _)-1(k+1)

iA

T Yk,,m B
Now if ¢ < 2logn, k, & < nl/3 then ”k,z,m+1/“k,z,m <n 18 torn large. }
Thus k+z)
>
(2.15) = Maum < (1+0(1)) Me,e,2k .
m=2k

With the same bounds on c,k,2 and with n large and ¢ < k+l we have

(2.16) 'k(e4<:2k)ksr.‘le'zc"/3 which implies

Uk 2 2k < 21n

k+1 k k+1 2 -
ZZ M g ok S 21(e4c2k/n) }_'2_' (n/zezc/3) L
e= v -:.':.




k
< n(e4c2) e-2ck/3

ne-ck/Z

< as ¢ > 300.

It follows that s < logn a.s., and we can assume k < logn. Now, using

(2.16),

logn k Togn k
4.2," -2ck/3
> 2w < 21 (e’ct) e
ke ez bk k=2
42,4 _ac/3
< 22(e"ct) ¢
and so

(2.17) the number of sets K, L with 2 < ¢ s k is a.s. less than nl/2g-4¢/3,

We only need to consider the case =k+1 from now on. But as

uk,k+1,m+1/“k,k+1’m < 3ck/n we have

(2.18) 2w < (1+0(1))u
™2k k,k+l,m ( ) k,k+1l,2k
So we are finally reduced to estimating

T S the number of vertex induced binary trees with k leaves (k-b-trees) in

which eacn leaf is small.

Let ¢ be the number of (vertex labelled) k-b-trees contained in a

k
complete graph with 2k-1 vertices. (Clearly 8 < (2k-1)2k‘3). Then

2k-1
(€57 1)-2k+2
2k-2 2 BS(c/10-1,n-2k+1)¥

(2.19) Exp(t,) = (5"1)8,p" "“(1-p)

k
< n(ezcze'zc/3) for n large.

e N




n
To estimate Var(rk), let {TI'TZ""’TB}’ B=(2k-1)°k’ be the sat of k-b-
trees contained in a comolete graph with n vertices. Let Aj be the event that
T{ is a vertex induced subgraph of Gp in which all leaves are small.
Next Tlet Yp = {(i,§): IV(Ti)\)V(Tj)I =p} for p=2k-1l,...,4k-2 and let
Ip,q° {(i,3) ¢ Yp : IE(Ti)LJ E(Tj)l =q}. Then

(2.20)  Exp(:f) = Exp(v,) + &) + 8,

where

——

Al } (1,3) ¢ Y4k—2

and

4k-3

b3~ 2 Pr(AMA)
p=2k-1 (i,j)eY J

Now P

2k-1

( )-2k+2
2k-2(1_py" 2 )2

815 (00 o
where
o = BS(c/10-1, n-2k+1)¥ BS(c/10-1, n-ak+2)*
is an estimate of the probability that all leaves of 2 particular disjoint
trees are small.
It follows that

2
(2.21) o Exp(x, )2 (1-p) "2

S .
PP JUTCTRIP |




Now for p < 4k-3 we have

2 ___ o w4
. (ANA) =3 . Pr(A.MA,)
(1sJ)£Yp i J g=p-1 (isJ)ezp’q i J
ak-4 p 2
<2 G IPAET e/ 3 1)
(2.22) < ne'CR/z for n large.

(2.19), (2.20), (2.21), (2.22) plus the Chebycheff inequality implies that
1 is a.s. within a factor (l+o(l)) of the R.H.S. of (2.19). This together
with (2.17) and (2.18) proves the result.

For a positive integer k, the k-core Vi (G) is defined to be the largest

set S S;Vn such that &(G[S}]) 2 k. This is well defined, for if

5(6[51])2k for i=1,2 then a(G[S1 52]) 2 k. We let Gy denote the subgraph
of G induced by Vi(G).

The k-core can be constructed using the following algorithm:

begin

while &(H) <k do

Y= {veV(H) :dy(v) <kl
H: = H[V(H) - Y]

end

]
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On termination H=Gy. This is because one can easily show inductively that

each iteration removes vertices that are not in Vi(G) and as
§(H) 2 k we have V(H) gvk(G).

Clearly any matching of G is contained in Gj(= G minus isolated vertices)
and any cycle of G is contained in Gp.

Now for k=1,2 let Ay = Ag(Gn,p) = Vik(Gp,p)-(WUXUYy) where W,X are as
defined in Lemmas 2.1, 2.2 respectively and

Y= {yeV :d. (y)=kand N, p(y)r\x + 41

n,p n,

Let H = He(Gpn,p) = Gn, plAkl, then we have

Lemma 2.3
For k=1,2 let M be any matching of Gn’p[Akl which is not incident with any
small vertex. Let Hyg=Hy-M, then (2.5) implies:

(2.23)  §+ SSA IS| < n/14 implies [N (S)| =2 k|S|.
Hk

Proof

Let G=Gp p, H=Ay and for a given S let S} = S A SMALL and Sp = S-Sy. Now
(2.24) lNH(S)I 2 INH(SI)I - lszl + 'NH(sz)l - min( lsllalszl )

We can write min( |S1], |S2| ) in place of |Si| as no vertex of Sy fis
adjacent to more than one vertex of Sy, as S N\ X = @.

Also, we claim
(2.25) INH (Sl)l 2 lell.

Note first that v ¢ Sl implies dG (v) 2 k and no pair of vertices of $§)

k

are adjacent, since 51{\ wl = ¢. Note that no pair of vertices of S; have a

common  neighbour  as slr\wz = ¢ Also NG(SI) N W UYk) = ¢ as

e o "y P
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SyNW = .  Furthernore v e S, implfes N A X s 1as s nx =4,
Thus to prove (2.25) we need only show that if
Ve S1 and dG(v)=k then NG(v)r\ X = ﬂ. But this follows from S1 f\Yk = ¢.

We claim next that if (2.5) holds then
(2.26)  INu(S2)] = 4isy]

For then |[Ng(S2)| = 6Sy| and for each veS,, [Ng(v)]
< |NH(v)| + 2. This is because v is incident with at most one edge of M and
is adjacent to at most one vertex of W X Yy. It is a simple matter to verify
(2.23) from (2.24), (2.25) and (2.26) by considering |S;] =2 |Sp| and

IS1] < [S2] as separate cases.
N
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3. Matchings
Let Hy be the subgraph of G defined in Lemma 2.3. We are going to prove

that H; a.s. has a perfect or near perfect matching. We first establish that

Hy is large.

Lemma 3.1
(3.1) V()| = n(L - (1+el(c))e'c) a.s.

where el(C) -->0as ¢ --> =,

Proof
VDT 2 V@1 = W] = X - vyl

It is well known that
(3.2) V@) = (1+0(1))n(1-e”°) a.s.
where the o(1) term in (3.2) could for example be taken to be +n~1/%e=¢/2,
using the Chebycheff inequality.

Lemmas 2.1 and 2.2 give a.s. upper bounds on |W| , |X] and (3.1) will
follow from
(3.3) |v1-w| < |X|
For y e Y1 there is, by definition, a unique x(y) ¢ X such that y is
adjacent to x(y) in G, Now for  distinct Y1, 7]

€ Yl' W we have x(yl) LS x(yz) else Yy € wz and (3.4) follows.

We establish next the following condition that goes with a graph not

having a (near) perfect matching.
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f Lemma 3.2

;

g Suppose u(H) < ||V(H)|/2]. Let TV\ be the set of maximum cardinality
matchings of H. Let U={u1, uz,...,ut} be the set of vertices left isolated

by some M 51‘1. For i=1,2,...,t there exists a set U; € U satisfying
(3.40)  INg(UDT < ugls

v
.—' e T
Lottt

. (3.4b) we U, implies e={ui,w} ¢ E(H) and u(H) < u(H+e).

Proof

Let u; e U and let some M, M leave uj isolated. Let S; # @ be the set

of vertices, different from uj, left isolated by M;. Let U;' be the set of
vertices reachable from S; be an even length alternating path w.r.t. Mj. Let
Ug = Si\J U% CU. Then (3.4b) holds otherwise M; has an augmenting path.
If  ueNJ(U)thenuXS, and so there exists y] such that
{u,yl} e M,. We show that y, e U, which will prove (3.4a). Now there
exists Yy € U1 such that {u,yz} e E(H). Let P be an even length alternating
path from some s ¢ S1 terminating at y;. If P contains {u,yl} we can

truncate it to terminate with {u,yl} , Otherwise we can extend it using

edges {yz.x} and {x,yl}.
We are now ready for the

Proof of Theorem 1.1

We use a coloring argument that was introduced in Fenner and Frieze [5].

Suppose that after generating G=Gn,p all its edges are colored blue, and then

each edge of G is re-colored green with probability p'=logn/cn and left blue

with probability 1l-p'. These recolourings are done independently of each

NN

A..ll
f )
4 e A A 4 B 2 0 g g
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Let Eb, E9 denote the blue and green edges respectively and let Gd
(Vns €%), Hy = Hy(G) and H) = Hl(Gb).

Remark 3.1
It is important to note that for a fixed value of Eb, E9 is a random

=b

subset of E E®  4s independently included in E9 with

where each e ¢
probability py=pp'/(1l-p(1-p')) and excluded with probability 1-pj.
Consider next the following 2 events:
gis G = Gn,p satisfies the conditions of Lemmas 2.1, 2.2 and
w(H <l V(172
E=(a) F45ESA 6, IS| < n/14 implies INHb(S)l > |S|;
() w(#}) < LIve1r2)s L
(c) there does not exist e={v,w} ¢ E9, e S;Al(Gb) such that some
maximum cardinality matching of H? leaves both v and w 1sqlated.

In consequence of what has already been proved, we need only prove

(3.5) 1m Pr(G) = 0.
N+

To prove (3.5) we shall prove

(3.6a) Pr(& | S) > (1 - 0(1))(1_pu)2n/3

2
(3.60) Pr(E) = (1-p)" /3%
which together imply (3.5).

Proof of (3.6a)
Llet Gy ¢ SS be fixed and let Mg be any fixed maximum cardinality matching

of Hi. We prove

LN L

v
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(3.7) Pr(E| Gpp=Gg) 2 (1-p")2"3 - 16(10gn)%/c?n.

We can readily verify this once we have shown that

e ENG22E NE, NE N G

where
EE:I : E9 is a matching of GO;
552 = no green edge meets any vertex of degree less than ¢/10+2 in
Gp or any vertex inW X Y
E3-MmNEI =g
For €1 NE, impiies
(3.9) Al(Gg) = A, (Gy)
and then E;l implies (see Lemma 2.3) that (2.23) holds, which
verifies ég(a). Ez(b) follows directly from (3.9) and Gg ¢ S} . 853

implies u(H‘;)= w(Hy) and £ (c).
Now it follows from (2.3) that
(3.10) Pr( &) < 16(logn)*/c?n.
From Lemmas 2.1, 2.2 and (3.3) we find that the total number of edges of

Gg that are excluded by the conditions in EEZ’ 553 is no more than

n((c/10 + 1ye-2¢/3 ance™®)n + n/2 < 2n/3
Thus

Pr(EUEN E = 1-(1-01)2"3 + 16(10gm) */c?n
which proves (3.7).

Proof of (3.6b)

Now

(3.11)  Pr(E) = 2_ Pr(E6° = r)pr(c®=r)
r
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where T is an arbitrary graph with vertices Vn‘

Now if Hi(r) fails to satisfy £(a), £ (b) then Pr( Ei=r)=0. so
let us assume that E;(a), Ezjb) hold.
Now if U, U1,...,Ut are as defined in Lemma 3.2 with H=Hy, then each set
is of size at least n/l4 and for EE(C) to hold no green edge can join
u; e Utowe U,.  But then in ;iew of Remark 3.1 and Ez(a) we have
Pr(E () 16° = 1) < (1-p)" /3%
which implies (3.6b).

We have thus shown that

u(@) 2 a(l - (lve (c))e™)/2 a.s.
On the other hand (3.2) implies
u(G) s n(1+a(1))(1 - e %)/2 a.s.
and Theorem 1.1 follows.
.
If we put c=logn + w where w-= then we have cx(c)=1-(1+o(1))e""n'1 and

then Gn p a.s. has a matching of size at least (n - (1+o(1))e™)/2. This is
Erdos and Rényi's result [4], (what we have proved is that H; a.s. has a
matching of size ||V(H1)|/2] and one can see that when c=logn+w , H1=G, p

a.s.).
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4. Cycles
Let Hp be the subgraph of G defined in Lemma 2.3. We are going to prove

that Hy a.s. has a hamiltonian cycle. The proof is very similar to that of

section 3 and as such we will only give the essential differences.

Lemma 4.1

(a.1) IV(H)| = n(1 - (L+ey(c))ce™ ) a.s.
where ez(C)+0 as Nee

Proof

V(| 2 [Vy(@)] = W] - [X] - [Y,H U]
Now

IYZ-N WX| s x|
follows by a similar argument to (3.3). Now let Zg be the éet of vertices of
degree 0 or 1 in G and let Zj, Z3,... be the sequence of sets removed in each
iteration of the 2-core finding algorithm of section 2. Now, corresponding to

(3.2), it is also well known that

Iy = (1-0(1))n(1-ce™) a.s.
We complete the proof of the lemma by showing that
ZiSXUNIUYZ 131,2’0.0

Thus assume inductively that 7y, Zp,...Z;.1& X\UINW, VY, for some i

i-1
2 1 (true vacuously for i=1) and let T = U Zt'
t=0

Then y ¢ Z, implies dg(y) 22 but ING(y)-T| < 1.

............
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Case l:

Case 2:

Lemma 4.2

is connected.

Proof

[f H=Hp is not connnected then there exists a nonempty S CV(H) such that

all edges

e

Lemma 4.3

Let H

;‘ (a) (4.2) no edge of H joins the endpoints of any longest path of H.

By assumption T C X \USMALL and so y ¢ X.

Then dg(y)=2 implies y e qulu YZ'

If ¢ is large enough and G satisfies the conditions in Lemmas 2.1, 2.2 then Hp

Ny(S) = @. We show that this is not possible for ¢ large enough. (2.23)

impiies that S| 2 n/14. (4.1) implies that, for c large, fewer than 2ce “n

vertices are deleted from G in producing H. Then (2.2) implies that at most

8ce=Cn edges are lost in the construction. But then (2.6) implies that not

The analogue of Lemma 3.2 is

P

22

ING(Y)ﬂTl 22

N AT = 1

with one vertex in S have been deleted.

be a connected graph which is non-hamiltonian. Then

'i (b) Let U=[u1, UZ""'Ut} be the set of vertices which are endpoints of

:i longest paths of H. For i=1,2,...t there exists UiSEIJ satisfying isf

. (a.3) MU < 2 U] 2
(4.30)  w e Uy tmpldes {u,,w} |k E(H) and there is some longest path of H .




kY

-

that joins uj to w.

Proof
(4.2) is straightforward and (4.3) is from Posa [11]
We can now give an outline of the

Proof of Theorem 1.2

We define EP, E9 and G as in the proof of Theorem 1.1 and Ilet
Hg = Hz(Gb). Let now
53 : G =6, p satisfies the conditions of Lemma's 2.1, 2.2 and Hp is
]
not hamiltonian, which implies that (4.2) holds with H=Hj.

We have only to show that (3.5) holds with this definition of ES. Let now

E=(a) g4 sgAz(sb), S| s n/14 implies [N, (S)] = 2 IS|;
H
2

(b) there does not exist e={v,w}eEb UEJ such that v, w are the
endpoints of some longest path of Hg.

We replace (3.6) by

(a.32) Pr(EIG) 2 (o) (1-pFV2 5

(4.3b) Pr(&) < (1-p.)"2/392.

This will prove the theorem.
To prove (4.3a) let Gy ¢ g; be fixed and let Py be some longest path of Hjp.
We define €1, &, as before and define &3 = Py NEY = §.

Now £ 10, implies that Ay( sg ) = Ap(Gg) and then (3.8) and (4.3a) will

............
........
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follow in the same way as (3.8) and (3.6a) previously.

To prove (4.3b) we use (3.11) and concentrate on the case where Hz(r)
satisfies éE?(a). We note that for éE?(b) to hold there 1is no

{voul ¢ €9, v, € U, w e U where U, Up, Up,...Ut are defined by (4.3) w.r.t.

H=Hp (r). (4.3b) follows from Remark 3.1 and E;(a) as before.

We note that if we put c=logn+loglogn+ w where w-= then we obtain the
result of Komlds and Szemerédi [8]and Korsunov [9].

Finally note that our Corollary follows from the Percolation Theorem of

McDiarmid [10].
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