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MTI SYSTEM SIMULATION AND 
CLUTTER OUTPUT STATISTICS 

INTRODUCTION 

A radar return from a patch of clutter usually consists of a large number of echoes from indi- 
vidual scatterers. Each of these scatterers moves randomly and introduces a randomly distributed 
doppler spectrum. Therefore, to simulate the performance of a MTI system, we must sum a large 
number of randomly distributed samples from each radar pulse return. The computer-time required in 
this case is very lengthy, and therefore it is not feasible for us to use this approach in a large-scale 
simulation. In this report we propose to use a simplified version of the clutter model. Such a model, 
as we will show, will generate a correlation function and a spectral density function which are experi- 
mentally measured.  Such a model reduces the required computer-time a great deal. 

The second problem we will investigate is the improvement factor of the MTI system. This 
improvement factor is a function of the clutter output and will be used as a base for the design of an 
MTI system and its required performance. The clutter output is the weighted summation of a number 
of delayed radar returns. Since the spectral distribution of these radar returns is random, the improve- 
ment factor is also a random function. In the past, the expected value of this improvement factor was 
used for the radar MTI design; therefore it is possible that it accounts for the fact that a well-designed 
MTI system may not be adequate to eliminate clutter noises at all times. In this report, we present, as 
an example, the probability distribution of the improvement factor of a MTI system. This MTI system 
uses binomial weights, and the results are obtained through computer simulation. 

CLUTTER SPECTRAL DENSITY FUNCTION 

The radar clutter returns usually are characterized by two parameters: 

a. The radar cross section and 

b. The spectral density function. 

The radar cross section is the measure of the reflection of a clutter patch when it is illuminated by 
radar emission. The spectral density function is the distribution of the random motion of the scatterers. 
In general, since a clutter patch consists of a large number of scatterers, and the radar echo is the sum- 
mation of the reflections from each individual scatterer, the reflection from each scatterer is random 
and independent. Therefore, according to the central limit theory, the summation of these independent 
random variables is asymptoticaUy normal as the number of random variable approaches infinity. 
Hence, the radar return changes into a Rayleigh distribution. This fact has been pointed out very early 
by Lawson and Uhlenbeck [1]; later, other distributions such as log normal have been reported for sea 
and land returns [2]. The radar cross section of clutter is a very important factor in the detection of 
target. If the clutter is strong enough, it might mask the target; however, some means must be pro- 
vided to eliminate the clutter interference. Since the clutter correlation time usually is very long, the 
integration scheme does not work under this condition. To reduce clutter interferences we must avail 
ourselves of the evident fact that the clutter in general is stationary. We can use a kind of velocity 
filter which may filter out the stationary clutter and enhance the detection of a moving target. This has 
been proven and successfully carried out. To design such a velocity filter, it is very important that we 
possess knowledge of the characteristics of clutter movement. 

Manuscript approved August 23,1984. 
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In reality, the clutter is not completely stationary. As we pointed out earlier, the clutter consists 
of a large number of scatterers, and since each scatterer moves randomly because of prevailing wind or 
.other effects, the motion of the scatterers introduces doppler shift of the radar returns. The doppler 
shift is a random function that is characterized by the correlation function or the spectral density func- 

•tion.   In this section, based on the model that a clutter patch consists of a large number of clutter 
• scatterers moving randomly, we determine the correlation function. 

Let us assume that there is a large number of scatterers located in a patch of clutter, and let us 
also assume that point 0 is the phase center (a reference point) of this clutter patch; if a radar signal is 
reflected from a point scatterer a, then this reflected wave can be represented as (see Fig. 1): 

«a('i) = Ta COS (ojo t + 2kR + kk • Fi + /3„) 

where y^ is the amplitude of the reflected wave. 

Wo is the radar carrier frequency, for simplification we have assumed that the radar signal 
is narrow band. 

/? is the distance from radar site to the phase center point 0. 

^ is a unit vector of R. 

Ti is position vector of the scatterer point a. 

Pa is the phase due to reflection from the scatterer. 

A: is the wave number. 

For this information we assumed that R » r^. 

Fig. 1 — Scattering by randomly moving clutter particles 
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At time ?2 this particle moves to a new position; therefore, the radar return becomes 

Va(t2) = Ja cos (WQ tj + 2kR   + kR   ■ Tj + 13 J. 

Since r2 = ri + r' we have ' 

vJO = y« cos (cjo f2 + 2kR + kk ■ (r, + r') + /3„). 

Since kR represents a constant phase delay for all scatterers, it can be ignored. Expression kR • rj + /3„ 
is a random phase which varies from scatterer to scatterer; therefore, we can represent it by a random 
variable </>„. Furthermore, because the time elapse from t\ to ti is very short, we can assume that the 
scatterer a moves at a constant velocity. Then kR • r' = i2n/x) v (^2 - f]), and v is the radial com- 
ponent of the velocity of scatterer a. We should notice that v is a random variable. 

The correlation function is: 

^lT7(?i) ri{t2)l = £'f££ya yp cos (wo ti + 0„) cos (wo ?2 + 0^ + (27r/y) v(r2 - ^l))] 

= ^ IIray, 
[a    P 

1 

— cos (wo Ui - ti) - i2n/k\)it2 - h) + (0„ - 0^)) 

+ j cos (wo Ui + ti) + (0„ - (t)p) + (27r/\v)(r2 - ti)) 

The reflection coefficient y, phase angle 0, and velocity v are all independent random variables, and the 
process is stationary. The phase angle 0 has a uniform distribution between -TT to TT, because we 
assume that the scatterers are randomly distributed within the clutter patch. Because of this assump- 
tion, the correlation function becomes 

R (r) = i?o ^f I cosCwor - (27r/X)vT) 

where 

T=  t2-  ti 

2 ^o=Tlr„^ 

The velocity v may contain two components. A constant component which is common to each 
scatterer, and which represents the velocity that the clutter patch moves as a single body. The second 
component, which varies randomly from scatterer to scatterer, represents the velocity of movement of 
each scatterer, thus 

V = VQ -I- Av. 

The correlation function is 

R (r) = i?o^ [I cos(27r(/ + /o + A/)T)1. 

Where /o is the doppler due to the mean velocity VQ, and A/ is the random component. Let us 
suppose that this signal has been converted into the base band, and let us assume that the probability 
density function A/has a probability function S(f), then 

or 

R (T) = ROJ SiAf) cosilnifo + Af)r)dAf 

R(r) = R^[Roe'''''o'Js(i)eJ^^d^] 
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which states that the correlation function is the Fourier transformation of the S if). The S if) function 
is commonly referred to as the power spectral density function of the random process T)(;). We may 
also notice that function Sif) represents the probability density function of the doppler frequency of 
the clutter scatterer. The clutter echo can thus be simulated by the summation of many scatterer 
returns. 

SIMULATION OF CLUTTER RETURN SIGNAL 

As we have seen in the previous section, we can simulate the clutter return by summing a large 
number of scatterer returns, each of which has a random doppler frequency Sif), as its probability 
density function. However, in the actual simulation, this approach requires too much computer-time 
and therefore is not feasible for a large-scale simulation. In a real radar system, most MTI or doppler 
filter is performed digitally. The returns of the radar echo at each range bin are sampled and processed. 
Therefore, if these samples were used for simulation, the results would represent an actual radar opera- 
tion. It is evident that such an approach requires much less computation because one sample is all that 
is required instead of the summation of a large number of returns. Furthermore, the measured clutter 
data is usually characterized by the correlation function which was computed from these sampled data at 
each range bin. A numerical Fourier transformation of this correlation function is then performed to 
obtain the spectral density function [3]. It is evident that if we can reconstruct these sampled data from 
their computer spectral density function, these data can be used to accurately simulate the radar MTI 
operations. In this section we shall show how these sampled data can be reconstructed from the known 
spectral density function. 

The clutter return is known to be a wide sense stationary process. Its mean value is independent 
of time, and its correlation function is only a function of the correlation time. 

The appendix of this report shows a time function of the following form that can be used to 
represent such a random process: 

X it) = COSUTT ft + 0. 

Both /and ^ are random variables. Random variable ^ has uniform distribution from —n to n, 
while/has a probability density function 

pif) = 2Sif), 

where Sif) is the spectral density function which has a correlation function 

RiT) = Elxit)xit + T)]. 

This time function can, then, be used as the radar return for simulation purposes. Frequency / 
represents the doppler shift, and ^ represents the initial phase. We notice that each xit) function for a 
given / and | represents a sample of the ensemble of the random stochastic function of the clutter 
return. For a different sample, the / and f vary according to each probability density function, as 
shown above. 

MTI IMPROVEMENT FACTOR 

An MTI system, as shown in Fig. 2, has a filter weight a„ and a delay of x at each stage. The 
clutter output of such a system is equal 

^0=  5^ a„ exp 0'27r/«T)   • 
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(^ 
   oO- 

T\ 

r> 

Tl T3 Tn       f  +j ^ 

Fig. 2 — An MTI system 

Where fj is the doppler frequency of the target, T is the delay, and it is assumed that the input signal 
has a unity amplitude. We notice that the pulse repetition frequency (PRF) /^ is equal to 1/T. If the 
target doppler is an integer of f^, then the input signal function 5o repeats itself. 5o is thus a periodic 
function.  For convenience, we may introduce a normalized doppler frequency fl, that 

fl-fjfn 
then the signal output becomes 

■^0= ££a«a« 
jltr (n-m) f\ 

When the target velocity is not known a priori, we may assume that the target velocity has a uniform 
distribution.  Under this condition, the average signal gain is thus 

£(5o)=£a„^ 

Similarly the clutter output is 

C=C',Y.'L^nar, 
j2iT(n-m)f\ 

where Co is amplitude of the input clutter.  If the clutter has a spectral density function G(/), then the 
average clutter output is 

EiC) = Ci ££ a„a„R„„, 
n   m 

where R„„ is the correlation function and it is the Fourier transformation of the spectral density func- 
tion. 

The improvement factor is defined as 

Input target signal power/input clutter power I.F= E 
Output target signal power/output clutter power 

YL "nC^^n 



If the filter weight is normalized so that 
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Ia„^=l 

IF.   =  l/YY ^na^Rr, 

then 

The correlation function, R„„, is the Fourier transformation of the spectral density function. 
According to the data measured, most clutter spectral density has a normal distribution. Although 
some ground clutter has been reported to have a / distribution, it has been shown that it has a general 
bell shape as that of a normal distribution, except for a long tail. We shall assume, however, that 
clutter spectral has a Gaussian distribution, and furthermore, that the clutter mean velocity, because of 
prevailing winds or platform movement, usually has to be removed by some other means. In our fol- 
lowing discussion, this mean velocity is assumed to be zero. The clutter spectrum density function has 
the following form 

For convenience, the variable / and standard deviation a are both normalized with respect to 
PRF.  We therefore, can consider a range of/from 0 to 1.  The correlation function has the form 

R„„ = expl-ln^a^in - m)^]. 

A set of improvement factors for MTI filter with binomial weights is shown in Fig. 4. The MTI 
improvement is plotted in dB scale and it is plotted as a function of the normalized o- for a value less 
than 0.25, or a standard deviation of doppler no more than 1/4 of the PRF. 

The binomial coefficients are used for MTI filter weights. It has been shown that binomial weight 
is only optimal at o- = 0 [4]. Nevertheless, it has been used since the beginning of the MTI system, 
and it is very convenient to use. There are other types of filter weights [4-6]. 

We have noticed in the previous formulation, that the target velocity is assumed to be uniformly 
distributed; therefore, if the target velocity is known, we might use some other filter weights to achieve 
a better signal gain.  One such example is the doppler filter [6]. 

MTI SIMULATION 

We assume that the clutter return signal for the MTI simulation has the following form: 

/ - channel x(t) = cosHvft + f) 

Q - channel x(t) = sin(27r/? + |) 

where / and | are random variables.   Random variable / has a normal distribution with zero mean and 
a given cr. While f has a uniform distribution from —TT to IT. The MTI output is then 

/ — channel 

C,= '£a„ cosinfT + 0 

Q — channel 

Ce = 2^ a„ sin(n/r + 0 
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where T is interpulse delay time. The total clutter output is then 

-2 
-Q O = C/ + cl 

= Y^ ^n^m cosinft + 0 cosimft + 0 
n   m 

+'^J;^ a„a„ sininft + 0 sinimft + 0 
n   m 

= y XL a«am{[cos((« - m)/T) - cos((/« + «)/T + 2^)] 
n   m 

+ [cos((n-m)/T) + cos((/?j + «)/T + 2^)]} 

n   m 

If the weights a„'s are normalized, then the expected value of the reciprocal represents the improve- 
ment factor. 

Figure 3 shows the results of one of such simulation. This figure shows that we have plotted the 
improvement factor as a function of the normalized cr, the variance of the spectrum density function. 
Also, this figure shows that we have plotted the expected value of the improvement factor of a three- 
pulse MTI system. Later at each a value, we have computed a large sample of clutter output. Each 
sample has a different doppler frequency which is generated from a normal distribution with a variance 
of cr. The initial phase | was selected from a uniform distribution -TT to ir. We computed the 
improvement factor of a total of 1000 samples for each o- in Fig. 3, and then we computed its average 
value which is also plotted in Fig. 3. We may see that the average improvement factor value is almost 
identical to that of the theoretical value. This may prove the validity of this simulation approach. Fig- 
ure 4 shows the average improvement factors as a function of normalized cr for 2 to 6 pulse MTI sys- 
tems. 

Q.QQ     0.Q5     0.10     0.15 
CLUTTER o/PRF 

0.20 0.25 

Fig. 3 — Improvement factor vs normalized clutter a- 
for theoretical and simulation results 
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0.00 0.05 0. iO 0.15 
CLUTTER a/PRF 

0.20 0,25 

Fig. 4 — Average improvement factor as a function of 
clutter spectral standard deviation 

STATISTICAL DISTRIBUTION OF THE IMPROVEMENT FACTOR 

In the previous section we demonstrated how the improvement factor is computed. We also 
showed how the simulation of improvement factor is formed. This improvement factor usually is used 
as a base for the design of an MTI system. However, this improvement factor is a random function. 
In the past its expected value has been used for this purpose; however, in a real system, this value may 
fluctuate. There are two reasons that contribute to the fluctuation. First, in computing the improve- 
ment factor we used the average target velocity. In reality however, the target velocity may fluctuate 
therefore producing a fluctuation in achievable improvement factors. Second, the clutter doppler is a 
random variable; hence the clutter output is also a random function. It varies from clutter sample to 
clutter sample and it also varies at different sampling time (if sampling interval is greater than correla- 
tion time). 

The variation of target velocity is not addressed here, 
solved by using some sort of doppler filter. 

In general, this problem can be easily 

In this section we address the second problem. The clutter output is a summation of random 
variables. Usually we can assume that such a function has a normal distribution if the summed random 
variables are independent. Unfortunately, the clutter output is the summation of many MTI pulse 
returns which, because of long clutter correlation time, cannot be treated as independent. The assump- 
tion of a normal distribution is therefore invalid. There is no known probability density function to 
describe such a process; therefore, the following results are based on the computer simulations. 

We have performed this simulation for a 3-pulse MTI system with binomial weights. We vary the 
normalized a from 0.01 to 0.1. For each cr, we compute 10,000 samples. For each sample, we gen- 
erate the doppler frequency /and phase |. We generate the doppler frequency according to a normal 
density function with zero mean and cr^ as the variance. Then we generate the random number ^ as a 
uniform distribution from —n to n. Finally we compute the clutter output. This computed clutter out- 
put is then normalized with respect to the average clutter output. We plot the cumulative probability of 
such samples as shown in Fig. 5. There are five such curves, each for a given a value which varies 
from 0.01 to 0.1. One of the interesting results that we may notice is that these cumulative probability 
curves are not a function of the normalized cr. Similar results were obtained for 4-pulse and 5-pulse 
MTI system.  The clutter level in this plot is normalized with respect to the average clutter level.  In a 



NRL REPORT 8858 

CLUTTER LEVEL 

Fig. 5 — Cumulative probability of normalized clutter output level (nor- 
malized with respect to average clutter output) for a 3-pulse MTI system 

three-pulse canceller, as shown in Fig. 4, the average clutter output amplitude at o- = 0.05 is 0.067 (or 
—23.48 dB). In Fig. 5 we see that 80% of the samples have less than this clutter output. However, if 
we wish to keep a 90% probability improvement factor, the allowable clutter becomes 0.134 (or —17.46 
dB). 

Figure 6 shows the same cumulative probability curve for 2-, 3-, 4-, 5-, and 6-pulse MTI systems. 
This figure shows the same normalized clutter as that shown in Fig. 5. For example, for n = 2, the 
probability that the clutter output is less than or equal to the average clutter is 0.66. Table 1 lists the 
probabilities of MTI filter which are less than or equal to its expected values for 2 to 6 pulses. 

CLUTTER  LEVEL 

Fig. 6 — Cumulative probability of normalized clutter output level 
(normalized with respect to average clutter output) 
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Table 1 — Probabilities of 
MTI Filter 

No. of Pulses Probability 
2 
3 
4 
5 
6 

0.66 
0.80 
0.87 
0.92 
0.95 

It is evident that the increase in the number of pulses not only reduces the average clutter output, but 
there is also a higher probability that the clutter output will not exceed that level. 

The information contained in Fig. 6, and in Fig. 4, can be used to find the probabilistic improve- 
ment factor for a conventional binomial weighted MTI system. For example, at a normalized cr = 0.05, 
the average improvement factor of a 4-pulse canceller is 32 dB. From the information in Fig. 6 we may 
notice that 0.87 probability of all samples will achieve this improvement factor. However, if we want to 
achieve a 0.95 probability, the improvement factor decreases to 26.4 dB. 

CONCLUSION 

In this report we have reviewed how a clutter correlation function is formulated and how it relates 
to the spectral density function. To simplify MTI simulation, we have formulated a random time func- 
tion that can produce a correlation function and spectral density function as the one measured experi- 
mentally. We have checked the validity of such simulation against the theoretical results; we have 
computed the improvement factors for binomial weighted MTI systems and have plotted its cumulative 
probabilities of staying below a certain clutter output level. 
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APPENDIX 

Given a random function x(f), its expected function is 

E[x{t)] = E[cosi2iTft + 0^ 

= EWoslirft cos ^ - sin In ft sin ^]. 

Since /and ^ are independent, 

E[x{t)] = Eicoslnft)Eicos^) - Eisinlnft i'Csin^). 

If x(f) is stationary, Elxit)] must be a constant and not a functin of r.  Tliis will happen when 

^(cosl) = EisinO = 0. 

This implies that the characteristic function 0 (A:) of ^ 

where 

<t>ik) = J piO e^^'^d^ i 

and /7(^) is the probability density function of random variable ^. 

The correlation of x(?) is 

R (T) = Eicosilnft + e) cos(27r/(? + T) + 0 ' 

= y £'(cos(27r/T)) + j £• (cos (477/? + Infr + 2^)) 

if £(cos2f) = £'(sin2f) = 0. 

Then 

i?(T) = Y EicoslTTfr) 

or 

i?(T)= y J;7(/) cosl-nfrdf 

where p{f) is the probability density function of the frequency /   Since R (T) is the Fourier transfor- 
mation of the spectrum density function Sit), we have 

The probability density function of f must have a uniform distribution in the range from —TT to TT. 
This can be shown as follows: 

Sif) = \pi 'J). 

must have a uni form 

,J^ 

smkiT 
kv   ■ 

(t>(k) = 0. k= I 2. 
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