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RELATIVE-ENTROPY MINIMIZATION WITH UNCERTAIN CONSTRAINTS —
THEORY AND APPLICATION TO SPECTRUM ANALYSIS

[. INTRODUCTION

The relative-entropy principle (REP) is a general, information-theoretic

method for inference when information about an unknown probability density g°

consists of an initial estimate p and additional constraint information that res-
tricts 77 to a specified convex set of probabulity densities. Typically the con-
straint information consists of linear-equality constraints—expected values
fr= [1ei2)qNz) 2= (1)
for known f.i{z) and f. 7=0., . M. The principle states that one should
cheose the final estimate g that satisfies
A{q.p) = min {g".p).

where A s the relative entropy {(cross entropy, discrimination information,
directed divergence, I-divergence, K-L number, etc.),

H(g.p) = fq(z) log -g-%)ldx- (2)
and where 7’ varies over the set of densities that satisly the constraints. When
these are linear-equality constraints {1), the final estimate has the form

3(z) = p(z) exp [—a'- ;ﬁrfr(z)]- (3)

\

where the 8, and a are Lagrangian multipliers determined by {i) {with g'
replaced by 3) and by the normalization constraint

Saz)dz = 1. (4)

Properties of REP solutions and conditions for their existence are discussed in
_1,2]. Expressed in terms of the expected values and the Lagrangian multi-
pliers, the relative entropy at the minimum is given by

H{g.p)=-a =Y §.f.. (5)
r
The normalization muitiplier a is given by
a =log fp(z)exp [- Zﬁrfriz)] iz, (8)
r

The quantity Z =e?® 1s often referred to as the partition function. If the partition

function can be evaluated analyticaily—i.e., if the integral in (6) can be
performed—the relations

da _ = ,
o8, " @)
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5 . i . S ) N . L T
L,.. a4 e e ate.a'a o sl at . s - el oat. o S SR oo a et . e - b SR L. WY L, oy




P RS Mt Rt Jah S R St SRa e dub “B SRS AR A St ® gt SR AR e e Sl R A A St Aol S Sl Sl M i Aai A A PR 9 " 1

can sornetimes be soived Lo express the 3, as ‘uncticns of the expected vaiues
Jr. It not, various computational methods can be used to find the vaiues fcr the
a« and 8, 1n {3) that satisfy (1) and {4) "3]. As a general method of statistical
inference. the REP was frst introduced by Kullback <], has been advocated :n
various ferms by others 3. 6, 7], and has been applied n a variety of feids :for a
list of references, see _3]).

Informally speaking, of the densities that satisfy the constraints, the REP
. selects the one that s closest to p 1n the sense measured by relative entropy
3 In more tormal terms, the REP can be justified on the basis of the information-
b, theoretic properties of relative entropy 4], or on the basis of consistency
- axioms for logical inference "8). In applications of the REP. the known expected
I
P
s

T

rarn e
f

i o

values f, in {.) frequently correspond to physical measurements. Such meas-
urements usually are subject to error so that strict equality in { ) i1s unrealistic.

In the next section we discuss the REP with "‘uncertain constraints.” a form
of the principle appropriate for applications with uncertainty in the expected
values. In the third section, relative-entropy rmumumization with uncertain con-

- straints is applied to spectrum analysis; a relative-entropy spectrum estimate
! from uncertain autocorrelations is derived. The fourth and fifth sections are
f devoted to a numerical example and a concluding discussion, respectively.

II. RELATIVE-ENTROPY MINIMIZATION WITH UNCERTAIN CONSTRAINTS

4
g
3
q
b In this Section we extend the results on the REP wmith linear-equality con-
1 straints to incorporate uncertainty about the values of the f, in {1). We define
‘ an error vector v with components
v = [friz)gN=)az - F, (8)
"‘ A simple generalization would be to replace the set of constraints {.) with a
q bound on the magnitude of v:
— 2
R FFREITLE PR A (9)
=
However. all components v, may not have equal uncertainty, and different com-
L‘ ponents may be correlated. We therefore replace {9) with the more general con-
P straint
A ZJW,.,'U,.‘U, < &2 (10)
- rs
¢ In matrix notation this is
P. v-My < &2 (i1)
[ where M is any positive-definite matrix.
- We assume that we are given an irutial estimate p of 3", measured values f,
= of the expectations {:) of functions f, for a finite set of indices 7, and an error
(- estimate ¢. We will first derive the form of the final estimate g under the
assumption that the constraint has the form (9) and that the f. are 0: that 1s,
q we assume a constraint
3
2
S ([rriz)tzraz ] <2 (-2)
1 r
{ Next we show how to reduce the more general constraint {10) to thus case We
{ conclude thus section with a remark on the relation between the result with £ > 0
L'. and that for ""exact constraints” {¢ = 0).
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m .s o minirmize the relative entropy AF{g p} subject to the con-
©2) with 7 .n place of 37) and the normailzatien censtraint (+). If the
e sausties the constraint {ie (.2} holds with p 1a place of 7.
= p zives the mimmum Otherwise equaiity holds in {12), and the
TURUTWT S that the var:ation 2f

I3

crter
ro, ' z) , ! , , [CI ) , .
friz) g L dz AT | ffriziqimidz, ~la -1 feiz)dz (13
Dz, >\ ’
with respect to 7(z) is zero for some Lagrange multipliers X\ > 0, corresponding
to 1:2), and a = ., corresponding to {£). (We write a - . instead of a for later

convenience ) With \ > 2, the critericn intwtively implies that a small change 33

in g that leaves fq(z)d.r fixed and decreases H{3.p) must increase the error
( 2

term ; ’\ffr(:)q<:)d-“"}

Equating the vanation of {13) to zero gives

log :g—;%;# +a+ /\Xr:?.fr(z)ff,.(z’)q'\z')dx‘ = 0.
Therefore g satisfles
1{z) = plz) exp [~ « —gﬂrfr(z)} (14)
where
B =2\ [ fr(z)qiz)d= $)

Conversely, if 7 has the form {.4), and if a, A, and the 8, are chosen so that {35),
the constraint {:2), and the normalization condition {4) hold. then g is a solution
to the minimization problem. But if (15) nolds, the constraint with equality is
equivalent to

2
zl&] -

or to
=Lug!
A— 2£ \lﬁh

where we have written |8 | for the Euclidean norm (Y,82)% Thus if we choose
and @, 1n {.4) so that {4) and
ﬁ 4
s = S 1Bzl az (26)
HE X
hold, then the constraint {:2) wiil be satisfied. and we can ensure that (.3) hoids
by the choice of A.

Next assume a constraint of the general form {10), {8), with a symmetric,
positive-definite matrix M. Then there is a matrix A, not in general unique, such
that AA=M Now

v-Mu = v A = (Av)(A) =) [ZA,.,U,]"’,
3

r

and so the constraint assumes the form

2 2
;u., < £?, (17)
where
Up = 2 Ay
|
3
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In view of {+) we may rewrite 8) as

ff,.\z:) frigiz)dz

L g S e JA0, Ak 2k YR R BN P 4 M
A o I

and obtain
= [Tanifsim) - Fogiziae
Defining
griz) = ;4.,%(:) -fs). (:8)
ﬁ we obtain 2
3 }; [fg,(z)q(::)dz < &2 (:9)

»
«

L2 e gem 4
.

from {.7). Thus constraints of the general form {.0) can be transformed to {.9),
which is of the same form as {12).

We note that {14) 1s :dentical to {3): the functional form of the solution with
uncertain constraints is the same as that for exact constraints. The difference
is that, for uncertain constraints, the conditions that determine the 8, have the
general form (18). These conditions reduce to the exact-constraint case for
¢ = 0. One way cof iewirg this identity of form for the solutions of the two prob-
lems s to note that every solution § of an uncertain-constraint problem 1s

-

n

b simultaneously a solution of an exact-constraint problem with the same func-
Y ¢ tions f, and appropriately modified values for the f,.
{ The relative entropy at the minimum may be computed by substituting {.4)
into (2), which leads to
. H{g.p)= -a =% 8 [1.9(z)dz. (20)
r
t_‘ In the case of non-zero expected values, f, #0, {:8) becomes
w = [1:{z)giz)dz - T (21)
(For simplicity we take M to be the identity.) Substituting {21) into {20) yields
(i H(Q-P)=“G‘Zﬁrfr -¢'[Bl. (22)
r

which is the generalization of {5) in the case of uncertain constraints. The nor-
malization multiplier a has the same functional form as in the exact-constraint
case {8); the generalization of {7) therefore results from differentiating (6),

Y

whicn yields
¢ — - = [1r)ga)dz,
p .
and then substituting /22), wmch ytelds
2
b S_" /
; ~d6 =TT =2)
| ¢ Note that {22) and {23) reduce respectively to {3) and {7) when ¢ =0.
b
[
¢
[ |
4
9
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III. APPLICATION TO SPECTRUM ANALYSIE

Relative-Entropy Spectrum Analysis (RESA) s an extensien of Burgs
Maximum-Entrepv Spectral Analysis \MESA) ‘9, 10] that was :ntroduced by Shore
Ji1l Like MESA, it estimates a spectrum from values of the autocorrelation
function. RESA, however. also takes into account prior information 1n the form
of an inutial estimate of the spectrum. Muwtisignal RESA {MRESA), introduced by
Shore and Johnson -2}, simultaneously estimates the power spectra of several
signais when an (nitial estimate for each spectrum is available and new informa-
tion :s obtained in the form of values of the autocerrelation function of the sum.
The resulting final estimates are the solution cf a constrained minimization
problem: they are consistent with the autocorrelation information and otherwise
as surular as possible to the respective initial estimates in a precisely defined
informaticn-theoretic sense. MRESA nhas recently been extended by Johnson.
Shore, and Burg to :ncorporate weighting factors associtated with each iutial
spectrum estimate to allow for the fact that initial estimates may not be uni-
formly reliable ~13].

The autocorrelation values were treated in 1. .2, .3] as exactly given.
Usually, however, these are estimated or measured values subject to error. By
basing a derivation on the REP with uncertain constraints, we will show how to
incorporate an error bound to allow for uncertainty in autocorrelation values.

MRESA assumes the existence of L independent signals with power spectra
S;f ) and autocorrelations

Ry = [GAL)SUS)2S. (24)
where
G {(f) = cos 2rt, f. (25)

Given initial estimates P,{f) of the power spectrum of each signal S;. and auto-
correlation measurements on the sum of the signals, MRESA provides final esti-
mates for the S;. In particular, if the measurelients 7" satisty

REt= % [Gif)@if)df (26)
=1
for lags 7=0, . . ., M. the resuiting final estimates are
&lr) = : .
1 (27)
—_— ! \
577t L ARG

where the 8, are chosen so that the &, satisfy the autocorrelation constraints
(28) .2]. Since some initial estimates may be more reliable than others, these
results have been extended recently to include a frequency-dependent weight
w,{f) for each initial estimate P,{f) ":3]. The larger the value of w,{f), the
more reliable the irutial estimate 7P,(f) 1s considered to be. ¥With the weights
included, the result {27) becomes

&)= —

1

Ty B:GAS) (26)

PS)
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Before generalizu .g MRESA to inciude uncertain constraints, we review tere
some notation and results from .2l and 1 n 12) ‘or each of the L signais
we used a discrete-spectrurn aporoximation

v
Sb = S A cCS 2nf b + by sin2vft)
c=1
1= VLY with ronze"o ‘requencles f,. not necessar:y uniformly spaced.

The a* and b, wer
irutial :n;tr"butxons.

randcm var:ables with independent, zero-mean. Gaussian
Ne defined random variables

Ty =Hagk rbi) (29)
representing the power of process s; at frequency f.. and we described the col-
lection of signals in terms of their joint probability density g7(x). where
x= .z, .. .zy)andz, =z, .. , zZy) Weexpressed the power spectrum S as
an expectation
Si(fe) = [7ug’(xdx (30)

‘n terms of irutial estimates Py = P, f) of S; fi). we wrote initial esti-
mates p of g7 in the form

p{x) = j :yIPuz(-'«'w) 31)
=1 k=1
where
N % T ,
PuiZy) = _Pw €Xp Pe (32)

The assumed Gaussian form of the initial distmbution of 2, and 8, 1s equivalent

to this exponential form fcr pu{zy); the coefficients were chosen to make the

expectation of z4 equal to Py Using {30), we wrote a discrete-frequency form
f (28) as linear constraints

R = 3 5 fenzaginiax (33)
=} k=l
on expectation values of g%, where

= Gife)
We obtained a final estimate g of " by minimizing the relative entropy

(q.p) = f9(x) log 5—(—):1

subject to the constraints {{33) with ¢ in place of 3" and the normalization con-
diticn

fq (x)dx =",
the resuit nad the form

g{x) = :L[ ﬁqvx(zw)- 134)
1=1 k=1
where the 3, were related to the final estimates
Qu=Q{se) = [zug(x)dx
of the power spectra of the s, by
QulZTw) = —_ exp e {35)
w\~ %k Q* Q* : \
6
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Thus led to a discrete-frequency version of {27)

, .
= + ﬁ Brcﬂ: \36’
r=C
where the 3, had *o be chosen so that

é }__\_l, Cre Que = Rr™

=l k=1

was satisfled.
To handle uncertain constraints, we first replace (26) with a bound
12
LSaneinds - R g? (37}
13
or the Euclidean norm of the error vector v given by

= LGNS - Ry (38)

r

We write a discrete-frequency form of {37) in terms of expect- tg

2
}5 éﬁfc,*x*q(x)dx-ﬁ,“"

r=0 (t=l £ =1

< .

This has the form {27); by {.4), minimizing relative entropy su.,.<t to these con-
straints gives

o -piaios-a- £ 0t found]

r=0 1=1 k=1

where the 8, are to be determmed so that

m| é Z fCr/c?-'wQ\X)dx Rret {39)

i=] k=t
wef. (16)). Using {32), we find that g has the form {34), where 34(zy) is propor-

tonal to
ﬁ ﬁr L Z crlc"*}

r=0 i=1 k=1

exp [

Consequently g4 is given by (35) where @, is given by (36). Rewriting /39) in
terms of &y and passing from discrete to continucus frequencies gives

&)= 7 ' (
57 +Vﬂ,c,<f) 40)
where the 8, are ‘o be deter’nined so that
B Sainany - re (41)

The functional form [40) of “he solution with uncertain constraints is the same
as the form {27) for exact constraints; the difference is in the conditions that
determine the 3, (28] for exact constraints and {4.) for uncertain constraints.
This is a consequence of the analogous result for probability-density estimation,
noted in the previous section.

- TP e aoal z i mfiaa o~ =




In the case of the more general constrant form

S U vrus < 2

rs
with the error vecter v as in (38), 1t is convenient to carry the matrix threcugh
the derivation rather tharn transformung the constraint functions as .n | .8; Tae
result 1s that the final estimates again have -he fcrm ‘27, while tne conditions
\=.) on the 8, are repiaced by

e ,ﬂ.,’au'ﬂ.\,g =S fGinau e - 2
\ . 1=
where
F=up

In the uncertain-constrairt case, when we include welghts w,.f ) as:n .3]. tae
) " - - ) T\ o
functional form of the soiution becomes generalzed to ‘28); the conditions that

N =]
determine the g,. (4.} or {¢2), remain the same.

V. EXAMPLE

We shall use a numer:cal example from .2, :3] "We define a pair of spectra,
Sg and Ss. which we thunk of as a xnown “'background component and an
unknown ‘‘signal” component of a total spectrum. Both are symmetric and
defined in the frequency band frem —~0.5 to +0.5. though we plot only therr
positive-frequency parts. S3 is the sumn of white noise with total power 5 and a
peak at frequency 0.2:5 corresponding to a single siauscid with total power 2
Ss consists of a p=ak at frequency O .85 corresponding to a sinusoid of total
power 2. Figure : shows a discrete-frequency approximation to the sum S3+Ss.
using 100 equspaced frequencies. From the sum, six autocorrelation were com-
puted exactly Sp i*tself was used as the initial estimate Py of §3 —1.e., Py was
Figure : without the left-hand peak. For Ps we used a uniform {(flat) spectrum
with the same total power as Py Figure 2 shows unweighted multisignal RESA
final estimates &g and &s :2]. The sinal peak shows up primarily in &s. dut
some evidence of it is 1n g as well. Thus is reasonable since Pz, although
exactly correct, is treated as an irutial estimate subject to change by the data.
The signal peak can be suppressed from Qp and enhanced in &s by weighting the
background estimate Pz heavily _.3].

In Figure 3 we show fSnal estimates for uncertain constrainis with an error
bound of £=:. The Zuclidean distance {i e, a constraint of the jorm {37)) was
used. The estimates were obtained with Newton-Raphson algor:iams sirmuilar to
those developed by Johnsen ~.5] Both final estimates in Figure 3 are closer o
the corresponding :nitial estimates than 1s the case in Figure 2, since the sum of
the final estimates s no longer constrained to satis{y the autocorrelations. Tig-
ure < shows results for ¢=3; the final estimates are even cleser o the imtial esti-
mates. Because the exampie was constructed with exactly known zutccoerrela-
tions, it 1s not surprising that that the exactly constrained fina: 2stimates are
better than those 1n Figures 3 and &« whch illustrate the mor2 conservative
deviaticn from initial estimates that results {rom incorporating the uncertain
constraints.
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V' DISCUSSION

A pleasant property of the new estimatcr. beth in its generai orobabtiity-
density form and in the power-spectrum form, is that it ras the same unctionai
form as that for exact constraints. In the case of the power spect-um estima-
ior. this means that resulting tinal estimates are still ail-pole spectra whenever
the initial estimates are ail-pole and the weights are frequency-independent.

It appears that Ables was the first to suggest using an uncertain constraint
of the Euclidean form {37) in MESA _:6]. The use of this and a weighted
Euclidean constraint in MESA was studied by Newmen .7, 28] Thus correspends
to a diagonal matrix M :n {..) The generalization to general matrix constraints
has been studied by Schott and McClellan [.9), who offer advice on how to
chcose M appropriately. The results presented herein differ 1n two main
respects: treatment of the mulitisignal case and inclusion of initial estimates
Uncertain constraints have also been used in applying maximum entropy o
image processing 20,2:], although with a different entropy expression _22]
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