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RELATIVE-ENTROPY MINIMIZATION WITH UNCERTAIN CONSTRAINTS -
THEORY AND APPLICATION TO SPECTRUM ANALYSIS

1. INTRODtCTION

The relative-entropy principle (REP) is a general, infornat ion'-the ore tic
method for inference when information about an unknown probability density g,
consists of an initial estimate p and additional constrcizt information that res-
tricts 7, to a specifted convex set of probability densities. Typically the con-
straint information consists of linear-equality cons traints-e xpe cte d values

for known f;, z) and T, r =0', M. The principle states that one should
choose the firuzl estimate g that satisfies

H(q,p) = min H',p),

6 where H is the relaive entropy (cross entropy, discrimination information,
directed divergence, I-divergence, K-L number, etc.).

H(q p) =fq (z) log q ()--, (2)
p (z)

and where 7' varies over the set of densities that satisfy the constraints. When
these are linear-equality constraints (1), the final estimate has the form

q (z = (z)exp a'- ~f,'X)(3)

where the g, and a are Lagrangian multipliers determined by ()(with qt
replaced by g) and by the normalization constraint

0 ~~fq(x)dz= . 4

Properties of REP solutions and conditions for their existence are discussed in
::2.Expressed in terms of the expected values and the Lagrangian multi-

pliers, the relative entropy at the minimum is given by

H (q. p) = -a - Eg,7-. (5)

[ •. [r

The normalizat,,on multiplier a is given by

at = log fpkz x X- ~fr) dX. (6)

The quantity Z =e a is often referred to as the partition function. If the partition
* function can be evaluated analvticailv-i.e., if the integral in (6) can be

performed-thie relations
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I
can sometimes be solved to express the , as ftunctions of the expected values

f. i not, vartous computational methods can be used to find the vaiues for t.e
a and #, in (3) that satisfy '-) and '4) '3]. As a generai method of stat:st-cal
inference, the REP was .rst introduced by Kullback J], has been advocated -n
various forms by others 5 6, 7], and has been applied in a variety of fields 'for a
list of references, see 31).

Informally speaking, of the densities that satisfy the constraints, the REP
selects the one that is olosest to p in the sense measured by relative entropy
In more formal terms, the REP can be justified on the basis of the information-
theoretic properties of relative entropy .4], or on the basis of consistency
axioms for logical inerence '8]. In applications of the REP, the known expected
values f,. in () frequently correspond to physical measurements. Such meas-
urements usually are subject to error so that strict equality in "1) is unrealistic.

In the next section we discuss the REP with 'uncertain constraints,' a form
of the principle appropriate for applications with uncertainty Ln the expected
values. In the third section, relative-entropy minimization with uncertain con-
straints is applied to spectrum analysis; a relative-entropy spectrum estimate
from uncertain autocorrelations Ls derived. The fourth and fifth sections are
devoted to a numerical example and a concluding discussion, respectively.

II. RELATiVE-ENTROFrY MINIMIZATION WITH UNCERTAlN CONSTRAINTS

In this Section we extend the results on the REP with linear-equality con-
straints to incorporate uncertainty about the values of the ., in (I). We define
an error vector 1v with components

,= fbfrx)q'() - ()

A simple generalization would be to replace the set of constraints (i) with a
bound on the magnitude of v:

However, all components vr may not have equal uncertainty, and different com-
ponents may be correlated. We therefore replace (9) with the more general con-
stramnt

D ! (:0)

In matrix notation this is

where M is any positive-deFinite matrix.
We assume that we are given an initial estimate p of qg, measured values Jr

of the expectations () of functions fr for a finite set of indices r, and an error
estimate e. We will first derive the form of the final estimate q under the
assumption that the constraint has the form (9) and that the fr are 0; that is.

*we assume a constraint

-(f f (z )qt(z )dz _ (:)

Next we show how to reduce the more general constraint ,0) to this case We
conclude this section with a remark on the relation between the result with E > 0
and that for "exact constraints" ( = 0)

2



Dur prcbiem .s .o r.niruze .he relat've entrzoy H( p' subject to the con-
- , * -- ace of 7' and the normaiizaticn cnstrair'. -) .f :he

..est..mae Sati~Ses :he constra'nt (-e , ) hoids wlth p in place of g'
ten settirg g = p gives tne .mnramurn Otherwise equailty oi ds .n p2), and the
cr'ter'cn :or a mmunm -s that thIe varatior. ofIkO

:XI/[og d'= =- , z?. -

r

with respect to gz) is zero for some Lagrange multipliers X > 0, corresponding
to ..2), and a - 1 corresponding to ' We write Z - I instead of a for later
convenience.) Wit". \ > , the critercn intuitively implies that a small change 5q
in q that leaves fq(z)z 5xed and decreases H,(q.p) must increase the error

:e rm q

Equating the varation of (3) to zero gives

Log - - + -+- ,X Z fr- , )ff,.0Z') .'. ' .
P Z)

Therefore ? satisfies
q \X) p p(z) exp a-c - El ,()

where

2Xaf= x)q ,)d.(-:5)
Conversely, if 7 has the form (14), and if a. X. and the f,3 are chosen so that (15).
the constraint (2), and the normalization condition (4) hold, then q is a solution
to the minimization problem. But if (15) holds, the constraint with equality is
equivalent to

or to

where we have written , for the Euclidean norm ) Thus if we choose a
and 0, in (14) so that (4) and

= f ,(z)q(z) (6)

- hold, then the constraint (") will be satisfied, and we can ensure that (15) holds
by the choice of X.

Next assume a constraint of the general form ('0), (8), with a symmetric,
positive-deftnite matrix M. Then there is a matrix A. not in general unique, such
that A'A=M NowL-Mv = v .AV Av = J>AV) = A A . v.] 2

and so the constraint assumes the form

! 4-0

whe re

3I



In view of we may rewrite ,8) as
-~~V $=frx -fL ,AI)

and obtain

U, f7.- .f3 ,xz -f3.)q'xz)d

Deftrmng

gr() = _A ,,f(" - f.). .,

we obtain
2 1 C2 (

from (:7). Thus constraints of the general form ',10) can be transformed to 19),
which is of the same form as ':2).

We note that (:4) is :dentical to (3): the functional form of the solution with
uncertain constraints is the same as that for exact constraints. The difference
is that, for uncertain constraints, the conditions that determine the g, have the
general form .6). These conditions reduce to the exact-constraint case for

= 0. One way of viewing this identity of form for the solutions of the two prob-
lems s to note that every solution q of an uncertain-constraint problem is
simultaneously a solution of an exact-constraint problem with the same func-
tions fk and appropriately modified values for the fA;.

The relative entropy at the minimum may be computed by substituting (14)
into (12), which leads to

H(9 P) =-a #,ffq'\) . (20)

In the case of non-zero expected values, r 0, (:6) becomes
= -f .2,z)

(For simplicity we take M to be the identity ) Substituting ('2) into (20) yields
H q.p) E gj~f,f - !' (22)

which is the generalization of (5) in the case of uncertain constraints. The nor-
malization multiplier a has the same functional form as in the exact-constraint
case (6); the generalization of (7) therefore results from differentiating (6),
which yields

and then substituting '21), which yields

a= + C (23)

Note that (22) and (23) reduce respectively to (5) and (7) when E = 0

4
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III. APPLICATION TO SPECrR, V.:ALY$TS

Relative-Entropy Spectrum AnalVsts {RESA) Ls an extension of Burg s

Maximum-Entropy Spectral Anaiysis ,MESA) 9, :0] that was -ntroduced by Shore
"i. Lke MESA. it estimates a spectrum from values of the autocorrelaton

function. RESA, however also takes into account prior Trlformation in the formRA hoee als takes
of an initial estimate of the spectrum Multisignal RESA ,.RESA), ,ntroduced by
Shore and Johnson 12], simultaneously estimates the power spectra of several
signals when an initial estimate for each spectrum is available and new informa-
tion .s obtained in the form of values of the autocorrelation Function of the sum.
TIhe resulting finaL estimates are the solution of a constrained minimization
problem- they are consistent with the autocorrelation information and otherwise
as sinlar as possible to the respective initial estimates in a precisely defined
informaucn-theoretic sense. MIRESA has recently been extended by Johnson,
Shore, and Burg to ncorporate weighting factors associated with each initial
spectrum estimate to allow for the fact that initial estimates may not be ..Un-
formly reliable :13].

The autocorrelatlon values were treated in '", "2, :3] as exactly given.
Usually, however, these are estimated or measured values subject to error By
basing a derivation on the REP with uncertain constraints, we will show how to
incorporate an error bound to allow for uncertainty in autocorrelation values.

MRESA assumes the emstence of L independent signals with power spectra
Sj 'f ) and autocorrelations

=4 JC,(f). Si ,f (24)

where

C.(I) = cos 21rtf. (25)

Given initial estimates P,f) of the power spectrum of each signal S., and auto-
correlation measurements on the sum of the signals, MRESA provides final esti-
mates for the Sj In particular, if the measureiuients R7

t t satisfy

- fCf)QIf)f (26)

* for tags r=0,. M, the resulting final estimates are

where the g. are chosen so that the Q satisfy the autocorrelation constraints
(26) ""2]. Since some initial estimates may be more reliable than others, these
results have been extended recently to include a frequency-dependent weight

.,'(f) for each initial estimate P If) 13]. The larger the value of W,(f), the
more reliable the initial estimate Pt.(f) is considered to be. With the weights
included, the result (27) becomes

Q p(f f + , (28)

P1((f

5
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Before gerera.....g NRE to nclude uncertain -orstraints, we review -lere
some nocator and results from .21 and .: :n.1 .-or each of the L signais
we used a discrete-spectrum aporos)maton

s% = a t cs 2f, - . sin 2-,f
c=i

= ) with nonzero frequencies ft, not necessariy uirformly spaced.
7The a* and b, were random ,,ar-ables with independent, zero-mean, Gaussian
initial distrtbutions. We defined random variables

I ~ %= ( a -b 29 '

represent~ng the power of process s, at frequency f . and we described the col-
lection of signals in terms of their joint probability density 7"X), where
x = ,xl . ZL) and x, = z.v). We expressed the power spectrum S as
an expectation

Si(ft) kf.q ,x)dx. (30)

.n terms of initial estimates P, = P:.jf) of Sf, we wote initial est,-
males p of q in the form

p(X)

where

1k -P* (32)p ,z )= expp.

The assumed Gaussian form of the initial distribution of cz and 8k is equivalent
to this exponential form fcr pt(x,); the coefficients were chosen to make the
expectation of xk equal to Pt. Using (30), we wrote a discrete-frequency form
of '26) as linear constraints

%=I k=i

on expectation values of g;, where

We obtained a final estimate q of q by mmimizrng the relative entropy

Hg P) fgq(x) log g ) d

subject to the constraints ,(33) with q in place of g,) and the normalization con-
I• dition

Jq(x)dx=

.he result had the form

ql~x) =ft _Iq*(X). (34)
I •t=l k=I

where the g, were related to the ftna estimates
Q,. :i k'.f) = fxx " (X) d-X

of the power spectra of the s, by

S. = - exp Q 35)

6
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This ed to a discrete-frequency ,ersion of (27)

- - (36)
P* r =c

where the '% had to be chosen so that

V
" t=Z k=i

was satisf.ed.

To handle uncertain constraints, we ftrst replace (26) with a bound

S(37)

or the Euclidean norm of the error vector v given by

r 2fcf)Qff -\38)
i

We write a discrete-frequency form of (37) in terms of expec r -

r=O z=:1 k=1 l

This has the form (27); by (4), rmniimizing relative entropy s,..t to these con-
straints gives

q IX) p (X) excp, -

where the g, are to be determined so that

gC V 
/39)

\cf (:6)). Using 132), we ftnd that q has the form ,134), where g,.z) is prnpor-
tional to

Eexp, 4"

Consequently q* is given by (35) where Qt is given by (36). Rewriting '39) in
terms of Q* and passing from discrete to continuous frequencies gives

Q 4(-) = ) 4,
+ r(f)(

where the g, are to be determined so that

Prg ' C;_-( )q ( ) dI' at°  al)
',I

The functional form (40) of the solution with uncertain constraints is the same

as the form (27) for exact constraints; the difference is in the conditions that
determine the g,: '26) for exact constraints and (41) for uncertain constraints.
This is a consequence of the analogous result for probability-density estimation,
noted in the previous secton,

7
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In the case of the more ceneral ccnstraint form

with the error vector u as tn ,-18), it is converuent to carry the Matr:x ,hrcugn
the derivation rather thar. transforming the constrai ic .unctions as .n ' '6 The
result is that the ,lhnal est.mates again have the .crm '27, while ne ccnditions
'-.) on the . are reziaced by

- ~ r,.:fQ,.( f -:if

whe re

In the u!ncertain-constraiLt case, when we include weignts Wf) as :n "3], the
funct~onai form of the soiution becomes generaized to 8)- the conditions that
deter-ninet or '42), remain the same.

IV E2A-MPLE

We shall use a numerical example from -1., 13] We define a pair of spectra,
S3 and Ss, which we think of as a known 'background' component and an
unknown 'signal" component of a total spectrum. Both are symmetric and
defined in the frequency band from -0.5 to -0.5, though we plot only their
positive-f requency parts. S3 is the sum of wite noise with total power 5 and a
peak at frequency C.-25 corresponding to a sunigle sinusoid with total power 2
Ss consists of a pe:ak at frequency 0. 165 corresponding to a sinusoid of total
power 2. Figure ' shows a discrete-frequency approximation to the sum S3 +SS
using 100 equispaced frequencies. From the sum, six autocorrelation were com-
puted exactly S, iself was used as the initial estamate P7 of S3 - ie, P3 was
Figure ' without the left-hand peak. For PS we used a uniform (flat) spectrum
with the same total power as P3  Fiure 2 shows unweighted multisignal RESA
final estimates Q8 and Qs 12]. The i'nal peak shows up primarily in Qs, but
some evidence of it is in QB as well. Thi s is reasonable since P3 , although
exactly correct, is treated as an initial estimate subject to change by the data

ST"he signal peak can be suppressed from QB and enhanced in Qs by weighting the
background estimate P3 heavily 3].

In Figure 3 we show final estimates for uncertain constrainCs with an error
bound of E=' 'he Euclidean distance (tie, a constraint of the form (37)) was
used. The estimates were obtained with New-ton-Raphson algorithms similar to
those developed by Johnson _'5. Both final estimates in F gure .3 are closer to

*the corresponding 'nit.a estimates than is the case in Figure 2, sznce the sum of
the flnal estimates Ls no longer constrained to satisf- the autocorrelations. Fig-
ure 4 shows results for E3: the f.nal estrmates are even closer . the .nitiai est.-
mates. Because the example was constructed with exactly known --utccorreia-
tions, it is not surprising that that the exactly constrained fEnal :stmates are
better than those in Figures 3 and - which illustrate the more conservative
deviation from initial estimates that results from incorporating the uncertain
constraints.

8



V DISCUSSION

A pleasant property of the new estimator. beth in its generai probability-
density form and in the power-spectrum form, is that 't has the same :unct:onai
form as that for exact constraints. In the case of the power specL-um estima-
tor, this means that resulting final estimates are Still all-pole spectra whenever
the initial estimates are all-pole and the weights are frequency-indeper.dent.

It appears that Ables was the first to suggest using an uncertain constraint
of the Euclidean form ,37) in MESA "16] The use of this and a weighted
Euclidean constraint in MESA was studied by Newman "7, 18] This corresponds
to a diagonal matrix M in (":) The generalization to general matrix constraints

- . has been studied by Schott and McClellan [191, who offer advice on how to
choose M appropriately The results presented herein differ in two main
respects: treatment of the mutisignal case and inclusion of initial estimates
Uncertain constraints have also been used in applying maximum entropy to
image processing "20, 21. although with a different entropy expression 22J.
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