
AD-1i49 148 RESEARCH INTO SELF-TIMED VLSI CIRCUITS(U) PRINCETON i/i
UNIV NJ DEPT OF ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE R J LIPTON 22 OCT 84 N884-82-K-0549

UNCLASSIFIED F/G 9/5 NL

lllllllioollsmhhhhhhhhmhh
mhhhhhhhhhhhhI
Monosson hhh
"""-a

iii~ ~11128 1fl2-5
_L

N~flL2.~ *f 1j .6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

* . .

PRINCETON VLSI PROJECT: Semi-Annual Report

PERIOD ENDING: October 22, 1984

0 Richard J. Lipton -- Principal Investigator

EECS Department
PRINCETON UNIVERSITY

Title: Research into Self-Timed VLSI Circuits

contract NoOO1l4-82-K-O5
49

4P

ro FACULTY:

Bruce WV. Arden, Chairman
David P. Dobkin
Hector Garcia-Molina
Peter HoDeyrnan T

f.-V ~ Andrea LaPaugh T
Kenneth Steiglitz LEZCTE f
Kenneth Supowit DEC 3 11984 j

S ED

ftwsol I
-J~

Princeton VLSI Project

B. Arden, D. Dobkin, H. Garcia-Afolina, P. Honeyman
A. LaPaugh, R. Lipton, K. Steiglit:, K. Supowit

1. Introduction

There are three major components to our project. The first is in the area of procedural
design of VLSI circuits. The second is our census language and techniques, and the third is
in the area of the testing of VLSI circuits.

2. Procedural Approach to VLSI Design

2.1. ALLENDE [LaPaugh, Mata, Heng, Lin, Yeh]

ALLENDE is a new language for VLSI design based on our earlier work on ALl and
Clay. Several new ideas have been introduced to make it both easier to use and more
efficient. First, a layout is constructed in a structured way. Second, wires which were expli-
cit in our earlier languages are now implicit. This eliminates the need for tedious naming of
wires and resulting errors. Additionally, the structured nature of ALLENDE forces all
design rule violations to be caught by the system; hence, one need not use a standard design
rule checker.

Internally, ALLENDE generates not CIF but a higher level form which we call PIF.
PIF also is a useful tool for interfacing other design tools. We are currently using both
ALLENDE and PIF to build a variety of other tools. Lin has written a channel router based
on ?e Rivest-Fiduccia algorithm. Heng has written a pad router; he is now making it work
with the MOSIS pad frames. The Berkeley PLA generator has been interfaced to
ALLENDE; we are now building a Weinberger -tray generator.

2.2. Clay [North]
The Clay procedural layout systefu is the primary design tool for the Princeton

Reduced Instruction Set Machine (PRISM) project. The control path bitslice has been fabri-
cated and is in test. The data path chip will be submitted to MOSIS for fabrication shortly.
These projects have given us experience with Clay in creating large VLSI layouts. The Clay
system has helped to shape the ALLENDE design language, and has also given us insight
into desirable characteristics for CAD tools combining both procedural code and graphics
and efficient techniques for implementing procedural layout systems.

2.3. Applications [Steiglitz]
ALLENDE is being used in the design phase of a project, to study cellular automata.

The project is examining the capabilities of cellular automata as a model of general non-
linear phenomena. The implementation of cellular automata as VLSi chips will allow experi-
menta tion that is too time-consuming or expensive using general purpose computers.
Curreutly. a multiprocessor cellular automaton chip with programmable next-state function
is being designed. We have already fabricated and tested an 18 processor cellular automaton
with a fixed next-state function; it achieves about 1.4X 10s bit updates per second.

-. .' - .. . -. ""-i-' .' - . . . ' - .- • " "

-2-

3. Census

3.1. Top/Down Project [Lopresti]
This project is investigating the use of the census approach to parallel computations.

We currently have a four processor system running; recently four new processor boards
arrived. The new boards are based on the 32-bit national chip set and include floating point
and half a megabyte of memory. We are continuing our experiments on uses of the system,
focusing on a variety of local search and "simulated annealing" type tasks.

3.2. ESP [Park]
A prototype version of the ESP controller hardware for use in the MMM Project is now

undergoing testing. The individual ESP controllers are designed with TTL hardware and
are currently on a multibus wire wrap board. These ESP controllers are being used to inter-
connect two Intel 8086 microprocessors together via a twenty bit wide ESP bus. The com-
pleted system will have a one megabyte memory space distributed across up to eight proces-
sors. We plan next to use the system as a test bed for a variety c- issues such as synchroni-
zation, reliability, and global control.

4. Testing [LaPaugh, Steiglitz, Lucas]
We are continuing to exploit ways to use design modification to simplify testing. We

are currently empirically studying a variety of methods of using additional logic at the gate
level to enhance testability. The key questions are the tradeoffs between additional logic
and easy of test vector generation.

5. Recent Ph.D. Theses

M. D. Huang, "Localized Graph Algorithms with Low Page-Fault Complexity".
J. NI. Mata, "A Methodology for VLSI design and a Constraint-Based Layout Language".

A. S. Vergis. "Multiple Fault Detection in Digital Circuits".

6. Papers

AcCeSsion Tow

NTIS GRA&I
DTIC TAB
Unannounced
3" fication
By --- ---

Distribution/

Availability Codes
'Avail and/or

Dist Special

,-: " -..-.-. -.. .: : : . :. .:,:... . , ,.... ,. . . . -.. -

. . . ' " ,/ ' " - ":" ' ": " : " :'' . A , - . " " ",, " , '.' - " .. '" .' " " .'."t"o" "

ALLENDE: a procedural 1anguae for the
hierarchical specification of V layouts

Josd Monteiro da Mata

Department of Electrical Engineering and Computer Science
Princeton University

Princeton, New Jersey 08544

Technical Report #325
October 1984

• .°. • • .. -. .• -. °. - . - °-. o. -. . .. ° . . . ° • •°°-.... -. °

-1 .7 nj r.; W.' .7

S

ALLENDE: a procedural language for the
hierarchical specification of VlSI layouts

Jos. Monteiro da Mata

Department of Electrical Engineering and Computer Science

Princeton University

Princeton, New Jersey 08544

Abstract
ALLENDE is a simple and powerful layout language, associated with a

structured design methodology for VLSI. It has a combination of features that
set it apart from the existing VLSI layout tools. These features include the pro-
cedural language approach, the structured specification of the layout, the use of
constraints to represent the layout, and the use of an intermediate form in the
implementation of the system.

In ALLENDE the layout is described hierarchically as a composition of
cells; absolute sizes or positions are never specified. The layout description is

* translated into linear constraints, which express design rules and relative posi-
tion of the layout elements. By solving these constraints we obtain the absolute
layout, which is guaranteed to be free of design rule violations. Errors in the
layout description are immediately detected and easily located.

ALLENDE consists of five procedures to be called from a Pascal or C pro-
gram, allhwing the user to describe a VLSI layout. A lot of parameterization is

4" possible when specifying layout elements, besides the ability to make use of the
full power of Pascal or C. The ALLENDE layout system has been implemented for
the nMOS technology. In this system we can also use cells generated by other
layout tools. Our layout language can also be a target for a silicon compiler.

1. Introduction
The costs associated to the design of complex chips, the need to

make integrated circuit design accessible to a larger number of people,

and the need for more powerful tools to manage design changes, have

forced the reevaluation of VLSI design techniques. Methods to enhance

designer productivity have to be explored.

The layout phase is the most critical phase in the design of

integrated circuits, because it involves expensive tools and a large

amnount of human intervention, and also because of its effects on

This work was supported ir. part by NSF Graft MCS-8004490, DARPA Contract
N00014-82-K-0549, ONR Grant NC0014-3-K-0275, and CAPES-Brazil.

" " %., o°-. . , °, .o o -%- , o-=.' ---', - _.'., . _ ".'.,.: - " ---- , .-. --" --- . ."* ". "... . " ,"h "..",__ . - .~ • " '

production costs. A large part of the work in VLSI is dedicated to layout
tools and techniques. The majority of the layout tools are graphics edi-
tors, like STICKS[16 and CAESAR[12'. There also exist layout languages,
procedural or only descriptive, like LAVA[10], PLATES[14], HILL[5], and
ALI[6][15]. Layout languages have had limited success, mainly because of
being too verbose, limited in power and flexibility, and giving poor

C results. One of the goals of layout tools is to produce error-free layouts,
but still today there is a proliferation of layout verification programs, like
design rule checkers.

In this work we concentrate on the layout problem. We have two
4P major goals in mind:

- to have a powerful tool that allows the designer to obtain easily a
correct layout for his design;

- to have a component that can be extended and integrated with
1other components of a design system associated to a structured

design methodology.

Our approach for VLSI layout is basically to use a language to
hierarchically describe the circuit structure and layout topology, and to

use linear constraints to internally represent the layout.

Our layout systcm, ALLENDE[8'[9, has a combination of features

that set it apart from the existing layout tools. The procedural language
approach and the representation of the layout as constraints distinguish
ALLENDE from all graphics-based layout editors and from most layout
languages. The difference with other existing or proposed constraint-
based procedural layout languages consists in the way the layout is

described, the kind of constraints generated, and also the form of imple-
mentation of the system. The net result is the power, flexibility, and
efficiency achieved by ALLENDE.

2. The ALLENDE Layout System

2.1. Basic Ideas

Oui approach to tackle the layout problem is to have a language for

the description of the layout structure. From the textual representation
of the layout, constraints are generated, solved, and then the physical
layout is obtained. The characteristics of the language depend, of course,

on the class of objects manipulated and how they are manipulated.

In our system, the only object that we have are cells. A cell
corresponds to a rectangle with internal structure and parameter wires.

.. . .. , - , ... - - .il . , . . .--. -.- . - -- ..- "

-3-

Vdd vdd

/n - 1 gd

b"D

ab

Fig. I-dA ndcel

A composition of two cells is made by specifying their relative posi-
tion (left, right, oove., below), and the result is another cell. A single
cell can also be rotated or flipped.

SB
i" I.

I9K ~ I

17 A I

5 AI

I I

LI

Fig. 2 - Cornpcion of celis

When composing cells there is no need to worry about matching cell
size or wire spacing (except for cells of fixed size); the conditions for
matching are expressed in the linear constraints generated, and then the
size of a cell will depend on the context in which it is instantiated.

The first basic idea is to describe the layout hierarchically as a
composition of cells. At the bottom level of the hierarchy there will be
system cells (contact, transistor, etc.) or rigid cells (previously defined
layout pieces).

6

K.4

-4-

A

D

B

(A above (B left C)) left (rotated9O D)

Fig. 3 - Structured layout description

When using a system cell we specify the wires on each side of the
cell. When two cells are composed, the wires to be connected, and the
parameter wires for the resulting cell, are determined by context.

The second basic idea is to use an intermediate language to
represent the layout structure. This language should be different from
the user language, but at a higher level than a mask level language, like

4CIF (Caltech intermediate Form) [1]. The intent is to separate language
aspects from layout aspects, or user aspects from system aspects. For
layout or system aspects we mean constraint generation and layout pro-
duction. For language or user aspects we mean the high level language
used to describe the layout, and its implementation.

* This intermediate language brings flexibility to the layout system.
There may be more than one user language, even a graphics language.
The implementation of the intermediate language and of the user
languages are independent, and easier than the implementation without
an intermediate language. The intermediatc language deals with the lay-
out structure only, while the user language may have all the power of a
procedural language. The idea then is to extract all the layout informa-
tion from the user program, and then process it.

-5-

graphis

VLSIPIF I F
]ant4'.ages

Fig. 4 -The role of the intermediate language

Based on these ideas we built a layout system. There is a user
language, ALLENDE, that is no more than Pascal or C with a few pro-
cedures and functions added, and an intermediate language, PIF. The out-
put of the user program is the layout structure in intermediate form
(PIF), from which linear constraints are generated, solved, and the abso-
lute layout in CIF is produced.

Use .1 1 Is.a:J !: I absoliteuse . nlay a i -- L I,"ERPRETER on -a t SOLVER i Icodnts '

program I nt. !orm I I SLE coordinates

_____.... LA

i yox: I GENER.I4 OR

layoJt

In CF

Fig. 5 -The layout generation proce

This layout system works for the nMOS technology, and extensions
for other technologies are under study We use CIF to describe the final
layout, although other languages could be used; in the same way, Pascal
and C were chosen just for reasons of convenience. We use only right-
angle geometry. The coordinate system is a half-lambda grid.

,......,, . . ,......,,....~ ,. , - :

-6-

* 2.2. Describing Layouts Using Linear Constraints

As shown in fig. 5, in our layout system there are different
representations for the layout: the user representation (in ALLENDE), the
intermediate form (in PIF), the symbolic form with constraints, and the
mask-level representation (in CIF). In CIF the layout objects, mainly rec-
tangles, are described in terms of absolute coordinates; the coordinate
unit is one hundredth of a micron.

Our symbolic representation of the layout is in terms of the relative

coordinates of the layout elements; the relation between these coordi-
nates is expressed by a set of linear constraints. The variables in these

* constraints are the X and Y coordinates of the objects in the layout. The
constraints describe the interaction between the objects, and may come
from the geometric design rules, connectivity, and hierarchy in the lay-
out desciiption. By solving the constraints and replacing the values
obtained for the coordinates in the symbolic layout we obtain the abso-

6; lute layout.

The set of constraints is solved in such a way to minimize the total

area. Due to the large number of layout elements, the constraints ought.
to be as simple as possible, in order to reduce the complexity of the solv-
ing algorithm. We assume that the X and Y constraints are decoupled;
this means that no constraint involves both X and Y coordinates, and that
constraints involving X and Y coordinates are independent. We don't
allow constraints to be related by the operator or, for example. By decou-
pling the X and Y constraints the compaction problem is made equivalent
to solving two independent sets of constraints.

The whole layout is represented using constraints of the form:

Ai = Z
zi - xj d (d > O. iteger)

zi - zj = e (e > 0, integer)

We have an efficient algorithm to solve such constraints, described

in [7]. The algorithm is based on the topological sort.

Each constraint of the form zi - = e corresponds to a rigid cell.
Tne user may control the number of constraints by constructing the lay-
out in several steps: making rigid cells and using them at the next level of
the cell hierarchy. If there are no constraints of the form x - = e in
the set of constraints generated, there is always a solution to the equa-
tions, since our way of generating constraints doesn't create "cycles".
The only situation when there is no solution to the set of constraints
occurs when a rigid cell doesn't fit the context where it is instantiated.

For example, some condition may force a larger separation between two
parameter wires of a rigid cell.

S

- 7-

2.3. The Intermediate Language PIF

The idea behind PIF is to represent the layout structure in a com-
pact way, as in fig. 3. The objects in the layout are cells, and the opera-
tors specify position or oricntation. Our layout representation is exactly
like an arithmetic expression; operands are cells, binary operators
specify relative position (left, right, above, below), and unary operators
specify orientation (rotation or flipping). Operator precedence is as usual,
and parentheses can be used to change precedence.

A layout in PiE is a structured combination of cells, while a layout
in CIF is a combination of rectangles and other elements in any order.

* The result of the interpretation of a PIF program is a set. of constraints,
the layout in symbolic form (no absolute coordinates assigned), and the
circuit (at the switch level) for simulation.

An example of a PIT program is given in fig. 6. The code "CL. . d2m3
]" represents a cell that is the contact of two wires: diffusion 2 lambda
wide coming from the right and metal 3 lambda wide coming from the
bottom (the two "."s indicate that no wire comes from the left or top). "A"
moans above, "+" means crossing, the parentheses delimit a cell, and
"Sexample" specifies the name example for the cell.

Sexanp I e

C. . d2 m3]
A
+ C p2 n3 p2 m3 I /

Rg. 6 -A P[program

In PIF, layout construction is like expression evaluation. If we use a
grammar to describe this layout language, the construction of the layout
can be donie when parsing, in a bottom-up fashion. In fact, this is similar
to the way the system for typesetting mathematics EQN [4] was designed
and implemented. In EQN, equations are pictured as a set of "boxes",
pieced together in various ways.

Fig. 0 shows the grammar that describes the PIF language, exactly
in the same format subn."tted to the compiler generator YACC [3,. As a
PIF program is supposed to be generated by a program, and not by the
user, we tried to make the language compact and easy to process, not
worrying about readabilit), although one can read a PIF program.

chip cellI
{chipinterface(Sl); writefileso;

cell orientedcel
I cell POSITION orientedcell

{SS - conpose(S1.S2.$3);

orientedcell singiecell
I orientation sirglecell

{resetorientation(); SS S 2:

singlcellsyscell
sigecl 1 rigidcell

I composedcell
I label covnposedcell

{endcell($l); Ss S 2;)

composedcell ' cell)

{ S$ = S2;)
I ''cell ')' wirenames

{putlabels(S2,S4): S$ = S2;)

orientation ORIENTATION
(SS = chargeorlentation(Sl);)

label LABEL
(newcell($l); S$ = SI;)

wirenames WIRENAMES

(5S namelist($l);

rigldcell CELLNAME
(SS = rigidcell(S1);

syscell ceilcode 'I wires wires wires wires 'I'
(S$ = syscell(S1,S3.S4.S5,S6,0.0);

I cellcode INTEGER INTEGER 'I' wirres wires wires wires '1'
{SS = syscell(Sl$.S,S,7.S8,$2,$3);

*ce 1l1code YCL
(SS = cellccde $1I

wires wire
I'1' wirelist '1'

(S$ - $2;

wi.e1 1st wire
I wirel1st wire

P ST wirelist(S1,52);

%.-re LAYER INTEGER
($S = startwire(S1,S2).

(SS - startvvire(NOLAYER,O);

Fig. 7 - PIF grammar

-9 -

The lexical elements are the following:

INTEGER: an unsigned integer;

L'XYER: m, p, d (for metal, polysillicon, and diffusion);

SYSCELL: C, X, T, 1, P, +, W, J, E, N
(for contact, independent contact, transistor, implanted
transistor, pullup, crossing, line, jog, empty, and nullcell,
respectively);

POSITION: L, R, A, B (for left, right, above, and below);

ORIENTATION: rO, r90, r180, r270, f0, f90, f45, f 135
* (for rotation and flipping);

CELLNAME: $cellname

RIGIDNAME: &rigidname

WIRENAMES: uirenamesj

COMMENT: /comment/

The smallest object that we handle is a system cell, which
corresponds to a structure built according to the design rules and that
forms a contact, a transistor, and so on. The cells contact, transistor, and

* pullup are the usual ones. An implanted transistor is a pullup with the
gate not connected directly to the source. An independent contact
represents the connection of wires of the same layer independently of
other layers; it is basically used to represent independent overlapping
wires in a cell. The crossing of wires in the layout has to be specified, and
the cell crossing is used for this purpose. A jog represents a bend in a
wire, that can move in two directions. The cell empty represents a cell
with nothing inside, and it is useful for top-down design. The cell nuilcell
has no effect; it is like an identity element for the placement operation,
and it is useful to simplify some programs that describe a layout. line
means a single wire or a set of parallel wires; it is used in situations like
the one shown in fig. 8.

I I I

* II ,

A -- Aleft (B oveLINE)__ ____,

, I 1-- - - - - - -
- s fht I

Fig. 8 - Ue af the "line" system cell

S

-10-

A rigid cell is a cell of fixed size; its code is in CIF, with a header giv-
ing information like size and parameter wires. rigidrame is the name of
a file containing the rigid cell. cellrame is just the name of a cell, used
mostly for debugging purposes.

Wire names are related to a cell, and they refer to the parameter
wires of the cell. One of the uses of wire names is to give information for
simulation.

2.4. The ALLENDE Language

* ALLENDE (A Layout Language Effective for nMOS Design) is a set of
procedures and functions to be called from a Pascal or C program, allow-
ing the user to describe a VLSI layout. Basically, the user describes cells
and their relative placement. Cell hierarchy comes naturally by using
procedvuxes to describe cells.

The user can make use of the full power of Pascal or C. The basic
procedures and functions to describe the layout allow a great deal of
parameterization, thus allowing the user to obtain completely different
layouts just by changing a parameter in the program.

The output of the user program is the layout in intermediate form
(PIF), from which linear constraints are generated, solved, and the abso-
lute layout in CIF is produced. The layout obtained is guaranteed to be
free of design rule violations.

The basic idea of the ALLENDE language is the same as in the PIF
intermediate form: the layout is described hierarchically as a composi-
tion of cells. The difference now is that the user has available all the
power of a procedural language.

The following procedures allow the user to describe a layout:

sysc ell(kind, wire 1, wire 2, uwre 3, wire 4,ratio)
extcell(filename)
place (operator)
begincell(celname)
e ndcell(wirenames)

syscell specifies a system cell. extcel! specifies an external cell.
begin.cell and endcell are used to delimit a composite cell. place specifies
the operator to be applied for a cell composition.

Since what these procedures do is to generate some intermediate
code to be interpreted later on, Pascal (or C) commands can be inter-
mixed with calls to these procedures. The user can also define new pro-
cedures in terms of these basic procedures.

S

• .- - .". .

-11-

* Fig. 9 shows the ALLENDE program, in C, that generates the PIF
program of fig. 6. The generation of PIF code is straightforward: each call
to one of the five procedures listed previously causes the generation of
the corresponding code in PIF. For example, endcell(' ")generates only
the character ")".

4P4

#include "/va/allende/usr/def.h"

maln(

begincell C "example");
syscell (CONTACT, nowlre, nowire. dlff(2), metal(3), 0);

pl3ce (ABOVE);
syscell (CROSSING, poly(2), metal(3), poly(2), metal(3), 0);

endcel (..
I

* Fig. 9 -An ALLENDE program

The procedure syscell allows the specification of a system cell.
There are 10 kinds of system cells: CONTACT, ICONTACT, TRANSISTOR,
ITR4NSISTOR, PULLUP, CROSSING, LINE, JOG, EMPTY, and NULLCELL.

6These correspond to the system cells described in the previous section.

The only place where the user has to specify wires is for system
cells, where he gives the wires at left, top, right, and bottom of the cell.
The functions metal(uidth), poly(width), diff(uidth), nouire, and the
more general function uire (layer,width), allow the specification of a wire

0 (metal(urdth) is just a shorthand for uwre (METAL ,w idth), for instance).
Here is one place where a lot of parameterization can be done. layer and
width can be parameterized; also, a wire can be a variable. It is also pos-
sible to have more than one wire at one side of the cell, allowing for over-
lapping wires or more complex cells.

0 The operators to be applied to the cells can be: LEFT, RIGHT,

ABOVE, BELOW, ROTATEDO, ROTATED90, ROTATED180, ROTATED2"0,
FLIPPEDO, FLIPPED90, FLIPPED45, FLIPPED 135.

The procedure extcell specifies a filename containing an external
cell. The external cell can be in intermediate form, in which case we call
it flexible, or it can be in CIF, in which case we call it rigid. One special

kind of external cells are pads, which are rigid cells. There is a pad

library.

-12-

* The procedures begincell and entceU are used to delimit a compo-
site cell. The parameter of beginceU is a character string containing the
name of the cell; the name may be blanks only, in case we don't want to
name the cell. The cell name is used to trace errors. If the cell is named
it will correspond to a symbol in the CIF code, thus preserving the cell
hierarchy, useful for programs that display CIF.

The parameter of endceU is a string containing the names of the
parameter wires (usually only blanks). These names will appear in the CIF
code, and they are useful for simulation.

Fig. 10 describes a nand cell, and gives some examples of parame-
* terization. Fig. 11 describes a binary tree that uses the narnd flexible cell

generated previously.

(P

S

('I

Cg

-13 -

* program nand(output);

*Include "/va/a1 lende/usr/const.h"
type
#include "/va/allende/usr/type.h"

var power,ground,pZdZ: wiretype;

CP *include "/va/allende/usr/proc.h'

procedure contact(wl.w2.w3,w4: wiretype);
begin syscell(CONTACT~wI~w2,w3,w4,8); end;

procedure crossing(wl.w2: wiretype);
begin syscell(CROSSING.wl.wZ.wl,w2Z); end;

procedure above;
begin place(ABOVE); end;

procedure nand;
begin

begicel1('nand');
beglncell1('colunni

syscell1(LINE~power,nowire.power.nowire.B); above;
contact(rowire,nowire.p2.p2); above:
cross ing(ground p2);

endcell($ ');
re p iace(LEFT);

begince!W(colunVn2;
contact(power~nowire,power.d2); above;
syscell1(PULLUP.nowire,d2,p2,d2.4); above.
syscell1(TRANSISTOR ,nowlre.d2.p2,d2.9); above;
syscell1(TRANSISTOR,p2.dZ.nowire~d2.9); above;
conta ct Iground d2 ground now ire)

endcell(' ');
plaLe(LEFT);
beglincelI('co Iur3 ;

c-assing(power.r.2): above.
contact(p2.p2.nowlre,now~re); above;

~onttI~.r~cie~~ow~e~p) ;above;

cr os s 1a(-gr und.p2).

e'v.Jce11V *)
end;

power:= wi relML IAL *5):
g'ound:- wire(MEIAL .5);
p2:- wire(POLY,2);
d2:- wire(DIFF .2);
nand;

end.

FIg. 10 - Nand coil

program binarytreeoutput):

conlst
*Include "/va/a1 1ende/usr/const.h"
type
*include "/va/al lende/usr/type.h-
#include '/va/al lende/usr/proc.h"

procedure root;

be9 in

end;

procedure btree(n: integer);
begin

begince1 1 C'btree');
* If n ,I then root

else begin
root;
place(ABOVE);
begincell(I '4;

btree(n-1);
place(LEFT);
btree(n-1);

endcell(' ;
16 end (if);

endcell(' 1);
end;

begIin
btree(4);

end.

Fig. I -I MMrytree

-15-

* Parameterization can be done extensively, and it simplifies the
modification of layouts. For example, a wire can be fully parameterized,
as "power" in fig. 10. Parameters in the program not related to the
ALLENDE basic procedures can also be used to produce general cells; one
example is the depth of the tree in fig. 11.

* Errors may occur during compilation of the user program, execu-
tion, interpretation of the PIF program, and solving the constraints.
Compilation and execution errors are the usual ones, detected by the
Pascal or C compiler or during execution. In case of error during
interpretation of the intermediate form describing the layout, the PIF

* interpreter identifies the cell where the error occurred. The only possible
error during the process of solving the constraints is a rigid cell not
fitting the contcxt where it is instantiated; in this case, the solver points
to that cell which caused the error.

6.

2.5 The Complete ALLENDE System

The ALLENDE layout system, as it stands now, is comprised of four
* programs:

- ALLENDE
It takes a program and generates the layout (rigid cell), the circuit
at the switch level, or a flexible cell to be used later on.

- SIMULATE
This program is a switch-level simulator, based on [13].

- CIF2CELL
The idea of CiF2CELL is to make possible the use of CIF code gen-
erated by other tools. It basically finds the cell interface. The CIF
code is then used as a rigid cell.

- CIF2CIRCUIT
When rigid cells are used, it is not possib]e to extract the circuit
from the "high-level" description of the layout. In this case, the cir-
cuit is extracted from the layout in CIF. Our program interfaces to
a circuit extractor, and currently we are using the Berkeley circuit
extractor mextra [1 .

..

-16-

0

a -------- -- - - -
compiled flexible celI

cell CIMCELL CIF code

0L

Pages:/C rigid col1
program ALLENDE D

..m (CIF)

F-1 - 1 I
Ircu~tCIFECIRCLPT 1
---- i

- - - - -_- -

ln.zat otu-S

- --- -- -- --

Fig . 12 -The AILENDE system

The programs composing the ALLENDE system were written in C
and Pascal. The system runs under the Berkeley UNIX operating system,
and is currently used on a VAX 750.

3. Advantages of our approach

By making layout design similar to software design we can apply
our knowledge about programming to this new activity. The main issues
associated to the use of a procedural language for layout description are

* the following.

hierarchical design

Hierarchy already exists in programming languages, in the form of
procedures, and the programmer is used to it. Use of this hierarchy
for layout design enforces a good design methodology.

. ..b

- 17-

- expressive power

All the power of a procedural language is available to the designer.
Parameters, conditional statements, iterative statements, etc., can
be used. Parts of the layout, such as a PLA or a routing cell, in-
stead of being described by the designer can be generated by a
program.

parameterization

Having a layout design which produces different layouts for
different values of a set of parameters is extremely useful. Exam-
ples are the parameterization of the layer or width of a wire,
transistor ratios, or size of shift registers This parameterization
can involve local or global changes in the layout, and it simplifies
the modification of layouts. It also allows general cells, whose
characteristics depend on the values of some parameters (like a
routing cell).

documentation

If the layout is described using a programming language we have
some documentation on the design. This helps other people, and

0 even the own designer, to understand the design.

open ended tool

Graphics editors tend to be closed tools in the sense that it is hard
to automate the layout process beyond what the original design of

o the system allowed. Procedural languages are much better in this
respect. The input to a compiler is text that can be generated by
humans or by a program, while a graphics editor has an interactive
nature, being designed basically to accept commands generated by
humans.

no expensive equipment
With a programming language for layout description we can avoid
the need for sophisticated computing resources. A standard al-
phanumerical terminal in combination with a small plotter or CRT
display shared by several designers can be used effectively for lay-
out design.

Much is gained by not assigning absolute positions to the layout ele-
ments directly, but by representing the relations among elements by a
set of constraints. Implicit layout rules and cell flexibility are the main
benefits of representing the layout as constraints. The design rules are
implicit in the constraint generation process. This design rule free

-, **..-.- - * .- -. . • -- .. - . . .-: . ' ,:.

- 18 -

@ environment relieves the designer of details that can cloud more global
and important issues. What is more important, the layout obtained can be
guaranteed to be free of design rule violations, thus eliminating the need
for design rule checking.

If a piece of a layout is specified in absolute positions, serious prob-
* lems are likely to arise when different pieces are put together. In

constraint-based layout systems the absolute sizes or positions are deter-
mined by the system after solving the set of constraints. This makes
cells flexible, with the possibility of being stretched in order to combine
correctly with other cells.

4. Cnticlusions

The ALLENDE layout system has been used by a number of people in
the design of chips whioh were successfully fabricated, and in experi-
ments with layout tools [21. Some layout tools, like a PLA generator and a
pad router, have been w: itter ir. AULENDE with little effort.

One important aspect of a system, seen only when you use it, is
detection and location of errors. In ALLENDE, the layouts produced are
correct by definition, in terms of connectivity and design rules. In case of
errorO in the user specification of the layout, the system points the cells
and wires involved in the error.

As far as compaction is concerned, the layouts produced by the
system are relatively dense. it is hard to make a comparison of layout
density for layouts produced by ALLENDE and those produced by hand,

*because that depends on the regularity of the layout and on the expertise
of tihle designer. Based or. our experiments, we find that for regular struc-
tures we obtain something close to the same density, while for irregular
structures we spend about 20 percent more area than the corresponding
hand-packed layout.

*, The structured representation of the layout and the use of an inter-
mediate language (PIF) have led to a very efficient system, in terms of
space and execution time, and a straightforward system implementation.

The ALLENDE layout system is based in the nMOS technology; this
system was an experiment and the nMOS technology is well understood.

*There are plans to extend the language to the CMOS technology, and also
to allow more layers, like a second metal layer. Besides that, we intend to
investigate its applicability in thc design of printed circuit boards.

A graphics editor cur. bc easily incorporated to the ALLENDE sys-
tem. The main characteris.tics of this editor, compared to other layout

* editors, would be:

- 19-

S - Lhe objects dealt with by the designer are cells, and not shapes;

-- the objects are composed in a structured way;

-- the designer only specifies relative positions; the absolute positions
are determined by the system, taking in account the design rules,

* - the obtained layout is free of design rule violations; no checking is
necessary;

connectivity is also guaranteed, and the circuit can be directly ob-
tained

* In an ALLENDE program the circuit structure and the layout struc-
ture overlap, that is, the user describes at the same time both the circuit
structure and fhe layout structure. The circuit structure gees down to
the level of transistors and contacts. We could have a language allowing
the specification of the circuit structure at a higher level (at the gate
level or at the functional level, for example). From this specification the
laycut in PIF would be generated. Generalizing, PIF (or ALLENDE) could
be the target language for a VLSI design tool, even a silicon compiler.

Besides being a powerful tool, ALLENDE is associated with a struc-
tured methodology for VLSi design. Having a tool that enforces hierarchy

* and the use of regular structures is going to improve the way we design
integrated circuits. That is one step in the direction of managing the VLSI
design complexity.

5. References
6

[1] R. W. Hon and C. H. Sequin
"A Guide to LSI Implementation - Second Edition"
Xerox PARC, Palo Alto, CA, Jan. 1980.

[21 K. Iwano and K. Steiglitz
"Some Experiments in VLSI Leaf-cell Optimization"
1984 IEEE Workshop on 'VLSI Signal Processing, Los Angeles, CA,
Nov. 198, (to appear).

[3- S. C. Johnson

"YACC: Yet Another Compiler-Compiler"
Computing Science Technical Report No. 32, Bell Laboratories, Mur-
ray Hill, NJ, 1975.

[41 B. Kernighan and L. Cherry
"A System for Typesetting Mathematics"

o Communications of the ACM, Vol. 18, No. 3, March 1975.

- 20-

[5] T. Lengauer and K. Mehlhorn
"The HILL System: A Design Environment for the Hierarchical
Specification, Compaction, and Simulation of Integrated Circuit
Layouts"
1984 Conference on Advanced Research in VLSI, MIT, Jan. 1984.

* [61 R. J. Lipton, J. Valdes, G. Vijayan, S. C. North, and R. Sedgewick
"VLSI Layout as Programming"
ACM Transactions on Programming Languages and Systems, Vol. 5,
No. 3. July 1983.

[77 J. M. Mata
• "Solving Systems of Linear Equalities and Inequalities Efficiently"

1lth Southeastern Conference on Combinatorics, Graph Theory and
Computing, Baton Rouge, LA, March 1984.

[8 j. V. Mata
"Tue ALLENDE Layout System User's Manual"
VLSI Memo #9, Princeton University, June 1984.

r9, J. M. Mata

"A Methodology for VLSI Design and a Constraint-Based Layout
Laiiguage"
Ph.D. Thesis, Princeton University, Oct. 1984.

[0 R. Mathews, J. Newkirk, and P. Eichenberger
"A Target Language for Silicon Compilers"
CUMPCON 82, San Francisco, CA, Feb 1982.

[I1 R. N. Mayo, J. K. Ousterhout, and W. S. Scott
* "1983 VLSI Tools: Selected Works by the Original Artists"

Report UCB/CSD 83/115, University of California at Berkeley,
March 1983.

L 2-2 J. Ousterhout
"CAESAR: An Interactive Editor for VLSI Layouts"

* VL-I Design, Fourth Quarter 1981.
13.; V. Rarnachandran

"An improved Switch-Level Simulator for MOS Circuits"
20th Design Automation Conference, Miami Beach, FL, June 1983.

[141 S. Sastry and S. Klein
"PL\TES: A Metric Free VLSI Layout Language"
1982 Conference on Advanced Research in VLSI, MIT, Jan. 1982.

[15 J. ValdEs and R. L. Kaliii
'AL2 Documentation and Implementation Guide: Language Over-

S view"
VLSI Memo #8, Princeton University, Feb. 1983.

S- .-"-".-".- ._.,- -: - .. .- . . -::

-21 -

• [16! J. D. Williams
STICKS - A Graphical Compiler for High Level LSI Design"
AFIPS Conference Proceedings: 1978 National Computer Confer-
ence, Anaheim, CA, June 1978.

6

Sm

1984 IEEE Workshop on VLSI Signal Processing
University of Southern California

Nov. 12-14, 1984

Some Experiments in VLSI leaf-cell Optimizationt

Kazuo Iwano

Kenneth Steigtitz

Department of Electrical Engineering and Computer Science
Princeton University
Princeton, N. J. 08544

Abstract
*1 This paper describes a method for local optimization of VLSI leaf cells, using

the parameterized procedural layout language ALLENDE [5]. Tradeoffs among
delay time, power consumption, and area are illustrated. Three different imple-
mentations of the 1-bit full adder ara compared: a random logic circuit, a data
selector, and a PLA. The fastest random logic 1-bit full adder has a time-power
product about 1/3 that of the fastest data selector', and about 1/4 that of the
fastest PLA. The 4-bit parallel adder is used to illustrate the effect of loading
when leaf cells are combined.

1. Introduction

In the design of a custom VLSI chips it often happens that there is one cell
* that is used many times, usually in an array or a recursive structure. The fact

that a cell is used many times means that there is a large potential payoff in its
optimization, and that the problem can be made small enough to be manage-
able. Arrays of cells are especially common in digital signal processing applica-
tions, where regular structures, like systolic arrays, lead to designs that are
easy to lay out efficiently, and have high throughput. As examples, bit-parallel
and bit-serial multipliers can be constructed from one- and two-dimensional
arrays of one-bit full adders, as can a wide variety of pipelined FIR and fIR filters
(see [I], for example). As another example, a processor for updating one-
dimensional cellular automata has been designed at Princeton which consists of
a one-dimensional array of 5-input/1-cutput PLA's [10]. In such cases the prob-

r. lem of making most efficient use of a given piece of silicon breaks down into two
distinct problems: 1) choice of the global packing strategy (the method of laying
out and interconnect ig leaf cells, and connecting them to power and clocks),
and 2) the design of the iterated structure itself (which we call the leaf cell). In
this paper we study the second problem: the design of efficient leaf cells. The
example used throughout is the most common in digital signal processing, the
1-bit full adder.

There are three important measures of how good a leaf cell is: its time
delay T; its peak or average power dissipation Prn or P,,; and its area A.

t .h:s work was suported by Natior.i Science Foundation Grants ECS-8307955, U.S. Army
'N Arny Research O.'ce, Djrham, NC, under Grant DAAG29-82-K-O095, DARPA Comrac- N00014-

82-K-0549, and ONR Grant NOOO14.83-K-0275.

M.

Ideally, the designer should be able to trade off these measures, one against the
other. For example, in one application the clock may be fixed at a known value
To, and it would therefore be senseless to make the the cell faster. On the other
hand. peak power may be a real constraint because of heat dissipation limita-
tions, and at the same time it may be important to keep the area small so as to

* fit as many cells on one chip as possible. We might therefore try to minimize
some measure of the peak power and area (the product, for example), while
enforcing the constraint T ! T0. In other applications speed may be critical, and
it may be important to minimize T while observing constraints on Pp and A, and
so on. In general, we would like to have enough information about the tradeoffs
among the measures T, P and A to make intelligent design decisions. As we will
see, the P-T tradeoff is often of most interest, since the area is often a less sen-
sitive function of design parameters (at least for fixed topology).

2. Formulation

The basic approach we take will be to search tor local improvements on ran-
* dor initial designs. The search strategy will be to consider all single or double

changes in element size along the critical path. When only single changes are
tried, we call the prc cedure "l-change", when double changes are tried, "2-
change". The idea is that the critical path indicates which parameters are most
important to performance at any given point in the analysis.

C-, We will limit the optimization to choice of pulldown widths. The method can
be extended to choice of layers, orientation, and topologies. We will, however,
study three radically different topologies for the full adder: the PLA, data-
selector, and random logic.

The main analysis tools used in these experiments are the timing simulator
* CRYSTAL, and the power-estimation program POWEST, together with the rest of

the Berkeley tool package [2].

Another essential component of the work is a procedural, constraint-based
layout language for specifying VLSI layouts; in this case, we used the new
language ALLENDE being developed at Princeton, a successor to AL12 and CLAY
[3,4,5]. This allows us to specify circuit parameters and have a cifplot generated
automatically.

3. The Critical-Path Optimization
Figure 1 shows how the optimization is performed in our experiments. In

Figure 1 faparm is an input parameter vector to ANALYSIS which has diffusion
widths of nodes as desc-ibed in section 4. The initial faparm. is generated at ran-
dom by RANDOM according to its input file pattern. ANALYSS takes faparm as
its input and generates an appropriate layout and its resulting T, P, and A, as
well as the nodes on the critical path (hereafter called the critical path nodes
). Since every node on the critical path has an associated parameter in faparm,
CASEGEN can generate faparms as subcases by using the one-(two-)change
method. Here the one-(two-)change method changes one(two) parameter(s)
associated with the critical path nodes by one step. (From here on the 1-
change method is denoted by 1-opt or Random 1-opt, and the 2-change method
by 2-opt or Random 2-opt.)

The optimization strategy is shown in the flowchart of figure 2. When the
first improvement occurs, this case is picked up for the next iteration. If no
improvement occurs but there exists a case which has the same cost and has

-2-

not yet been analyzed, this case is adopted next. Otherwise a new random
faparm is generated for the next iteration, to search for other locally optimal
points. We used two cost criteria for optimization: T, and Pma"T (hereafter
denoted by PT). Figure 3 shows an outline of the main procedures used in the
ANALYSIS loop. A short description of each follows below:

1) ALLENDE This procedural constraint-based VLSI layout language pro-
duces an integrated circuit layout in Caltech International
Form (CIF) corresponding to the specified parameters [5].

2) MEXTRA MEXTRA reads CIF and extracts the nodes to create a circuit
description for further analyses [2].

3) CRYSTAL CRYSTAL is used for finding the worst-case delay time of the

circuit [2].

4) POWEST P0WEST is used for finding the average and maximum power
consumption of the circuit.

5) CRITICAL CRITICAL reports the critical path nodes by using the output

of CRYSTAL.

6) LIST This corrmand stores the vector of results (T,P.A) in the HIS-
TORY file for further optimization.

In figure 3 the squares surrounded by dotted lines are files used for inputs
or outputs of the above procedures.

1) faparm The faparm has parameters for layout genera-
tion; for example, the diffusion width of each
node, the permutation of product terms in a
PLA, etc.

2) layout generating program There are several ALLENDE programs imple-

menting desired circuit topologies such as the
PLA, random logic, etc. Each program requires
parameters in its corresponding faparm.

3) the critical path nodes The critical path nodes are extracted from the

output of CRYSTAL. Each node can be associ-
ated with parameters in faparm. This is done by
looking up a table for each topology, which
associates each node with its corresponding
parameter.

4. Full-Adder Circuit Implementations

As mentioned in the Introduction, we adopted the 1-bit full-adder circuit as
an example for experimentation, because it is relatively simple, but is a basic
arithmetic logic circuit. The 1-bit full-adder circuit can be implemented in
many ways. We chose three kinds of circuits: the PLA. Data Selector, and Ran-
dom. logic. Each layout has several parameters. We will use the vector represen-
tation of these parameters; that is d = (dl,d 2 , ,) means that the
diffusion width of node i L dA. We also use the vector k = (k,k 2. ... k.) to
mean that the pullup to pulldown ratio of the inverter, NOR, or NAND circuit in
which node i exists is k. The vector k is fixed for each circuit.

1) PLA

(3

i .. - - . " . :-- -,- - . -.. -... -- .

Figure 4 shows the full-adder circuit diagram implemented by a programmable
logic array (PLA) [7]. This layout has the following 17 parameters and 2 permu-
tations.

d =(dd ... d aad 7,.dor,,dwz,d m d .,do0,d. 1 ,ir1ir2)
S k = (4,4,4,44,4,4,4,4,4,4,4,4,4,4.4)

- 7 pulldown diffusion widths of the AND plane.

- 2 pulldown diffusion widths of the OR plane.

- 6 pulldown diffusion widths for inputs.

* - 2 pulldown diffusion widths for outputs.

- 1 permutation of product terms in the AND plane.

- 1 permutation of outputs.

In the optimization process, the two permutations are fxed for the sake of sim-
plicity. However those two permutations are chosen in advance in order to give

* the best result before the optimization by doing experiments based on various
random permutations as inputs.

2) Berkeley PLA

The PLA generated by using mkpla of the Berkeley VLSI tools [2,8] is used for
the purpose of cost comparison with the PLA implemented in 1). This PLA is not
optimized, but uses the following fixed parameter vector.

d = (4,4,4,4,4,4,4,4,4,8,8,8,8,8,8,8)

k = (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4)

3) Data Selector

Figure 5 shows the full-adder circuit diagram of a Data Selector implementation
[9]. The following truth table is used.

c, B S Ca

0 0 A 4 (or B)
0 1 A
1 0 A A

1 1 A q (or B)

This circuit selects inputs (A, A, or Q) instead of calculating S and C.. Here c
C, is the input carry signal, C is the output carry signal, and S is the output sum

signal. A and B denote the two other inputs. This layout has the following 8
parameters.

d = (dA.dB,.dqcdjdd.dc,.ds)

k = (4,4.44,8,4,8,8)

- 3 pulldown diffusion widths for input inverters.

- 3 pulldown diffusion widths for internal inverters.

- 2 pulldown diffusion widths for output inverters.

[(, 4) Random Logic

Figure 6 shows the circuit diagram of the Random Logic Implementation [6].

-4-

This layout has the following 4 parameters.

d = (d1,d 2 .dc.,S)

k = (8, 12,4,4)

- 2 pulldown diffusion widths for internal inverters.

- 2 pulldown diffusion widths for output inverters.

All the circuits above were verified by FsIM [2] or SIMlMATE [5].

5. Parameterization

The diffusion width of the pullup in each stage is automatically determined

and implemented by ALLENDE in the following way. Suppose that the current
parameter vector is ,d = (dld2 . . d,), and the pullup-to-pulldown ratio vec-
tor of the specified layout is k = (kI-k 2 . .. k,:) . (The choice of pullup-to-
pulldown ratio is discussed in [7].) For each node i, define the variables Zpm, Zpd,
and a pullup-to-puildown ratio K as follows.

ZPi.= L ZPd =L~ K ZP
WP. ~ Wpd '~

where
Lp (Lp) is the length of pullup (pulldown).
Wp (Wpd) is the width of pullup (pulldown).
Wpg,, K=kand Ld= 2.

L., and Wp are determined as follows.

ID If Wpd !9 2K

W = 2

K= L,, /2 or L- 4K

If wpa > 2K

Wp,= Wp / K
K=or =K ~

2/ W Wpd

We adopted following choices.

1) X=2AL

2) The timing estimation program CRYSTAL uses an input pulse which is 1 nsec
wide.

S. Results

Table 1 shows a comparison of the performance of our implementations.
Each row represents one locally optimal point using as criterion the item indi-
cated by *. The units of A, P,,,, Pmu, T, APT and PT are X2 , (I0 - 4 " W),
(10-0 0 W), ns, (1 0- 1 * A2 * W " ns) and (10-8 * W * ns) respectively in all
tables. Figure 7 shows Pm,, vs T curves for different topologies, while figure 8
shows several Pru vs T trajectories obtained during the process of optimization
using the 1-change and 2-change methods for the Data Selector and the Random

i -. 5-

r
Table 1. performance comparion (1 bit full adder)

type A Pa, PM T APT PT parameter

PLA 21580 6472 10183 12.8* 2802 1303 1)
21840 5678 9241 15.3* 3087 1413 2)
21762 5503 8616 14.9' 2794 1284 3)

PLA(Berkeley) 22176 7314 11749 12.8' 3339 1504 4)

Data Selector 8100 3765 6117 15.8* 783 966 88888888
8100 3529 5645 16.5' 754 931 88848888
8190 3764 6116 15.90 796 972 1288888B8

Random Logic 7742 1331 1957 16.50 392 323 16 1232
9600 1683 2427 16.4* 382 398 162423
9800 1644 2329 16.4* 378 382 16 24 2 2
9600 1723 2506 16.5* 397 413 16 24 3 3
5194 705 1096 22.6 128 2480 6 8 22

4704 626 1018 25.9 124 264' 4 6 32
5136 744 1174 22.9 135 269* 6 8 23

1) d = (44,4,4.4.4,3,4,4.8,8.8,4,4,4.8.2)

2) d = (4.2,3,3,3,3,3,4,3,8,8,8,4,4,4,8,2)

3) d = (3,3,3,4,44.4.3.3,8,8,8,4,4,4,43)

4) d = (4,44,4,4,4,4.4,4,8,88,8,8,8,8)

Table 2 performance comparison (4 bit parallel adder)

type A Pa, P"M T APT PT parameter

Data Selector 41310 16536 28218 75.3' 877761 212482 4 8 8 8 16 8 16 16

(. 44551 16536 28218 84.1' 1057230 237313 4 8 8 8 16 8 24 16
45409 16534 28213 64.3' 1079990 287836 4 8 8 16 16 16 16 16
44523 13248 21641 91.0* 876805 196933 488816484
42845 12301 19748 92.5' 782645 182569 484416884

43747 11362 17868 94.9' 741806 169557 484416484
43605 12354 20692 98.0' 884229 202782 284816848
45441 11885 19753 100.8' 904777 199110 284816844

44523 12305 19755 101.1' 889227 199723 484816448
44649 11831 18808 103.2' 866631 194099 484416844
43747 11362 17868 103.6' 809812 185112 484416448

(r Random Logic 35552 6577 10335 41.10 151014 42476 16 1282

34848 6734 10649 41.4' 153634 44087 16 12 8 3

(,- -

Logic circuit. Each point takes about 1.5 minutes of cpu time on a VAX 11/750.
Many of the locally optimal solutions have identical parameter values on the
critical path, but differ in other coordinates because of different random start-
ing values.

7. Parallel Adder: The effect of loading factors

1 The preceding results did not take the loading on the output of the circuit
into account. When these circuits are used in arrays, this may become impor-
tant. To study this problem, we implemented two circuits for a 4-bit parallel

adder, using the Data Selector and the Random Logic 1-bit fuU adders of the
previous section. The results are shown in Table 2.

08. Discussion of Resuts

5.1. P, vs T tradeoff

Figure 8 shows Pma-T trajectories followed by the critical path optimiza-

tion process, when minimizing T for the Random Logic circuit. The dotted
* envelope shows the final tradeoff curve for P vs T. Notice that the locally

optimal point obtained by using PT as the cost criterion lies very close to the
trajectory obtained when minimizing T. (See point a, with P = 12.5mW, and
T = 22.4ns.) For comparison, the optimization for PT gave us a locally optimal

point b with P = 10.9mW and T = 22.6ns, very close to point a. Thus, optimiza-
tion using the two criteria is consistent.

8.2. Performance comparison among the PIA. Data selector, and Random logic.

Table 3 normalized performance comparison (1-bit full adder)

type A Pm. Pmm T APT PT

Random Logic 100 100 100 100 100 100
Data Selector 105 283 313 96 200 299
PLA 275 486 520 78 715 403
PLA(Berkeley) 286 550 600 78 852 466

Table 3 shows a normalized performance comparison of the best locally

optimal point for each layout, minimizing T. The Random Logic seems to be the
best choice in all respects except T. However, it is the fastest among the 4-bit
parallel adder implementations. The T of the 4-bit parallel adder using Random
Logic is less than 4 times the T of the 1-bit full adder, while in the other layouts
it is more than 4 times the T of the 1-bit full adder. The reason is that this Ran-

Fdom Logic 1-bit full adder circuit calculates the carry signal and propagates it
before the calculation of the sum signal, so the carry ripple propagates faster
than the sum. As a result, the 4-bit parallel adder takes only 2.5 times as much

time as the 1-bit full adder. Figure 7 shows the P-T tradeoff curve of each lay-
out. The curve for the Random Logic circuit is below the one for the Data Selec-
tor, which is below that for the PLA. Hence we can order the layouts with Ran-
dom logic best, Data Selector next, and PIA last. This result agrees with our

intuition because this order is the same as the order of circuit specialization.

8.3. Comparison between our PLA and the Berkeley PIA

Both PIAs have almost the same costs, except for P. The reason is that our
lonally optimal point occurs at the choice d = (44,4,4,4,4,3,4,4,8,8,8,4,4,4,.32),

-z-7-

- - ,*

i . . .

"* while the Berkeley PIA adopts d = (4,4,4,4.4.4,4,4.4.,8.88.8,8,8.8). The Berke-
ley PLA is therefore very close to locally optimum with respect to T.

8.4 Comparison with Myers' work

Myers did similar performance comparisons of various 1-bit full adder

implementations [9]. but did not use any optimization. His results, shown in
Table 4 below, are quite different from ours, shown in Table 3. Our results show

that an appropriate choice of layout and its optimization makes the Random
logic circuit better than the Data Selector, and that the PIA can be made very
fast at the expense of Power.

Table 4. 1-bit full adder normalized performance comparison (Myers[9])

type A Pam T APT PT

Random Logic 100 100 100 100 100

Data Selector 45 50 125 28 72.5
PLA 105 110 170 196 187

8.5. 4-bit Parallel Adder

Tables 1 and 2 show that the locally optimal point of the 1-bit full adder is

attained with a pull-down diffusion width of the carry output stage dc. = 2 or 3,

while the corresponding width for the 4-bit parallel adder is dc = 8. The pullup

width remains 2. This suggests that the critical path passes through the pull-

down of the output carry stage, which is indeed the case.

On the hand, for the Data Selector, the critical path passes through the

pullup of the output carry stage, and in fact it is the pullup width that expands

during optimization of the 4-bit parallel adder.

8.6. Comparison of the 1-change and 2-change methods

Figure 8 and Table 5 show a comparison between the 1-change and the 2-

change methods when applied to the Random Logic implementation. Table 5 is

discussed in the next section. The slope of the 2-change method is steeper than
that of the 1-change method, but the 2-change method reaches better locally

optimal points. Hence in this case the 2-change method works better than the

1-change method does. However, the 2-change method does not work as well as
the 1-change method for the Data SelActor, which has many more parameters.

The 2-change method took more iterations than the i-change method and did

not obtain better locally optimal points.

8.7. Effectiveness of our optimization: Cost Improvement ratio

Table 5 below shows the average initial delay times To (obtained from ran-

dom starts), the average locally optimal delay time T,,t, the average percent

improvement of the delay time T, and the best locally optimal delay time Tb.6t.

We can see from this that 2-opt performs much better than 1-opt We should note

that it is very important to choose a good order in which to try improvements,
because this saves unnecessary search time evaluating changes that are
unlikely to be improvements. For example, we chose the diffusion widths of the

'* 3-input NAND gate as the first parameters tried for the Random Iic circuit.

Table 5 Cost improvement of our optimzation methods

type opt criterion T, T0p, % improvement Ti,,

Random Logic 1-opt T 29.7 19.2 33 19.1
Random Logic 2-opt T 29.7 16.8 42 16.4
Data Selector 1-opt T 24.3 17.7 25 15.8
Data Selector 2-opt T 23.5 18.0 23 15.8
PLA 1-opt T 19.3 16.3 16 12.8

9. References

[I] P. R. Cappello, K. Steiglitz, "Completely Pipelined Architectures for Digital
Signal Processing," IEEE Trans. on Acoustics, Speech, and Signal Proc., vol.
ASSP-31, No.4, pp. 1016-22, Aug. 1983.

[2] R. N. Mayo, J. K. Ousterhout, W. S. Scott, "1983 VLSI Tools." Report No.
UCB/CSD 83/115, Computer Science Division (EECS), University of Califor-
nia, Berkeley, Calif., March 1983.

[3] S. C. North, "Molding Clay: A Manual -or the CLAY Layout Language," VLSI
Memo #3. EECS Department, Princeton University, Princeton, N. J., July
1983.

[4] R. J. Lipton, S. C. North, R. Sedgewick, J. Valdes, G. Vijayan, "VLSI Layout as
Programming," ACM Trans. on Programmving Languages and Systems, July
1983.

[5] J. Mata, "ALLENDE User Manual," VLSI Memo #9, EECS Department, Prince-
ton University, Princeton, N. J., May 1984.

[6] R. Rondell, P. C. Treleaven, VLSI architecture, Prentice-Hall Inc., Englewood
Cliffs, N. J., 1983.

[7] C. Mead, L Conway, Introduction to VLSI Systems, Addison-Wesley Publish-
ing Co. Menlo Park, Ca., 1980.

ft [8] J. Mata, "A PLA Generator for the ALLENDE Layout System," EECS Depart-
ment, Princeton University, Princeton, N. J., June 1984.

[9] D. J. Myers, "Multipliers for LSI and VLSI Signal Processing Applications,"
Masters Degree thesis, Edinburgh University. Edinburgh, England. Sept.
1981.

[10] R. R. Morita, "Pipelined Architecture for a Cellular Automaton," Senior
Independent Project Report, EECS Department, Princeton University, May
1984.

-9-

PI&O . sa csal um no " dte PukWMM " Mh

?.LM

altl.*i PoLb MSWL
P. 7. AI L

L ------ JL

M LLZIDow fte&a =PKn yhl

-- -- --- -

* JIME

Ii, >

.....

A * C

Figre S. Pta S'Ca

C.*

B -- 4 -.---

9If lno-L0-r

x PLA

a Data SeIecToW

+ PandomiLag C

10

IL PLA

"aI seeco

too£I.t,

10 20 30 4-0 ns

Pra

(n~1+

IZCha"Of

102 2. (S

-mi IMACS Iasels"l Symp"m Osm

COMPUTER METHODS FOR
PARTIAL DIFFERENTIAL EQUATIONS
19, 20, 21 June 1984 Lehigh Univerity -Bethlehem, Pennsylvania 1801S -USA

Efficiency of Parallel Processing in the Solution of

Laplace's Equationt

fPl William C. Moore

Information Systems Laboratory
Dept. of Electrical Engineering

Stanford University
Stanford, California 94305

* Kenneth Steiglitz

Department of Electrical Engineering and Computer Science
Princeton University

Princeton. New Jersey 08544

ABSTRACT as they pass through the processors. Using this
A parallel processing architecture for the solution approach, problems with arbitrary numbers of dimen-

of partial differential equations by point iteration is stu- sions can be treated. In addition, identical processors
died. Grid points are stored in a circulating memory can be added without reorganization.
and identical processors are spaced around the store. In the Gauss-Seidel method [8] the grid point
Computer simulation of the solution of Laplace's equa- values are updated in an orderly, row-by-row and
tion with a simple point iteration relaxation algorithm plane-by-plane fashion, and new values are used as soon
for one-, two-, and three-dimensional problems shows as they become available. In the Jacobi method [8] old
that convergence rates intermediate between those of grid point values are used throughout each iteration.
the Jacobi and Gauss-Seidel methods are obtained. When the circulating store system uses one processor,
Eardware utilization efficiency (speedup relative to the the calculation reduces to the Gauss-Seidel method,
number of processors) of 40-60% is achieved with as when it uses one processor per grid point, it reduces to
many as N processors, where N is the number of non- the Jacobi method. When a number of processors
boundary grid points. Furthermore, for up to N/2 pro- between these two extremes is used, there is a compli-
cessors, the efficiency remains above 90, in the one- cated mixture of old and new values used by the proces-
dimensional case, and above 75r in the two-dimensional sors. The purpose of this paper is to investigate experi-
case. There are sharply diminishing returns for using mentally the rate of convergence as a function of the
more than N1 2 processors. number of processors, and thereby to evaluate the

potential hardware utilization efficiency of the circulat-
1. Introduction ing store system. The results show that the speed of

The solution of partial differential equations taxes convergence is. as might be expected. intermediatt
the largest and fastest present-day general-purpose between the Gauss-Seidel and Jacobi methods.
computers. Physically meaningful problems often need
huge amounts of time and space. Clearly, with the 2. Circulating Store Conglguration
decreasing cost of large-scale integrated circuits, it We study here a synchronous circuit consisting o! a
seems profitable to build special-purpose devices for long shift register arranged in a circle (the main
solving partial differential equations which use man) memory of the system), and a number of independent
identical processors operating in parallel. This paper processors tapping and updating the stream at various
describes a study of a circular arrangement of proces- points (see Fig. 1). Similar configurations have been
sors and a circulating store. Simulation results for the suggested by various workers at different times for
very simplest numerical problem are described: the applications such as Monte Carlo calculations [1] and
solution of Laplace's equation with Dirichlet boundary image processing [2], a- well as partial differrn'.a:
conditions, using point iteration methods, equations [3,4,5]. A fixed network of microprocessors

When explicit, point iterative methods are used to which communicate locally has also been studied [6.J.
solve partial differential equations, a grid point value is and these two arrangements are equivalent when therc
updated by replacing it w.Lh some function of the values is one processor per grid point.
at neighboring points in the grid. In the system If each grid point is mapped to a set of contiguous
describec here, the grid of points is mapped by a rester bits in the stream, some bits in the set can represent
scan into a circulating serial bit stream. The bit stream the value of the function at the grid point, while the
passes through processors that update the grid points remaining bits can be used to flag boundary values.

.i.s worx was s-.ppoed by NXS Grant ECS-8!20037 V S A..y ResewLrh- :hs.r, Gran,
DAAG29-z-K-OO9k DA.RPA Co.'r.:eac NG0004-82-K-0549 and ONR Grenr. SOO14-83-K-027,

store space-dependent coefficients, and possibly hold gence, a reasonable idea of the performance of a sys-
0 other information. We will call the set of bits in the bit tern as a function of number of processors can be

stream corresponding to a grid point simply a "grid obtained by investigating the relationship between the
point value." At any given time each processor must be number of iterations required and the number of pro-
able to change the value of the grid point which it will cessors. If we let its(n) be the number of iterations
update. as well as read the values from those grid required with n processors, we can define
points whose values are needed to do the update calcu-
lation. For example, with a 5-point molecule in the e(n) = ts()/
Gauss-Seidel method for a two-dimensional Laplace Its(T)
equation, each processor must have information from 4
neighboring points, as shown in Fig. 2. to be the efficiency with n processors, the efficiency

There is no direct communication between proces- with one processor being 100%. In general the eficiencv

sors. With each major clock cycle, the circular shift will be less than 100%, but it is not impossible for it to

register shifts one complete grid point, each processor exceed 100% (e.g. two processors can be more than

reads the necessary information, and if the grid point twice as fast as one).

currently associated with a processor is not a boundary
value, it is updated. Each grid point can have a bit 4. TestProblem: Laplace. Equation

0 reserved to indicate convergence, based on the change A computer simulation of the scheme described
from the previous value of the function, and that bit can above has been carried out using Laplace's equation (
be kept current every time the value is updated. A 71f

= 0) on a line, in a square, and in a cube, with Diri-

counter can then be inserted in the circulating store to chlet boundary conditions. Explicit iterative methods
detect the condition where all the points have con- for Laplace's equation are widely used, and their con-
verged. Alternatively. a global counter can receive this vergence characteristics are well known. (See [8], for
information from every processor every major clock example.) The one used in the simulation is the sim-
cycle. We will assume this latter method in the simula- plest: Each grid point is replaced by the average of the
tion because it detects convergence sooner and gives points immediately adjacent (not diagonal) to it. Thus,
finer resolution in the measurement of running time, for a k-dimensional problem, a point is replaced by the
but obviously it is not necessary for the operation of the average of the 2k points adjacent to it on the rectil-
device. inear lattice of grid points in k-space.

Note that no additional time is required to observe As suggested above, the grid is mapped to a serial
the changing grid point values on a graphics screen, stream by using a raster scan; the end of one line is
since the bit stream can be passed serially through connected to the beginning of the next. Some experi-

- such a display device without interfering with the calcu- ments indicated that using other scanning patterns,
{ W lation. such as boustrophedon (back and forth, as the ox

We emphasize that the processors work in parallel, plows) has little if any effect on the results.

and so the answer from one processor is not available The convergence criterion used is based on the

until the next major clock cycle. Thus, as was pointed maximum relative change in function value at the grid
out before, the values used in any one calculation are in points. If the old and new values at grid point k are
general of various ages. respectively g'(k) and gl4Il(k), then we say we have

converged at point k if at the most recent update at

[4 3. Method of Performance Evaluation point k we have

When all grid points have passed through all pro- 19{"* 1 "(k) - < (k) g(
cessors once, we say that one iteration has taken place. where r is the convergence criterion. If at some

* This corresponds to each bit in the stream being shifted moment we have converged at all grid points, we say
all the the way around the circle. The time required for tbe computation itself has converged.

* this 360 shift depends on the major clock cycle time
and the number of grid points. (We assume that a pro- Problems with a variety of different dimensions.

[cessor completes its function during one major clock grid sizes, boundary values and tolerances were simu-
cycle) Since the processors operate in parallel, the lated and we next present some numerical results.
time does not depend on the number of processors; an
iteration represents an amount of time that is indepen- 5. Experimental Results
dent of the number of processors. Neglecting such Figures 3-5 show plots of efficiency e(n) vs. ni for
things as time for loading boundary values, the number three typical problems, of one-, two-. and three-
of iterations required for convergence is a reasonable dimensions. In all three cases the convergence toler-
measure of real time required for convergence, and can ance is e = 0.002, and non-boundary grid points have
be used to compare the performance of different sys- the initial value 0.
tems. Fowever, for systems with different grid sizes or The one-dimensional grid has 200 points, including
representing different equations, an iteration may boundary points. One boundary value is 0.0 and thE
mean different things and thus cannot serve as a basis other 1.0. The two-dimensional grid is 20x20 points, with
for comparison. Note also that there is no reason that the square boundary having the value 1.0. The lOxll
the number of iterations required for convergence need point three-dimensional case also has its boundary

be an integer. (Recall that we are using a global counter values equal to .d everyawhere.

toue detect convergence.)ereinto detect convergence.) As expected because of the gradual transition
Since the number of iterations required for conver- between the extreme cases of the Gauss-Seidel and

gence is proportional to the time required for conver- Jacobi methods, there is a general downward trend in

- -. -. : -. :.: .. -" " " . -. " .- -, " . .. •• . . --- .

- . . ,,, ,,,.i.: .. ,-.- - ' '- . . . ,"- " - .. ." " - . . . - '_ "" " " "• "

efficiency Furthermore, the efficiency decreases from N1 2 processors.
* 1007 to about 50%, as would be expected from the fact The approach is applicable to linear and nonlinear

that the Jacobi method for this problem is theoretically problems of any dimension with any boundary condi-
asymptotically one-half as fast as the Gauss-Seidel [8]. tions, makes efficient use of large numbers of identical
An efficiency of 50! with -n processors means that we processors, and has a very simple, linear, interconnec-
are converging n/2 instead of n times as fast as w-ith tion pattern. More work is needed to determine the sta-
one processor. bility and convergence rates of the over-relaxation

The different dimensions give rise to different method, and more sophisticated and potentially faster
curve shapes, but those shapes did not vary much as methods, in higher dimensions, for more ambitious
convergence tolerance, grid size, and boundary condi- problems.
tions were varied. In the one-dimensional case.
efficiency is near 100% as long as the number of proces- 8. Acknowledgments
sors is less than half the number of non-boundary grid The circulating store configuration for solvng
points, but at that point, efficiency falls off sharply to differential equations was developed with the co-aut.,irs
about 50% with 200 processors. In two dimensions the of [5]: ,. Bruno, A. C. Davis, M. Kostin, and C. 'Ayrnar
efficiency curve has two fairly distinct levels, with the Also, we thank R. J. Lipton for helpful comments.

* break point again coming at approximately half the
number of non-boundary grid points. The efficiency plot
for three dimensions seems not to have two distinct 9. References
regions, but falls off gradually. In all cases there is a [i] R. B. Pearson, J. L. Richardson, and D. Toussaint. "A
great deal of local jumping up and down, due evidently Special Purpose Machine for Monte-Caric Su- iria-
to the particular way in which the processors use the tion," Institute for Theoretical Physics Report NS. -
information of neighboring processors in particular]TP-B2-95, University of California, Santa Barbara.
arrangements. California, 1951.

The maximum absolute speed is obtained by having [2] C. Rieger, "ZMOB: A Mob of 256 Cooperative 28OA-
N processors. where N is the number of non-boundary Based Microcomputers," Conference paper, Corn-
grid points, but there are diminishing returns for using puter Science Department, University of Maryland.
more than about A'/2 processors. In any particular College Park, MD 20742.
application the choice of number of processors will [3] C. T. Leondes. and M. Rubinoff, "DINA, a Digital
depend on the cost of a single processor relative to the Analyzer for Laplace. Diffusion and Wave Equa-
cost of the whole system. The efficiency with ' proces- tions," Trans. AIEE . Pt. 1, Vol. 71, Nov. 1952, pp.
sors remains above 40%. sometimes even getting as high 303-309.

0 as 651. [4] R. F. Rosin, "A Special Purpose Computer lot Solu-

S. Over-relaxaUon tion of Partial Difftrerti" Equatior. and other
Iterative Algorithms," IEEE 7)-ans on Electronic

A preliminary test was rnmade of a simple over- Computers, June 1965, pp. 488-490.
relaxation strategy in the one-dimensional case. Here [5] Bruno, J., Davis, A. C., Kostin, M.. Steiglitz K an
the new value at each grid point is defined by Wyman, C., "Linear Organization of a Computer for

gi)= gi a(ge 9)') the Iterative Solution of PDE's," unpublished

where 96"'*) is the value that would be adopted at this manuscript. Princeton University, 1971.

step if over-relaxation were not being used, and ot 1 is [6] Paker, Y., "Application of Microprocessor Network
the over-relaxation parameter. When a is taken to be for the Solution of Diffusion Equation." Matheratirs
1.5 in the one-dimensional case described in Fig. 3, the and Computers in Simulation. Volume 19, No. 1.
number of iterations required by one processor is March 1977.
reduced from 397,584 to 212,057, an increase in abso- [7] Doenin, V. V.,"ParaUel Digital Network Processor
lute speed of 87%. Figure 6 shows a plot of the efficiency and Transient Stability Analysis in the Processor's
vs. n for a = 1.5. It is of the same general cheracter up Logical Network," Avtomathka Teletekhanika ,
to N/ 2. showing efficiency near 100% in this range, but (in translation), Vol. 40, No. 8, August 1979, pp.
past that point the iteration rapidly becomes unstable 139-149.
(with the efficiency therefore going to zero). Further [8] W. F. Ames, Numerical Methods for Partial
work is needed to explain and predict the stability of D.fferential Equatons, Barnes & Noble. New York,
the over-relaxation method for the parallel computation 1969.
scheme discussed here.

7. Conclusions
* The simulation results for the circulating store

method and the standard point iteration method are in
accord with theory, and they are encouraging: rL pro-
cessors never operate slower than about n/2 times as
fast as one. Furthermore, for up to X/ 2 processors,
where N is the number of non-boundary grid points, the
efficiency remains above 9O1 in the one-dimensional
case, and above 75! in the two-dimensiona, case There

* are sharply diminishing returns for using more than

CIAT

Fig. 2 Data access of one processor in a 5-point itera-

Fig. I Circulating store configuration. tion for a two-dimensional problem.

ONE DIMENSION

z

LLJ

606%

40%r 50 100 020
NUMBER OF PROCESSORS

Fig. 3 The efficiency vs. number of processors for a

one-dimensional problem; 200 grid points.

------ --

)006, _____

90%/ _______

TWO IENSIONS

so8% - - --

70%

60%

50/
'010000 400

NUMBER OF PROCESSORS

Fig. 4 The same as Fig. 3. for a 20xZO two-dimensional
problem.

* 80%THREE DIMENSIONS

60%

40 ~20 400 600
NUMBER OF PROCESSORS

Fig 5 The same as Fig 3. for a l0xioxiD three-
dimensional problem.

100%

ONE DIMENSION

60%M I ____

20%L

005 0 100 150 200
W NUMBER OF PROCESSORS

Fig. 6 The same as Fig. 3 for the over-relaxation
method with a =1.5.

4V

28 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. I, FEBRUARY 19b4

Optimal Choice of Intermediate Latching to Maximize
CPO Throughput in VLSI Circuits

PETER R. CAPPELLO, MLMBtR. IEEE, ANDREA LAPAUGH, MEMBER, IELL, AND KENNETH STEIGLITZ, FELLOX%. IrLL

Abstract-In many computational tasks, especially in signal processing.
it is the throughput that is important, rather than the latency, or delay,

If a special-purpose VLSI chip is designed for a particular signal process.
ing task, such as FIR filtering. for example, the maximum clock rate,
and hence throughput, is determined by the depth of the combinational
logic between registers and the time required for the distribution and
operation of the clock. If the combinational logic is sufficiently deep

* (in bit-paraflel circuits, for example), the throughput can be increased
S by inserting intermediate stages of clocked latches. This is at the ex.

pense of increased area and delay to operate and clock the intermediate
registers. Roughly speaking, the strategy amounts to using more of the I
chip area to store information useful for pipelining.

This paper investigates the optimal tradeoff between the degree of

intermediate latching and cost, using the measure AP, where A is the
chip area and P is the period (the reciprocal of throughput). We derive Fig. I. Two-phase clocked latches between stages of combinationjl
expressions for the time and area before and after intermediate latch-

ing. using the Mead-Conway model, both for the cases of on-chip and logic.

off-chip clock drivers. The results show that significant reductions in
AP product (reciprocal of throughput per unit area) can be achieved

by intermediate latching in many typical signal processing applications, and P is the period. The AP product can be thought of as tie
for a wide range of circuit parameters. The array multiplier is used as reciprocal of throughput per unit area, and a completel\
an example pipelined circuit optimal with respect to this criterion can be

claimed to make best use of chip area. Leiserson and Saxc
I. INTRODUCTION 114] treat the related problem of redistributing latches so a,

I HEN certain tasks are implemented with special.purpose to decrease period, but they do not consider area or clocking

* Y VLSI chips, it is often the period P (time between suc- penalities.

cessive outputs) that is crucial, rather than the latency or delay We assume that the circuits we discuss are designed along the

T This is especially true in signal processing. where typical lines described by Mead and Conway (1]: typically that a t% o-

tasks such as filtering and discrete Fourier transformation phase clock is used to transfer information between registers

* ' often have high volume requirements and relatively lax delay (or latches), and that these registers are separated by comt'irw-

requirements. Recent work has described bit-serial and bit. tional logic. The following sections are devoted to modeling

parallel VLSI architectures that do in fact allow the period to the time and area requirements of the latches, the combina-

be equal to the clock period (see, for example, 12], [41-191. tional logic, and the clock driver. We then consider the overall

(121). In [5], (7] a class of these circuits is called completely circuit and investigate the optimal choice of the amount of
_ pipelined. In this paper, we take up a different question, that latching for the two cases of on-chip and off-chip clock drivers.

- of inserting intermediate stages of latching so as to maximize While the assumptions made about first-order circuit behavior

" the rate at which the clock can run without a disproportionate pertain to nNAOS technology, the analysis technique uses di.

blowup in area requirements. We will use the criterion of mini. mensionless parameterization and is applicable to any situa.

mizing the AP product, where A is the area of the VLSI circuit tions with deep combinational logic-typically bit-parallel cir-
cuits. A representative tradeoff curve is shown for an example.

0 Manuscript received August 10, 1982: revised April 12. 1983. This
work was supported in part by the National Science roundation under 11. CLOCK TiING

* Grant ECS-8120037, U.S. Army Research-Durham under Grant We will adopt a version of the two-phase clocking system
DAAG29-82-K-0095, and DARPA Contract N00014-82-K-0549. A described by Seitz in [! ch. 7], a typical stage of which is
preliminary version of this paper was presented at the 1983 ILEe
International Conference on Acoustics. Speech, and Signal Processing, shown in Fig. 1. Fig. 2 shows the corresponding timing dia-
Boston, MA. April 14-16. 1983. gram: First, we must drive the phase I clock signal 01 hiph.

P. R. Cappello was with the Department of Electrical Engineering and tagrm Firsme must drive r thepha e) W clock sinal d aih
Computer Science, Princeton Universit,. Princeton. NJ 08544. me is taking time clock (the clock dri'er time). We then need
now with the Department of Computer Science. Lnivcrsit. of Cali- minimum time /&e,, (the delay time) to charge the input stage
fornia. Santa Barbara. CA 93106. of the combinational logic. Phase I must then go lo\\ (taking

A. LaPaugh and K. Steiglitz are uith the Department of Electrical
Engineering and Computer Science. Princeton Unvcrsity. Princeton, NJ time clok) , and phase 2 must then go high (also taking time

- 08554. tclock). We must insure that there is a minimum time 1,2 dur-

* 0096-3518!84,'0200-0028S0 1.00 Q 1984 IEEE

" :~~~ "- 'C. •:' "" :• .

CAPPELLO et al: OPTIMAL CHOICE OF INTERMEDIATE LATCHING 29

Fig.,2 .Clckti.n.dagamloi

•t clock 14 to - coclt

Fig. 2. Clock-timaing diagram.

ing which both clocks are low; otherwise we run the risk that vOD VOo

skew between the clock phases will cause both clocks to be
on at the same time. This brings us up to the point where the
combinationa! logic has already started to work. A1 A1

The input values propagate through the combinational logic,
taking some time tn,,0c. This time includes the time during
.hich Q, is brought down and 02 is brought up. The time
tl,,, will ordinarily dominate the clock-interchange time, but, 2-

W in veneral, we need to set the time for this operation to cC".. Ca I
SI I

I = max t. 2 k + t12) _ ,

%%here, for safe operation of the circuit, tio,,c must of course
be taken as the maximuom delay time of the combinational Fig. 3. Details of the clocked latches, showing pullup and pulldown

S h)Lic. effective resistances and capacitances.
We next need to transfer the output values of the preceding

lu-ic stage to the input of the latch whose output is controlledby 6 tht i, ~2mus reain n fr aminium haringfective pulldown resistance R, and pulldown time (transitby 1 : that is, 02 must remain on for a minimum charging time) r when driving the input of an equal size inverter. We

time tt (the preset time). The 02 clock signal must then be refer to such a cell in what follows as a minimal inverter.
brought down (taking another clock driver time t1 ck, andrertoscaceliwhtflwssamniainee.
brout (taking another dead time()provi drtin e onovead of Now inverters in the latches are driven through pass tran-a.nuther dead time (t2j) provided to insure nonoverlap of

clocks in case of clock skew. sistors, so the discussion in [1 shows that we should choose a
Theos inimumaseio Po f hew cipullup/pulldown ratio of 8. The time required for the second
The minimum period P of the circuit is therefore inverter to charge its load is therefore approximated by the

P - tclock + t debay + t set + t2 + max (tigc, 2 tclock + t12). following RCconstant:

To be more accurate, we might want to take into account the t delay = (RI + Rpa) (Cl.d + Cpa)

S t'~act that the upgoing and downgoing clock waveforms are where the R's and C's are shown in Fig. 3. Assuming that
not completely symmetric; but the term /c1lck can be taken the pass transistors are minimum size, R = R and Cpaa C.
to represent the average of the upgoing and downgoing clock Also assuming that the capacitive load (input to the combina-
times in a single driver. In a multistage driver the stages alter- tional logic) is minimal, we get
nate up and down, and we can take /clock to be the sum of
,he averages of the upgoing and do~kngoing times along the t delay = 2(RI/R + 1)7
driving chain.

= 2(LI WI + 1)7

Ill. LATCH TIME AND SPACE

We next want to express the time delay of the latches in where, from now on, we express resistance in terms of the

terms of basic units that are determined by the technology. length-to-width ratio of the transistor

Fur this purpose, we consider the nMOS inverter with a mini. R = (L 1/W1) R.
mum size pulldown and a pullup/pulldown ratio of 4 to be
the basic cell, with area A, pulldown gate capacitance C, ef- If the pullup/pulldown ratio of the latches is taken to be 8

30 ILEL TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-32, NO. 1, FEBRUARY 19b4

(as mentioned above). we can write the normalized delay lected to reflect the space per logical element required for
time as power and ground lines.

2(8r + 1) We will assume that the nominal circuit has one typical lIF,.
stage between a pair of two-phase latches, and we then co,-

where r = L2 1t'2 is the size of the latch pulldown. When r sider the insertion of (ni - 1) latches equally spaced in the
the pulldown transistor of the latch inverter will be twice as combinational logic, m ;; 1. The case m = I then represen.,
wide as the corresponding transistor of the minimal inverter, the original situation. We assume the latches can be made r
but the pullup'pulldown ratio is 8. not 4, so the pullup tran- "fit" well; that is, that the combinational logic is arranged
sistor will then be the same length as in the minimal inverter. regularly enough so that stages can be pushed apart and c.-
The area of such a latch inverter with r = I will be only a little umns of latches inserted. The total time required for the logi.2
larger than that of a minimal inverter. perhaps about 25 per- is therefore
cent larger. Thus, the choice of r = speeds up the latch with. / =
out much area penalty. and we will use this value in this paper,
although it could be kept as a parameter. and the area

* Using a similar argument based on RC charging times, the Agi,/A = adk:
preset time is

where d = n/k is the height-to-width ratio of the originil lgi"
tset /7 = (Or + I) (I,'r + I). block, another dimensionless parameter. usually assumed It,

The I r term comes from the input capacitance of the second be 1.
inverter, which loads the first inverter. To see this, write

V. ON-CHIP CLOCK DRIVER TIMIL AND SPACE
,,at = (L 2 h'Li))C = (h '2 'L)C = (l/r) C If we use an on-chip clock driver, we want to use a muhi-

where L2 = L = Wi' are minimum size. stage version as described in [1]. since the driver will ha'e ::
The latching area is easy to write down. Assuming that the large capacitative load. especially if there is an appreciat'c

pass transistors are the same size as minimal inverters, and that amount of intermediate latching introduced. We assume thL,;
the latches have area 1.25A. each two-phase latch requires nor- clock distribution is on metal, so that propagation delay along
malized area the wires is small. Each stage is assumed to have a pulldown f

times the size of the preceding. so if there are S stages driving
A IV& 'A = 2(1.25 + I)= 4.5. Y pass transistors. each with minimal capacitance C.

IV. COMBINATIONAL LOGIC Tt!r AND SPACL f= },11S.

We want a fairly general model for the combinational logic
that is sandwiched between the latches: such logic may be If we start the clock driving with a minimal inverter the noi-
built from NAND and NOR gates, pass transistors, or some com- malized delay of such a driver is approximately
bination of the two. We will assume that the typical logic tdr, 2.-fS.
stage is a uniform array of n X k logical elements, each of
which has an area Aelem and a delay 7etem, where The factor of 2.5 results from averaging the pullup time of 47

and pulldown time - along the inverter chain. (if we do not
Aetem = aA insist that S is an integer, and we minimize this delay \it re-

and spect to, we get the value f= e [I]. But S is an integer.)
This estimate for delay assumes that we insist on a globally.

7cem = synchronized clock-that the clock signals at the input of the

This array will be thought of as n rows by k columns, with a driver can be used anywhere else without concern for synchro-
maximum delay path from left to right of k elements. Since nization. Caraiscos and Liu [I l I have pointed out that the rise
logic stages are not usually so uniform, the a and 0 parameters and fall times of the clock waveforms may be much smaller
must represent average values for the combinational logic. If than the absolute delay, and that using a local clock may alko\M
gates are built out of inverters and coupled directly. for exam- higher throughput, at the expense of using local clock signa!.-
ple, 0 will generally be determined by the fan-out factor of that must be made synchronous with the signal itself at difci-
the logic and the size of the inverters. An average fan-out fac- ent points on and off the chip. Sending the clock along with
tor of 3, using gates (with a pullup,'pulldown ratio of 4). will the signal will incur other costs, of course. (For a discussion of
result in 0 - 12, because we must allow for the worst case in the virtues of a globally-synchronized clock in signal process.
the propagation of logic, where all signals are upgoing. To re- ing, see 1101). The analysis in this paper is conservative in
duce this to a value closer to that of a minimal inverter. we the sense that the resulting degree of latching and increase in
expect to increase the area to, say, twice that of a minimal throughput is on the low side. (We can avoid the area and
inverter. Thus, we can take values of a = 2 and 0 = 4-12 as delay penalty incurred by using an on-chip driver by moving
typial of combinational logic implemented with arrays of the clock driver off-chip. That case will be discussed in more
gates. We should also note that the value of a should be se- detail in Section VIi.)

CAPPELLO et al.: OPTIMAL CHOICE OF INTERMEDIATE LATCHING 31

* We must also consider the area contribution of the clock however, that now the optimal value of m will occur roughly
driver in relation to the rest of the circuit. The normalized near the breakpoint where k/rm = 2-ckk + 12, and that these
area of the driver is times are both highly uncertain and small in size. The analysis

in this case is therefore much less reliable, and much more sen-
Adr,,/A = F f, = (Y - l)(f-). sitive to unmodeled effects such as propagation delay, than in

1-0 the on-chip clock driver case.

Next we look at the overall time and space requirements of VIII. NUMERICAL EXAMPLES
the circuit. We now give some typical numerical results. For this pur-

pose, we consider a 16-bit array multiplier, implemented by an
VI. OPTIMIZATION OF APPRODUCT WITH AN ON-CHIP array of full adders, as described, for example, in [2]. We also

CLOCK DRIVER assume that the full adders are implemented with gates: each
We can now write the total minimum normalized period full adder will then be about 3 gates deep. The carry propaga.

Pitr = p in terms of our parameters as follows: tion will require an array that has a maximum depth of 2 X 16,
so altogether the combinational logic will have k - 100. (This

p = 5fS + 25 + 721 + max (oklm, fS + 712) is consistent with the value of "113 gate delays" given in 13] .)
where, as above, Say that each gate takes about double the area of a minimal

inverter (a - 2, optimistic for area, and hence pessimistic for) uour purposes), and that, as discussed in Section IV, 0 - 6. The

and 112 = t 12 /7, 721 = t 2 1 ,r. Similarly, the total normalized array is roughly square, so that d - 1. Finally, we will as-
area area/A = a is sume that clock skew is not an important problem, and take

a=2(Y- l)f- l)+4.5Y+akn 712 = 7 2 1 = 4.
Fig. 4 shows a plot of normalized period p(rn, *)/p(l,

where the factor of 2 accounts for the fact that we must have normalized area a(m, *)/a(l, *); and normalized AP product
two drivers, one for each phase. (These can be combined to ap(m. *)/ap(l, *) versus tn. The period as a function of ni
some extent, but the total area is still nearly twice that of a decreases sharply (roughly as 1/in) until the combinational
single driver.) logic time is dominated by the clock-swapping and dead time

We now have the function ap(m, S), where m and S are dis- (that is, until tlogi - 2 tjock + t12). After this point the clock-
crete parameters. The number of stages is never much larger driving time will determine the minimum clock period and it
than In Y, since the optimal choice of f is usually around e. no longer pays to increase ni, because the area will increase
In most cases of interest, therefore, it suffices to take the with no payoff in speed. The minimum value of period occurs
minimum of ap for S = 1, - -- , 16, producing what we call close to the minimum value of AP product. Thus, in theory,
ap(m. *): the period can be decreased somewhat from its value when

the AP product is minimized, at a slight cost in area. In prac-
ap~n, *)-mrnins ap(m, S). tice the optimal values are almost always nearly equal, and

The range of "i is certainly between I and k, so the optimal sometimes identical, because of the discreteness of the param-
choice ofm can be determined simply by eters m and S.

Fig. 5 shows a plot of gain G in AP product versus the depth
ap(*,) imnm ap(m, *). of combinational logic k, for the values a = 2 and 0 = 4, 6, 8.

The gain G in AP product achieved by latching is, therefore, 12. The graph shows significant gains in AP product (more
than 2) over the unlatched case when k > 50 and 0 > 6. Even

G = ap(l, *),lap(*, *). when the gates are as fast as a minimal inverter (worst-case

VII. THE CASE OF AN OFF-CHIP CLOCK DRIVER delay factor 0 = 4), there is an AP product gain of 2.2 when
A k = 100. Note that a larger value of a would only improve the
As mentioned in Section V, if we allow the clock driver to gain.

be off-chip, we can drive the larger capacitive loads incurred We conclude by looking at the actual numerical values of
by extra latching with essentially no penalty in clock delay or the minimum clock periods and areas involved in this analysis.
driver area. The normalized period and area can then be Taking the k = 100, o = 2,06 case above for a hypothetical
written 16-bit array multiplier, and assuming = 0.3 ns for current tech-

p - 2 "Iock + 25. + 721 + max (0km, 2 "'ock + 712) nology, we get a period of P= 210 ns with no intermediate

z 4.5Y+ okn latching, and an optimal period of P =66 ns with m = 6 (5
intermediate latching stages).

where we have assumed some delay of 7"clock = fdck lr for the The area before latching is 2.11 X 104A, which at X = 1.5m
clock rise and fall times. The ap product is therefore a func- (3p line width) and a 225X2 inverter is about 10.7 mm2 . After
lion of only one unknown parameter, m. the intermediate latching. the area becomes 12.1 mm 2 ; cer-

With these changes in a and p, the same methodology applies- tainly a modest increase in area for about a threefold increase
a numerical example will be given in the next section. Note, in speed.

- - . :.... . ..- .. -.. . - -.--

32 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING. VOL. ASSP-32, NO. I. FEBRUARY 1984

20 large predicted speedups in possible clock rate may not be
realizable in practice.

r IX. CONCLUSIONS

0o We have modeled the timing of a generic pipelinable VLSI cir-
,I cuit in which there are combinational logic stages separated b\

AREA, !latching stages driven by two-phase clocks. An array niultipici
is typical of such a configuration. We then investigated the

_________,,,,,_,,__ effect of introducing intermediate latching stages. espec:ijll
o the tradeoff between increased throughput and increased arC

oDExpressions were derived for area and minimum clock petiod.
A Onormalized in terms of minimal inverter area and dela\, and

05. ,. we showed that optimal choices of the number of clock driver
PERO) stages (S), and the number of intermediate latching stage-

(ni - I), can be made by simple enumeration.
The numerical results illustrate the choice of latching density

,, 214 in a typical signal processing application. According to oui
,," model, a 16-bit array multiplier with gate logic and an on-chip

Fig. 4. Normalized period, area. and AP product versus ni for a = 2, multistage clock driver can be clocked about three tinme- fa.iL r
0= 6.k = 100. The parameter (? -?I is the number of intermediate with about a 13 percent increase in area using five intermedijtc
latching stages. latching stages. This decrease in period is also accompanied by

16 an increase in the latency, or delay. of the multiplier.
c Higher throughput can be achieved with an off-chip clock

driver, but the parameters in that case are less well kno~kn.
and at such speeds the model becomes less rehable.

a Much more work needs to be done on detailed modeling of
the timing of such VLSI circuits if we are to achieve maximun,
throughput rates in applications like signal processing. Future

-i work will attempt to refine our model, along the lines of 113]6

Ias anexample. We also need to study propagation delay. s" luch
was assumed to be relatively small in the examples (4 times

B.6 the minimal inverter gate delay T for clock distribution, a Tea-
4 sonable assumption if the clock lines are metal, for example).

Another important set of interesting problems concerns the
study of the way algorithms, topologies, and layouts interact

2 with the timing problems considered here. Recent work on
completely pipelined or bit-level systolic arrays is a start in
that direction (see, for example, 121, 14] -191, 112]).

CI

0C oC 1 ACKNOWLEDGMENT

Fig. 5. Gain in AP product versus combinational logic depth k for We are indebted to C. Caraiscos and B. Liu for valuable
0= 4. 6. 8. 12. The parameter 0 is the delay of a combinational logic comments on the manuscript.
element, normalized in terms of that of a minimal inverter. REFERENCES

[I] C. Mead and L. Conway, Introduction to VLSI Systemns. Menlo
The preceding example assumed an on-chip clock driver. Park, CA: Addison-Wesley, 1980.

o When we use an off-chip clock driver at presumed small cost. 121 J. V. McCanny, J. C. McWhirter, 1. B. G. Roberts. D. J. Day. and
as discussed in Section VI, we naturally get much faster solu- T. L. Thorp, "Bit level systolic arrays." in hroc. 15th Asiloma,

Conf orcuits, Syst., Comput.. Nov. 1981.
tiuns. In this example, the optimal value of period with the 131 K. Bbtcher, A. LacroL\, M. Talmi, and D. \Wesseling. "Intcgr .cd
parameters of Section VII and rclok = 4 (assuming a very floating point signal processor." in Proc. 1982 IEEE lt. Con .
sharp clock rise time and fall time), minimizing AP product, Acoust., Speech, Signal Processing. Paris, France, Ma% 1982, rp.

1088-1091.
is 18 ns, compared with the unlatched value of IQI ns. The 141 P. R. Cappello. and K. Steiglitz, "Digital signal processing applh-

* area goes from 10.6 mm 2 with no latching to 16.5 mm 2 with cations of systolic algorithms." CAML Conf. I'LSI Syst. Copnplt,jl
latching. Thfs large increase in area reflects a corresponding rions, H. T. Kung. B. SprouP. and G. Steele. Eds. Rockilte. MD:

Computer Science Press, 1981.
increase in the density of latching: 26 On = 27) latching stages 15, -, "Bit-level ft\ed-flou architectures for sicnal ptocessing." in
are introduced. We emphasize that in the case of an off-chip Proc. 1982 IEEE Int. Conf. Orcuits, Comput., Sep. 29-Oct. 1,
clock driver, the numerical values of the parameters 112 and 1982., 161 -, "A VLSI layout for a pipelined dadda multiplier," ACAI
ttod are very uncertain and the optimal values of period, area, Trans. Coniput. S)sr.. vol. 1, Ma) 1983.

o and latching density are sensitive to these parameters. The 171 -' "Completely pipelined architectures for digital signal pus-

CAPPELLO et at.: OPTIMAL CHOICE OF INTERMEDIATE LATCHING

cessing," IEEE Trans. Acoust., Speech, Signal Processing. vol. Andrea LaPaugh (M'81) %ksbr in %,
ASSP-3 1. pp. 1016-1022, Aug. 1983. town. CT, on June 26. 1952. Slie

18j Ht. T. Kung. L. M. Ruane. and D. W. L. Yen. "A two-level pipe- A.B. degree in ph)ysics from Cornell Ur~cw
bnied systolic array for convolutions," 0WM Conif Syvst. Corn- Ithaca, NY, in 1974, and the M.S. ni~. pt.
purations, H. T. Kung, B. Sproull. and G. Steele, Eds. Rockville, .7degrees in electrical engineering and c~;
MD: Computer Science Press. 1981. .4& science from the Massa,.husctt lnsir-t,.

191 P. B. Denyer and D. J. Myers, "Carry-save arrays for VLSI signal Technology, Cambridge. in 19-17 and. 1
processing," in VLSI 81 : Very, Large Scale Integration, J. P. Gray, respectively.
Ed. London: Academic, 1981. She subsequently spent a ycir is a \~

1101 R. F. Lyont, "A bit-serial VLSI architecture methodology for sig- Assistant Professor in the Departmcn , u (
nal processing," in I LSI 81: Very Large Scale Integration, J. P. puter Science. Brown Uni~ersit>. Pro~jd.:.
Gray. Ed. London: Academic. 198 1. RI. Since September 1981 she has been an Asistlin Pro? sr I:,

(111 C. Caraiscos and B. Liu, private communicAtion. Department of Electrical Engineering and Computer Scien,.c. P,:jn-
121 -, "Bit serial VLSI implementations of FIR and IIR digital ton University, Princeton. NJ.

filters." in Proc. 1983 Int. Sy- mp. Circuits Syst., May 1983. Dr.ocaiuon isr aomembinr ofacherIy. opuc oac~
1 13] P. Penfield, Jr. and J. Rubinstein, "Signal delay in RC tree net- AscainfrCmuigMciey

works." in Proc. Second California Inst. Technol. ('onf. VLSI,
1981.

114) C. E. Leiserson and J. B. Saxe, "Optimizing synchronous sys-
tems." in Proc. 22nd Ann. Sy-mp. Foundations of Comput. Sci.,
October 28-30, 1981.

~ *~' Kenneth Steiglitz (S'57-%I'64 -SM\'79-r'8 I. .

born in Mleehaiiken. NJ, on January 30.~ 19S .
He received the BEE.., M.F.E.. anti Fnz.S.
degrees from N%!w York Unisersity, Ne'\. Yktl.
NY. in 1959, 1960. and 1963. respecti% el,..

Since Septemnber 1963 he has bcen '%.itl.
Department of Electrical Engineeringa.nd Co~-

Peter R. Cappello (M'83) \%as born in Queens. puter Science. Princetonr Univeisity. Piin'tcn.
NY. on October 18. 1948. He received the B.S. NJ. where he is no" Professor. teachin.c and
degrees in mathematics and in computer science " ,'\ conducting research in the comnputer and s\ s-
from Pennsylvania State University. University tems areas. He is the author of Introduction to

. Park. in 1970. the M.S. degree in electrical engi- Discrete Systems iNew York- \iley. 19'4), and coauthor, with C. 11.
neering and computer science from the Univ er- Papadimitriou, of C'ombinarorial Oprimi:arion: Aligorithims and C-n.
sity of California, Berkeley. in 1973 (while a plexity ' lEngle~kood Cliffs. NJ: Prentice-Will. 198.
member of the Technical Staff of Bell Labora- Dr. Steiglirz has served as a member of !he Digital Sinai Proce irc

- ' tories). and the Ph.D. degree in electrical engi- Committee of the IEEE Acoustics. Speech, and Sional Processinig S,'
o :1 u 'ii f neering and computer science from Princeton ciety, and as an Administrative Committee member and A\uaxdk(hi1:r-

University. Princeton. NJ, in 1982. man of the Society. He is Associate Editor of the journal .Ve~i,curks
Ile is now with the Department of Computer Science, University of He is a member of Eta Kappa Nu. Tau Beta Pi, and Sigma Xi. and r

California. Santa Barbata, CA. 1981 recetved the Technical Achievement Av\.a-d of the ASSP So~ieiN.

if

.0

ap

M 3 Notes

R. E. Cullingford
H. Garcia-Molina

P. Honeyman

R. J. Lipton

0 Department of Electrical Engineering and Computer Science

Princeton University

Princeton, New Jersey 08544

1. Overview

This is a short collection of notes on the latest results from the Massive

Memory Machine (M3) group. Most of the notes concern the magnitude of the

speedup possible with massive amounts of physical memory. We are greatly

encouraged by the results recently obtained, and are of course eager to see a real

M3 in operation soon.

In addition, there is growing industrial interest and support for the M3 con-

cept. As we reported earlier, DEC is very enthusiastic about working with us on

a large memory VAX, as well as on the ESP architecture. Furthermore, our

friends at DEC have just told us that DEC will soon be announcing actual pro-

duct VAX's with 128Mb of memory. While this is not the 256-512Mb we are

planning. it is exciting to see that they are thinking along similar lines.

There are also two new groups that are interested in M 3. The first is a

group at Bell Labs at Murray Hill. They would like to build an M3 to solve cer-

, tain phone company transaction problems that very high speed transaction rates.

These could easily be accomplished on a 1 MIPS M3 ; but would require a huge

number of parallel processors if the data were stored on rotating disks. They are

-2-

working with us on plans for a small prototype.

The second group is at IBM Yorktown. They are quite interested in the

,hole M 3 concept; they found out about M3 by reading our recent IEEE publica-

tion. Ve have just met with Dr. Frank Moss, the project leader, and we are

6 planning a joint two day meeting in a few weeks in Princeton. We hope that

through such meetings we can work out a strategy for formal cooperation.

1.1. PROLOG Studies

PROLOG is widely touted as the language of choice for expert systems

research and development. Consequently, we view PROLOG as a solid basis for

experiments in applications of massive memory. The early returns are most

encouraging: we are discovering general techniques for speeding up PROLO(;

programs, as well as a number of tricks that we can apply in special cir-

cunistances.

1.2. Program Tracing

In order to better understand the data reference patters of memory intensive

programs, we have implemented a software tracing package. It is being used to

study several programs, including the Clay solver, and to predict their running

time on machines of various memory sizes and architectures. The trace package

uses the UNLX debugging facility to interrupt the program under analysis after

each instruction execution. When it is interrupted, the data location(s) being

accessed are recorded.

The main problem with this package is that is slows down program execu-

tion considerably, roughly by a factor of 3000. To alleviate this problem, we are

*, implementing a VAX simulator capable of producing the same trace information.

Preliminary experiments with the simulator indicate that it is 10 times faster

than the original package. Although this still represents substantial overhead,

the new simulator will let us study a wider range of programs.

-3-

1.3. ESP Straw Man Prototype

We have started implementing a preliminary version of a ESP i:,achine. The

goal is not to create an operational system, but to gain experience with the ESP

architecture and to identify some of the practical problems that may arise in a

G full implementation.

We have acquired two 8086-based microprocessor systems. Each CPU talks

to its local memory via a multibus. Each CPU is also connected to a pair of disk

drives. We have designed and wire-wrapped two simple ESP controllers; each

controller sits on one of the multibuses. The controllers are tied together by a

simple broadcast bus. The controllers make no provisions for failures or errors.

We have started debugging the ESP controller hardware, and are only begin-

ning to design the software that will run the machines. Even at this early stage,

our implementation effort has already turned up several important issues that

had been overlooked in the original paper design. These issues include system

startup, I/O and interrupt handling, periodically refreshing dynamic memory.

and queueing data words at each ESP controller; we are now studying these

issues. Some of them can be safely ignored in our prototype (e.g., memory

refresh); to cope with others, we are adding more capabilities to our ESP controll-

ers.

1.4. M 3 Performance on Database Benchmarks

Two recent papers have compared the performance of several database

machines, and we decided to evaluate the performance of an M 3 database

machine on the same queries that were used for the benchmarks. Our prelim-

inary results are given in an attached report.

In summary, our results clearly show that an M3 that can hold all of the

database in fast memory can outperform the database machines considered. The

speedups range from a factor of 7, to a factor of 27,000, depending on the

assumptions made and the sample queries analyzed. These results must of course

be treated with caution. but they do illustrate that memory can be an extremely

useful resource for database applications.

. . . -. . ..-.- .. ,..- . - - . :

1 o I- o . - - .r-

-4-

2. Massive Memory vs. Massive Parallelism
S

2.1. Introduction

A common "folk principle" is that massive parallelism is the only way to

0 vastly speed up computations. In contrast, we will show that there are important

classes of computations which can be greatly sped up only by massive amounts of

physical memory. Thus, for these computations an M3 will vastly outperform

any parallel machine!

0 On the face of it our claim seems absurd. Don't parallel machines always

dominate sequential machines such as an Ms? In order to understand thiq

apparent paradox let us examine the standard argument more carefully. Assume

that some task has an algorithm A that takes time T(A,n) for inputs of length n.

Then potentially p parallel processors can run this algorithm in time T(An)/p.

Of course this is the upper limit on the potential performance of p parallel pro-

cessors; in practice fully linear speed up is rare. However, to make our point

1 about the power of memory over parallel processor even more dramatic, let's

assume that such speedup is always possible.

Since T(A.n) _> T(A.n)/p for any p. how can parallel processors ever lose to

a sequential machine such as M3? The answer is that there may be a new algo-

rithm B for which T(B,n) < T(An)/p for any reasonable p. Moreover, this algo-

rithm may require in an essential way vast amounts of random access memory;

thus. this alg, orithm cannot be executed on the p parallel processors for lack of
I'm physical memory. In this way it is possible for an M 3 to greatly outperform any

collection of parallel processors. Note, we are not saying that memory is always

better than l)roc(Essors, this is false; but then so is the folk principle that parallel

processors are always better than sequential machines. We are simply pointing
P out that there are memory intensive computations that benefit much more from

memory than from processors.

A possible counter to our argument is: why can't the parallel processors have

4 enough space to use the better algorithm? Of course in principle they can. The

key point is that on many inter(,sting prollcms we will not be able to afford both

parallel processors and massive amounts of memory. On problems that

- 5-

fundamentally require memory, not processors, the parallel processors will be

forced to run a slower algorithm, and hence be outperformed by an M 3 .

Ve now demonstrate our claims with two examples from PROLOG. an

important language for a Nvide variety of non-numeric computations. There is

currently an intensive international effort to use parallelism to speed U) PRO-

LOG. It may therefore be interesting to see how massive amounts of memory

can be used to achieve vast speedups in PROLOG.

2.2. Recursion

The first application of memory is conveniently introduced by way of a sim-

pe PIOLOG example:

path([AX][PlYII]) edge(AB).

path([IX].)-) path(X,Y).

path(X.[-IY]) path(X.Y).

(Here edge(.) is some relation that is defined by other rules.) Path(X,Y) checks

the two lists X and Y to see if there is an element in the first list with an edge. to

an element in the second list. Intuitively, we would expect that this process

should take time quadratic in v, the total number of elements. However, on any

standard PIOLOG it takes exponential time, because PIW'LOG repeatedly re-

evaluates subgoals. While there are at most quadratically many subgoals, they

are evaluated exponentially many times.

For those unfamiliar with PROLOG's evaluation scheme, let us examine the

computation of path(XY) in more detail. Here X is a list 1 rk and Y is a

list yi, . . . ,y. with k+l=n. Path(X,Y) is computed as follows:

(1) If, either list is empty then path(X,Y) is false.

* (2) Next. if edge(x l , y,) is true then path(XY) is true.

(3) Finally, if either path(X',Y) or path(X.Y') are true then so is path(X,Y).

Here X' is equal to x,2 k and Y' is equal to y2y.

*, Note, the last part of the computation is the key to the use of repeated subgoals.

The call to path(U'.V) w%-here U is equal to a, . k and V is equal to y,, .

occurs exactly I i 1 21 times.

-6 .- -

Let us now compare the performance of a set of p parallel processors on this

example and an M 3. The p parallel processors take 2 '/p time since the usual

PROLOG implementation checks that many subgoals on this problem. On the

other hand, an M 3 can use the following strategy: cache all subgoals and use

table lookup instead of re-evaluating subgoals. This strategy leads to an alg-o-

rithm that takes order n2 time, since each subgoal is checked exactly once. Thus,

even for modest sized problems (n equal to 40) the number of parallel processors

required to perform as well as the M 3 is on the order of one billion!

A final word about this example: it, is of course always possible to create

examples that make any approach look good. We feel, however, that using

memory to avoid repeated re-evaluation of subgoals is a fundamental technique

to speed up PROLOG. Exponential growth cannot simply be waved away: there

are many natural PROLOG examples that lead to the same combinatorial explo-

sion. A PROLOG machine with a huge memory to cache millions or even billions

of subgoals would be extremely powerful,

2.3. Table Lookup

A second critical use of memory to speed up PROLOG relies on the way the

PROLOG data base is searched. In order to reach a goal PROLOG searches its

rules for the first one that matches the current goal. While there are a number of

ways to speedup this search, the fastest one appears to use large amounts of

extra memory. The idea is simple: in additional to storing the rules, we store

indices (inverted lists) that make the search very fast. With the proper data

structures a constant time search independent of the size of the data base is pos-

sible. Clearly, no number of parallel processors could outperform such an imple-

ment at ion.

We have performed a number of experiments to validate this claim. Our

experiments so far have consisted of comparing the standard implementation of

PROLOG with ones that use the data structures described above. One test pro-

gram is a simple PROLOG program that computes the transitive closure of a

directed graph:

4' . . -

-7-

reach(X,Y) :- edge(X,Y).

reach(X,Y) :- edge(X,Z), reach(Z,Y).

(Again, edge(,) is a relation that is defined by other rules.) Table I contains the

actual results of experiments on a VAX 11/750. The speedups are dramatic: even

* on modest sized graphs we get several orders of magnitude speedup. The reason

fo" these large speedups is that the parallel approach takes order n2/p time and

the memory intensive M 3 approach takes only order n time. Since n reflects the

size of the data base, the potential for speedups large data bases is immense.

Number of Edges Number of Queries PROLOG M3 - PROLOG
(secs) (sees)

78 156 224.3 0.5
60 380 252.1 1.0

100 380 3525.7 1.2
100 870 3700.8 2.8

* 120 1190 18375.8 4.8
100 2450 6450.6 9.8
165 2450 ? 12.2

TABLE 1

Results of comparison of PROLOG and M 3-based PROLOG implementation.

All times in VAX 11/750 seconds.

a

-8-

3. M3 Performance on Certain Database Benchmarks0

In recent papers by Hawthorn and DeWitt [1], and by Hillyer, Shaw, and

Nigam [21, the performance of sev-ral database machines was compared. In this

note, we study the performance of an M 3 database machine on the same queries

* under comparable assumptions.

A M 3 is not a "conventional" database machine, so we must clarify a few

points before starting our comparison. The basic premise of the M3 project is

that fast, semiconductor memory will soon be inexpensive enough so that many

important databases (e.g., dozens of gigabytes) will fit inside main memory.

\Vhen this occurs, it may be more cost effective to build a conventional machine

with a massive memory, rather than building a machine with parallel search ele-

ments but with insufficient memory to hold the entire database. Thus, in our

comparisons we will assume that the database fits within the M3 memory, but it

does not fit in a machine where resources were invested in parallel processing el(-

ments. The memory size / processor speed tradeoffs are discussed in detail in [3].

The query times in [1,2] are divided into query processing (or compiling)

time, the actual database search time, and the time to transmit the answer back

to a host machine. In this note we only study the database search time because

* the other times will be roughly the same in M3 and other database machines.

Furthermore, we compare the M3 only to the NON-VON [2], the fastest of the

database machines.

The M' processor speed plays a very important role in the evaluation. To

be conservative, we assume that the M3 has a 1 MIPS processor. However, at

the end of this note we briefly consider the effect of a 10 MIPS processor, noting

that this value is still very reasonable.

3.1. Query #1

This query is a select over a relation with 1,110 tuples. Each tuple is 127

bytes long. The search key for the select is 12 bytes long. The answer consists
o

of 3 tuples, but only 21 bytes of each one are required for the answer. The

NON-VON search time for this query is between 0.0827 (best case, data on disk)

and 0.1067 (worst case, data also on disk) seconds. (Using the parameters of [2],

.40. , .,.

this is OVIO + BCOM + DAVAC + DROT.)
0 For M 3, the search time depends on the data structures available for the

relation. For a sequential scan, we must examine each of the tuples. Assuming

that it takes 10 machine instructions to examine a tuple (the key is 12 bytes or 4

6 words), this will take 0.011 seconds on a 1 MIPS machine. If a binary tree exists

fo'r the relation (and one of the premises of M3 is that there will be enough

memory to hold auxiliary structures for the important search fields), the time can

be reduced considerably. The search would involve going down the tree (11 levels
0 maximum and 10 instructions to examine each node), and extracting pointers to

the three matching records (20 instructions), for a total of 130 microseconds. If a

hash table exists, we would simply need to hash on the key and extract the

pointers. Assuming 10 instructions per pointer, this would take 30 microseconds.

In summary, comparing against the best NON-VON times, the M3 could

provide anywhere from a 7 fold speedup (sequential search for M 3) to a 2700 fold

speedup (hash table lookup for M3). It is interesting to note that if we assume

that NON-VON has all of the data in memory (which may not be fair since we

a~e giving NON-VON both a large memory and parallel search elements), it still

does not beat an M 3 that uses hashing. In this case, both search times are con-

parable (40 microseconds for NON-VON; 30 for M 3).

3.2. Query #2

The second query is a select of one reLtion, followed by a join of the result

*with a second relation. The first relation contains 282 (52-byte) tuples. The

selectioTI yields 22 tuples. The second relation contains 11,436 (127-byte) tuples.

The join field is 20 bytes long. and 422 tuples are produced by the join. The

NON-VON search times for this query are 0.336 (best case, data on disk) to

0.4667 (worst case, data also on disk) seconds.

The ? 13 search times again depend on the data structures available. If nonle

are available, we must first scan the first relation (282 tuples at 10 instructions

* per tuple). For each of the matching 22 tuples, we must set up a sequential scan

of the second relation (20 instructions, say), and then scan (11,436 tuples at 15

instructions each). (Each check takes 15 and not 10 instructions as we had

. . . .

10-

assumed earlier because the join field is longer.) For each of the resulting 422

* tuples, suppose we perform 10 additional instructions. Adding this up we obtain

about 3.8 million instructions, or 3.8 seconds on a 1 'MIPS machir~e.

However, if we construct a hash table to aid in the join we can reduce this

*, time considerably. If we assume it takes 20 instructions to insert the key of each

tuple of the second relation into a hash table, then 228,720 instructions will build

the table. To check if each of the 22 keys resulting from the select exist in the

table takes only 22 times say 20 instructions. As before, we include 2820 instruc-

* tions to do the initial select, plus 4220 instructions to process the resulting tuples.

This gives us a total search time of 0.24 seconds.

If search structures already exist for the second relation, then of course the

rtime can be further reduced. For example, if a binary tree exists for the join

field, the join involves looking up 22 keys (14 levels of the tree times 15 instruc-

tions at each node). Adding this to the select time and the time to process the

422 results, we get a total search time of 0.012 seconds.

In summary, without auxiliary data structures M 3 will be about 11 times

slower than NON-VON (best time). However, if M3 is allowed to build its data

structures, it can be 1.4 times faster than NON-VON. If the structures are

*already in place, the speedup is greater: 28 times.

3.3. Query #3

The last query examines a relation with 194 (256-byte) tuples. The values in

a given field (encumb., 4 bytes) are to be added for each group of tuples that

match in a second field (acct-fund, 8 bytes). There are 17 unique values of the

acct-fund fields. The NON-VON search times are 0.088 (best case, data on disk)

and 0.11 (worst case) seconds.

On an M3 we would always have to scan the entire relation, i.e., 194 tuples

times say 10 instructions per tuple. The results can be collected by building a

linked list, where each element contains the current sum for a given acct-fund

value. To add each new value, we must scan the list to find the proper record.

Since there will be at most 17 records, a scan will take on the average 9 records.

at say 10 instructions each. Thus, each insertion takes 90 instructions, and this

must be multiplied by the 19-1 tuples that exist. The total time is then 0.019
0 seconds.

Since there are so few records in the linked list of partial sums, changing this

data structure does not bring large improvements. For example, with a B-tree (5

9 levels maximum), each insertion will take roughly 50 instructions, for a total time

ofO.012 seconds.

Comparing these numbers to the NON-VON times, we see that M3 is a fac-

!tor of 4 to 7 times faster on this query.

3.4. Conclusions

Our rough estimates clearly indicate that M3 can provide significant speed-

ups for the sample queries of [1,2]. To summarize the results, we present the fol-

lowi6ng table that gives the M3 speedup (i.e., the NON-VON search time divided

by the M3 search time) for the case where search structures and data are avail-

able in M3 memory, and data is on di .in NON-VON. We also give the

iw

W speedup attainable if the M3 processor ran at 10 MIPS.

M3 Speed!.p

I MIPS Processor 10 MIPS Processor

Query #1 2,700 27,000

Query #2 28 280

Query #3 7 70

As Ilillyer, Shaw, and Nigam [2] state, "There are hazards in attempting to

deduce the relative merit of alternative architectures based on 'paper and pencil'

analysis of performance on a small number of specific problems with specified

data." We certainly agree with them: the results we have presented must be

treated with caution. Hiowever we do feel that they illustrate that memory can

be an extremely useful resource and can provide impressive speedups, even when

- 12-

the competition is a powerful database machine like NON-VON.

References

[1] P. B. Hawthorn and D. J. DeWitt, "Performance Analysis of Alternative

Database Machine Architectures," IEEE Transactions on Software Engineer-

ing, Vol. SE-8, Num. 1, January 1082.

[2] B. K. ItillYer, D. E. Shaw, and A. Nigam, "NON-VON's Performance on

*lP Certain Database Benchmarks," Unpublished Technical Report, Columbia

University, 1984.

[3] H. Garcia-Molina, R. Cullingford, P. Honeyman, and R. Lipton, "The Case

for Massive Memory," Unpublished Technical Report, Princeton University,

1984.

a -

.

FILMED

2-85

* DTIC

