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1. Introduction

Research on planning and problem-solving systems was begun at SRI International in September

1979 under AFOSR sponsorship (SRI Project 8871; Contract No. F49820-79-C-0188). Progress

has been described in detail in four annual reports (1980, 1981, 1982, and 1983). This report

describes the research performed during the past year under AFOSR Contract F49620-79-C-0188.

The research peformed during the first four years of the project is described in a paper which

appeared in the April 1984 issue of the Artificial Intelligence Journal [4].

The main task of this research program is to develop powerful methods of representing,

generating. and executing hierarchical plans that contain parallel actions. Execution involves

-4 monitoring the state of the world and, possibly, replanning if things do not proceed as expected.

Two different approaches to these problems are being pursued under this contract. The first is

heuristic; it involves building an actual computer program that provides a representation from

which it then generates plans. During the past year, the vast majority of the effort on this

project hrv been concentrated on this effort. In particular, execution-monitoring and replanning

capabilities have been developed. The second approach is to investigate the theoretical foundations

of planning. This has not resulted in a program, but has helped formalize the planning problem

and one solution to it.

This report briefly summarizes the research performed in both these areas. Two papers are

enclosed, which provide detailed descriptions of what has been accomplished.

4

2. Execution Monitoring in SIPE

A principal goal of our research in planning and plan execution is the development of a

heuristic system that, can plan an activity and then monitor the execution of that plan. While

logical formalisms seem advantageous for certain types of reasoning (e.g., metaplanning), most

approaches based on logic still suffer from inefficiency because of an inability to control the possible

deductions. A number of researchers (here at SRI, 9anforJd 4 other centers) are exploring
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such approaches, while the heuristic approach used in SIPE is unique and promising.

Over the last few years we have designed and implemented such a system, SIPE, (System for

Interactive Planning and Execution Monitoring) [4]. The basic approach to planning is to work

within the hierarchical-planning paradigm, representing plans in procedural networks - as has been

done in NOAHF [21 and other systems. Several extensions of previous planning systems have been

implemented. including the development of a perspicuous formalism for describing operators and

objects, the use of constraints for the partial description of objects, the creation of mechanisms that

permit concurrent exploration of alternative plans, the incorporation of heuristics for reasoning

ab~out resources, and the creation of mechanisms that make it possible to perform deductions.

This year we have begun using the planning of tasks for a mobile robot as a motivating domain.

This has led to certain additions to the SIPE planning system. During the past year we have

* implemented conditional plans within SIPE, which may cause the plan to wait for information-

gathering actions to he executed. We have also added the ability to represent some types of

uncertainty by permitting predicates and certain variables to be unknown. The deductive capability

of SIPE; has been expanded to be more powerful and to handle these unknowns. These features

are described in more dectail in the enclosed paper by David Wilkins. SIPE also contains "hooks-

for incorporating special-purpose subsystems for geometric modeling or spatial reasoning, things

we (10 not intend to investigate.

During the past year, we have implemented an execution-monitoring and replanning capability

within the SIP~E planning system. This is described in detail in the enclosed paper by David

Wilkins, which is being submitted to the Computational Intelligence Journal. The main features

are briefly summarized here.

Given correct information about unexpected events, SIPE is able to determine how this affects

the plan being executed, and, in many cases, is able to retain most of the original plan by making

E changes in it to avoid problems caused by these unexpected events. It also is capable of shortening

the original plan when serendipitous events occur. It cannot solve difficult problems involving

drastic changes to the expected state of the world, but it does handle many types of small errors

that may happen frequently in a mobile robot domain. The execution-monitoring package does

2
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this without the necessity of planning originally to check for these errors.

The major contributions of this work center around taking advantage of the rich structure of

SIPE's planner and its plans, and the development of a general set of replanning actions that are

used as the basis of an automatic replanner and can be used as the basis of a language for specifying

domain-dependent error-recovery information. The replanner calls the standard planning system

so that it can take advantage of the efficient frame reasoning mechanisms in SIPE to quickly

discover problems and potential fixes, and use the deductive capabilities to provide a reasonable

solution to the truth maintenance problem. The fixes need involve only inserting new goals in

tile plan. since calling the planner as a subroutine will solve these goals in a manner that assures

there will be no conflicts with the rest of the plan. SIPE's execution-monitoring capabilities make

extensiNe -ie of the explicit representation of plan rationale in plans. The problem detector does

not r ,move parts of the original plan unless the parts are actually problematical. SIPE's deductive 5
capability is instrumental in the solution of the truth maintenance problem.

Another important contribution is the development of a general set of six replanning actions,

IiINST.\NTIATE. INSERT, INSERT-CONDITIONAL, RETRY, REDO, and POP-REDO. These

h:Ixe all been imllemented and are described in detail in the enclosed paper. They will form

the basis for a language capable of specifying error-recovery operators, and a general replanning

capability, which has been implemented. These actions provide sufficient power to alter plans in a

way that often retains much of the original plan, (e.g., the REINSTANTIATE action). The general .

replanner attempts to solve all problems that are found.

The major limitations of this research result from the assumption of correct information

about unexpected events. This avoids the hard problems of generating predicates from information

provided by the sensors, deciding how much effort to expend checking facts that may be suspect,

and modeling uncertain or unreliable sensors. These problems are all crucial to providing execution-

monitoring capabilities to a mobile robot, and we hope to address these problems in the future.

3
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3. Theoretical Foundation.

Like most planning systems, SIPE assumes discrete states and makes no provision for more

general statements about, wbat happens during an action. During the past year, we have studied this

problem to determine what general statements one would like to make about wbat happens during

the performance of actions. This has led to the development of a device called a process model,

which is used to represent the observable behavior of an agent in performing an action. This model

is more general than previous models of action, allowing sequencing, selection, nondeterminism, --

iteration. andl parallelism to be represented. This is described in more detail in the enclosed paper

b.% Michael Georgeff 1]. which describes work that was partially supported by this contract.

Theoretical work supported by this project has also looked at the problem of rationality. Most

work on robot planning and problem-solving is done against the background of an implicit, but

tinarticilated theory of rational action. Roughly stated, this theory assumes a rational agent, who

attempts to maintain a state of consistency between his intentions (plans) and his beliefs and goals;

the agent will perform (and intend to perform) those actions he believes will achieve his goals. We

have developed a model of the cognitive agent in which the principle of rationality is formalized andl

studliedl abstractly. The model has immediate value as an analytical tool and a way of integrating

such topics as belief revision, execution monitoring, replanning, and various types of goals (e.g.,

maintenance and preVention) in a common theoretical framework.

During this past year work has focused on several related issues. First, we have looked at

the intention component. of our model more carefully, attempting to formalize suitable semantic

condlit ions on the content of intentions (e.g., that they describe states of affairs the agent believes

he can bring about). Second, we have looked at alternatives to the syntactic realization of beliefsj

as expressions in an internal language so that the closure of beliefs under logical consequence

might be achieved without requiring explicit syntactic deduction. Third, we have made progress in

4 formalizing the Connection between perception and knowledge and are beginning to develop logical

tools for reasoning about the information content of percepts.

4



4. Publications

A paper entitled "Domain-independent Planning: Representation and Plan Generation-, ap-

peared in the Artificial Intelligence Journal in the April 1984 issue [4]. This paper describes all

work on SIPE before the development of the execution monitoring package. A condensed version of

this paper appeared as a long paper in the 1983 Proceedings of the International Joint Conference
on Artificial Intelligence. This project supported the presentation of this paper by David Wilkins

at the conference in Karlsruhe, Germany in August 1983.

This project partially supported the research described in "A Theory of Action for MultiAgent

Planning" by Michael Georgeff, which appeared in the proceedings of the 1984 AAAI Conference

in Austin, Texas. In addition, the enclosed paper, entitled "Monitoring the Execution of Plans in

SIPE", is being submitted to the Computational Intelligence Journal.
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Monitoring the Execution of Plans In SIPE

ByI
David E. Wilkins

Artificial Intelligence Center

SRI International

ABSTRACT

In real-world domains (a mobile robot is used as a motivating example), things do not aI-

ways proceed as planned. Therefore it is important to develop better exec ution-monitoring tech-

* niques and replanning capabilities. This paper describes the execution-monitoring and replanning

capabilities of tbe SIPE planning system. (SIPE assumes that new information to the execution

monitor is in the form of predicates, thus avoiding the difficult problem of how to generate these

predicates from information provided by sensors.) The execution-monitoring module takes ad-

* vantage of the rich structure of SIPE plans (including a description of the plan rationale), and is

intimately connected with the planner, which can be called as a subroutine. The major advantages

* of embedding the replanner within the planning system itself are: 1) The replanning module can

take advantage of the efficient frame reasoning mechanisms in SIPE to quickly discover problems

and potential fixes, 2) The deductive capabilities of SIPE ae used to provide a reasonable solution

to the truth maintenance problem, and 3) The planner can be called as a subroutine to solve

problems after the replanning module has inserted new goals in the plan. Another import ant

contribut ion is the development of a general set of replanning actions that will form the basis for

0 a language capable of specifying error-recovery operators, and a general replanning capability that

has been implemented using these actions.



1. Introduction

A principal goal of our research in planning and plan execution is the development of a

domain-independent, heuristic system that can plan an activity and then monitor the execution of

that plan. Over the last two years we have designed and implemented such a system, SIPE (System

for Interactive Planning and Execution Monitoring).' The basic approach to planning is to work

within the hierarchical-planning paradigm, representing plans in procedural networks - as has been

done in NOAH (21 and other systems. Several extensions of previous planning systems have been

implemented, including the development of a perspicuous formalism for describing operators and I
objects, the use of constraints for the partial description of objects, the creation of mechanisms that

permit concurrent exploration of alternative plans, the incorporation of heuristics for reasoning

about resources, and the creation of mechanisms that make it possible to perform deductions.

Given a description of the world, and a set of operators that it can apply, SIPE can generate

a plan to achieve a goal in the given world. However, in real-world domains, things do not always

proceed as planned. Therefore, it is desirable to develop better execution-monitoring techniques

and better capabilities to replan when things do not go as expected. In complex domains it becomes

- increasingly important to use as much as possible of the old plan, rather than to start all over when

things go wrong.

I This paper describes the execution-monitoring and replanning abilities that have recently been

incorporated into the SIPE system. The particular advantages than can be obtained by the use

of the rich structure in our plan representation are shown, as well as more general problems. The

environment of a mobile robot has been used as a motivating domain in the development of some of

the abilities here, though implementation has been in a general, domain-independent manner. This

document does not describe resources, constraints, plan generation, and other features of SIPE,

nor does it attempt to justify the basic assumptions behind the system. The interested reader is

referred to 15] for this.

The problem we are addressing is the following: given a plan, a world description, and

some appropriate description of an unexpected situation that occurs during execution of the plan,

'The research reported here is supported by Air Force Office of Scientific Research Contract F49020-79-C-
0188.
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tran-rorm the plan, retaining as much of the old plan as is reasonable, into a plan that will still

accomplish the original goal from the current situation. This process can be divided into four

steps - 1) discovering or inputting the information about the current situation, 2) determining the

problems this causes in the plan, if any, (similarly, determining shortcuts that could be taken in

S the plan after Unexpected but helpful events), 3) creating "fixes" that change the old plan, possibly

by deleting part of it and inserting some newly created subplan, and 4) determining whether any

changes made by the above fixes will conflict with remaining parts of the old plan. Steps 2 and 4,

and possibly 3, involve solving a truth maintenance problem since it will be necessary to determine

which aspects of a situation are necessary for later parts of the plan. In SIPE, step 4 becomes part

of step 3 as, only fixes that are guaranteed to work are produced. In addition, serendipitous effects

are used to shorten the original plan in certain cases.

The major contributions of the exec ution-monitori ng and replanning module in SIPE result

*from taking advantage of the system's rich plan representation and from imbedding it within the

planning system itself, rather than implementing it as an independent module. This provides a

number of advantages, of which the most important follow. 1) the replanning module can take

advantage of the efficient frame reasoning mechanisms in SIPE to quickly discover problems and

potential fixes, 2) the deductive capabilities of SIPE are used to provide a reasonable solution to the

I truth maintenance problem, and 3) the planner can be called as a subroutine to solve problems after

the replanning module has inserted new goals in the plan. Another important contribution is the

development of a general set of replanning actions that will form the basis for a language capable

Of specifying error-recovery operators (see Sections 5 and 8). A general replanning capability has

been implemented using these actions.

SIPE assumes that information provided about unexpected events is correct and, to a certain

extent, complete. This assumption avoids many of the hardest problems involved in getting a

planner such as SIPE to control a mobile robot. The difficult problem of how to generate correct

predicates from information provided by the sensors is not addressed. We expect the translation of

the information from the robot's sensors (e.g., the pixels from the camera or the range information

0 from the ultrasound) into the higher-level predicates used by the planner to be crucial to the

3



application of a SIPE-like planner to a mobile robot. We hope to address this problem in tbe near

fut ure.

In a mobile robot domain, it may often be important to spend considerable effort in checking

for other things that might have gone wrong in addition to the unexpected occurrence already

noticed. There is a large tradeoff here a, interpreting visual input of unexpected scenes may be

expensive. The research described here also does not address this problem as it assumes that the

minimum is wrong in accordance with the information that has been given (after taking deductive

operators into account). The problem of uncertain or unreliable sensors or information is largely

unaddressed, except that some predicates and variables may be specified as unknown. What

is discussed here is what to do with new information in the form of predicates (assuming you

have somehow discovered such predicates). Replanning appropriately with such information is a

ne e"',iry part of the overall solution.

Section 2 of this paper describes how plans are represented in SIPE. To describe unexpected

situations, a user (currently a human, but eventually this may be a program controlling and S

interpreting the robot's sensors) can enter arbitrary predicates at any point in the execution or

can specifN certain tbings as unknown. Section 3 describes the details of this process. Once

the description of the unexpected situation has been accumulated, the execution monitor calls a

problem recognizer, described in Section 4, which returns a list of all the problems it detects in

the plan.

In general, recovering from an arbitrary error is a very hard problem. Often very little of the

existing plan can be reused. One can always fall back on solving the original problem in the new

situation, ignoring the plan that was being executed. The replanning part of SIPE, however, tries

to change the old plan, keeping as much of it as possible. Since the general problem is so difficult,

one would not expect very impressive performance from a replanner that did not have domain-

specific information for dealing with errors. For this reason, we have implemented a number of

general replanning actions (i.e., actions that modify a plan in ways that are useful for handling

unexpected situations) in SIPE that can be referenced in a language for providing domain-specific

error-recovery instructions. In many domains, the types of errors that are commonly encountered

4
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Control and Data Flow in SIPE Modules

can be predicted (e.g., the robot arm dropping something it was holding, or missing something it

was trying to grasp). The user can then specify error-recovery operators for these errors, using

SIPE'S replanning actions, to take appropriate action after expected errors.

In addition, SIPE provides a general replanning ability that can be applied in the general

case and when there are no specific instructions. It is given the list of problems found by the

problem recognizer, and tries certain replanning actions in various cases, but will not always find

a solution. The replanning actions are described in Section 5 and the general replanner in Section

6. The general replanner changes the plan so that it will look like an unsolved problem to the

standard planner in SIPE (e.g., by inserting new goals). After the replanner has dealt with all the

problems that were found, then the planner is called on the plan (which now includes unsolved L

goals) and if it produces a new plan, this new plan should correctly solve all the problems that

were found. Section 7 shows examples of the general replanner in operation.

Figure 1 shows the various modules in the SIPE execution-monitoring system. The solid

arrows show which modules call which others. The broken arrows show the flow of data and

information through the system as it replans for an unexpected situation. These arrows are labeled

with a description of the data being passed.
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2. Plans in SIPE

Plans in SIPE are represented as procedural networks 12] with temporal information encoded

in the predecessor and successor links between nodes. The plan rationale is of primary importance

to the execution monitor and is encoded in the network by MAINSTEP links between nodes, and

by the use of PRECONDITION nodes (described below). MAINSTEP links describe how long each

condition that has been achieved must be maintained. A context must also be given to completely

specify a plan, as the network contains choice points from which alternative plans branch. The

types of nodes that occur in plans are described below to the extent necessary for understanding

the execut ion-monit oring capabilities.

SPLIT and JOIN nodes provide for parallel actions. SPLITs have multiple successors and

JOINs have multiple predecessors so that partially ordered plans can be produced. JOIN nodes

ha.e a Parallel-Poetcon dition slot, which specifies the predicates that must all be true in the I

situation represented by the JOIN node. If a JOIN node originally has N predecessors, then there

will be N conjunctions of predicates that must all be true at the JOIN node. (Some branches may

have been linearized so there may be fewer than N predecessors after planning.) It is easier to

record this at the JOIN node (than by having previous nodes point to the JOIN as their purpose),

since a failed parallel-post condition can more easily be retried during execution monitoring if there

is easy access to all parallel- postconditions. The Parallel-Postconclition slot is filled only when the

JOIN is first introduced into the plan - it is not updated as more detailed levels of the hierarchy

are expanded. As long as the highest level predicates are as desired, it is assumed that the lower

level predicates are irrelevant.

COND, ENDCOND, and CONDPATTERN nodes implement conditional plans. COND and

ENDCOND are similar to SPLIT and JOIN, but each successor or the COND begins with a

CONDPATTERN node that determines which successor will be executed.

CHOICE nodes denote branching points in the search space. They have multiple successors, S

but the context selects one of these as being in the current plan. Constraints on variables may be

posted relative to this choicepoint. Thus, if the part of a plan after a CHOICE node is removed, 1
the corresponding choicepoint in the context should also be removed from the context so that

" *..' ' ° . . . . ,' *' -.' , . - . . p', ° ,' ." ' ' . . ' ' *'. . " . ". . -o. ' - . - " ° " ° .. "** .. '



constraints that are no longer valid will be ignored.

GOAL nodes do not occur in final plans as they represent open problems that have not been

solved yet. A GOAL node specifies a predicate that is a goal to achieve but which is not true in

the situation represented by its location in the procedural network. Replanning actions will insert

GOAL nodes in the plan. Each GOAL node has a MAINSTEP slot, which denotes a point later

in the plan that depends on the GOAL. (This describes the rationale for having the GOAL in tbe

plan.) Each goal must be maintained as true until the node which is its MAINSTEP is executed.

A MAINSTEP slot can have the atom PURPOSE as its value, denoting that the given predicate

is tbe main purpose of the plan, and not preparation for some later action.

PHANTOM nodes are similar to GOAL nodes except that they are already true in the situation

represented by their location in the procedural network. They are part of the plan because their

truth must be monitored as the plan is being executed. They also contain MAINSTEP slots.

PROCESS nodes represent actions to be performed during execution of the plan, and also

have MAINSTEP slots as do PHANTOM and GOAL nodes. In a final plan, all PROCESS nodes

will denote primitive actions. (There are also CHOICEPROCESS nodes, which are like PROCESS

nodes except that they have a list of actions, one of which must be performed.)

PRECONDITION nodes provide a list of predicates that must be true in the situation rep-

resented by their location in the procedural network. Operators may specify preconditions tbat

must obtain in the world state before the operator can be applied. The concept of precondition

here differs from its counterpart in some planners, since the system will make no effort to make

the precondition true. A false precondition simply means that the operator is not appropriate.

Conditions that the planner should make true (and therefore backward chain on) can be expressed

as goal or process nodes. This effectively encodes metaknowledge about bow to achieve goals as

SIPE will use any means to solve a goal node, only the operators listed to solve a process node,

and no operators will be tried to solve a PRECONDITION node. Thus, a precondition becoming

false does not mean that it should be made into a goal; rather it means that the whole part of the

plan produced by the operator producing this precondition is invalid. Such nodes help encode the

rat ionale of a plan since they effectively mean that the part of the plan associated with them (see

7
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a) lans at different levels

1b) wedges used by the execution monitor

Figure 2

SIPE Plan Viewed from Different Perspectives

below) was produced on the assumption that the predicates in the precondition are true.

In addition to the "horizontal" MAINSTEP, predecessor, and successor links within one level

of a plan, there are "vertical" links between different levels of the hierarchy. Each node that is

expanded by the application of an operator has descendant links to each node so produced. The

descendant nodes in turn have ancestor links back to the original node one level higher in the

hierarchy. Starting with a node that was expanded by an operator application, a wedge of the

plan is determined by following all its descendant links (in the current context) repeatedly (i.e.,

including descendants of descendants, etc.) to the lowest level. (This definition of wedges is the

8
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same as that used by Sacerdoti in 121.) Figure 2 depicts this graphically, with the large boxes in

part, (b) representing wedges. The node originally expanded by an operator application is called

the top of the wedge. A wedge with its top at a high level in the hierarchy will generally contain

many lower level wedges within it, and the only nodes that can be the tops of wedges are GOAL,

PROCESS, and CHOICEPROCESS nodes.J

Since PRECONDITION nodes are created only when an operator is applied, the part of a

plan associated with a PRECONDITION node can be found by traversing up the ancestor links to -

the point where the precondition first became part of the plan (once inserted, PRECONDITION

nodes are copied down from level to level). The node that was expanded by an operator to create

this precondition is one level higher than where the first PRECONDITION node appears and is

the top of the wedge associated with each of the PRECONDITION nodes that are copied from

th~s first one.

3. The Input of Unexpected Situations

During execution of a plan in SIPE, some person or computer system monitoring the execution

can specify what actions have been performed and what changes have occurred in the domain being

modeled. SIPE permnnently changes its original world model to show the effects of actions that

have already been performed. At any point during execution, the system will accept two types of

information about the domain: 1) an arbitrary predicate whose arguments are pround instances

that is now true, false or unknown, and 2) a local variable name that is now unknown. SIPE first

checks whether the truth values for the new predicates are different from its expectations, and, if

they are, it applies its deductive operators to them to deduce more changed predicates.

It is important to note that the inputting of predicates does not solve the 'pixels to predicates"

problem, which is the crucial problem in using a planner such as SIPE to control the actions of a

robot. This problem involves translating the input of the robot's sensors (e.g., the pixels from the

camera or the range information from the ultrasound) into the higher level predicates used by the

planner. The research described here involves what to do with the predicates once they have been

determined but does not address the question of how to determine them automatically. We hopep



to address this latter problem in the near future.

3.1 Unknowns

Unknowns are a new addition to SIPE as it previously assumed complete knowledge of the

world. Having unknown quantities constitutes a fundamental modification since even the method of

determining whether a predicate is true must be changed. If the truth values of critical predicates

are unknown, the planner will quickly fail since none of the operators will be applicable. (Neither a

negated or an unnegated predicate in a precondition will match an unknown predicate.) Operators

can require predicates to be unknown as part of their precondition, in case there are appropriate

actions to take when things are uncertain. Conditional plans have also been implemented as part

of the exec ut ion-monitori ng package in SIPE, so an operator might produce a plan with an action

to perceive the unknown value, followed by a conditional plan that specifies the correct course of

action for each possible outcome of the perception action. The deductive capabilities have also

been enhanced so that operators can deduce that something is unknown.

The ability to specifly variables as unknown is simply a toot provided by the system that will

hopefully be useful in some domains, and particularly in a mobile robot domain. The idea behind

this tool is that tbhe location of an object may become unknown during execution. Rather than

3 make predicates unknown, which may cause the application of operators to fail, we simply say

that tbe variable representing the location is instantiated to the atom UNKNOWN rather than to

its original location. All predicates with have this variable as an argument may then still match as

if they were true. Thus the system can continue planning as if the location were known. The onlyr restriction is that no action can be executed that uses an unknown variable as an argument. When
such an action is to be executed (e.g., go to LOCATIONI) then the actual instantiation of the

variable must be determined before executing the action (possibly through a perception action).

Note that it would be incorrect to continue planning if the truth values of important predicates

L depended on the instantiation of the location variable. It is the responsibility of the user not to

use this tool (i.e., the unknown variable) if predicates depend on the variable's value. This tool

* may or may not prove useful in practice.
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3.2 Interpreting the input

SIPE assumes that the minimum is wrong in accordance with the information that has been

given (after taking deductive operators into account). Alternatively, we could decide on some basis

(which would have to be provided as part of the domain-specific description) how much effort to

spend with perception actions to see if more than the minimum has gone wrong. For example, it

we are told that (ON A B) is not true when we expected it to be, we might want to look if B is

where we thought it was. As it is, SIPE will just deduce that B is clear (if no other block is on

B) and will not try to execute actions to make further checks about the world. Doing the latter

could be very expensive for a mobile robot without good domain-specific knowledge about what

was worth checking.

The user need not report all predicates that have changed since many of these may be deduced

by SIPE's deductive operators. The system's deductive power has been increased recently (see next

section) so many effects can be deduced from certain critical predicates. There is a problem in

deciding how the unexpected effects interact with the effects of the action that was currently being

executed (e.g., did they happen before, during, or after the expected effects!). Our solution to this

problem is to assume the action took place as expected and to simply insert a "Mother Nature"

action after it that is assumed to bring about the unexpected effects (and things deduced from

them). The system assumes that any effects of the action being executed that did not actually take

place are either provided or can be deduced from the information that is provided. This solution

interfaces cleanly and elegantly with the rest of the planner and avoids having to model how the

unexpected effects might interact with the expected effects.

4. Finding Problems In a Plan

Having just inserted a MOTHER-NATURE node (MN node) in a plan being executed, SIPE

must now determine how the effects of this node affect the remainder of the plan. This involves 0

solving the truth maintenance problem, since it is necessary to know on which facts the remainder

of the plan depended. This is discussed later in this section. Because of the rich information

o content in the plan representation (including the plan rationale), there are only six problems that



must be checked. These are discussed below. All problems in the remainder of the plan are found,

and this list is later given to the general replanner, which attempts to change the plan to solve

these problems.

I - Purpose not achieved. If the MN node negates any of the main effects of the action just

executed, then there is a problem. The main effects must be reachieved.

2 - Pretious phantom, not maintained. SIPE keeps a list of phantom nodes that occur before

the current execution point, and whose MAINSTEP slot specifies a point in the plan that has not

been executed yet. These are phantoms that must be maintained. If the MN node negates any of

these, then there is a problem. The phantoms that are no longer true must be reachieved.

3 - Process node using unknown variable as argument. If a variable has been declared as

unknown, then the first action using it as an argument must be preceded by a perception action

* fir determining the value of the variable (see Section 3).

4 - Future phantoms no longer true. A phantom node after the current execution point may

no longer be true. It must be changed to a GOAL node so that the planner will try to achieve it.

5 - Future precondition no longer true. A PRECONDITION node after the current execution

point may no longer be true. In this case, we do not want to reachieve it, but rather pop up the

hierarchy and perform some alternative action to achieve the goal at that level of the hierarchy.

6 - Parallel-poetcondition not true. All the parallel-postconditions may no longer be true at

a JOIN node. (This could be handled by maintaining phantoms, but is more convenient to handle

separately.) In this case, we must insert a set of parallel goals after the JOIN, one for each untrue

parallel-postcondition. The parallel-postconditions of the new JOIN will be the same as those on

e* the old JOIN.

Note that only the last three problems below require truth maintenance since only they must
know the truth value of predicates in situations after the current execution point. In addition

0to the above problems, possible serendipitous effects are also noticed and included in the list of

problems. If the main effect of some action later in the plan is true before the action is executed,

then that is noted as a possible place to shorten the plan (this is discussed in more detail in the

next section).
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Because of the way plans are encoded in SIPE, these are the only things that need be checked

for determining if a MN node affects the remainder of a plan. It should be noted that this depends 0
upon the fact that processes (actions) are assumed to work whenever their precondition is true

and when all phantoms whose MAINSTEP slot points to the process are true. (All such necessary

conditions should be encoded as either preconditions or goals in any case.) There is currently no

check for loops in case the same error happens repeatedly with the same fix proposed each time.

Various simple checks could easily be added if this were a problem.

4.1 Solution to the Truth Maintenance Problem

SIPE's solution to the truth maintenance problem is based on the efficiency of its deductive

capability. Since it is assumed that processes work as expected whenever their precondition is true

and all phantoms whose MAINSTEP slot points to the process are true, only the deduced effects

need to be checked for their dependence on unexpected effects. (The execution monitor will solve

problems having to do with preconditions and phantoms that are not true).

SIPE's deductive capability was designed to find a good balance between expressiveness and

efficiency. While providing the power of many useful deductions, it nevertheless keeps deduction

under control by severely restricting the deductions that can be made, and by having triggers to

control the application of deductive operators, All deductions that can be made are performed at

the time a node is inserted into the plan. Since deduction is not expensive, the truth maintenance

problem is solved simply by redoing the deductions at each node in the plan after a MN node.

Even this can be avoided in simple cases, because SIPE carries a list of changed predicates as it

goes through the plan, and, if they all become true later in the plan (without any deduced effects

changing in the interim), then the execution monitor need not look at the remainder of the plan

(either for redoing deductions or for finding problems).

S. Replanning Actions

K The six replanning actions described below, REINSTANTIATE, INSERT, INSERT-CONDI-

TION.L. RETRY, REDO, and POP-REDO, have all been implemented in SIPE. These actions

13



provide sufficient power to alter plans in a way that often retains much of the original plan. These

are domain-independent actions, and the intention is to use them as a basis for domain-specific

error-recovery operators in SIPE. They are also used in the general replanner. Both of these uses

are described in more detail in the next section. In all actions below, the context argument merely

specifies the context of the current plan.

The last three actions mentioned below all change the plan so that it will contain unsolved

problems. The intention is that the plan will then later be given to the normal planning module

of SIPE (possibly after a number of these replanning actions have changed the plan). The planner

will then attempt to find a solution which solves all the problems that have been corrected in the

plan. The planner automatically checks whether things it splices into the middle of the plan cause

problems later in the plan so any solution found will be correct. (It does this when copying nodes

* down to the next lower level during planning.)

REINS TA NTL4TE (predicate node contezi)

The action attempts to instantiate a variable differently in order to make the given predicate

true in the situation specified by the given node. This appears to be a commonly useful replanning

action as it might correspond to using a different resource if something has gone wrong with the

one originally employed in the plan, or deciding to return to the screw hopper for another screw

rather than trying to find the one that has just been dropped.

This is done by looping through the arguments of the given predicate and, for each one,

checking if there is another instantiation for it that will make the predicate true. This is cheap

and efficient in SIPE since it merely involves removing the INSTAN constraint on the variable

from the current context (and also from all variables constrained to be the same as this one),

and then calling the normal matcher to determine if the predicate is now true (which will return

possible instantiations). If new instantiations are found, the REINSTANTIATE action checks the

remainder of the plan to see if any parts of it might be affected by the new instantiation. This is

done by a routine similar to tbe problem detector described in Section 4 (in fact, the two share

much of their code). REINSTANTIATE currently accepts new instantiations only if they cause

14



no new problems (see discussion below on tradeoffs). If all new instantiations are rejected, the old

INSTAN constraint is simply replaced.

There are many tradeoffs in writing a replanning action such as this. There are also tradeoffs

in deciding when to apply REINSTANTIATE as it exists, but these are discussed later in the paper.

The implementation described above opts for reinstantiation only when it is likely to be the correct

solution. For example, new instantiations could be accepted even though they cause problems if

these problems are less severe than the problems entailed by keeping the old instantiation. Since

SIPE has no way of comparing the difficulty of two sets of problems, REINSTANTIATE does not

do this.

One could also expend more effort in finding new instantiations. As implemented, this

replanning action will find reinstantiations when only one variable is changed. Some problems

could be solved by reinstantiating a whole set of variables, but this would be more expensive and

perhaps involve a search problem to decide which variables to include in the set. The decision to

try only one variable was made because it appeared powerful enough to be useful. If the ability to

reinstantiate sets of variables appeared useful, it would certainly be tractable to implement.

INSERT (nodel node2)

This action inserts the subplan beginning with nodel (which has been constructed) into the

current plan after node2. All links between the new subplan and the old plan are correctly inserted.

This is used as a subroutine by many of the actions below.

I.'SERT- CONDITION4L (variable node eontezt)

This action is not very interesting, but complements the unknown variable feature, which

may be useful. It simply inserts a conditional around the given node that tests whether the given

variable is known. If it is, the given node is executed next; otherwise a failure node is executed.6 3 I

RETRY (node)

This replanning action is very simple. The given node is assumed to be a phantom node and

it is changed to a goal node so that the planner will see it as unsolved.

15
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*REDO (pred node contezt)

-"This action creates a GOAL node whose goal is the given predicate. It then calls INSERT

to put this new node after the given node in the plan. The planner will see the new node as an

unsolved goal.

POP-REDO (node predicate. contezt)

This is the most complicated of the replanning actions; it is used to remove a hierarchical

wedge from the plan and, in some cases, replace it with a node at the lowest level. This is used

both when a PRECONDITION node is no longer true and another action must be applied at a

higher level, and when there may be a serendipitous unexpected effect. POP-REDO could also be

used to find higher-level goals from which to replan when there are widespread problems causing

the replanning to fail (this is not currently implemented).

In the case of redoing a precondition failure, it is easy to determine the wedge to be removed

since PRECONDITION nodes are copied down from level to level. The top of the wedge to be

removed is the node that was expanded to initially place the given PRECONDITION node (or one

* .of its ancestors that is a PRECONDITION node) in the plan. Actually only the bottom of the

wedge is spliced out of the plan, as planning will continue only from the lowest level. The subplan

that is removed at the lowest level is replaced by a copy of the GOAL or CHOICEPROCESS node

that was at the top of the wedge. (The INSERT replanning action is used for this.) This is seen

as an unsolved goal by the planner, which automatically checks whether expansions of this node

cause problems later in the plan.

There is one further complication involved. Various constraints may have been posted on the

planning variables because of decisions made in the wedge of the plan that has been effectively

removed. Because of SIPE's use of alternative contexts, this is easily solved. A context is a list of

choicepoints, and constraints are posted relative to the choicepoint that forced them to be posted.

Therefore, our problem is solved by removing from the current context all the choicepoints that

occurred in the wedge of the plan that was effectively removed. This new context is given as the

context argument to future planning actions, and no further action need be taken. This results in

0I
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Figure 3
Hierarchical Wedges with a Common Last Action

ignoring exactly those constraints that should be ignored.

The case of serendipitous effects possibly shortening the plan is similar, except that, after the

wedge is removed, no node is inserted. However, in this case it is nontrivial to decide which wedge

to remove. There may be various wedges that are candidates, and, as with REINSTANTIATE,

these candidates may cause problems later in the plan when they are removed. SIPE currently

handles this case in the same way in handles the REINSTANTIATE case. Namely, it removes a

wedge, checks if this causes any problems, and replaces the wedge if there are any problems. Thus

serendipitous effects are taken advantage of only if doing so does not change the rest of the plan.

This is a tradeoff like the one discussed previously.

SIPE also generates only one candidate wedge, and gives up taking advantage of the seren-

dipitous effect if this one does not work. This candidate is generated by following ancestor links

from the given node as long as some main effect of the candidate node is made true by one of the

predicates ir he list of given predicates. The candidate node found in this manner determines

the candidate wedge. The wedge is rejected immediately unless all its main effects are true in the .

given list of predicates.

Figure 3 helps show the idea behind this selection process. Frequently, the last action at one

level of a wedge will achieve the main effect of every level above that. The above selection process

requires that all goals generated at a higher level than the candidate wedge be achieved before the

wedge becomes a candidate, while goals generated at a lower level than the top of the candidate
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wedge need not have been serendipitously achieved. Thus, for wedge 2 to be selected in Figure 3

the serendipitous effects must include the main effects of the top of wedges I and 2, but need say

nothing about the main effects of wedge 3. (It is assumed that, as long as the highest-level goal

is achieved, we do not care about the lower-level goals that were necessary to bring this about.)

The main effects of wedge I must be true, because they will be copied down to be effects of the

top node of wedge 2 in the case when this is the node that achieves these effects.

6. Guiding the Replanning

The replanning actions of the previous section form the basis for a general replanning capability

that has been implemented and for a language capable of specifying domain-specific error-recovery

instructions that has been designed but not implemented. This section describes the automatic

replanner and briefly Outlines the error-recovery operators.

6.1 The General Replanner

Tbe general replanner takes a list of problems from the problem recognizer described in Section

4 as well as possible serendipitous effects, and calls one or more of the replanning actions in Sectir".

5 in an attempt to solve the problem. It first checks that a listed problem is still a problem since

the REINSTANTIATE action may solve many problems at once.

If the problem is a purpose not being achieved, the system tries a REDO, which inserts

the unachieved purpose as a GOAL node after the Mother-Nature node. If the problem is a

previous phantom not being maintained, SIPE first tries REINSTANTIATE and, if that fails, it

calls RETRY. The idea is that, if there is another object around with all the desired properties, then

it would be easier to use that object than to reachieve the desired state with the original object. If a

PROCESS node has an unknown variable as an argument, then INSERT-CONDITIONAL is called.

If a future phantom is no longer true, then RETRY is called. As with maintaining phantoms,

REINSTANTIATE may be more appropriate, but, in both cases, this depends entirely on the

domain so the selection here is arbitrary. For preconditions that are not true, the general replanner

first calls REINSTANTIATE and, if that fails, it calls POP-REDO. If parallel-postconditions are

18

- I



47

not true, the general replanner constructs the appropriate parallel goals to reachieve them and

calls INSERT to place them after the original JOIN node.

One cannot expect very impressive performance from a replanner that does not have domain-

specific information for dealing with errors. For example, whether or not REINSTANTIATE is

likely to succeed will be dependent on the domain. The automatic replanner makes reasonable

guesses at what might be a good choice in the domains on which SIPE has been tested. Since it .

simply chooses a replanning action for each type of problem that is found, it is very simple and

could easily be rewritten for different domains.
]

6.2 Error Recovery Language

\We also plan to extend the operator description language so that instructions for handling

foreseeable errors can be included in operators. The error recovery operators will be in the same

syntax as all other SIPE operators, with some new additions made to this language as described

below. The plots of these operators will include references to the replanning actions in Section

5. SIPE's ability to specify conditional plans in operators can be used to try a second replanning
S

action only if the first fails.

The error-recovery operators will match their argument list to the arguments of the node being

executed so original problem variables can be bound. There are two ways to invoke these operators,

one for general operators that solve problems that have been recognized, and one for more specific

operators that act directly on unexpected predicates. The latter ability seems attractive since it

can avoid a lot of effort when there is good domain-dependent error-recovery information available.

If one of these latter operators matches an unexpected predicate, it may be possible to simply apply

the operator and assume that it will solve any problems caused by the unexpected predicate, thus

shortcircuiting the normal problem detection mechanism.

The general operators will be applied after a MN node is added and problems have been found.

Preconditions of these operators will be matched in the situation specified by the MN node. The

general replanner will apply any general error-recovery operator that matches a given problem (the

matching process is described below) instead of using its default replanning action.
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Nodes in plots of regular operators will be able to specify an ERROR slot that gives names of

* error-recovery operators. The specific error-recovery instructions will be applied immediately after

the input of an unexpected predicate (this will assume the predicate is problematical), but only

'when they are specified in the ERROR slot of the action being executed and match the predicate

that was input (see below).

Like deductive operators, error-recovery operators will have a TRIGGER slot 151 to determine

when they should be applied. The trigger will be a predicate (for specific operators) or a combina-

* -. tion of keywords and predicates, where the keywords refer to the six types of problems. Specific

operators are applied when their trigger matches the predicate that is input ink the situation rep-

resented by the node being executed. General operators will have triggers that match when their

keyword matches the problem being tried and any predicate in the trigger matches the appropriate

* predicates given in tbe problem.

7. Examples

This section presents two examples of SIPE actually monitoring the execution of a simple

plan, and replanning when things do not go as expected. SIPE has been tested on larger and more

complex problems than those presented here. These examples are simple to facilitate comprehen-

sion and to save space. Everything typed by the user is in boldface - nearly everything below is

K generated automatically by the system.

This first problem was constructed to show the successful use of the REINSTANTIATE

replanning action. The problem is to get A on C in parallel with getting any blue block on any

red block. In the initial world BI and B2 are the only blue blocks (they are both on the table)

and R I and R2 are the only red blocks (11i is on 13i and R2 is on the table and clear). Since A

*and C are both clear initially, the planner quickly finds a twa-action plan of putting A on C in

* parallel with putting B2 on R2. While exectuing the moving of A to C, the SIPE is told that D

has suddenly appeared on top of R2. It notices the problem in the parallel branch of the plan and

the general replanner tries REINSTANTIATE, which succeeds. The original plan is retained in its

* entirety and B2 is placed on Ri instead of R2, thus achieving the original goal.
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PROBLEM: PROB8
PARALLEL
BRANCH 1:

GOALS: (ON A C);
BRANCH 2:

GOALS: (ON BLUEBLOCKI REDBLOCKI);
END PARALLEL
END PROBLEM

Plan being executed:
PLANHEAD: P0171
PLANHEAD: World model: (ON A B)(ON B TABLE)(ON C TABLE)(ON D TABLE)(ON E TABLE)
(ON R1 BI )(ON BI TABLE)(ON B2 TABLE)(ON R2 TABLE)(CLEAR RI)(CLEAR R2)(CLEAR B2)
(C LEAR TABLE)(CLEAR A)(CLEAR D)(CLEAR E)(CLEAR C)

SPLIT: C0170
Parallel branch:
SPLIT: C0189

Parallel branch:
PHANTOM: P0194
Goals: (CLEAR C);
Mainstep: P0197;

Parallel branch:
PHANTOM: P0191
Goals: (CLEAR A);
Mainstep: P0197; 3

JOIN: C0190

PROCESS: P0197
Action: PUTON.PRIM;
Effects: (ON A C);
Deduce: (CLEAR B), -(ON A B), -(ON A OBJECT3) OBJECT3 UNIVERSAL, -(CLEAR C);
Mainstep: PURPOSE;

Parallel branch:
SPLIT: C0160

Parallel branch:

PHANTOM: P0165
Goals: (CLEAR R2);
Mainstep: P0168;

Parallel branch:
PHANTOM: P0162

Goals: (CLEAR B2);
Mainstep: P0168;

JOIN: C0161

PROCESS: P0168

21
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Action: PUTON.PRIM;
Effects: (ON B2 R2);
Deduce: -(ON B2 TABLE), -(ON B2 OBJECT3) OBJECT3 UNIVERSAL, -(CLEAR R2);

Mainstep: PURPOSE;

JOIN: C0172

P0197 P0168
PICK ONE OF THE ABOVE NODES TO EXECUTE NEXT (? FOR HELP): P0197

Executing action P0197

Unexpected effect (? for help): (ON D 32)

Unexpected effect (! for help): NIL

Adding deduced predicate: -(ON D TABLE)

Adding deduced predicate: -(ON D OBJECT3) OBJECT3 UNIVERSAL

Adding deduced predicate: -(CLEAR R2)

Problem:
The following predicate negates predicate following it: -(CLEAR R2)

(CLEAR R2)
Causing purpose or following node not to be achieved.

EXECUTED: P0165

Effects: (CLEAR R2);

Mainstep: P0168;

Trying to reinstantiate to make this predicate true: (CLEAR R2)

matching condition: (CLEAR OBJECTI)
(collected I possibilities)

Adding INSTAN constraint: OBJECTI BOUND TO RI

Success, new instantiation: OBJECTI BOUND TO RI

New plan produced for continuing execution:

PLANHEAD: P0171
SPLIT: C0170 

,

Parallel branch:
EXECUTED: P0197

Action: PUTON.PRIM;

Effects: (ON A C);

Deduce: (CLEAR B), -(ON A B), -(ON A OBJECT3) OBJECT3 UNIVERSAL, -(CLEAR C);

EXECUTED: P0350
Action: MOTHER.NATURE;

Effects: (ON D R2);

Deduce: -(ON D TABLE), -(ON D OBJECT3) OBJECT3 UNIVERSAL;

Parallel branch:

PROCESS: P0168
Action: PUTONPRIM;

Effects: (ON B2 RI);

Deduce: -(ON B2 TABLE), -(ON B2 OBJECT3) OBJECT3 UNIVERSAL, -(CLEAR RI);
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JOIN: C0172

Executing action P0168
Unexpected effect (? for help): NL
Goal achieved.

The second problem, shown below, is the same as the first except that the red block is

constrained not to be RI, which will cause REINSTANTIATE to fail. The original plan is the

same and the unexpected situation is the same. This time SIPE tries REINSTANTIATE and it

fails, so it calls RETRY, which causes the (CLEAR R2) phantom to be made into a goal. The

planner solves this to produce a plan that puts D back on the table before B1 is placed on R2. The

original plan is not shown below and the other plans are abbreviated by removing MAINSTEPS,

deductions, and some phantoms.

PROBLEM: PROB7
PARALLEL 

-

BRANCH 1:

GOALS: (ON A C); BRANCH 2:
GOALS: (ON BLUEBLOCKI REDBLOCKI); END PARALLEL

GOAL
ARGUMENTS: BLUEBLOCK2, REDBLOCK2 IS NOT RI;
GOALS: (ON BLUEBLOCK2 REDBLOCK2);
END PROBLEM

P0254 P0224
PICK ONE OF THE ABOVE NODES TO EXECUTE NEXT (? FOR HELP): P0254
Executing action P0254
Unexpected effect (? for help): (ON D R2)
Unexpected effect (? for help): NIL

Adding deduced predicate: -(ON D TABLE)
Adding deduced predicate: -(ON D OBJECT3) OBJECT3 UNIVERSAL
Adding deduced predicate: -(CLEAR R2)

Problem:
The following predicate negates predicate following it: -(CLEAR R2)
(CLEAR R2)
Causing purpose of following node not to be achieved.
EXECUTED: P0221 p
Effects: (CLEAR R2);

Trying to reinstantiate to make this predicate true:
(CLEAR R2)
matching condition: (CLEAR OBJECTI) 23
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Condition fails.
P0221 being reset to COAL for replanning.

initia! problem:
PLANHIEAD: P0227

PLANHEAD: World model: (ON D R12XON A C)CLEAR B)(ON B TABLE)(ON C TABLE) I
(ON E TABLE)(ON RI BI)(ON BI TABLE)(ON B2 TABLE)(ON R2 TABLE)(CLEAR 11i)
(CLEAR 132)(CLEAR TABLEMCLEAR AXCLEAR D)(CLEAR, E)

SPLIT: C0226
Parallel branch:
SPLIT: C0246

Parallel branch:
EXECUTED: P0251 Goals: (CLEAR C);
Parallel branch:
EXECUTED: P0248 Goals: (CLEAR A);

JOIN: C0247
EXECUTED: P0254
Action: PUTONPRIM;
Effects: (ON A C);
EXECUTED: P036
Action: MOTHER.NATURE;
Effects: (ON D 112);
Parallel branch:
SPLIT: C0216

Parallel branch:
GOAL: P0221 Goals: (CLEAR R2);

Parallel branch:
EXECUTED: P0218 Effects: (CLEAR A2);

JOIN: C0217

PROCESS: P0224
Action: PUTON.PRIM;
Effects: (ON B2 R2);

JIOIN: C0228

planner succeeds

Plan being executed-.
SPLIT: C0448

Parallel branch:

SPLIT: C0483
Parallel branch:
EXECUTED: P0488 Goals: (CLEAR C);

Parallel branch:
EXECUTED: P0482 Goals: (CLEAR A);

JOIN: C0485

24
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EXECUTED: P0485 Action: PUTON.PRIM;
Effects: (ON A C);
EXECUTED: P0487 Action: MOTHER-NATURE;
Effects: (ON D R2);

Parallel branch:
SPLIT: C0446

Parallel branch:
EXECUTED: P0489 Goals: (CLEAR B2);

Parallel branch:
SPLIT: C0435

Parallel branch:
PHANTOM: P0440 Goals: (CLEAR TABLE);

Parallel branch:
PHANTOM: P0437 Goals: (CLEAR D);

JOIN: C0436

PROCESS: P0443 Action: PUTONPRIM;
Effects: (ON D TABLE); i
Deduce: (CLEAR R2), -(ON D R2), -(ON D OBJECT3) OBJECT3 UNIVERSAL;

PHANTOM: P0450 Goals: (CLEAR R2);

JOIN: C0451

PROCESS: P0452 Action: PUTON.PRIM;
Effects: (ON B2 R2);

* . JOIN: C0453

PI-LANTOM: P0454 Goals: (ON B2 R2);

Executing action P0443

Unexpected effect (? for help): NIL
Executing action P0452
Unexpected effect (? for help): NIL
Goal achieved.

S. Comparison to other systems
hI!

There is very little previous work in this area since most domain-independent planning systems

do not address the questions of execution monitoring and replanning (e.g., NONLIN [3] and

DEVISER [41). Hayes [1] and Sacerdoti [21 have addressed this problem. The approaches used

in both these systems were considerably simpler and less powerful than SIPE. NOAH did not even

allow the input of arbitrary predicates, so the general replanning problem never arose. It did
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permit the user to specify that whole wedges had been executed at once, and did allow the node

just executed to be planned for again if it failed. This essentially provides one limited replanning

action that is useful only in very specific situations.

Hayes's system does allow the input of some information about unexpected situations. It is

not clear what types of information can be provided, but it appears less general than the arbitrary

predicates accepted by SIPE. The system's only replanning action is to delete part of the plan.

This permits the planner to reachieve higher-level goals, but they must be the same higher-level

goals that were already present in the plan. The system deletes everything that depended on any

effect of a decision that is no longer valid. This will, in general, be wasteful since much of the

plan may be unnecessarily removed. If only one of many effects of an action has failed, subplans

depending on the effects that did not fail do not need to be deleted. SIPE would find problems

with such subplans...
S

SIPE provides a much more powerful replanning capability than either of these systems. It

allows input of arbitrary predicates, computes how these affect the rest of the plan (and only finds

problems that really are problematical), and uses a large number of replanning actions (including

REINSTANTIATE) to fix problems in ways that allow much of the original plan to be maintained.

9. Summary and Limitations

Given correct information about unexpected events, SIPE is able to determine how this affects .

the plan being executed, and, in many cases, is able to retain most of the original plan by making

changes in it to avoid problems caused by these unexpected events. It also is capable of shortening

the original plan when serendipitous events occur. It cannot solve difficult problems involving

drastic changes to the expected state of the world, but it does handle many types of small errors

that may happen frequently in a mobile robot domain. The execution-mningackad es

this without the necessity of planning originally to check for these errors.

The major contributions of this work center around taking advantage of the rich structure of

SIPE's planner and its plans, and the development of a general set of replanning actions that are

u-4ed as the basis of an automatic replanner and can be used as the basis of a language for specifying
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domain-dependent error-recovery information. The replanner calls the standard planning system

I Itso that it can take advantage of the efficient frame-reasoning mechanisms in SIPE to quickly

discover problems and potential fixes, and use the deductive capabilities to provide a reasonable

solution to the truth maintenance problem. The fixes need involve only inserting new goals in

the plan, since calling the planner as a subroutine will solve these goals in a manner that assures

there will be no conflicts with the rest of the plan. SIPE's execution-monitoring capabilities make

extensive use of the explicit representation of plan rationale in plans. The problem detector makes

uses of the information encoded in MAINSTEP slots, phantoms, and preconditions to quickly find

all the problems with a plan. Furthermore, it does not remove parts of the original plan unless the

parts are actually problematical. SIPE's deductive capability is instrumental in the solution of the

truth maintenance problem. The replanning actions make use of constraints, alternative contexts,

and wedges in SIPE whenever they consider removing part of the plan.

Another important contribution is the development of a general set of replanning actions that

will form the basis for a language capable of specifying enfor-recovery operators, and a general

replanning capability that has been implemented using these actions. These actions provide

sufficient power to alter plans in a way that often retains much of the original plan. (e.g.. the

REINSTANTIATE action). The general replanner attempts to solve all problems that are found.

It is unlikely to be very successful without being tuned for particular domains. The design of

the language for error-recovery operators allows for both operators that will handle very specific

situations and operators that will give more general advice to the replanner.

The major limitations of this research result from the assumption of correct information

_* about unexpected events. This avoids the hard problems of generating predicates from information

provided by the sensors, deciding how much effort to expend checking facts that may be suspect,

and modeling uncertain or unreliable sensors. These problems are all crucial to providing execution-

monituring capabilities to a mobile robot and must yet be addressed.
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A Theory of Action for MultiAgent Planning

Michael Georgeff
Artificial Intelligence Center

SRI International
333 Ravenswood Ave.

Menlo Park, California 94025.

Abstract in synthesizing or verifying multiagent plans.

In a previous paper [51, we proposed a method for form-
A theory of action suitable for reasoning about events ing synchronized plans that allowed multiple agents to a-

in multiagent or dynamically changing environments is pre- chieve multiple goals, given a simple model of the manner in
sented. A device called a process model is used to represent which the actions of one agent interact with those of other
the observable behavior of an agent in performing an ac- agents. In this paper, we propose a more general model
tion. This model is more general than previous models of of action, and show how it can be used in the synthesis or
action, allowing sequencing, selection, nondeterminism, it- verification of multiagent plans and concurrent programs.
eration. and parallelism to be represented. It is shown how
this model can be utilized in synthesizing plans and rea-
soning about concurrency. In particular, conditions are de- 2. Process Models and Actions
rived for determining whether or not concurrent actions are

* free from mutual interference. It is also indicated how this Agents are machines or beings that act in a world. We
theory provides a basis for understanding and reasoning distinguish between the internal workings of an agent and
about action sentences in both natural and programming the external world that affects, and is affected by, that
languages. agent. All that can be observed is the external world. At

any given instant, the world is in a particular world state,
which can be described by specifying conditions that are

1. Introduction true of that state.

Let us assume that the world develops through time by
If intelligent agents are to act rationally, they need to undergoing discretechanges of state. Some of these changes

be able to reason about the effects of their actions. Fur- are caused by agents acting in the world; others occur "nat-
thermore, if the environment is dynamic, or includes other urally," perhaps as a result of previous state changes. Ac-
agents, they need to reason about the interaction between tions and events are considered to be composed of prim-
their actions and events in the environment, and must be itive objects called atomic transitions. An atomic transi-
able to synchronize their activities to achieve their goals. tion is a relation on the set of world states. Any sequence

Most previous work in action planning has assumed a of states resulting from the application of some specified

single agent acting in a static world. In such cases, it is suf- atomic transitions will be called an event. Note that we do

ficient to represent actions as state change operators (e.g., not require that atomic transitions be deterministic, but we
[4). [91). However, as in the study of the semantics of pro-
gramming languages, the interpretation of actions as func- An action is a class of events; viewed intuitively, those
tions or relations breaks down when multiple actions can that result from the activity of some agent or agents in

* be performed concurrently. The problem is that, to reason accomplishing some goal (including the achievement of de-
about the effects of concurrent actions, we need to know sired conditions, the maintenance of desired invariants, the
how the actions are performed, not just their final effects. prevention of other events, etc.)

Some attempts have recently been made to provide a In carrying out or performing an action, an agent forces

better underlying theory for actions. McDermott [10 con- some sequence of atomic transitions in the world. For every
siders an action or event to be a set of sequences of states, action the agent is capable of performing, there will corre-

* and describes a temporal logic for reasoning about such ac- spond some internal structure that specifies just how and
tions and events. Allen [1 also considers an action to be a under what conditions these atomic transitions are to be
set of sequences of states, and specifies an action by giving made.

the relationships among the intervals over which the ac-
tion's conditions and effects are assumed to hold. However, 'Allen 121 proposes a method for forming multiagent plans that is based

while it is possible to state arbitrary properties of actions on his representation of actions. However, he does not use the tem.
poral logic directly, and actions ane restricted to a particularly simple

and events, it is not obvious how one could use these logics form (e.g.. they do not include conditionals).
2
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Usually we do not have access to this internal structure. el = (us,, cl) directl; generates a state of execution et -
However, since we are interested only in the observable be- (uss:, c2), denoted el >A C2 , if either
havior of the agent, we do not need to know the internal 1. 3tr. 6(c,tr) = c2 and (81,82) E tr, or
processes that govern the agent's actions. Thus, to rea-
son about how the agent acts in the world and how these 2. ca = c:
actions interact with events in the world, we need only an In (1) we say that the transition is effected by the agent ex-
abstract model that explains the observable behavior of the ecuting , while in (2) we say that the transition is effected

agent. by the environment.

We shall specify the class of possible and observable be- We now define a restriction on the relation b,. If,
haviors of an agent when it performs an action by means for el and e. defined above, el A e2 and 82 E P(c 2 ), we
of a device called a process model. A process model con- say that el successfully generates e2, denoted el =* e:. If
sists of a number of internal states called control points. At
any moment in time, ezecution can be at any one of these P(c2 ), execution is said to fail.
control points. Associated with each control point is a cr- Let denote the reflexive transitive closure of the

rectness condition that specifies the allowable states of the relation . Then the action generated by A, denoted a5 ,

world at that control point, is defined to be

The manner in which the device performs an action is
described by a partial function, called the process control
function, which, for a given control point and given atomic a4= {b I (s, ca) (b, o) and a 6 P(c,))
transition, determines the next control point. A process
model can thus be viewed as a finite-state transition graph Each element of a, is called a behavior or act of A. The
whose nodes are control points and whose arcs are labeled action a itself is the set of all behaviors resulting from the
with atomic transitions. execution of A.

A process model for an action stands in the same re- Viewed intuitively, the device works as follows. If it is at
lationship to the internal workings of an agent and events control point c1 and the world is in a state a, satisfying the
in the external world as a grammar for a natural language correctness condition P(c1 ), the device can pass to control
bears to the internal linguistic structures of a speaker and point c2 and the world to state s: as long as there exists an
the language that is spoken. That is, it models the observ- applicable atomic transition tr between states a, and #I and
able behavior of the agent, without our claiming that the 6(cl, tr) = c2. Alternatively, the device can stay at control
agent actually possesses or uses such a model to generate point c, and some transition or event occur in the world
behaviors. (perhaps resulting from the action of some other agent). In S

either case, for the execution to be successful (not to fail),

3. Formal Definition the new world state must satisfy the correctness condition
at c2, i.e., s: must be an element of P(c,).

A process model describes an action open to an agent. In performing the action a, the device starts at control

Formally. a process model is a seven-tuple point cl. The action terminates when the device reaches

A = (S, F, C, 6, P, cl, cF) where CF. Given an initial state of the world a, various sequences
of world states can be generated by the process model as it

* S is a set of world states passis from the initial to the final control point. The set of

* F : SXS is a set of atomic transitions all such sequences constitute the action itself.

* C is a set of control points This is the same general view of action as presented

* 6 : C X F - C is a process control function by Allen [I] and McDermott [01. However, our theory
differs in that it allows us to distinguish between transitions

e P : C - 2s associates subsets of S with each control effected by the agent and those effected by the external
point; values of this function are called correctness world. This is particularly important in the synthesis and
conditions verification of multiagent plans and concurrent program

a c, E C is the initial control point (e.g., [3)).

cF E C is the final control point. Note that we do not require that a state satisfying the
In general, 6 is a partial function. If for a control point correctness condition at a control point be in the domain
Sand atomieranis rial nction . o isinthedoainl of 6of some atomic transition applicable at that control point.

c and atomic transition tr, (c, tr) is in the domain of 6, we Thus, it is possible for the agent to arrive at an intermediate
say that tr is applicable at c. control point and not to be able to immediately effect a

We are now in a position to define the execution of a further transition. In such cases, the environment must
process model. Let A be a process model as defined above, change before the action can progress. This could occur, for
We first define a state of ezecution of A to be a pair (u, c), example, if an agent nailing two boards together expected
where 2 c E C and u S*. We say that a state of execution another to help by holding the boards. Only when the

"holder" (who is part of the environment) has provided the
IS' is the set of al finite sequences over S. necessary assistance (and moved the state of the world into S

3 4
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the domain of an applicable transition) can the "nailer" It is not difficult to show that the action a generated
proceed with the action. by A, 11 A: is exactly {z n yI z E a, and y E a2 ).

Neither do we require that an atomic transition per- Note that the projection of 6 onto C, and C gives ex-
formed by an agent always be successful i.e., the transition actly the control function for the component process mod-
could sometimes leave the agent in a state that violated els. At any moment, each component is at one of its own
the current correctness condition. A process model that al- control points; the pair of control points, taken together,
lowed such transitions could sometimes fail. In most cases, represents the current control point of the parallel process.
this is undesirable (though it may be unavoidable), and for Furthermore, the behaviors generated by these two pro-
the rest of the paper we will assume that this cannot hap- cesses running in parallel are also generated by each of them
pen. That is, we will assume that only the environment (or running separately. This means that any property of the
another agent) can cause an action to fail. behaviors of the independent processes can be used to de-

It should also be noted that the correctness conditions termine the effect of the actions running in parallel. This
say nothing about termination - it may be that an action is particularly important in providing a compositional logic
never reaches completion. This can be the case if the action for reasoning about such actions (see [31).
is waiting for a condition to be satisfied by the environment The above model of parallel execution is an interleav-
(so that a transition can be effected), it loops forever, or ing model. Such a model is adequate for representing al-
the environment is unfair (i.e., does not give the action a most all concurrent systems. The reason is that, in almost
chance to execute). all cases, it is possible to decompose actions into more and

In many cases, we wish to model actions that proceed more atomic transitions until the interleaving of transitions
at an undetermined rate and fail if they are ever forced to models the system's concurrency accurately. The nondeter-
suspend execution. For example, it is difficult to hit a golf ministic form of the interleaving means that we make no as-
ball if the environment is allowed to remove and replace the sumption about the relative speeds of the actions. We can
ball at arbitrary times during one's swing. Such uninter- also define a parallel composition operator that is based on

0 ruptable actions require that, for any control point c, any communication models of parallel action, in which commu-
state that satisfies the correctness condition at c also be in nication acts are allowed to take place aimultancoualy. This,
the domain of some atomic transition applicable at c. together with other composition operators, is described by

me elsewhere [6].

4. Composition of Actions -
5. Freedom from Interference

A plan or program for an agent is a syntactic object
consisting of primitive operations combined by construc. In plan synthesis and verification it is important to be
tions that represent sequencing, nondeterministic choice, able to determine whether or not concurrent actions inter-
iteration, forks and joins, etc. If we intend the denotations fere with one another. In the previous section we defined
of such plans to be process models, we need some means of what it meant for two actions (strictly speaking, process
combining the latter in a way that reflects the composition models) to run in parallel. Now we have to determine
operators in plans. whether execution of such a parallel process model could

Of special interest, and indeed the motivation behind fail because of interaction between the two component pro-
the model presented here, is the parallel-composition oper. cesses.

ator. We define this below. Consider, then, two actions a and 0 generated by pro-
Let A, = (S. Ft, Ci, 61, P,, Cn, cFr) and A. = cess models A and B, respectively. The process model cor-

(S, F2, C2 , b:, P2 , c,2 , cF2) be two process models for actions responding to these actions being performed in parallel is
a, and ca:, respectively. Then we define a process model A i B. In analysing this model, however, we will view it in

representing the parallel composition of A, and A2, denoted terms of its two component process models (i.e., A and 8).

A, 11 A2, to be the process model (S, F, C, 6, P, ct, ep), where Assume that we are at control points et in A and e2 in D,
and that tr is an atomic transition applicable at c3. Clearly," F = F, u F2 if the process has not failed, the current world state must

" C = C1 X C2  satisfy both P(cl) and P(c:). Now assume that process

" For all c, E C1, c2 E C2 and tr in F, B continues by executing the atomic transition tr. This
b( (cl, c_), 1r) = (61 (Cl, tr), C2) transition will take us to a new world state, while leaving

us at the same control point within A. From A's point of

" For all c, E Ca, c2 E C2 and tr in F, view, this new state must still satisfy the condition P(a,).
6(c,.c 2 ),tr) = (c,,6 2(c,lr)) Thus, we can conclude that the transition itr executed at

" For all e, C C, and e2 C C2, control point c2 will not cause A to fail at c, if the following

P(cI, C2)) = P,(c,) n P2( 2  condition holds:

* a, = (c,,, c,2)

6~* C F = (cr2,c,) Vs, s2 . s1 E P(cl)nP(c:) and (s,, s2) E tr implies s2 E P(cl)

6
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with . (puon B ABLE

We say that the transition tr at control point c: does not Plan for agent Y:
interfere uith A if the above condition holds at all control
points in A, i.e., for all correctness conditions associated {(clear P) and (clear C))
with A. (puton B TABLE) 4

{(on B TABLE) and (clear C))
We are now in a position to define freedom from in- if (on C FLOOR) then

terference. A set of process models A1,.... A. is said to be (PUTON C TABLE)
interferencee-free 3 if the following holds for each process A,,: {(on B TABLE) and not (on C FLOOR))
for all control points c in A, and all transitions Ir applicable
at c and for all j,j i, tr at c does not interfere with Ai. It is clear from the definition given above that these ac-

Thus, if some set of actions is interference-free, none can tions are interference-free. However, they interact in quite
be caused to fail because of interaction with the others. Of a complex manner. In some circumstances, agent Y will put
course, any of the actions could fail as a result of interaction block C on the table, which would seem to suggest interfer-
with the environment. ence. Nevertheless, interference freedom is assured because

From this it follows that, for ascertaining freedom from the only time that Y can do this is when it does not matter,
interference, it is sufficient to represent the functioning of i.e., before X has attempted to put C on the shelf. Note
a device by that if the test and action parts of the "ifr statement were

1. A set of correctness conditions, and separate atomic transitions, rather than a single one, then

the actions would not be free from interference.
2. A set of atomic transitions restricted to the correct.

ness condition of the node from which they exit.

Knowledge of a process model's structure (i.e., the pro. 6. General Reasoning about Actions
cess control function), is unnecessary for this purpose. In
a distributed system, this means that an agent need only So far we have been interested solely in reasoning about
make known the foregoing information to enable it to in- possible interference among actions. For many applica-
teract safely with other agents. We call such information a tions, we may wish to reason more generally about actions.
reduced specification of the action. One way to do this is to construct a logic suitable for rea-

Let us consider the following example. Blocks A, B and soning about process models and the behaviors they gener.
C are currently on the floor. We wish to get blocks A and B ate. That is, we let process models serve as interpretations
on a table, and block C on a shelf, and have two agents, X for plans or programs in the logic. An interesting compo-

and Y, for achieving this goal. Agent X has not got access sitional temporal logic has been developed by Barringer et

to block B, but can place block A on the table and block C a131. Because it is compositional, process models provide

on the shelf. He therefore forms a plan for doing so. Agent a natural interpretation for the logic.

Y cannot reach block A, but is happy to help with block On,' may well ask what role process models play, given
B. Unfortunately, in doing so, he insists that the floor be that the only observables are sequences of world states and
clear of block C at the completion of his action. that a suitable temporal logic, per se, is adequate for de-

The plans for agent X and Y are given below. The scribing such sequences. However, in planning to achieve

correctness conditions at each control point in the plans some goal, or synthesizing a program, we are required to

are shown in braces, "" and ")c. The "if" statement is do more than just describe an action in an arbitrary way
asued on be brealiedby tw atomic tranitis. The ftis - we must somehow form an object that allows us to chooseassumed to be realizedby two atomic transitions. The first our net action (or atomic transition) purely on the basis
of these is applicable when block C is on the floor, and o urent ction ati t ition p ey o the
results in block C being placed on the table. The second of the current execution state, without any need for further

is applicable when block C is not on the floor, and does reasoning.
nothing (i.e., is a no-op). The process models corresponding We could do this by producing a temporal assertion
to these plans should be self-evident, about the action from which, at any moment of time, we

Plan for agent X: could directly ascertain the next operation to perform (e.g.,
a formula consisting of appropriately nested "next" opera-

((clear A) and (clear C)) tors). Thus, in a pure temporal logic formalism, plan syn-
(puton A TABLE) thesis would require finding an approriately structured tem-
{(on A TABLE) and (clear C)) poral formula from which it was possible to deduce satis-
(puton C SHELF) faction of the plan specification. However, instead of view-
((on A TABLE) and (on C SHELF)) ing planning syntactically (i.e., as finding temporal formu-

las with certain structural properties), it is preferable, and
more intuitive, to have a model (such as a process model)
that explicitly represents the denotation of a plan or pro.
gram (see 16]).

3This definition of the notionProcess models serve other purposes also. For example
trary transitions that used by Owicki and Gries[ll for verifi coo.

current programs. Synchronization primitives have not been included interference freedom is easily determined, given a process
explicitly, but can be handled by conditional atomic transitions i81. model, but it is less clear how this could be achieved ef-
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The theory is based on a device called a process model,
which is used to represent the observable behavior of an
agent in performing an action. It was shown how this model
can be utilized for reasoning about multiagent plans and
concurrent programs. In particular, a parallel-composition
operator was defined, and conditions for determining free-
dom from interference for concurrent actions were derived.
The use of process models as interpretations of temporal
logics suitable for reasoning about plans and programs was
also indicated.
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