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NOMENCLATURE

c static pressure coefficient

p

c total head
PO
F reduced vorticity - defined by Eq. (3)

G perturbation stream function - defined by Eq. (2)

H derivative of G with respect to n - see Eq. (29)

ZG spline derivative approximation of G

H __

I£H spline derivative approximation of _-H

N number of nodes in the E-direction

(Nb) number of nodes on the body

N number of nodes in the n-direction

r radial coordinate

rb body radiusu velocity component in x-direction

v velocity component in r-direction j

x axial coordinate

vorticity magnitude

transformed coordinate along body and centerline

ni transformed coordinate away from body and centerline

* stream function

angle of tangent to body surface

e meridian angle

All other quantities are defined in the text.
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I. Introduction

The traditional approach to solving the axisymmetric strong interaction

problem is the displacement body method of which numerous exampl~s have

appeared in the literature [1-31. In this procedure the boundary-layer dis-

placement thickness is added to the body to obtain the strong interaction

pressure distribution. Since the displacement thickness depends on knowing

the pressure distribution iteration is required to find the solution. In

the direct mode (pressure distribution given) the boundary layer solution

inevitably produces a displacement thickness which has numerical noise in

the strong interaction region. This "noise" is then amplified into pressure

wiggles in the potential flow solution. Thus to obtain convergence of the

solution, numerical smoothing of the pressure distribution is required between

each iteration. This process usually requires intervention by the use- and

is difficult to automate. A variation of the displacement body method is to

solve the boundary-layer portion in the inverse mode which results in a

numerical smoothing effect. An example of this approach is the work by

Carter and Wornom [4]. Whether this approach can be truly automated remains

to be seen.

An alternate method of treating the strong interaction problem is through

the frozen vorticity approximation. Geller [5] has used this approach to

solve for the velocity profile development in the tail region of a body of

revolution. In his procedure a local body oriented cartesian coordinate

system is used and 3v/x is neglected in the vorticity. As a result the

velocity profile at a given body station is obtained by solving an ordinary

differential equation. He matches the inviscid rotational profile with a

one-seventh power law turbulent boundary layer representation valid in the

6-7
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law-of-the-wall region. Geller states that the reason for the success of

his method is that the dominant mechanism in such a flow is the radial

contraction of the material vortex filaments as they approach the tail.

In other words, the pressure distribution in the strong interaction region

is primarily controlled by the vorticity in the outer portion of the

boundary layer where usually the diffusion length is much greater than the

strong interaction length.

This report presents a frozen vorticity treatment of the axisymmetric

strong interaction problem but differs from that of Geller in two respects --

first, a Poisson equation is solved for the rotational flow field and second,

no matching is performed close to the wall. Instead, a slip velocity is

allowed at the surface which necessarily must exist because the viscous terms

have been dropped. Also, the frozen vorticity solution is used only to

obtain the strong interaction pressure distribution.

The main reason for choosing the frozen vorticity approach is to achieve

a high degree of automation and thus to produce an easy to use code. This

objective is achieved by considerable commonality in the computational grids

used in the potential and frozen vorticity flow fields. In addition, the

boundary layer solution uses the same streamwise step size distribution as

the potential and frozen vorticity solutions. This commonality together

with computer generated data files allows the method to be as user

independent as possible.

6!
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II. Analysis

Equation of Motion

In cylindrical coordinates, (x,r,e) where a/3e 0 (axial symmetry)

inviscid potential or rotational flow is governed by the equation [6]

1 2
G + G - G - r2F(p) , (1)xx rr r r

where a lower case subscript denotes partial differentiation, G is the

perturbation stream function defined by

1 2 (2)

and F is the reduced vorticity related to the vorticity C by

= rF(p) . (3)

The quantity F is uniquely determined by the upstream boundary condition.

For potential flow F - 0.

A body fitted coordinate system is introduced by the following general

transformation:
x x( ,n) , r =  r( ,n) ,(4)

where the coordinates ( ,n) may or may not be orthogonal. Transforming to

( ,n) coordinates, Eq. (1) becomes

GTi - AGn - 2BGn + CB + DG =-E , (5)

where

* A -- T [(J8) - (JY) + -- 1 (6)

8
B -=-- (7)

* C , (8)

Jyn rx1 [(=)-(J8) +-

-**-. '..
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2.
E F ,(10)

2.

and

J Jacobian (x r - x r-(11)

2 2 (a=x n + r n  (12) "

X Exn + rEr , (13) p

2 2 (14)

Body-Fitted Coordinates

To produce suitable body-fitted coordinates an analytically defined

C-grid is used, as illustrated in Fig. 1, consisting of three regions.

The transformations are as follows:

(I) Orthogonal wrap-around grid, 0 "
IM

x Xb(E) - n sin *(E) (15)bP

r rb( ) + TI cos *( ) (16)

where Xb, rb and * as well as E and n are defined in Fig. 2.

(II) Sheared grid, .

dx = cos ( )dg (17)

r = r ( ) + n * (18)

We note that for Regions I and II to be compatible the junction must occur

at the maximum body diameter.

4j

IP
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(III) Cartesian grid, % • R

x =(19)

r •(20)

The metric coefficients x x , etc. are obtained analytically from

Eqs. (15) through (20).

Potential Flow Boundary Conditions

For the potential flow case Dirichlet boundary conditions are specified

on the four sides of the computational domain consisting of Regions I, II and

III. On the stagnation line (left boundary) 4f=0 and hence

G(O,n) = 0 , 0 4 n 4 nu (21)

Since the body and wake are part of the same streamline as the stagnation

line, the condition 41=0 holds which leads to

1 2
- Ir b  0 , (22a)

2b &G(E,0)=

0 T R * (22b)

At the outflow plane (right boundary) the flow is assumed to be uniform and

parallel, the same as the free stream, and hence

G(ER,n) = 0 , 0 • n < TJ . (23)

Finally, the outer boundary is assumed far enough removed from the body so

that free-stream conditions prevail. Thus

G(E,nu) = 0 0 4 R• (24)

Frozen Vorticity Boundary Conditions

In the frozen vorticity case the computational domain consists of part

of Region II and all of Region III. The boundary conditions on n - 0 and

n nU are the same as in the potential flow case. On the left or inflow

.............................................
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boundary the stream function and vorticity are specified as a composite of the

potential flow and boundary-layer solutions, viz.

G(EVT) -GC(11) '
) 0 < n u  • (25)

F(Cg ,n) F (W)J
FV C

On the outflow plane (right boundary) parallel flow is assumed, as in the

potential flow case, which leads to

Cp(ER'n) = 0 , (26)

plus the following quadrature relation between r and t:

I udr2 on C 0 < n (27)
0

where from Bernoulli's equation and Eq. (26)

u = cCp) (28)

The numerical details of evaluating the inflow and outflow boundary conditions

will be given later.

Numerical Algorithm

The main features of the numerical method used to solve the potential

flow/frozen vorticity equation are as follows:

(1) The transformed vorticity equation, Eq. (5), is written as a first-

order system.

(2) A fourth-order accurate spline, S1(4,O) is used in the n direction to

resolve the vortical layer with as few nodal points as possible.

(3) Second-order accurate finite difference formulas are used in the

E-direction.

- * *- ' .>i - " --., - . . " ' " . " - " " " - .- ." -" - *" ' . * . - > - -.. -* - . * - . *- " . . . - * - " - . - .: . . . - . -
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(4) A nonuniform grid in and n is generated by the use of stretching

functions.

(5) The resulting system of algebraic equations is solved by SLOR sweeping in

the &-direction.

To write Eq. (5) as a first-order system we define the following

auxiliary variable:

H = G . (29)

Then Eq. (5) may be written

H - AH - 2BH + CG + DG & E . (30)

The next step is the definition of the following spline first derivatives:

=Gn , (31)

£ =H . (32)

Then the governing equations, (29) and (30), become

G
X - 0 , (33)

and

H AH -2BH + CG + DG + E 0 (34)

The finite difference expressions used for the c-derivatives are those given

by Blottner [71 for a nonuniform grid, namely

G G

(G* Gi+lj - , (35)
ij i+1 i-i

and

* i-)-= - i-i i+1 '  iJ Gi'j - Gi-l.J] I.36
2 ii+l) 2Ii - i i-I(3

plus an expression similar to Eq. (35) for (H ) . The & discretization of

Eq. (34) leads to the following expression for unknowns at point (ij):

* . LI
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H
I -a b iG -Ri'j (37)

where

a.f 2 ( 1i+l1 (38)i]a ai'j +i~ - iI-_ iI )C i 'j  (38)

b. A (39)
"-.. ij

and

2C 2Ci,)
[i 2i D- + i i-1,j)G K++,-]Ri E i+l - i-I Ei - &i-I i'j)i-' I I i+l i + D '

2B

+ i'j (H - H  )-E . (40)

The unknowns at node point (ij) are G, I H and £H. Therefore to

complete the system two spline relations are needed. The governing equation

has been written in first-order form so that the same spline relation,

S (4,0), can be used twice. We therefore have (i subscript understood).

+ a2  1 + BB i  + (I + a) + cci + + x 1 0 (41)

where 0 denotes G or H, and

2
2a (2 + a) (42)

j Anj -(1 + a)

BB. - 2(1 - )(1 + a)2  (43)
j An I a

cc 2(1 + 2a) (44)
An (1 + )a

* 0and

- "-j -(45)

* " *",

- _ _ . . . . . . . : . • : . . .. .. . , .. • + .



-14- 14 September 1984
GH{: hz

A Tfl -n (46)S
J j+1 j

The number of unknowns at node point (i,j) is reduced from four to two by

*spline relations. The following two tridiagonal relations are thus obtained:

AA Gi,-1 + a2HijI.G + (I1 + 0) Hi

+ cc.iG i +1 =H0 (47)
j i~j+1 i,j+1

and

a2a G,,~ + (AM+ a 2 b 2 a G4

I -i-~+[BB + 1i+ a) bi ]Hi j + aij G +C~b~+ ~~

2 2
=-a Ri.i 0 ( + a) Ri~ - Ri~~ (48)

By defining the two-component column vector

*Eqs. (47) and (48) may be written as the following tridiagonal matrix

equation:

Bi~~,.. + Ai Zi~ + Ci~~~~ Di ~ 2 4 j 4 N (50)

*where the 2 x 2 matrix elements A, B and C and the two-component column

*vector D are obtained from Eqs. (47) and (48).

The boundary conditions plus a two point spline relation at each

*boundary are used to close the system of equations on line i. The boundary

* conditions are
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1 2

GiI= (51)

and

G =0 . (52)i ,N+ 1

The two-point spline relation used here is Eq. (16) of Ref. 8 which in the

present context is

A A1A2 2
G 1 H - 1  H +ILH - 0 (53)

i,2 i,l 2 i,l 2 i,2 12 i,2 12 ,1 '

and

AnNA A
G -G - H T NH +NLH - A 0o (54)i,N+I i,N 2 i,N 2 i,N+1 12 i,N+l 12 i,N

Equations (53) and (54) are fifth-order accurate in An. and were found to3

yield more accurate results on a model problem [Eqs. (47) and (48) with

constant coefficients] than two-point relations of lower accuracy. Upon

elimination of 9H using Eq. (34) the following matrix equations result at the

boundaries:

A * AAi'1i'i, + C i'lZi,2  Di, 1  (55)

and

Bi,N+lzi,N + AiN+lZi,N+l DiN+l  (56)

The singularity at the tail point and on the centerline requires special

considerations. As can be seen, Eq. (5) at r = 0 reduces to G= 0. This

condition replaces spline relation (53) and is written as

H -0Hi, I 1

.*.** •-* -*. . .*. .. p~ . * . . - - • . -. % -

• ., ~, . , o " . * qj . . . -
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A special form of Eq. (48) for j 2 is also necessary because b is

singular at n 0. Thus Eq. (37) cannot be used to eliminate H Instead,
i,1"H

the two-point spline relation Eq. (53) is solved for I which upon

substitution into Eq. (47) yields,

1202 6+A)H + 1 2 a2 + [a2 + + o)2]aiG
i 2 ni , 2  i,2 1,2

2
+ {BB - + [02 + (1 + a) 2 ]b IH + a G

2 An1  i,2 1,2 1,3 1,3

2 2+ (CC3 + bi, 3 )Hi, 3  - [a (1 + F)]Ri,2 - R, 3  . (58)

Along any line i = constant the set of block tridiagonal equations (50),

(55) and (56) is solved by L-U decomposition using case (i) of Ref. 9.

Map Junction Lines

At map junction lines Eq. (37) is modified to account for the

discontinuity in the metric coefficients using the generalized Chmielewski-

Hoffman method of Ref. 10. The author has found that ignoring these

discontinuities leads to errors as large as 37 percent in the potential

flow pressure coefficient.

In the C-H method each adjoining domain is extended one step into the

other to form a line of fictitious nodes. Then the vorticity equation,

Eq. (5), is written in the left and right regions at the junction. Coupled

with a condition on smoothness of derivatives across the Junction, a single

spline-finite difference (SFD) equation can be derived on the Junction line

which accounts for the discontinuity in the metric coefficients.

07
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The numerical strategy used here to derive the SFD junction equation is

as follows:

(1) The step size in the c-direction is assumed to be constant on either side

of the junction thus simplifying the algebra.

(2) Central differences are used E-derivatives of G using the fictitious

* nodal values.

(3) One-sided differences are used for H thus avoiding the necessity of

fictitious nodal values for H.

The governing equation at the map junction for the left and right regions

* may be written as
" . £H _ A( H - 2B(L)H2.) ( C () ( .D()) -E (  59

(2.) (1) c CX) (. + C EM (59)

S£H - A (r)H - 2B(r)H(r) + C (r) (r) + (r) G (60)

where superscripts . and r denote the left and right regions respectively.

The smoothness condition merely requires x-derivatives on either side of the

junction to be continuous. This condition translates to

(Jy)C.)GC. -(3y .)( C)G Cr) . [(JyE)2) _ jy,)Cr) 1  *()

Performing the discretization, as outlined above, leads to an equation of

the same form as Eq. (37) but with the following coefficients:

2 )(Jy ),)L(r) + C (r )?n j )(r YC6

i 2 C +, n i" ii n

a "[ iJ (62)

& 2 [(J (2 ) r ) (r) + (y(r rC )

0(r) - (jy, ( )] (X) (r)•+ i .1i (63)
ii-. A 2[( ,(£).(r) + (jy )(r).£

" a~~~nJiy u , iJXJ

• ,I .
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and

C(L)(Jy )(X)L.(r)G + C(r)(jy )(r)L(t)G
R- 2 [i,j , i,j i-,j i,j i i,j i,j i+1,J]

i~j A2 L(jy )()L(r) + (y )(r)L(l)

B (Jy L ,_~ - B r(JY L H

2 i~ n Yi J iJ i~ i J ij ij +j

L ) .) (r) (r) (r
EZ) ((Z) L(r) +E(r) (r) L

i~~~~i ~ nijj j LJ L1Ei~ (JYn~ijLi,, +, Ei~ (JYn)i~jL 1 j

2 (4) (r) (r) (2.) (64)
AE [(JYnIi,jLi j + (JYn)i,jLi,j]

where

L( Z) = C(2) + . D)a , (65)
i,j ij 2 i,j 

5

(r) (fi C (2)
Li - D").~ (66)Li~j 1,3 2 i ij"

Calculation of Inflow and Outflow Conditions

For the frozen vorticity case the conditions on the inflow boundary are

all important in determining the solution. As already mentioned these

conditions are a composite of the potential flow and boundary-layer solutions

at the initial line. This composite is calculated as follows:

(1) The total head in the boundary layer, c , in the law-of-the-wall region
p0

has been observed to have a nearly constant derivative. Thus at the beginning

of this constant derivative region, usually around y+ 120, the total head

is extrapolated linearly to the wall yielding (cp )w.

(2) Knowing (cp0)w, a corresponding wall slip velocity is computed from

Bernoulli's equation. The x-component of this slip velocity is

* .. -. -.

. . .
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uw -cos *w[(Cp) -c ]11 2 (67)
W~.

where c is the wall static pressure. The x-component of velocity in thew

extrapolated region, 0 4 y y ext is computed from a quadratic polynomial

since uW as well as uxt and (u.) are known.
Y ext

We note that the extrapolation of (cP0)w, as given in Step (1), will
WS

guarantee a realistic wake solution since (C P)w > 0 and far downstream 
in

the wake the centerline velocity is given by

u(x,0) = 1(cp)OW

(3) The modified boundary-layer velocity profile (with wall slip) and 
total

head profile are then merged smoothly with their potential flow counterparts.

In the case of the velocity profile the merging occurs smoothly and 
S

naturally. In the case of the total head profile the merging point is taken

where c in the boundary layer just becomes unity. The total head in thePo

boundary layer as y increases will exceed unity because the y-component of

velocity continues to increase.

(4) With u known on the inflow boundary, denoted by uFV, the stream function

is determined by numerical integration of

_'V (ru) •

The integration is carried out using the trapezoidal rule formula:
[ (AX~~~FV)j1+ ),(8.

'*FV + 4 (U +ju_ (68)

i-i1 -I

" -1. "
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where
Xf r2  (69)

AX = A - X(70)
j j i-I

The perburbation stream function GFV is then calculated from

G 12 (71)
FV ~FV. 2 j=j . -j

(5) With (cp0 )FV known, the reduced vorticity distribution, FFV(r), is

determined from

1 a(cP 0 )FV (72)
FFV 2ru ar

where the derivative of (cpo) with respect to r is calculated using a

three-point unequal spacing finite difference formula.

The procedure described above is preferable to that of Ref. 6 because

fewer approximations are made. Here the only altering of the profile is in

the "slip layer" for y+ < 120.

The outflow stream function distribution *R is also calculated using

the trapezoidal rule, viz.

-1
*Rj ff *Rj_ 4 (u,,j_ 1 

+ UR'3) '(3

where uR depend on *R through Eq. (28). Thus for each integration step

iteration is required to determine iR during which uR is allowed to lag one

cycle. The foregoing procedure is much simpler and produces results almost

as accurate as solving for @R from a two-point boundary value problem using

spline discretization.

*

* " . " " " " - - - - . -7 -"- ' .i -. - " " " " " " " " " " " ' '
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111. Result ,

Computer Codes

The main advantage of the frozen vorticity approach to the axisymmetric

strong interaction problem over its competitors is the high degree of

automation possible thus making its use relatively painless. Two computer

programs are involved in the calculation and the key to the automation is

the communication of these codes with each other through automatically

generated data files. The two codes are:

AXFL02 - Performs potential flow/frozen vorticity calculations

using the method given in Section II of this report.

BL20 -- Performs boundary-layer calculations using the Keller

Box method in conjunction with the improved algebraic

turbulence model for axisymmetric bodies given in

Ref. 11.

The steps in a frozen vorticity strong interaction calculation are as

follows:

(1) Using AXFL02 in the potential flow mode a body pressure distribution is

generated. Two data files are created, one for BL20 containing the pressure

distribution and body curve fit, and the other for AXFL02 (frozen vorticity

mode) containing the potential flow profile on the initial line.

(2) BL20 is run next to obtain a boundary-layer solution using the potential

flow pressure distribution from AXFL02. A data file is created for AXFL02

which contains the boundary-layer profile on the initial line. To obtain

profiles of u and c in cylindrical coordinates a double interpolation

P0
procedure is performed.
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(3) AXFL02 is now run in the frozen vorticity mode to compute the modified

body pressure distribution in the strong interaction region. The program uses

the two initial profile data files created previously and forms a composite

profile following the procedure described in Section II.

At the present time AXFL02 can handle only two mapped regions on the

body, as shown in Fig. 1. Thus bodies with cylindrical mid sections and flat

noses which require more than two regions for proper definition are excluded.

Grid Point Distributions

A nonuniform point distribution in C and n is generated using one-

dimensional stretching functions. In the i-direction, a two-sided Vinokur

distribution [121 is used on each body segment whereas a geometric

progression is used in the wake. The g distribution must satisfy the

requirement that AE on either side of the map junctions is the same. In

the n-direction a one-sided Vinokur stretching function is used. The %

stretching functions of Vinokur were chosen because they produce a grid

with a uniform truncation error independent of the governing differential

equation or difference algorithm.

Although the same C distribution is used in the potential and frozen

vorticity calculations, the n distributions differ considerably. In the

frozen vorticity case for proper resolution about a third of the grid

points must be placed in the thin vortical layer which is the same thickness

as the boundary layer. To do this requires a rapidly expanding grid in n

since typically nU - 2 which is the main reason splines were chosen to

approximate flow derivatives in n rather than finite differences.

6' -. .' '. " : . . . -i- - " , . . , - ' . , ., i .• . - . - , -.i "' - j
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Body Curve Fit

An accurate body curve fit, a prerequisite in obtaining an accurate

potential, boundary layer and frozen vorticity solution, is achieved as

follows: With the body shape rb(x) given either analytically or discretely,

the corresponding arc length distribution is computed using the spline

*formula

hh
2

ui_1 + u 1 2 '. i-) (72)

where the two cases that must be considered are shown in the following table:

case range u m h

x = x(r) r' >1 (I + x'21/2 x'X'' Ar
b b u b

1 / 2 b b
rb = rb (x) 0 4 r' 4 1 r' 2b

Table 1. Body Arc Length Parameters.

The first case, x = x(rb), is appropriate in the nose region of a blunt-nose

body. The quantities x', x'', r' and r" required in the calculation are
bb

computed using a cubic parametric slope spline.

Since mi depends on Ei, Eq. (72) must be solved at each step by

iteration. Convergence is very rapid usually requiring about four cycles.

* The use of Eq. (72) will produce a distribution accurate to about four

decimal places thus assuring that the derivatives required in the mapping

are accurate and smooth. Sample calculations have shown that Eq. (72)

produces a E distribution three to four times more accurate than the chord

formula in regions where r' is large and changing rapidly. Once is known

= . ° . ... b



-24- 14 September 1984
GHH:lhz

for the input distribution, then the various derivatives of rb for the

desired distribution are determined by parametric spline interpolation.

In determining due/d& for the boundary-layer calculation, an uneven three-

point difference formula is used because it has been found to produce fewer

wiggles than a cubic spline.

Numerical Solutions

The same two bodies are used as test cases in this report as were used

in Ref. 6, namely, the F-57 low-drag body of Parsons and Goodson [131 and the

modified spheroid of Patel et al. [14]. Their choice was dictated by the

high quality of experimental data available for each.

The grid parameters used in the SFD solutions are given for the

potential flow and frozen vorticity cases in Tables 2 and 3.

F-57 and Spheroid

xR 2.1

2.0

N 55

(Nb) 35

N 21
T1

AnI  0.01119

Table 2. Potential Flow Solution Grid Parameters.



-25- 14 September 1984
GHH:lhz

F-57 F-57 Spheroid

xFV 0.756 0.707 0.785

XR 2.1 2.1 2.1

2.0 2.0 2.0

N 28 29 28

(Nb) 8 9 8

N 41 41 41

AnI  0.00055 0.00055 0.00055

Table 3. Frozen Vorticity Solution Grid Parameters.

A relaxation factor of 1.0 was used on G throughout whereas the

relaxation factor on ZG ranged between 0.7 and 0.8. Under-relaxation on

was found necessary to prevent divergence of the calculation.

L Convergence was considered accomplished when the absolute maximum change

in H was less than 10- 5 which in both potential flow and frozen vorticity

runs occurred between Ill and 127 iterations (note that the number of

grid points in each case was nearly the same, approximately 1150).

Typical CPU times on a VAX 11/782 computer using double precision

arithmetic were between two and three minutes.

Boundary-layer solutions, as already mentioned, used the same

spacing as the potential flow calculations plus from 30 to 50 points

nonuniformly spaced in the normal direction. Typical CPU times were

about 45 seconds.

! .... . ..
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To determine how accurate the SFD potential flow solutions were on a

55 x 21 grid, the Douglas-Neumann program with 80-90 surface points was used

as the standard. Comparisons of body pressure distributions for the F-57

and modified spheroid are shown in Figs. 3 and 4. Except for a slight

difference near the nose of the F-57. the results are indistinguishable.

A typical composite initial velocity profile for the frozen vorticity

calculation is shown in Fig. 5, in this case for the F-57 at xFV = 0.756.

The corresponding composite total head profile is shown in Fig. 6 and clearly

exhibits the nearly linear region. the beginning of which is extrapolated

to the wall. The slight overshoot of c at the edge of the boundary layer
P0

is also shown.

The one disadvantage of the frozen vorticity approach is that the user

must have some idea where to begin the calculation, i.e., where to choose

xFV. Experience has shown that at Reynolds numbers of approximately 106

(the range for the F-57 and modified spheroid) that the strong interaction

region begins at about 75 percent of the chord back from the nose. Thus

the question naturally arises as to how dependent is the solution on the

choice of xFV. To partially answer this question two locations were chosen

for xFV (0.707 and 0.756) for the F-57 solutions. Figure 7 gives the

* comparison of body pressure coefficient for these two values of xFV. The

maximum difference in cp between the two solutions is 0.0009 at x0  0.81,

or about 6 percent.

One effect evident in Fig. 7 is the upswing in cp at the tail which is

caused by the numerical scheme attempting to simulate a stagnation point.

This effect is of course absent in the displacement body method because the *

*i

. . -. .. -,
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displacement body does not have a rear stagnation point. To eliminate the

rear stagnation point in the frozea vorticity solution a cusped tail fairing

was arbitrarily added to the last step on the body and the first step in the

wake. This fairing was taken to be a fourth-order polynomial for which r''

was continuous. The total length of the fairing was adjusted to force r"

to zero at the junction with the wake.

Using the tail fairing approximation frozen vorticity solutions were

obtained for the two test cases. The results for body pressure distribution

are presented in Fig. 10 for the F-57 (xFV = 0.756) and in Fig. 11 for the

modified spheroid (xFV = 0.785). Comparisons with published experimental

data are given in each figure. For the F-57 overall agreement is excellent.

The modified spheroid also agrees well with experiment up to x of about

0.95. Beyond this point the prediction is too high with a maximum error

occurring at the pressure peak (x - 0.98) of some 25 percent. This dis-

agreement is probably attributable to the 22.4 degree tail angle which would

make the tail fairing fairly critical. In the F-57 case, the tail angle is

only 5.1 degrees, almost a cusp.

II

,I

6!
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IV. Concluding Remarks

For the two test cases examined in this report the present axisymmetric

frozen vorticity procedure has been found to give pressure distributions in

the strong interaction region of acceptable accuracy. The method has the

advantage over its displacement body rival that it can be highly automated

and requires only three passes to obtain the final results -- a potential

flow solution, a boundary-layer solution and a frozen vorticity solution.

On the other hand, the frozen vorticity method suffers from the disadvantage

of requiring prior knowledge of where the strong interaction region begins.

It also requires a cusped fairing to be placed on the tail of the body to

prevent the occurrence of a rear stagnation point. With regard to

sensitivity to the location of the frozen vorticity initial line, preliminary

results show an error of six percent in cp with a five percent shift in

initial line location. The code as it presently exists is restricted to

smooth bodies which can be described by two segments.

*%
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Figure 5. Initial Velocity Profile for Frozen Vorticity Calculation,
F-57 Body.
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Figure 6. Initial Total Head Profile for Frozen Vorticity Calculation,
F-57 Body.
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Figure 7. Effect on Pressure Distribution of Initial Plane Location,
* * F-57 Body.
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