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The recent introduction of the theory of "viscosity solutions" of
nonlinear first-order partial differential equations - which we will call
Hamilton-Jacobi equations or HJE's here - has stimulated a very strong o.a-

development of the existence and uniqueness theory of HJE's as well as a
revitalization and perfection of the theory concerning the interaction between
HJE's and the diverse areas in which they arise. The areas of application
include the calculus of variations, control theory and differential games.

This paper is the first of a series by the authors concerning the
theoretical foundations of a corresponding program in infinite dimensional
spaces. The basic question of what the appropriate notion of a viscosity L
solution should be in an infinite dimensional space is answered in spaces with
the Radon-Nikodym property by observing that the finite dimensional
characterization may be used essentially unchanged. Technical difficulties
which arise in attempting to work with this definition because bounded
continuous functions on balls in infinite dimensional spaces need not have -
maxima are dispatched with the aid of the variational principle which states
that maxima do exist upon perturbation by an arbitrarily small linear
functional.fi asic estimates of maximum principle type are used to show that
solutions of' 9JE's in infinite dimensions are not only unique, but depend
continuously on the equation in a manner which is crucial for the,
corresponding existence theory.
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Hamilton-Jacobi Equations in Infinite Dimensions, Part Is

Uniqueness of Viscosity Solutions

Michael G. Crandall* and Pierre-Louis Lions**

Introduction.

This paper is the first of a series devoted to the study of Hamilton-

Jacobi equations in infinite dimensional spaces. To pose a typical problem,

we consider a (real) Banach space V, its dual space V , and solutions of an

equation

(HJ) H(x,u,Du) - 0 in 9

set in a subset 0 of V. In (HJ), H:V x R x V + R is continuous and Du stands

for the Frfchet derivative of u. Thus a classical solution u of (HJ) in 0 is

a continuously (Frtchet) differentiable function u:12 + R such that

H(x,u(x),Du(x)) n 0 for x k 11. In particular, we will prove that under

appropriate conditions classical solutions of (HJ) are uniquely determined by

their boundary values. However, global classical solutions of fully nonlinear

first order partial differential equations are rare even in finite dimensional

spaces, and we introduce an appropriate weakened notion below for which the

uniqueness results are still valid.

There are various reasons to study (HJ). First of all, this is the form

of the basic partial differential equations satisfied by value functions

arising in deterministic control problems, deterministic differential games,

and the calculus of variations. A simple example is u(x) - (xi (the norm of x
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in V), which is nothing but the length of the shortest path from x to 0 and

which is a classical solution of IDul - I in V\{o provided the norm of V is

differentiable on V\{O). For more complex control problems the reader may

consult Barbu and Da Prato [1], while relations between control problems, the

calculus of variations and Hamilton-Jacobi equations in finite dimensions are

recalled in P. L. Lions (131.

A second impetus for the current work lies in the simple desire to

contribute to the understanding of nonlinear partial differential equations in

infinite dimensional spaces. At stake (eventually) are not only the various

dynamic programming equations (also called Bellman, Hamilton-Jacobi-Bellman

and Isaacs equations, depending on the problem considered), but also the

equations associated with filtering or control of finite dimensional

stochastic systems under partial observation.

The remark concerning the differentiability of u(x) - jxj above brings

into focus the fact that geometrical properties of V will play a role in the

theory. In particular, questions related to the existence of an equivalent

norm on V which is differentiable on V\O} are relevant to the theory in

infinite dimensions. However, in what follows, we partly obscure this fact by

including various assumptions of this sort that we need in the assumptions

concerning the Hamiltonian H. The outstanding explicit geometrical assumption

made on V in most of the presentation is that V has the Radon-Nikodym property

(i.e., "V is RN"). For example, reflexive spaces and separable dual spaces

are RN. The Radon-Nikodym property is important for us because if V is RN, (p

is a bounded and lower semicontinuous real-valued function on a closed ball B

in V and C > 0, then there is an element x of V* of norm at most C such that

q" + x attains its minimum on B. This fact is proved in Ekeland and Lebourg

(101 under more severe restrictions on V (which are probably met in most
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applications of our results) and in full generality in Stegall (16]. See also

Bourgain [2].

Our main goal here will be to use this fact to show that the naive

extension of the notion of viscosity solutions to Banach spaces succeeds in

spaces with the Radon-Nikodym property. That is, the basic comparison (and

therefore uniqueness) theorems remain valid. Other papers in this series will

concern relations with control theory and differential games, existence

theorems and uniqueness of other classes of unbounded viscosity solutions.

Indeed, existence in Hilbert (and more general spaces) is established in

M. G. Crandall and P. L. Lions (6] by use of the relationship between

differential games and viscosity solutions.

In the next section we briefly give a definition of viscosity solutions

of (HJ) and prove some uniqueness results. The comparison results in infinite

dimensions will be given in a natural generality which is new even in finite

dimensions. In particular, we give the first complete formulation and proof

under assumptions which which are invariant under nice changes of the

independent variable. This generality and the basic outline of proof has been

evolving in the papers Crandall and Lions [4], [5], Crandall, Evans and Lions

(3], and Ishii [11], (12]. However, the proofs must be modified since bounded

continuous functions on closed balls in infinite dimensional spaces do not

have maxima in general. This difficulty is overcome here by use of the

variational principle mentioned above. We would like to thank N. Ghoussoub

for bringing this result to our attention. This allowed us to simplify a

preliminary version of this paper which was based on a more complex notion of

viscosity solution than that given here and Ekeland's principle [9]. However,

-°not every Banach space is RN, so this more complex notion may prove

significant in later developments. It is therefore presented in an

-3-
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appendix. One can equally well prove uniqueness results using it. However,

we have choosen not to do so here because the theory (which is already getting

technical) becomes less attractive and it is not yet clear if there will be

either an accompanying existence theory or applications sufficient to justify

this degradation of the presentation.

Finally, let us recall that the basic theory of Hamilton-Jacobi equations

in finite dimensional spaces is now fairly well understood via the notion of

viscosity solutions (recalled below). This notion is given various equivalent

forms in M. G. Crandall and P. L. Lions [4], where the fundamental uniqueness

theorems were first proved. The uniqueness proofs below correspond to the

modified arguments given in M. G. Crandall, L. C. Evans and P. L. Lions (3] as

sharpened in the various papers mentioned above, and the relevance to control

theory was exhibited by P. L. Lions in [141 using the dynamic programming

principle. See M. G. Crandall and P. E. Souganidis (8] for a more extensive

resume and bibliography of recent work in finite dimensions.

The only previous work concerning viscosity solutions of Hamilton-Jacobi

, equations in infinite dimensions of which we are aware is by R. Jensen (verbal

communication). Jensen, working in Hilbert spaces, uses the notion of a

viscosity solution on a closed set and compactness assumptions to obtain the

* existence of extrema.

-4-
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Section I. Viscosity Solutions and Comparision Theorems

Let 9 be an open subset of the (real) Banach space V. We will denote the

value of p ( V at x E V by (p,x). If v:Q + R is continuous (i.e., v k CM)

and x t 0, we define the superdifferential D v(x) and the subdifferential

D-v(x) of v at x just as in [3]:

*

D+ v(x) -{p e v :lim sup (v(y) - v(x) - (p,y - x))/y - l o}
yeA

(1.1 ) y+x

D-v(x) - lp e v : lim inf (v(y) - v(x) - (p,y - x))/Iy - xl 0 1
yeg
y+x

We now define the notion of viscosity solutions.

Definition 1. Let u E C(Q). Then u is a viscosity subsolution of (HJ) on

if

(1.2) H(x,u(x),p) 4 0 for every x 0 and p t D+u(x).

Similarly, u is a viscosity supersolution of (HJ) on 0 if

(1.3) H(x,u(x),p) ) 0 for every x % 0 and p E Dv(x).

Finally, u is a viscosity solution Q if it is both a viscosity subsolution and

a viscosity super solution.

Since we are assuming that 0 is open, the restriction y t 0 in (1.1) is

superfluous. However, (1.1) as it stands can be used whether or not Q is

open, and the above definition generalizes at once. We will not use this

generality here, but see Jensen [13]. We will use (for example) the phrases

"solution of H 4 0" and "subsolution of H - 0" interchangeably. The above

definition is one of several possible alternatives. A more convenient form

for analytical work is contained in the following obvious proposition.

,,,.
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Propostion 1. Let u t C(O). Then u is a viscosity subsolution of (HJ) in U

if and only if for every (P k C(Q)

(1.4) H(y,u(y),DP(y)) C 0 at each local maximum y t U of u - q at

which V is differentiable.

Similiarly, u is a viscosity supersolution of (HJ) when

(1.5) H(y,u(y),D(P(y)) ) 0 at each local minimum y k 0 of u - (p at which

V is differentiable.

Remarks I. The corresponding result in finite dimensions states that the

proposition remains true if V E C(Q) is replaced by (p E C (0) and that one

may replace local extrema in the statement by strict local extrema. Here, for

example, when we say y k 2 is a strict local maximum of a function v, we

mean "very strict" - that is, there is a number a > 0 and a positive non-

decreasing function g:(O,a] (0,-) such that v(x) ' v(y) - g(Ix - YI) for

Ix - yC C a. Of course, we may work with strict extreme in the general case.

Moreover, if the space V admits a function C:V 1 E0,-) such that

C(x)/IxI is bounded above and below by positive constants on V\{O) and C

is boundedly differentiable on V\{o}, then the proposition remains correct

with everywhere differentiable ( ( C(n) and D(P continuous at y in (1.4)

and (1.5). This may be established in a manner similar to (e.g.)

(3, Proposition 1.1].

Before we formulate some hypotheses on H, we need to make our strategy -

which has already been implemented above - more explicit. We will state and

prove one principle result concerning comparison and uniqueness of solutions

of (HJ) in all details. This proof will clearly illustrate how one may

account for the infinite dimensional difficulties. We will then state further

results and, in particular, the corresponding result concerning comparison of

solutions of the related time-dependent initial-value problem, without

-6-
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proof. The proofs not will be given because, by this time, a knowledgeable

reader will be able to construct them in a straightforward way using the

methods which have already been clearly illustrated here and in the

literature. Thus it is not appropriate for us to do this here. The same is

true for many other results. Hence we feel justified (here and later) to

simply state when results "remain true in infinite dimensions" provided that

" we have verified the assertions; for ourselves. For example, the results of

M. G. Crandall and P. L. Lions [5] and H. Ishii [12] concerning moduli of

continuity remain true in Hilbert spaces. By contrast, assertions concerning

existence, especially when the finite dimensional proofs employ compactness

arguments, cannot usually be verified without considerable work ([6]). We

°L will return to the question of moduli of continuity in [6], where it plays an

essential role.

we turn to formulating the conditions on H we will use. First of all,

one does not expect boundary problems for (HJ) to have unique solutions unless

H(x,u,p) is monotone in u, and it is convenient to emphasize this monotonicity

by considering problems of the form

(HJ)' u + H(x,u,Du) - 0.

Of course, (HJ) may be transformed into a problem of the form (HJ)' (with a

"new H") in a variety of ways. We will be imposing conditions on H in (HJ)'.

These conditions will involve two auxilary functions d:V x V + [0,-] and

V:V + [O,m). These functions are to satisfy a collection of conditions we

will simply call (C). In the statement of these conditions and below, I is

used to denote the norm of V as well as the corresponding dual norm on V and

the absolute vaue on R. If x, y t V, then L(x,y) denotes the line segment

joining them. It may be useful to the reader to keep in mind the case in

which V is Hilbert, d(x,y) - lx - y1 and V(x) - jxi while reading further.

-7-.* *



The conditions (C) are:

*(C) Let y E V. The nonnegative function x + d(x,y) is Frfichet

differentiable at every point except y and the derivative is denoted

by d.x(xy). Similary, y + d(x,y) is differentiable except at x and

its derivative is d.1(x,y). The function v is bounded on boundeA

sets. Moveover, there are constants K,k > 0 such that the

nonnegative function V is differentiable on {x (V: v(x) > KX}

(1.6) ldx(x,y)l I dy,(X,Y), I DV(X)l 4 K

whenever the quantities on the left are defined,

*(1.7) liii inf x)>k
lxi

and -

* (.8)klx -yI 4 d(x,y) 4 Kjx -yj for x, y E v.

We continue. A function (0,,-) will be called a modulus if it

if it is continuous, nondecreasing, nonnegative, subadditive and satisfies

* m(0) -0. We will use m, mH, etc., to denote such functions. We will also

say a function a:[0,0) x (0,-) + [0,-) is a local modulus if r + O(r,R) is a

* modulus for each R > 0 and O(r,R) is continuous and nondecreasing in both

* variables. (The words indicate that a(r,R) is a modulus in r when something

else is "local", i.e. bounded by R). BR(x) denotes the closed ball of center

* x and radius R in V and intBR(x) is its interior. Assuming that conditions

(C) hold, the properties of H:V x R x V +' R that we will employ are:

There is a local modulus a such that

*(HO) IH(x,r,jp) -H(x,r,q)l 4 O(jp -qj,R)

for x C V, p, q V* and r E R satisfying lxI, Ipl, Iqi 4 R.



(HI) For each (xp) E V x V r * H(xrp) is nondecreasing.

There is a local modulus OH such that

(H2) H(x,r,p) - H(x,r,p + XDv(x), a l(XIplI + X)

whenever 0 4 A , (x,p) Q x V*, and V(x) > K.

and

There is a modulus mH such that

(H3) H(y ,r ,-AXd(xy)) - H(x,r,Adx(x,y)) C mH(Ad(xy) + d(x,y))

for all x, y E with x )A y and L(x,y) C 0, r k R and A ) 0.

We formulate the following comparison result for (HJ)' in such a way as

to exhibit an appropriate continuity of the solution in the equation. This is

useful for existence proofs ((6]), a fact which justifies the added complexity

of the statement. In the theorem, Q is the closure of Q and aQ is its

boundary. We remind the reader that everywhere below K, k are the constants

of conditions (C).

Theorem 1. Let H, H C(V X R x V) and the conditions (C) hold. Let each of

H and H satisfy (HO) and H satisfy (HI), (H2) and (H3). Let u, v k C(i) be

viscosity solutions of

(1.9) u + H(x,u,Du) 4 0 and 0 4 v + H(x,v,Dv) in Q.

Let there be a modulus m such that

(1.10) ju(x) - u(y)l + iv(x) - v(y)i 4 m(Ix-yj) if L(x,y) C 0.

If 0 9 V, then for E, a > 0 satisfying

C (ka)2 )/(m(a) + 1)

we have

+ 1/2
u(x) - v(x) sup (u - v)+ + 2m(a) + m (2m(a) + (em(a)) "  +

H

Ssup:(Hlzorp)-Hlz,r,p))+:(z,r,p) e OXRXV*and IpI C 2K(m(a)/c)/ 2}

s{ r)- rp9"
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for xE. If flV, then (1.11) holds with the terms sup(u -v) + - 0. +

2m(a) replaced by 0. In either case, if H - H and u 4 v on ag, then

u vin.

Remarks 2: We pause and attempt to illuminate this result a bit, as it is

packed with interesting technical subtleties in addition to the infinite

dimensional formulation. The uniqueness asserted in the theorem was proved in

the case V - J, d(x,y) - Ix - yl, and u and v uniformly continuous in

Crandall and Lions [5], who also assumed that (HI) was replaced by the

stronger condition of uniform continuity of H(x,r,p) in (x,p) for bounded p.

It was remarked in [5] that a formulation using something like "d" of

condition (C) would yield a class of problems invariant under nice changes of

the independent variables. Subsequently, Ishii [121 improved this result by

coupling the case v(x) - Ix - x01 for some x0 with d(x,y) - ix - Y,

eliminating the restrictive uniform continuity assumption on H mentioned

above. Ishii also chose some comparison functions which improved the

presentation a bit, and we use analogues here.

An obviously interesting test class with respect to the generality of the

hypotheses is the linear problem in which H(x,p) = (p,b(x)) where b:V + V.

If b is bounded on bounded sets, then (HO) is satisfied. The requirement (H1)

is clearly satisfied. If V is Hilbert and d(x,y) - Ix - Y1, the requirement

(H3) amounts to asking that there be a constant c such that x + b(x) + cx is

"monotone" in the sense of Minty, Browder, etc.. Further specializing to

V - R, V(x) = Ix - x0I, (H3) amounts to asking that b(x) be bounded below on

x > 0 and above on x < 0. Let a0 = 0, ai 
= ai_. = ail + i and a.i = ai for

i > 0. It is easy to construct an even function v satisfying the requirements

of (C) with Dv supported on Ii for i odd and an odd function b with support in

Ii for i even with b' bounded below but b unbounded below on [0,-). Then H

-10-
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satisfies (H2) with this V and d(x,y) - Ix - y1, but it does not satisfy

Ishii's condition. The situation is rather subtle.

Let us subject a problem u + H(x,u,Du) - 0, where v, d satisfy the

conditions (C) and H satisfies (HO) - (H3), to a change of independent

variable x - G(z) where G:V + V and its inverse are everywhere defined,

Lipschitz continuous and continuously differentiable diffeomorphisms. Denote

the resulting equation for v(z) u(G(z)) by v(z) + F(z,vlz),Dzv(z)) - 0. We

will not write the formulas, but the reader can verify that the new

Hamiltonian satisfies the condtions of the theorem with the "transformed" d

and V (let's call them dG and VG) given by dG(z,w) - d(G(z),G(w)) and VG(z) -

. uV(G(z)). In particular, if d(x,y) - Ix - YI, then dGlz,w) IG(z) G(w)l.

m .This provides a wide class of examples.

Finally, we remark that explicit error estimates in the spirit of Theorem

-' 1 (but in finite dimensions and a different technical setting) appeared in

Souganidis [151, and it was Ishii [12] who pointed out that one only needed

uniform continuity of u and v on line segments in fl in the sense of (1.10)

rather than on 0 itself in the arguments, a remark which clarified the

situation a bit.

Proof of Theorem 1: Let us first observe that the final assertion of the

theorem follows immediately upon letting C + 0 and then a + 0 in (1.11). We

give the proof of (1.11) for the case 9 $ V (the alternative being the simpler

case). Without loss of generality, we assume that sup(u - v)+ < =.

Let

(1.12) P(x) " distance(x,al).

One easily deduces from (1.8) that if L(x,y) C 1i, then

(1.13) ulx) - v(y) 4 sup(u - v)+ + m(min(P(x),p(y))) + m(Ix - yI)

and, in particular,

-11-
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u(x) - v(x) F sp(u - v) + m(P(x))

for x f t. Since m (being a modulus) and P have at most linear growth, we

conclude that there are constants A, B for which

(1.14) u(x) - v(x) < A + slxi for x A Z.

We will use an auxiliary function C t clR) satisfying

(1.15) C(r) 0 for r 4 1, C(r) - r - 2 for r ) 3 and 0 4 C' C 1.

Let a, C, 8, R > 0 and consider the function

2
(d(xIy) CVx

(1.16) *(x, y) u(x) - v(y) -
d lx xy R))

on the set

(1.17) A(a) - ((x,y) t 9 x 0: p(x),p(y) > a and Ix - yj < a).

Roughly speaking, the result will be obtained by considering * near its

maximum. We claim that if

(1.18) 8k > B, C < (ka)2/(m(a) + 1) and R > K

where B is from (1.14), then

+ 1/2
#(x,y) C sup (u - v) + 2m(a) +m (2m(a) + (cm(a)) )+Y (,2Km(a)+O) +

H H

(1.19)

supl((z,r,p)-H(z,r,p)) + :(z,r,p) e QxRXv*and IpI 4 (m(a)/) 1/2K"

*-. on A(a). Let us show that the claim implies the theorem and then prove the

claim. Since u(x) - v(x) - *(x,x) if v(x) < R, we may let R + " to see that a

bound on # on A(a) which is independent of large R is also a bound on V"

* u(x) - v(x) for P(x) > a. Since we also have (1.13), u - v is therefore

bounded if * is bounded. But then we are free to choose 8 as small as desired

and the estimate on u - v arising from letting 0 * 0 in the bound on '.

together with (1.13) yields the theorem.

-12-
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It remains to prove the claim. It clearly suffices to show that if

(1.20) sup 0 > sup(u - v)+ + 2m(a)
* A(a) a)nma

then (1.19) holds. To this end, choose a sequence (xn,yn ) A(a),

S,n - 1,2,..., such that

(1.21) *(xn,y n) increases to sup 4 and *(Xny n ) (XnXn).A(a)

It follows from (1.7), (1.8), (1.14), the inequality u(x) - v(y) ( u(x) - v(x)

+ m(a) on A(a), and Ok > C that #(x,y) ( -1 if lxi + IyI is large, and we

conclude that

(1.22) (xny n ) is bounded.

Moreover, it follows from (1.13) and (1.16) that

*(x,y) 4 sup(u - V)+ + m(min(P(x),P(y))) + m(a), .4

so, from (1.20), (1.21) we conclude that there is a y > 0 such that

(1.23) P(xn), P(yn ) ) a + Y for large n.

Next, since

O(x,y) - *(x,x) - v(x) - v(y) - d(x) 2  - -(xy)
£ C

on A(a) it follows from (1.21) that

(1.24) d(xniyn)2 ( Cm(x n - YnI) 4 Cm(a).

Using (1.8) we see also that (1.24) implies xn - Ynj < (e(a))1/2/k and so,

using (1.18),

(1.25) Xn " Ynj 4 a(m(a)/(m(a) + 1))1/2 < a.

The upshot of these considerations is that we can assume that there is a Y > 0

such that
x V*sl iXnj 24y)CA

(1.26) Sn {(xy) V x - XnI + Iy nI < y2 } C. A(a)

for all n. Put

(1.27) n -sup 4 - *(XnYn)

(1.27) 6-As A(a)

and consider

-13-
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(1.28) Y(x,y) . O(x,y) - (36n/(ky)2 )(d(x,xn)2 + d(y,yn)2 )

on Sn . We assume that 6 > 0 for all n, the other possibility being

considerably simpler. Using 1.6), (1.27), (1.28), we see that

(1.29) Y(xy) < Y(xnyn) - 26 n

on 3Sn. It follows that if P:S n + R varies by less than 26n over Sn and Y + P

has a maximum point with respect to Sn, then this point must be interior to

Sn . According to Stegall (16], there are elements Pn, qn E V* satisfying . -

(1.30) (1pn1 2 + Iqn1 2)1/2 e 6 /y

such that flx,y) - (Pnx) - (qn,y) atttains its maximum over Sn at some point

(x,y), which must be an interior point by the above considerations. Now,

according to the fact that u and v satisfy (1.9) in the viscosity sense,

Proposition 1, x is a local maximum of x + Y(x,y), y is a local minimum of y .

Y(x,y) and the various assumptions, we conclude that

u(x) + H(x,u(x),pl, + Oq + 61n) 4 0,(1.31) '.

v(y) + H(y,v(y),P 2 c + 62n) )o 0,

where

Pic - 2d(x,y)dx(x,y)/C, p ' --2d(x,y)d(x,y)/c,

q - C'(V(x) - R)DV(x),
(1.32) a .

O1n = Pn + Knd('X 0n)dxCXxn), 2n "- - Knd(yyn)dy(y Yn),

1n = 6
6 n/(ky)

2,

where the indexing is choosen to show only key dependencies for what

follows. The reader will notice that we have written expressions above which

are not always defined, e.g. dx(x,y) and DV(x). However, in the event they

may not be defined, e. g. if x = y or V(;) < K, they have coefficients which

vanish, e.g. d(x,y) and Q(vlx) - R). These products are defined to be 0.

We next write several chains of inequalities and then explain how each

arises. We have:
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-~n 'f(xnlyn) I Y~~)Cu(x - v(y

(1.33)

< H(y~v(y),p2C) -H(x,u(x), pl + Oq) +en

* where

(1.34) C~ 0Oas n*+

Moreover

H(y'v(y),P2 C) -H(xlu(x),pie q

iI(Ylv(Y),P 2.) -H(Y~v(y),P 2 d) + -

H(Ylu(x),P 2 .) -H(X,U(X),Ple)

* ~(1.35)a aa a

+ H(X,U(X),Ple) - H(X,u(X),pie + Oq)

4 sup{(H(x,r,p) - H(x,r,p)):(x,r,p) k Q X R X V IPI IP2. 11 +

mK(2d(x,;) /C + d(x,y)) + aHOKdxy/ a

and

(1.36) d(x,y) 4 d(xnpy,) + 2KV C (Cm(a))11  2KV.

All Of (1.33) but the final inequality follows at once from the definitions

and the nonnegativity of the various functions. The last inequality in (1.33)

with the relation (1.34) comes from (1.31), the assumption that H and H

* satisfy (HO) (and so are uniformly continuous in p when x and p are bounded),

the fact that (x,y) lies in a bounded set (independent of n) by (1.22), pie,

i1 1,2 are bounded for fixed £ by (1.32) and (1.6), while lein1 + 0 as n +

* by 6n + 0 and (1.30) and (1.32). The first inequality in (1.35) is valid

* because of the monotonicity WH) and u(x) - v(x) ;P 0 (by (1.33)), which imply

that H(y,v(y),p) CH(Y,u(X),p) for all p. The second inequality arises in the

obvious way from (H2) and (M3) together with (1.32), (1.6) and (1.15).

Finally, (1.36) arises from (x,y) t S and the Lipschitz continuity of d

44 implied by (1.6).
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Froim (1.32), (1.36) and (1.6) we further deduce that

-* (1.37) II 2X((Cm(a)) 1 2 + Ky)/c.

Now we use (1.33) - (1.37) in an obvious way and let n + - and then y 0

(as we may do) to conclude that
7.lim#lx,,ynl sup{ (Hlx,r,p)-Hlx,r,pl 1:(Ix, r,p) Qxicv*, C pl2Ylm (a) /Z 1/2} .''

+ m(2m(a) + (em(a))1/ 2 1 + a(0,2KM(a) + 0)

and this proves the claim.

Remark: A key ingredient in the above estimates was (1.24), which allowed us

to estimate d(xn,yn 12 by em(a). In fact, this is far from sharp. Using (1.8)

- we found jrX - y.1 - (em(a))1 /2/k, which may in turn be used in (1.24) to find

d(xnyn)2  e m((em(a))l/ 2/k) and then the process can be iterated arbitrarily

often. Ishii [12] uses one iteration in his proof of uniqueness. From the

point of view of uniqueness, the question is not serious. From the point of

view of error estimates, one might be interested in more precision. For

example, if m(a) - aG where 0 C a < 1, the best.estimate is of the form

24( /2-) and this allows one to sharpen the result above.

We next formulate a typical result for a Cauchy problem. Thus we

consider two inequations

(1.38) ut + H(x,t,u,Du) 4 0 in 0 x (0,T),

and

(1.39) vt + H(x,t,v,Dv) > 0 in 0 x (0,T)
where T > 0. Of course, the notion of a viscosity solutions of (1.38), (1.39)

is contained in the notion for (J) - one just regards them as equations of

the form (HJ) in the subset 2 x (0,T) of the space V x R. The conditions we

will impose on the Hamiltonians are quite analogous to those in the stationary

case. Namely, we ask for condiona (C) and

-16-
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There is a local modulus o such that

(HO)* IH(x,tr,p) - H(x,t,r,q)l 4 s(lp - qj:R)

for (x,t,r) t V x [0,T] x R, p, q C V satisfying lxi, Ipl, II q R.

There is a A > 0 such that for (xtp) k V x [0,TI x V**

r + H(x,r,p) + Xr is nondecreasing.

There is a local modulus OH such that

(H2) H(x,t,r,p) - H(x,t,r,p + ADV(x)) OH(Al,IpI + A) S

whenever 0 4 A, (x,t,r,p) t V x [0,T] x 3 x V a

and

There is a modulus mH such that

(H3)* H(y,t,r,-d(x,y)) - H(x,t,rXdx(x,y)) 4 all(Ad(x,y) + d(x,y))

for all x, y t V with x O y, (t,r) t [0,T] x R and A 0.

We have:

Theorem 2. Let u,v t C(l X (0,T]), H, H k C(V x [0,TJ x R x V and (1.38),

(1.39) hold in the viscosity sense. Assume that H and H satisfy (HO)*, while

H satisfies (Hi)' (H3)*. In addition to the conditions (C), assume that

dx(x,y) is continuous on ((x,y) E V x V: x i y }. Let m be a modulus such

that

(1.40) lu(x,t) - u(y,t)l + Iv(x,t) - v(y,t)l ( m(Ix - yl) if L(x,y) C ,:

and 0 t 4 T and also

lim u(x,t)-v(x,t) - u(x,O)-v(x,O) uniformly for x in bounded subsets of n.
t+O

Then there is a constant C depending only on A, k, K and T such that

u(x,t) - vlx,t) c((sup {(u(x,t) - v(x,t))+:(x,t) t 30 x (O,T] U Q x (0)) +

+ 2m(a) + mH(C(m(a) + (Cm(a)) 1/2) +

-17-
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supi(H(xtrp)-H(x,t,r,p)) :(x,t,r,p) t gx(O,T]xDV and I C(n(a)/)

for 0 < (Ca 2 /C(m(a) +).

Remarks or the Proofs The reader will be able to construct the proof using

existing ingredients - in particular, the proofs of Theorem I and Ishii

[12,Theorem 1(i)] together with the lemmas

Lemma 1. Let H and H be continuous and dx satisfy the continuity requirement of

Theorem 2. Let u and v be viscosity solutions of (1.38) and (1.39) on

0 x [0,T]. Then z(x,y,t) - u(xt) - v(y,t) is a viscosity solution of

Ist + H(x,t,u(x,t),DOx) - 0(tvYt Dy)

on l x f x (O,T).

The lemma may be proved as in [5, Lemma 2] using x * d(x,y)2 as a

continuously differentiable function with a strict minimum at x - y. This was

the only reason to impose the extra condition on d and one could assume instead

the existence of another function with the property. It may well be that this

is not necessary.

Remark on the Statement: Let us call the term involving (H ) in the estimate

g(t) (with E and a fixed). Formally applying Theorem 2 to u and v + ftg(s)ds ,

which satisfies a suitable inequation, an estimate arises which amounts to

replacing g by Jtg(s)ds in the assertion. Some technical considerations

concerning regularity in t need to be disposed of (by hypotheses or argument) to

make this precise.

Let us end this section by recalling that the original uniqueness results

in finite dimensions ([41) were formulated so as to display a trade off between

assumptions on the Hamiltonian H and regularity properties of the solutions u

and remarking that the same results are valid in infinite dimensions. In

particular, we consider the following strong form of (H3)

% . ° • • o o ° o . ° o . • • . .. . . • . . • ° .oe , O o - . ° , , . ' --..-,. .. , .."-. -.., . . .. "...' _, ,-'...'......*...



There is a local modulus a such that

(H3)4 H(y,r,-Xdy(x,y)) - Hlx*r,).dxlxoy)) C (d(x,y),Ad)

for all x,y ( H vith L(x,y) C 0 and x i y, r(R and A A 0,

as well as the veak form

There is a local modulus a such that

(M3) H(y,r,-Idy(x,y)) -H~x,r,Adx(x,y)) 4 0(d(x,y),.%)

for all x,y t H with x 10 y, rtR and A )o 0.

If H satisfies and the conditions of Theorem I vith (H3). instead of (H31, then

all continuous and bounded viscosity solutions u and v of

(1.40) u + H(x,u,Du) 4 0 and 0 C v + H(x,v,Dv) on V L

satisfy u C v. On the other hand, if H merely satisfies the conditions of

Thec(.ea I with (H3), in place of (H3) and u and v are Lipschitz continuous

viscosity solutions of (1.40), then u 4 v. Analogous remarks hold for the

Cauchy problem.

Let us conclude by remarking that the Cauchy problem is distinguished from

the pure boundary problem in two respects - the linearity of the equation in ut,

which allows a more general dependence of H on t, and the fact that in the

Cauchy problem the estimate on u - v does not involve the part t - T of the

boundary of 9 x (0,T]. Of course, while we did not do so here,

one can identify irrelevant parts of the boundary in general - see, e.g.,

Crandall and Newcombe (7].
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Ahpvndix: Viscosity Solutions Without the Radon-Nikodym Property

In this appendix we will define a notion of viscosity solution of (1L)

which is useful to study such equations in spaces which are not IX. Since the

definition appears to be more restrictive in the case in which V is 34, we will

call this type of solution a "strict" viscosity solution.

To begin, we generalize the notion of sub and superdifferentials to the

notion of C-sub- and superdifferentials (see Ekeland and Lebourg (9) and Zkeland

[8]). Let (-V be open, v f C(Q), x C , > > 0 and set

v v(y) - v(x) - (prY- x)D v(x) - e{p•v: lie sup -X1y + x ly "x

(A.1) y eQ
D V(X) - {p e V': hay infx v(y) - v(x) - (py - x) -_ p.

y + x IY-X1

yen

D+vx), D~v(x) are closed and convex (possibly empty) sets. It is clear

that v is differentiable at x if and only if both D+v(x) and D'v(x) are

nonempty, and then {Dv(x)) - D+v(x) - D'V(x). The analogous statement here is

that v is differentiable at x if and only if De v(x) and Dv(x) are noneapty for

every C > 0.

We again consider the Hamilton-Jacobi equation

(HJ) H(x,u,Du) -0 in 0.

Definition 2: A continuous function u ( C(Q) is a strict viscosity subsolution

of (HJ) in 0 if for each £ > 0, x t 0 and p E D U(x)

(A.2) inf{H(x,u(x),p + q): Iq 4 C 4 , 0.

Similarly, u is a strict viscosity supersolution if

(A.3) sup{H(xou(x),p + q): Iql 4 C } 0

for all x k 0 and p C D;u(x).

-20-
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It iS easy to see that p t D*u(y) exactly when there is a continuous

function V which is differentiable at y and such that DV(y) - p and x.* u(x) -

V)- Cix - Yl has a local maximum at y. Thus we make contact with Zkeland'8

principle ([8]), which may be used to replace Stegall's theorem in proofs of

uniqueness.

It is clear that 0+ulx) - ncD (xl: c > 0 , etc., and therefore that

strict viscosity solutions are viscosity solutions. The converse is almost

certainly false in general, although it will be true with restraints of H and

V. It is true in finite dimensions.

Proposition: Let H be continuous and V S P with the Euclidean norm. Then u is

a viscosity solution of H 4 0 (H ) 0) if and only if it is a strict viscosity

solution of H ( 0 (respectively, H 0).

Proofs One direction is trivial as remarked above. We show that if u is a

viscosity solution of H(x,u,Du) < 0 then it is also a strict viscosity

solution. To this end, let C > 0 and p C D+u(y). Then there is a function V

differentiable at y such that DO(y) - p and u(x) - *(x) - ely - xl has a minumum

at y. Because of the special choice of V we may assume that in fact 0 is

continuously differentiable and the maximum is strict. Then the function u(x) -

(x) - CO(x - y12 + 6)1/2 will have a maximum at some point x6 which tends to y

as 6 + 0. Since u is a viscosity subsolution we also have
H(xau(x6),DP(x6 ) + q6) 4 0

where q6 " C(x6 - y)/(lx 6 _ y1
2 + 6)1/2 has norm less than e. Since Dp(x6 ) p,

it follows that inf {H(y,u(y),p + q): jqj 4 C ) 0, and the result is proved.

The above proof can be adapted to the case in which V is RN, the norm of V

is continuously differentiable on V\{0} and H has the property that if xn, x

V, rn,r t R and qn, Pn, P V satisfy xn + x, Pn P, rn r and Iqnl (C, then
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liinfm H(xn r p 1  ~ inf H(x,r,p + q)

(A.4) and

ham sup H(x 'r Opn+ qn) H Iqi" + q)

It is clear that many perturbations of the notion of a strict solution are

possible. For example, rather than require that (A.2) and (A.3) hold for all

C > 0, one could require it for small C or make the range depend on x, etc. We

will not pursue this issue here.
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