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' ABSTRACT
|

d
" A standard strategy in simulation, for comparing two stochastic systems,

!

is to use a common sequence of random numbers to drive both systems. Certain f-.

theoretical and methodological results require that the coupled system be :}' j
regenerative. It is shown that if the stochastic systems are Markov chains i:ﬂ':
with countable state space, then the coupled system is necessarily . _\1
regenerative. An example is given which shows that the regenerative property : fj
can fail to hold in general state space, even if the individual systems are ;;;:j

regenerative. -+
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SIGNIFICANCE AND EXPLANATION

Suppose that a simulator wishes to compare the gsteady-state performance o
of two stochastic systems. A natural way to do this is to subject each of the

systems to the same sequence of random disturbances. In other words, one

drives each system with the same random inputs. This is known, in the

r——— -
W

simulation literature, as the method of common random numbers. One of the B 1

most powerful tools available for analyzing steady-state simulation problems Ce ]

[}
Aa

requires that the process being simulated be regenerative. Roughly speaking, o
A this means that the process, when viewed on an appropriate random time scale, '-f:"..i.‘
L behaves like a sequence of independent and identically distributed random '
variables. In this paper, we relate the above concepts by obtaining —.:

conditions under which a process simulated via common random numbers is

regenerative.
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REGENERATIVE STRUCTURE OF MARKOV CHAINS SIMULATED VIA
COMMON RANDOM NUMBERS

Peter W. Glynn
1. 1Introduction
. ror i =1,...,m let X = {xt(n) t n » 0} be a Markov chain on state space E;.
Assuming that the X;°s correspond to =m alternative designs for a new system, one would
like to compare the m designs. To be precise, one would like to determine the chain X,
which minimizes r; = Ef,(X;) over 1< 4 < m, where the fi(xi)'l are real-valued cost

functionals. Simulators, when faced with this problem, frequently use the method of common

random numbers. In other words, rather than simulating the m chains independently, one
drives all m chains using the same sequence of random inputs. 8ince each chain is

subjected to the same random disturbances, one hopes that the statistical efficiency of the

ﬁi comparison procedure will be improved, through a variance reduction of soms sort.
HEIDELBERGER and IGLEHART (1979) studied this problem, in the case that the f£,(X;)'s

take the form

1 n11
£,(xy) = 1im — ) g (X (kK)) ,
i nee Mpeo 01

for some function g; : E; * R. They showed that when m = 2, efficiency of the

simulation experiment is indeed improved when the X;'s and g;'s are suitably monotone.
Their argument required that the paired process (Xy,X;) be a positive recurrent regenera-
tive sequence; no verifiable conditions guaranteeing this regenerative property were given,
however. In this note, we shall show that if E4,...,E, are countable and if the X;'s
are positive recurrent chains, then the joint process (Xy,...,X;) is regenerative. We
conclude with an example which shows that the result can fail if the E;'s are

uncountable.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and by the
National Science Foundation under Grant No. ECS-8404809.
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2. The Main Result

Our main result will require that the E;'s be countable. Thus, without loss of

o .. «
AIACME * (ESERPREITARN

generality, we may assume that &, c gt = {0,1,...} for 1< i< m Let

Py = (py(3,k) : j,k € E;) Dbe the transition matrix for the Markov chain X;, and let

L)

u = (“1(3) : Je ‘1) be the associated initial distribution. A Markovian coupling of the

processes X;,...,X; is a Markov chain X = {X(n) : n > 0} satisfying:

(2.1) i.) foxr n >0, X(n) = (X(1,n),ces,X(mn)) € B 3 By XeooX By,
i1.) for 1< & < m P{X(1,0) = 3} =y, (3), JeBy,

{ii.) for 1< 4 <m n >0,

- At o b A AR A

P{X(1,n+1) = x | X(4,n) = 3} = p,(3,k), 3.,k € Ey.

The method of common random numbers, as practiced in simulation, leads naturally to

Markovian couplings.

(2.2) Example. In general, Markov chains are simulated through recursions of the form
Xy (k+1) = hy(Xg(k), €, (k+1))

where ¢ 1 " {Ei(k) 1 k 2 1] is a sequence of independent and identically distributed

(1.4.d.) random variables (r.v.'s). For example, if the process is generated through

inversion, then the Ei(k)'l are uniform on [0,1]; see p. 807 of (4] for details. In

any case, if the £ 's, 1 € 1 ¢ m, have a common distribution, as occurs through inversion,
i

one can use the stream of random numbers 51 to generate all m chains via the recursions
X(i,k+1) = hy(X({i,k), 61()#1))1 this Markovian coupling is the method of common random

numbers.

- (2.3) Example. Suppose that Py = P, is an irreducible positive recurrent transition
- matrix with invariant probability w. If u,(j) = %(j) and u, is arbitrary, one is

interested in studying, for a given Markovian coupling, various properties of the random

i time T(D) = inf{n > 0 : X(n) € D}, where D is the "diagonal” set {(x,y) ¢ E, X B, :

x = y}. The "coupling time” T(D) provides information on the rate at which X,(n)

T
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converges to the invariant probability %; see PITMAN (1974), for example. The wost

frequently used coupling, in this area of study, is the independent coupling, in which

P{X(n) = (k,2) | X(n=1) = (4,3)} = py(L,k)p,y(3,2)

p{x(0) = (k,2)}} = n(k)u(l)

for 4, 3, k, L€ E,.

Let P = (p(x,y) : x, y € E) be the transition matrix of X and u the initial

distribution of X. The state space E may be partitioned into subsets T, Cy, Case.. - f}
E where T consists of transient states and the C;‘s are irreducible closed sets of ' .1

recurrent states; see QINLAR (1975), p. 125 - 131 for details. ) r

. (2.4) Theorem. Suppose P,,...,P, are irreducible positive recurrent transition

matrices, with invariant probability distributions LETREEYL S Then,

-
i.) ¢= U c; # § consists of positive recurrent states,
i=1
11.) P{T(C) < =} = 1, whexre T(C) = inf{n > 0 : X(n) € C},
iii.) for 3j » 1, the invariant probability distribution ¥(j;*) concentrated on

cj satisfies

T(I1By Xeoox By o x (X} x B,y xeoox B) =W (k), keE, 1¢1<m

This theorem shows that for any Markovian coupling of countable state Markov chains,
the joint process X is eventually absorbed into some closed irreducible subset cj upon
which the chain is positive recurrent. Purthermore, regardless of the class Cj into
which the chain X is absorbed, the marginal Adistributions of the invariant probability

associated with cj will be precisely those of the original chaing Xq,...,Xg.

Proof of the theorem. Lst X have an arbitrary initial distribution u, and consider the

probability measures defined by

.
2 4
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Q,(*) -lnF P(X(k) € °}
" k=0

1 n=1
Q (1,) == ] Plx(1,x) €} .
k=0

Since X; has invariant probability L by assumption, standard Markov chain theory, plus
(2.1) iii.), shows that Qn(i.') =m) Ii(-) in the discrete topology on E; (see
p. 16 of BILLINGSLEY (1968)), where ==> denotes weak convergence. Thus, {Qn(i,-) ]
n > 1} is tight (see Theorem 6.2 of [2]) i.e., for any € > 0, there exists a compact set
Ky = K, (€) (consisting of finitely many points) such that Qn(i,xi(e)) > 1 ~-¢/n. Set

K = Ky x...x K, and observe that X = N Eq X...X E xK xE

i=1 ga Ky X Eyyq XeooX Epe Thus, for

any n?> 1,

m
c c,
Qn(l) =1-Qi(x7) = 1- Qh(£31 By XoooX By  XK/XE o XoooX B)

n
N c
>t - 12_1 Q (B, Xeoox B, XKXE, . XeouX E)

i c
=1 = Q(i,K,;) > 1 ~-¢
jmq M i

Since K has finitely many points, and is therefore compact in the discrete topology, it
follows that {Qn(°) : n>»1} is tight. Thus, by Theorem 6.1 of (2], we are guaranteed
the existence of a subsequence mn, and a probability w(+) such that

3
t .
(¢) = — ). P{x(j) € o} mm) g{e)
Q"x Py 4=0

as k +=», Select x € E so that ¥{{x}) > 0. Since an({y}) + 0 for transient or null
recurrent states y, it must be that x is positive recurrent, so that C ¥ §. Purther-
more, by concentrating M on cj, it follows that Cj contains a positive recurrent
state, so that evidently cj must have all states positive recurrent (see Theorem 3.6 of

31).

For (2.4) ii.), note that




n -1

k
P(T, < =} > Tim — L P{x(j) € ¢}
\ kv j-o

= ) w{x}) =1 ,
x€eC

since our discussion above shows that ¥ must be concentrated on positive recurrent
states. For the last assertion, let u be the invariant probability ¥(j;*) con-

centrated on cj and observe that

F(3IE, Xeux By, % {x} x g

g XeeoX En) L

{=-

= Q By xeoux B, _o x {x} xE

4 X...XEn)

- Qn(l,{k}) *w (k)

the first equality is by invariance of ¥%(j;*), and the convergence follows from (2.1)
iii.).
(2.3) Example (continued). Suppose that Py = P, is an aperiodic irreducible positive
transition matrix. Then, under the independent coupling, the state space E of X is
easily seen to be irreducible. By Theorem 2.4, it follows that X has one positive
recurrent irreducible class of states C.
A natural question to ask at this point is whether the set of transient states T can
be non-empty. The following example shows that this is in fact possible.
(2.5) Example. Let m = 2 in Example 2.2, and suppose that hy : %' x [0,1) + z*
satisfies:
i) plhya,0) =1} =0 , i¥o0
ii.) pin(4,v) =3} =0 , 1y2
iii.) hy(0,x) = 1 if and only if x > 1/2
iv.) hz(z,x) = 1 4if and only if x € /2,
where U is a uniform r.v. and the h;'s are mappings under which the X;'s are

irreducible and positive recurrent. For i = 1,2, set X(i1,0) = 1 and put X(i,k+1) =

etk h aa'

PP
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hy(X;(k),Uy,q), where {U : k > 1} 4is a sequence of i.i.d. uniform r.v.'s. We claim
that for n > 1,

P{X(n) = (1,%) | x(0) = (1,1} =0 ,
which clearly implies that (1,1) 1is transient for X. Note that by (2.4) i.) - ii.),

X(n) = (1,1) only if X(n-1) = (0,2). But

P{X(n) = (1,1) | X(n=1) = (0,2)}
= P(h,(0,U ) = 1 = h,(2,U )} =0
by (2.4) iii.) - iv.).
This has implications for the regenerative method of simulation (see IGLEHART (1978)
for details), as applied to steady state analysis of countable state Markov chains

; generated via common random numbers. By Example 2.5, the simulation may start in a

b transient state if the initial distribution of X is not chosen carefully. However,

) Theorem 2.4 shows that X is eventually absorbed into a closed positive recurrent

i irreducible class cj. Once X is in cj, the standard regenerative method may be
- applied, using any state in cj as "regeneration state.” The difficulty, of course, is

determining precisely when X has entered an absorbing recurrent class.
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3. A Nonregenerative Markovian Coupling AR
We will produce a nonregenerative process X = (X(1,°), X(2,°})), in which X is ..
obtained from regenerative component processes via the method of comsmon random numbers. To ";fi

be precise, we shall choose X(1,*) and X(2,°) to be Markov chains, having identical

transition functions, which are individually positive recurrent regenerative sequences

(positive recurrence shall mean here that the expected time between regenerations is
finite), for any initial condition. However, we will show that if X(1,0) # X(2,0), the

joint chain X is not a positive recurrent regenerative sequence.

Let E=R and put hix,y) = (ox) + y. Assume that P{E(k+1) € dx} = f£(x)dx, i e

i = 1,2, where: ) i
i.) £ is continuous and positive on R : 'il

1) a = E[E(x+n] <o, j

The concept of a Markovian coupling generalizes, in the obvious way, to Markov chains i 4

taking values in R.
(3.1) Proposition. The Markov chain 2z defined by 2z(k+1) = h(Z(k), §(k+1)) is a
positive recurrent regenerative sequence.
Proof. We will prove that there exists a set A, a positive number A, and a probabilicy
measure ¢ on E sguch that:
a.) P{T(A) <= | 2(0) = z} = 1 for all
z € §, where T(A) = inf{n > 1 : Z(n) € A}.

b.} P{2(1) € » | 2(0) = 2} > Ap(*)

for all z € A,

Conditions a.) and b.) allow one to use a "splitting technique”™ due to ATHREYA and NEY
(1978) and NUMMELIN (1978) to construct regeneration times for 2, under any initial )

condition.

Let A= {z : |z] < 2(a+1)}; we use a "test function™ criterion due to TWEEDIE (1976)

to verify a.). Note that for =z £ A, and k(*) = |¢], -

E(x(2(1)) | 2(0) = 2} = B|(Va )z + §(1)]

< K|zl +a<2a+ 1< Kk(e) =1

~7-
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from which it follows (see Theorem 6.1 of [9)) that E{T(A) | 2(0) = z} € k(z) <= for
z { A, proving a.).

For b.), let A = 2 min{f(z) :|z| € a+2}, sly) = 1/2 on {-1,1) and zero elsewhere,
and observe that

P{z(1) € B | 2(0) = 2} = p{({, )z + £E(1) € B}
=g fly - (h )z)dy » A ]B s(y)dy = A¢(B)

for z € A. For the positive recurrence, note that our above bound on the expected hitting

time of A shows that

sup E{T(A) | Z(0) = £} < sup E{k(Z(1)) | Z(0) = 2) + 1
ZEA 2ZEA

<sup [z +a+1<ce
ZEA

Since A is compact with positive ¢-measure, and the transition function of Z is weakly
continuous, it follows that A is a status set for 2; the above bound then proves that

Z has an invariant probability measure. (See Proposition 5.4 and Theorem 9.1 of (9] for
results and definitions.) Theorem 6.1 of (1] yields the positive recurrence as a

consequence.

Define X(i,*) via the recursion X(i,k+1) = (4 )X(4,k) + E(k+1). Then,

koo x
X(i,k) = ) 2376 + 27Kx(1,0) .
=1

Clearly, X(n) converges weakly to Y = (Y,,Y;) where Y; = Y a.s. Suppose that X is

a positive recurrent regenerative sequence with regeneration times Te9s T3seee « Then,

n=1 Tt
1) e e B B0 ) 10x00 € B) = w(B)
k=0 R’T1
E(T, - 7.}

by SMITH (1954), p. 27. It is easily verified that the set function =%(°*) must be a
probability measure, and thus #(*) = P{Y € *}. Hence, setting B = ((xg0%y): x, = x,}
in (3.2) yields

-8~
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n=1
0=1Y B(x(1,x) = x(2,0)} FR{Y, =¥} =1 ,
n =0 1 2

if x(1,0) ¥ X(2,0). This contradiction shows that X is not a positive recurrent

regenerative sequence.
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