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ABSTRACT

JI
A standard strategy in simulation, for comparing two stochastic systems,

is to use a common sequence of random numbers to drive both systems. Certain

theoretical and methodological results require that the coupled system be -

regenerative. It is shown that if the stochastic systems are Markov chains

with countable state space, then the coupled system is necessarily

regenerative. An example is given which shows that the regenerative property

can fail to hold in general state space, even if the individual systems are

regenerative. *
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SIGNIFICANCE AND EXPLANATION

Suppose that a simulator wishes to compare the steady-state performance

of two stochastic systems. A natural way to do this is to subject each of the

systems to the same sequence of random disturbances. In other words, one

drives each system with the same random inputs. This is known, in the

simulation literature, as the method of comn random numbers. one of the

most powerful tools available for analyzing steady-state simulation problems

* requires that the process being simulated be regenerative. Roughly speaking,

this means that the process, when viewed on an appropriate random time scale,

behaves like a sequence of independent and identically distributed random

* variables. In this paper, we relate the above concepts by obtaining

*conditions under which a process simulated via common random numbers is

* regenerative.
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NJGt43RATZV3 STRUCTUNR OF MARKOV CHAINS SINULATUD VIA
COWAN RANDOM NUMBRRS

Peter W. Glynn -

1. introduction

For i - 1,...,ms let X- (X(n) i n 0) be a Markov chain on state space Si .

Assuming that the Xi's correspond to a alternative designs for a new system, one would

like to compare the m designs. To be precise, one would like to determine the chain Xr

which minimizes ri - Zfi(Xi) over 1 C i 4 a, where the fi(xi)'s are real-valued cost

functionals. Simulators, when faced with this problem, frequently use the method of comon

random numbers. In other words, rather than simulating the a chains independently, one S

drives all a chains using the same sequence of random inputs. Since each chain is

subjected to the same random disturbances, one hopes that the statistical efficiency of the

comparison procedure will be improved, through a variance reduction of some sort.

HEIDLBEGhR and XGLEHART (1979) studied this problem, in the case that the fi(Xi)5s

take the form
n-1. . .

fi(Xi) Lim gi(xi~ ) - -.

n4- k-0

for soe function gi Z 
3
i R a. They showed that when a - 2, efficiency of the

simulation experiment is indeed improved when the Xi's and gi's are suitably monotone.

Their argument required that the paired process (XIX 2 ) be a positive recurrent regenera-

tive sequence; no verifiable conditions guaranteeing this regenerative property were given,

however. In this note, we shall show that if , are countable and if the Xi's

are positive recurrent chains, then the joint process (X,...,X,) is regenerative. We

conclude with an example which shows that the result can fail if the Eil are

uncountable.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and by the

National Science Foundation under Grant No. SCS--404809.
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2. The Main Result .' :
Our main result will require that the Bils be countable. Thus, without loss of

generality, we my assume that 3i c + 0,1,...) for 1 4 i 4 a. Let

Pi - (pi(j,k) : j,k € 9i) be the transition matrix for the Markov chain Xi, and let

Mi ( (l~(J) 2 j C Z be the associated initial distribution. & Markovian coupling of the

processes X 1 ,..., is a Markov chain X - Wn) a n ) 0) satisfying:

(2.1) i.) for n A 0, X(n) - (X(1,n),...,X(mn)) C 3 S Z, x...x Zm.

ii.) for 1 4 1 4 a, P{Xll,O) =J) - plJJZ i, .

iii.) for 1 4 i 4 a, n A 0,

P(X(in+l) - k I X(i,n) J i) pi(lk), Jk C Z.

The method of common random numbers, as practiced in simulation, leads naturally to

Markovian couplings.

(2.2) Exanple. In general, arkov chains are simulated through recursions of the form

Xi(k+l) - hi(XI(k), ilk+1))

* where "{
(k ) 

: k ; 1) is a sequence of independent and identically distributed

•* (i.i.d.) random variables (r.v. '). For example, if the process is generated through

inversion, then the E (We are uniform on (0,11i see p. 807 of (41 for details. In %

any came, if the &',s 1 4 i 4 a, have a common distribution, as occurs through inversion,

one can use the stream of random numbers '1 to generate all a chains via the recursions

Xli,k+,) - hiX(ik), '(k+,)), this Harkovian coupling is the method of comon random

numbers.

(2.3) Example. Suppose that P1 = P2  is an irreducible positive recurrent transition

matrix with invariant probability w. If v 1 (j) - w(j) and 2 is arbitrary, one is

interested in studying, for a given Markovian coupling, various properties of the random

time T(D) - inf~n ) 0 z S(n) C 0), where D is the "diagonal" set {(x,y) e a1 x 2 : S-

x - y). The "coupling time" T(D) provides information on the rate at which X2 (n)

-2-
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converges to the invariant probability Ty so PITFAN (1974), for example. The most

frequently used coupling, in this area of study, is the independent coupling, in which

P(X(n) - (k,A) f X(n-1) - (i,j)) -p(i,k)P2(JL)

e(x(O) - (k,L)) - wlkl ~l)

for i, J, k, c 1 .

Let P - (p(xy) a x, y c Z) be the transition matrix of X and a the initial

distribution of X. The state space z may be partitioned into subsets T, CI, C2 ,...

where T consists of transient states and the Ci's are irreducible closed sets of

recurrent states; see 5INLAR (1975), p. 125 - 131 for details.

(2.4) Theorem. Suppose P,...,P, are irreducible positive recurrent transition

matrices, with invariant probability distributions w, •.... tw. Then,

i.) C - U Ci 0 0 consists of positive recurrent states,

i0i

ii.) PT(C) < } 1, where T(C) inf(n 0 0 X 1(n) C C),

iii.) for j • 1, the invariant probability distribution w(jr.) concentrated on

Ci satisfies

w1019 1 x...x . x (k} x 9,+ 1 x...x 3.) - wi(k), k , 1 s i • m. 1..

This theorem shows that for any Narkovian coupling of countable state Markov chains,

the joint process X is eventually absorbed into some closed irreducible subset Cj upon

which the chain is poeitive recurrent. Furthermore, regardless of the class Cj into

which the chain X is absorbed, the marginal distributions of the invariant probability

associated with Cj will be precisely those of the original chains X, ... 0

Proof of the theorem. Let X have an arbitrary initial distribution pa and consider the

probability measures defined by

-3-
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K ~ - ~ P(X(ik)

k-0

p. 16 of .I.LXNGSL3Y (1968)), where denotes weak convergence. Thus, (Q.i,).

n ?1) is tight (see Theorem 6.2 of 121) i.e., for any C > 0, there exists a compact set

Ki K1 (c) (consisting of finitely many points) such that Qn(±-Ki(e)) '0 1 - C/M. Set

X...X3. hos,.fo

KKx..K 1 ,.dosrvta K A Zox. ).. ) !..x i4

iI

any nn--

1 Qn( ,.1 =n U a {X ( ... .) .c-

QQ(K)1- x 3 z X... .X 3  x.
n Q~ n )I D(Ux i- i i+ i

c

Since X has finitely many points, and is therefore compact in the discrete topology, it

follows that (Q( n o 1) is tight. Thus, by Theorem 6.1 of (2), we are guaranteed

the existence of a subsequence ny and a probability w() such that - .

n -1

kn WkJ-0 PXj

as k + Select x e 3 so that I({x}) > 0. Since Q ((y)) 0 for transient or null

recurrent states y, it must be that x is positive recurrent, so that C g0 F. Further-

more, by concentrating s on Cj it follows that Cj contains a positive recurrent

state, so that evidently Cj must have all states positive recurrent (see Theorem 3.16 of

(3)) lo

For (2.4) 11.), note that

-4-
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n k-1

P(TC < ") T I C
k-- '~k J-0 Xj) C

- ). ,((x;) = 1 , -, ..*

xec

since our discussion above shows that I must be concentrated on positive recurrent •

states. For the last assertion, let i be the invariant probability w(j;.) con-

centrated on Cj and observe that

"(JigI x... x a x (k) x 39 x...x ) n

- Og(R K...x . x (k} x 3i x... x-n)

- Qn(L,(k)) + W,(k) .

the first equality is by invariance of i(jl ), and the convergence follows from (2.1)

iii. ). ' :

(2.3) E (continued). Suppose that Pl P2 is an aperiodic irreducible positive

transition matrix. Then, under the independent coupling, the state space a of X is _

easily seen to be irreducible. By Theorem 2.4, it follows that X has one positive

recurrent irreducible class of states C.

A natural question to ask at this point is whether the set of transient states T can

be non-empty. The following example shows that this is in fact possible.

(2.5) Eample. Let m - 2 in Example 2.2, and suppose that hi + [o,1] +..

satisfies:

i.) P(hI(±,u) - i} = 0 , i 0

ii.) P{h 2 (i,U) - 1) - 0 , i 9 2

iii.) hl(O,x) 1 if and only if x > 1/2

iv.) h 2 (2,x) - 1 if and only if x 4 1/2,

where U is a uniform r.v. and the hi's are mappings under which the Xi's are

irreducible and positive recurrent. For 1 - 1,2, set X(i,0) - 1 and put X(i,k+l) -

......%. . . . . .%.. .. o: ............:.. :...:...:.. ........ :....... ............ ,............... ..... ,.........:.:.:.:.:.,.:.:.:.:... ..... .. .. :.... ...... :



h±(Xi(k)A~~) where {Uk k ) i1) is a sequence of i.i.d. uniform r.v.'s. We claim

that for n ) 1,

P{X(n) =(1,I) IX(0) =(1,1)) =0

which clearly implies that (0,I) is transient for X. Note that by (2.4) i.) 11i.),

X(n) - (1,1) only if x(n-1) - (0,2). But

P(X~n) - (1,1) X(n-1) -(0,2))

-Pth I(0,U n I 1 2 h(2,U n)- 0

by (2.4) 111.) - iv.).

This has implications for the regenerative method of simulation (see XGLENART (1978)

f or details), as applied to steady state analysis of countable state Markov chains

generated via common random numbers. By Zxample 2.5, the simulation my start in a

transient state if the initial distribution of X is not chosen carefully. However,

Theorem 2.4 shows that x is eventually absorbed into a closed positive recurrent

irreducible class Cj. Once X is in Cj, the standard regenerative method mkay be

applied, using any state in Cjas *regeneration state.* The difficulty, of course, is

determining precisely when X has entered an absorbing recurrent class.

lp
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3. A Nonreqenerative Markovian Coupling

We will produce a nonregenerative process X = (X(,*), X(2,')), in which X is i

obtained from regenerative component processes via the method of comon random numbers. To

be precise, we shall choose X(1,,) and X(2,.) to be Narkov chains, having identical

transition functions, which are individually positive recurrent regenerative sequences I
(positive recurrence shall mean here that the expected time between regenerations is

finite), for any initial condition. However, we will show that if 1(0,0) 0 X(2,0), the

joint chain X is not a positive recurrent regenerative sequence.

Let Z - R and put h(x,y) (
1
/2 x) + y. Assume that P([(k+1) £ dx) - f(x)dx,

i - 1,2, where:

i.) f is continuous and positive on R

ii.) a - :R(+1)I <

The concept of a Markovian coupling generalizes, in the obvious way, to Markov chains

taking values In R.

(3.1) Proposition. The Narkov chain Z defined by Z(k+t) - h(Z(k), 4(k+l)) is a

positive recurrent regenerative sequence.

Proof. We will prove that there exists a set A. a positive number Xe and a probability -

measure * on K such that:

a.) P[TCA) ( - Z(0) = z} " 1 for all

z £ 3, where T(A) inf(n ) 1 : Z(n) E A).

b.) P(Z(1) C • (o) -Z 1 7 (')

for all z E A.

Conditions a.) and b.) allow one to use a "splitting technique" due to ATHRRYA and NZY

(1978) and NUNbIKLIN (1978) to construct regeneration times for Z, under any initial

condition.

Let A - (z : alx - 2(0+1)} we use a "test function" criterion due to TW3UD1X (1976)

to verify a.). Note that for z j A, and k(*) - '1"

2(k(z(1)) IZ(0) 2 ) 10/2 )z + M

(/ 1/ Iz I+ a f. 2* + 1 4 k(s) I

p-7-
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from which it follows (see Theorem 6.1 of 191) that S{T(A) IZ(O) z ) Ck(z) < for

X A, proving a.).

For b.), let X. 2 min(f(z) :Izl a+2}, e~y) -1/2 on [-1,11 and zero elsewhere,

end observe that

P{Z(1 6 B Z(Q) z ) P ?(1/2 )z + W() B )

j B3 f (y - (1/2 ) z) dy -4 1~ J-syd *~

* for x E A. For the positive recurrence, note that our above bound on the expected hitting

* time of A shows that

sup E(T(A) IZ(O) z) :1 sup 9(k(Z1) Z(O) z) +I
ZCA zCA

sup tel + a+1
zCA

* Since A is compact with positive f-seasure, end the transition function of Z is weakly

continuous, it follows that A is a status set for Z; the above bound then proves that

Z has an invariant probability measure. (See Proposition 5.4 end Theorem 9.1 of (9) for

* results and definitions.*) Theorem 6.*1 of (1] yields the positive recurrence as a

consequence.

Define X(i,*) via the recursion X(i,k+l) =(1/2 )X(i,k) + U(k+1). Then,

XUi,k) 2 J.2 -k ~j + 2 -kX(io)

Clearly, X(n) converges weakly to Y - (Y1,Y2 ) where Yj - Y2a.s. Suppose that X is

a positive recurrent regenerative sequence with regeneration times TI, T2. .. . .. Then,

1n-I T2 -1
P NI~k) E B1 E( 3{ (X(k) C B)) W (3)

nk

RT2- T!1)

* by S14ITH (1954), p.27. It is easily verified that the set function w(-) must be a

probability measure, and thus i(.) =P{Y C '.Hence, setting B (Cx11 x2 ): I - a2)

in (3.2) yields



0 -- P(W~,k) -XC2,k)} 4'~ P -Y y
k-02

if X(1,0) 10 X(2,0). This contradiction shows that X is not a positive recurrent

regenerative sequence. Z

-9-
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