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COMPUTABLE REAL ANALYSIS

B. J. MacLennan

Abstract:

We present a model of the real numbers that is completely finstistic. Every real number is represented
by a finite structure — specifically, a finite sequence of symbols from a finite alphabet. All of the arith-
metic operations on reals are also finite and can be evaluated on a computer. We allow nothing that can-
not e described by a finite algorithm — whether numbers or sequences or functions. This development is
carried through the fundamental theorem of calculus.

1. Introduction

In this report we develop systematically the foundations of a theory of computable real analysia. This
is based on the view that the only objects that it makes sense to talk about are finite objects, and that the
only operations it makes sense to talk about are those that can be completed in a finite number of opera-

tions.

This approach does not exclude all use of notions of infinity. In particular, it permits potential infini-
ties, provided the operation generating the infinity can be finitely described, or is itself the result of a pro-
cess that can be finitely described, and so forth, so that it can be reduced to a finite process in a finite
number of steps. For example, we will permit the use of infinite sequences, provided that their enumera-
tion functions are finitely describable and finitely computable. We eschew all use of actual infinsties, that

is, all infinities that are irreducible to finite objects.

This approach is most easily accomplished by restricting our attention to finite objects and computable
functions. In other words, we will restrict our attention to computer programs operating on computer
data. Computer programs and data are both finite objects, but they provide a convenient means for deal-

ing with potential infinities.

Notice that in this approach every real number is represented by a finite structure — that is, a finite
string of symbols chosen from a finite alphabet. In particular, irrational numbers are represented finitely.

This reduction to finite structures is accomplished by identifying real numbers with programs that com-

-1-
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pute sequences of rational approximations to the intended real number.

Various operations and functions of real numbers (e.g. the extracting of limits of sequences of reals) are
also defined as programs, which means that these operations and functions are computable in a finite

number of operations. Thus we have the foundations of a completely finitistic theory of real analysis.

There are many models of computation that could be used in this development. There are several rea-
sons why we have chosen to use functional programming as a basis for our development of the foundations

of real analysis:

1. Functional programming is mathematical in its style. Thus it lends itself to the definition of

mathematical ideas and is conducive to proofs of mathematical properties.

2. Functional programming provides high-level, powerful means for manipulating computable functions.

This is especially helpful in defining operations on potentially infinite objects.

3. Functional programs can be straight-forwardly reduced to formulas in the lambda calculus, a well-

known model of computation. This reduction founds real analysis on a small number of basic ideas.

A secondary goal of this report is to demonstrate the use of functional programming concepts in construc-

tivist mathematics.

We have omitted many of the proofs that our definitions are correct, or that they satisfy expected pro-
perties (commutativity, associativity, etc.). In most cases these proofs are routine and will not be missed.

However, we have frequently given informal demonstrations that our definitions are correct.

In this report we follow closely the development in Errett Bishop’s Foundations of Constructive
Anglysis (McGraw-Hill, New York, 1967). Both the definitions and order of presentation have been based
on his, although they have been adapted where necessary to the functional approach. Where we have
omitted proofs, the reader should consult Bishop's book, since his proofs are usually easily adapted to our 4

approach.
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3. The Lambda Calculus

In this chapter we develop the syntax and semantics of the lambda calculus. The lambda calculus is a
model of computation equivalent in power to the Turing Machine and other well-known models of compu-
tation. By the generally accepted definition of computability, the lambda calculus can compute any com-

putable function.

3.1 Syntax
- 2.1.1 Tokenas:
We assume a denumerable infinity v of symbols:
v=1{ab,,...,z,28ab,...,A B, .. ,succypredy,...,1,...}

These tokens can be considered strings made of symbols chosen from an underlying finite alphabet of sym-

bols.
A token from v is a formula of the lambda calculus.

Comments: Tokens are used to denote constants and for the names of functions and operations and for

the formal parameters of functions.

2.1.2 Abstractions:

An expression of the form {AvE), in which v is & token and E is a formula of the lambda calculus, is

a formula of the lambda calculus.

Comments: The intended meaning of (AvE ) is the function that takes any value v into E. For exam-

ple, (Az (z + 1}) is the successor function, since it takes any z into z + 1.
2.1.8 Applications:

An expression of the form (E E °), in which E and E ° are formulas of the lambda calculus, is a for-

mula of the lambda calculus.

Comments: The notation (f z) denotes the application of the function f to the argument z. For

example, ((Az(z + 1)) 2) denotes the application of the successor function (Az (r + 1)) to the argument

v 2.
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2.1.4 Ezxclusion:
The only formulas of the lambda calculus are those described in (1) - (3) above.
2.1.5 Definition of Bound Identifier:

A variable v occurs bound in a formula E if and only if there is some formula F such that (AvF)is a

subformula of E.
2.1.6 Definition of Free Identifier:

A variable occurs free in a formula if and only if it does not occur bound in that formula.

3.2 Semantics
2.2.1 Substitution Notation:
The notation ‘E {v—A }’ represents the result of substituting the formula A for all free occurrences of
the identifier v in formula E .
2.2.2 Renaming Rule:

If y does not occur free in E, then we can perform the following reduction by renarm';ug:
(AzE) = (AyE{z+-y})
2.2.3 Substitution Rule:
We can perform the following reduction by substitution:
((AzE) A) = E{z+~A}
provided that it does not result in any free variable of A becoming bound.
2.2.4 Definition of Reduction:

A reduction is a sequence of one or more applications of the renaming and substitution rules. We
write £ = F to denote that there is a reduction from E to F. We also use this symbol to introduce

abbreviations and explicit definitions. Note that this means that all abbreviations and definitions are in

principle eliminatable.
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2.2.5 Definition of Normal Reduction Order:

We say that a reduction is performed in normal reduction order if and only if the outermost reducible
application is always reduced before any inner applications. That is, we never reduce a formula by substi-

tution that is a subformula of an application that could be reduced by substitution.

2.2.6 Dcfinition of Normal Form:

A formula is caid to be in normal form if and only if the substitution rule cannot be applied to it, even

after intervening applications of the renaming rule.

If a formula has a normal form, then that normal form is unique (up to applications of the renaming

L

L’ 2.2.7 Church- Rosser Theorem:

8

L rule). Thus, the normal form of a formula can be considered that formula’s value.
e

b

2.2.8 Definition of @ Formula Being Defined:

} We say that a formula is defined if and only if it has a normal form. Note that by Turing’s Halting

Theorem it is not finitely decidable (i.e., algorithmically decidable) whether or not a formula is defined.

2.2.9 Universality of Normal Reduction Order:

If a formula is defined, then a normal order reduction will reach its normal form.

2.2.10 Dcefinition of Convertibility:

We call two formulas E and F convertible, and write ‘E <« F’, if and only if there is a normal form
N such that £ = N and F =» N. That is, two formulas are convertible if and only if they have the
same normal forms.

Note that if E and F are defined then E <+ F is finitely decidable: simply reduce both £ and F to
their normal forms (which are finite formulas), and compare them. This comparison can be done finitely

since the formulas are finite.
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8. Basic Definitions

In this chapter we introduce a number of abbreviations and notations, which make the lambda cal-
culus convenient to use as a functional programming language. These extensions include one atomic data

type, Booleans, and one composite data type, LISP-style lists.

S$.1 Parameters

3.1.1 Dyadic Functions: (A(zy)E) = (Az(AyE))

3.1.2 N-adic Functions: (A(z,23° " 2,)E) = (Az,(Azs( - (A2, E) - *)))

2.1.8 Omission of Parentheses {Applications):
Dyadic: (f z y) = ((f z) )

Neadics (f sy2z - m) = (- ((f 220 )
3.1.4 Omission of Parentheses (Abstractions):

AzE = (AzE)

AMzy oo -, 2)E = (Azy, ..., 2,)E)

3.1.5 Alternative Brackets: Other forms of parentheses, such as [~| and {—}, may be used in place of (—)

for readability.
3.2 Combinators

3.2.1 Identity: 1d =» Azz

Comments: Note that ld a = a,foralla.
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3.2.2 Constant: K =» Alkz)k
Comments: The function ‘K ¢’ returns the value ¢ for all arguments:

Kea =» Alkz)k ca = ¢

3.2.8 Projection Functions:

g

- Ist =» A(zy)z

.
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2nd =» A(zy)y

Comments: Thus, Ist a ¥ =» a and 2nda b =+ b. These functions are usually used in conjunc-

tion with other combinators.
3.2.4 Monadic Compositor:

B = A(fgz)[f (92)]

f*9 > Bfgy
Comments: Both ‘B’ (the prefix form) and ‘¢’ (the infix form) compute the composition of two

monadic functions. To see this note that
{log*sin)a =» Blogsina =» log(sina)
3.2.5 Monadic Formalizer:

® = A(fabz)|f (az)(bz)]

fo(a,b) = Az{f (az)(bz]]

Comments: If ‘sum’ is the addition function, then ‘sum*(f ,g)’ represents the functional sum of f

and ¢, since

sum*(f ,9g)z =» sum(f z) (g z)

- For example, sum ° (sin,cos) is a function to compute the sum of the sines and cosines of its argument:
[ sum * (sin,cos) @ =» sum (sin @) (cos #)
.
q
- Thus this operation feeds a single input through two monadic functions, and then feeds the outputs of
-
t*; these into a dyadic function.
!
.‘ 3.2.6 Dyadic Compositor:
X T = A/g){A(=)lf (ozy)])
/9 =T /[y

Comments: For example,

(log:sum) a 8 =» A(zy)llog(sum z y){a & =» log(suma b)
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This composes a monadic function with the output of & dyadic function.
3.2.7 Dyadic Formalizer:

T = A(fabzy)|f (azy)(bzy)]

f{a,b) = A(zy) S (ozy)(bzy)]

Comments: This operation feeds two arguments to each of two dyadic functions, and then feeds the
two results to a third dyadic function. Thus, if f and g are dyadic functions, then sum:(f ,g) is the
functional sum of f and g. For example, to compute {z-y)(z+y) we can use the function

prod:(dif,sum):
prod:(dif,sum) z y =» prod (dif z ¢) (sumz y)
3.2.8 Dual Compositor: 0O = A(fghzy)|f (9z)(hy)]

Comments: This preprocesses the two inputs to a dyadic function with two separate monadic func-

tions. For example,
(Msumsincos)a b = A(fghzy)|f (¢9z)(hy) sumsincos a b => sum (sin a) (cos b)

Thus, ‘0} sum sin cos’ can be read ‘“the sum of the sin of the first and the cosine of the second.” This com-

bination can also be expressed by the dyadic compositor and the projection functions:
sum:(sin * Lst, cos * 2nd)
To see this, observe

sum:(sin* 1st,cos*2nd) ¢ b =» sum (sin*1st a) (cos*2nd a b)
=» sum (sin(lst @ b]) (cos{2nd & b])

=» sum (sin a ) (sin b)
3.2.9 Elementary Permutator (Conversion): conv =» A(fzy)(fyz)

Comments: For example, if (dif z y) computes the difference of z and y, then (conv dif 1) is the

predecessor function, since

(convdif 1) a =» A(fzy)(fyz)dift a =» difa }
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Thus conv exchanges the arguments of a dyadic function.
3.2.10 S Combinator: 8 = A(fgz}|fz(9z))

Comments: The S combinator is difficult to explain. It is best understood as taking a single argument,
preprocessing it by a monadic function, and then passing both the preprocessed and unpreprocessed ver-

sions to a dyadic function. For example, (S prod log) multiplies a number by its logarithm:
(S prodlog) p =» prod p (logp)
3.2.11 Psi Combingtor: W = A(fgzy)|f (9z)(9y)]

Comments: This combinator preprocesses both arguments of a dyadic function by the same monadic

function. Thus (¥ sum log) is a function to add logarithmically:
(Wsumlog) e b = sum (log a) (log b)
Note that
Vfig < 0fgg <« [:g-1st, g *2nd).
3.2.12 Paradozical Combinator: Y = Af { Az|f (2z)] Az[f (22)]}

Comments: The Y combinator is difficult to explain. This definition of Y satisfies the functional equa-

tion:
YF =» F(YF) =» F(F(YF)) =»
To see this observe
YF = Az(F(zz)] Az(F(2z)] =» F{Az[F(zz) Az [F(zz)]} =
Thus it can be considered the fized-point finding operation.
3.2.13 Recursive Definition: Yec F = D’ =» ‘F =» Y AFD’

Comments: For example, a definition of the form

. n=0 -1
recfac = An| yige n x [fac(n - 1)]

is to be replaced by
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n=0 -1
else n < !fac (n-1)

fac = Y Afac[An{

The Y combinator in effect embeds the definition of fac in itself.

3.2.14 Seminormal Form: We say that a formula is in seminormal form if and only if the only reductions

that can be performed on it and its descendants are of theform Y F = F{ Y F).

Comments: Because of their use of the paradoxical combinator many useful formulas, for example the
recursive definition of ‘fac’ exhibited above, do not have a normal form. Conceptually, however, this for-
mula represents a value, viz., the factorial function. If we view any application of Y as being a potential
application, that is only performed when necessary to allow the reduction of non-Y applications, then we
can see that a formula is in seminormal form when none of its actual applications can be reduced. That

is, a formula is in seminormal form if either:
1. it is in normal form, or

2. it is not in normal form, but the only applications that can be reduced are Y applications, and per-

forming these Y applications would not enable any non-Y applications.

Thus a formula in seminormal form can be thought of as dormant. It can be activated by using it in an
application. For example, if A(zy )E is in normal form, then Y[A(zy )E | is in seminormal form. This
function can be activated by applying it to an argument a, since this application allows non-Y reductions

to take place:

{Y(A(zy)E[}a = A(zy)E (Y[A(sy)E]} o

= Ef{z ~ {Y[A(zv)E]}, y - a}

We loosely use the term defined to mean that a formula has either a normal or seminormal form, and only

discriminate between the two when necessary.

3.8 Conditionals

‘\
3
[- 3.3.1 True Value: true => A(zy)z
@
T
Oy Comments: Note that
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truea b =» A(zy)z ad = o

Thus true selects the first of its two arguments.

3.3.2 False Value: false =» A(zy)y

Comments: Note that

falsea b = Azy)ya b = b

Thus false selects the second of its two arguments.

et g N

3.3.8 Definition of Boolean Value:

VR

1. The normal form of ‘true’ is a Boolean value.

2. The normal form of ‘false’ is a Boolean value.

Al

3. The only Boolean values are those described in (1) and (2) above.

[ demar g
s e s

3.9.4 Negation: not = Az(z false true)

Comments: For example,
not true =» Az(z false true) true = true false true = A(sy)z false true - false
3.3.5 Conjunction: and => A(zy)(z y false)

Comments: For example,

and true false =» true false false = \(zy)z false false = false

- 3.3.6 Disjunction: or =» A{zy)(z truey)

o Comments: For example,

v

N

« . or false true = false false true = true

"h

. 3.3.7 Eguivalence: equiv = Sz noty

>,

4

i Comments: For example,

L

" equiv true true =» S true not true =» true true (not true) = true
) equiv false true =» S false not true =» false true (not true) =» not true = false
U -11-
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3.8.8 Dyadic Conditional:

P-C
{ = PC A

else A

Comments: This depends on the fact that if P is a Boolean value, then it will choose between C and

A depending on whether it is true or false.

3.8.9 N-adic Conditional:

{
P|"C‘
Pg"Cg
= P,C,(P3Cq -~ (P, Ca A) -+ )

P,-C,
else A

\

3.4 Lists
3.4.1 First of Three: 1of8 = X(zyz)z
Comments: Note that for any a, b, ¢:
1ofa b ¢ = [AMzyz)zia b ec = @

Notice that 1of3 selects the first of three values in much the same way that true selects the first of two

values. In effect the formulas 1of3, 20f3 and 3of3 form the truth values of a three-valued logic.

3.4.2 Second of Three: 20f3 = A(zyz)y
3.4.8 Third of Three: 30f3 = A(zyz)z
3.4.4 List Value: list =» A(nht){rs(s n A t)]

Comments: This should be thought of as a triple (n ,A,t), in which n is the null-flag and h and t are
the head and tail of the list. The latter have significant values only if the null-flag is false. The parame-

ter 4 can be thought of as a potential selector, which will select one of n, A or t. Notice that

list false A B =+ A\s(s false A B)
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3.4.5 Null List: nil =» list true .

M Y

v

v
.

Comments: The first component of the triple, true, indicates that the list is null, and that the remain-
< ing two components are not used. The symbol ‘| ’ has no special significance, although it is intended to

suggest an undefined value; it is merely a token like any other in the lambda calculus. Note that

nil =» list true = As(s true | 1)

L

which is the normal form for the null list.

3.4.6 List Construction: cons =» A(ht )(list false h t)
Comments: For example,

cons A B = listfalse A B = As(s false A B)

That is, the result of ‘cons A B’ is a list triple, whose first element is false (meaning the list is nonnull),

and whose second and third elements are A and B, the head and tail of the list.
3.4.7 Null Test: null =» Az (z 10f3)
Comments: This simply selects the first (null-flag) component of a list value:
null nil =» nil 10f8 => As (s true | 1) 10f3 =» lofStrue | | < true
3.4.8 Head of List: hd = Az (z 20f8)

Comments: This simply selects the second of the three components of a list value:

hd(cons A B) = (cons A B)20f3 =» s (s false A B) 20f8 =» 20f3false A B = A
Note that hd nil e | .
3.4.9 Tail of List: t1 =» Az (z 30f3)

Comménts: This simply selects the third of the three elements of a list value. We have that

ti{cons A B) «» B. Similarly, it is easy to show that if L is a nonnull list then

cons (hd L) (t1L) e L

Simply observe that if L is a nonnull list then it has the form (list false A B). Note also that

. thnil e | .
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More formally,

<> = nil

<IZp X2, ..., %> => CONSZy <Zgy, ...,Zy>

Notice that by previously derived properties:

hd(th 2, ., Zp> = hd(conszl <z,,...,z,,>) = I

tl<z), 23, ..., Z,> = tllcons z, <z3,...,2,>) = <25,...,2,>

3.4.11 Pair List: pair = A(zy)<z,y>

Comments: The formula ‘pair z y’ constructs a two-element list <z,y >. Note that ‘pair a’ is a func-

tion that constructs a list whose first element is a:

ey

v

(paira) y = paira y = <a,y>
3.4.12 Definition of List:

1. The normal form of ‘nil’ is a list.

2. If L is a list and z is any formula having a normal form, then the normal form of ‘cons z L' is a

list.
3. The only lists are those described in (1) and (2) above.
3.4.18 Ezample Normal Form:

For concreteness we exhibit the normal form of a particular list. Suppose ‘1’ and ‘a’ are two tokens

(symbols in. »). Then we derive the normal form of the list ‘<1,a >’ as follows:

<l,a> =» cons 1 (cons a nil)

[ = (list false 1 (cons a nil))

Eg' = (list false 1 (list false a nil))

: : =» (list false 1 (list false a (list true o _ }))
X
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= As(s false 1 (list false a (list true . _)))

= As(s false 1 Ae (s false a (list true o _)))

= Aa(a false L Ao (s false a As (o true _ . )))

= As(s Mzy)y 1 Ao (s Alzy)y a As(s A(zy)z . _)))

The final formula above is strictly speaking not in normal form, which would require replacing the

suppressed parentheses. We omit this step as it would make the formula too unreadable.
8.4.14 Nonstandard Objects:

This representation permits several kinds of nonstandard lists. In particular, the structure
(list true z y} behaves exactly like nil, the empty list, but contains two pieces of information, namely z

and y. Also, although in the application (cons z y) the argument y is expected to be a list, this is not

necessary. Whatever it is, the tl function will extract it.

[ ‘. PPN . ., . L . A . . . . .~ . .

~ . R . . . .
RSOV R AR L, LSOO




M b Ne . Sl b ¢ v R Shi -l b Sasrs PRl S S A G4 AN Aol Snba B Muan ab LA ol e i sand ot LArGCAIME St saE i AR SN s et o at B Attt e

4. Natural Numbers

In this chapter we define a representation for natural numbers and for the basic operations on natural

numbers. Natural numbers are represented in unary notation as lists of identical tokens.
4.1 Primitive Ideas
4.1.1 Definition of Natural Number:
A natural number is a (possibly null) list, all of whose elements are nil.
4.1.2 Numeric Denotations:

0 = <>

1 = <nil>

2 = <nilnil>

3 = <nil,nilnil>

4 = <nil,nilnil)nil>

9 = <uril,nil,nil,nil,nil,nil,nil,nil,nil>
4.1.8 Example Normal Form:

For concreteness we exhibit the normal form of a particular natural number:

0 = nil
= (list true - | )
= As(s trae 1 1)

= Aa(se A(zy)z 1 1)
4.1.4 Nonstandard Objects:

There are no nonstandard natural numbers, since they are defined to be lists of nils. However, it will
be seen that the arithmetic operations and relations depend only on the lengths of these lists, so that lists
of things other than nils can be considered nonstandard natural numbers. For example, the normal forms

of <_ >, <true>, <false>, <<nil>>, etc. could be considered alternate, nonstandard representations of
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4.1.5 Zero Predicate: zero?y =» null

Comments: For example,

zero?y 0 = null <> = true

zero?y 1 = null <nil> = false

4.1.6 Successor: succy = cons nil

Comments: Since the natural number n is represented by a list of n nils, the successor function simply

adds another nil to the list. For example,

MR~ G e

succy 3 = cons nil <nil,nil,nil> = <nilnilnilnil> < 4

PPy

( 4.1.7 Predecessor: predy = tl

oy

Comments: For example,

predy 4 = tl <nil,nilnilnil> = <nilnilnil> <= 3
4.2 Arithmetic

4.2.1 Repeated Composition:

zero?y n — a
recrpt = A(fna) else f [rpt f (predy n) a| ‘

Comments: Notice that:

pt f 0z = =z

pt f 1z = [z

rpt f 22 = f(fz)
pt f 3z = [(f(/z))

;

- pt f nz = f"z

In general, rpt f n is the n-fold composition of f with itself.
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£.2.2 Sum: sumy => rpt succy
Comments: Thus, the sum of m and n is the mth successor of n:
Ssumy m n =»> rptsuccy m n =» sSucty™n = m-+n
4.2.3 Difference: dify => conv(rpt predy)
Comments: The effect of this definition is that the difference of m and n is the nth predecessor of m:
dify m n = conv(rpt predy) m n => rptpredy n m = predy"m = m-n
4.2.4 Product: prody => X(mn){rpt (sumy m) n O

Comments: Notice that (sumy m) is the function that adds m. Hence the product of m and n is

defined to be the result of adding m to zero n times: |
prody mn = rpt(sumy m)n 0 = (sumy m)"0 = m+m+ - +m+0 = mn
4.3 Predicates and Relations
4.8.1 Less- Than Relation:
zero?y n — false

rec Ity = A(mn){ zero?y m — true
else lty (predy m) (predy n)

Comments: This definition is based on the fact that

m<n e m-1<n-1

Thus, Ity m n operates recursively, subtracting one from each of m and n until one or the other reaches

- 0, at which point the truth value of the relation is known:

ity m 0 = false
Ity Orn = true, if n nonzero

Ity m n = Ity (m-1)(n-1), if m, n nonzero

4.3.2 Greater-Than Relation: gty =» conv Ity

=
- - Comments: Observe that
h oL
-,
3
r! -18.
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gty mn = convity mn = ltynm

4.3.8 Inequality Relation: ney =» or:(lty, gty)

Comments: Two natural numbers are unequal if one is either greater or less than the other:

Ty

NP PR
L . L
e ey . . . C
. Vet .
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ney mn = or:(lty,gty) m n = or(lty m n) (gty m n)

o
e
L

£.3.4 Eguality Relation: eqy = not:ney

ol
(Sl
LALIEL
] ..

Comments: Two natural numbers are equal if they are not unequal:

[

TR A A
. .

Py

eqy m n => not:ney m n => not{ney m n)

4.3.5 Less-or-Equal Relation: ley = not:gty
Comments: One number is less than or equal to another if it is not greater than the other:
ley m n = notigty m n => not(gty m n)

4.8.6 Greater-or- Equal Relation: gey = not:lty

4.4 Miscellaneous Operations

Ity mn - 0
4.4.1 Quotient: ree quoy = A(mn) else succy :quoy (dify m n) n

Comments: The definition of quotient is based on the following identity:
m+n =14+(m-n)+n
Note that if m is greater or equal to n then
quoy m N = succy:quoy (dify m n)n =» succyquoy dify m n)n!

zero?’y n — 1
4.4.2 Factorial: rec fac =

A elge prody {n, [fac (predy n)|}
4.4.3 Definition of Sequence:

A scquence is any formula N such that for each nonzero natural number & the formula ‘Nk’ is

;o defined.
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If C is any class of normal forms and N is a sequence, then N is called a sequence of Cs if the normal

form of each formula Nk isin C.
4.4.4 Subseript Notation:
If N is a sequence we usually write N, for Nk:

N‘=Nk
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5. Integers

In this chapter we define integers as pairs comprising a sign (represented by a Boolean value) and a

magnitude (represented by a natural number).

§.1 Primitive Ideas

5.1.1 Definstion of Integer:

- An integer is a pair (two element list), whose first element is a Boolean value and whose second ele-

-' ment is a natural number.
5.1.2 Attach Plus-sign: plus; =s pair false

Comments: This operation converts a natural number into a plus-signed integer by attaching a plus-

'. flag (false value) to it. For example,
p—
= plus; 8 =» pair false 3 = <false,3>

5.1.8 Attach Minus-sign: minus; = pair true

Comments: This operation converts a natural number into a minus-signed integer.
5.1.4 Denotations:

+0 =» plusz O

+~1 => plusz 1

+~2 = plusy 2

-1 = minusz 1

5.1.5 Ezample Normal Form:

s
<
- For concreteness we exhibit the normal form of ‘+0':
]
. ~0 =» piusz O
= <false, 0>
° = <Alzy)y, Aefs A(zy)z L 1)>
- = Ao (o May)y Mzy)y Ao (s Mzy)y As (s A(zy)z L 1) Ao (s May)e 1))

-21-
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[' 5.1.8 Nonstandard Objects:

This representation permits one nonstandard object, -0. This is because +0 and -0 have different

representations, <false,0> and <true,0>, although the arithmetic operations and relations treat them as

equivalent.
5.1.7 Ertract Magnitude: magz = hd-°tl

Comments: This operation converts an integer into a natural number by discarding its sign: For exam-
ple,

magz +1 == magz; <false,1> =» hd‘tl <false,1> = hd(tl <false,i>) = hd <i> =» 1

magz; —1 =» mag; <true,1> = hd-°tl <true,1> = hd(tl <true,1>) = hd <1> = 1

$.3 Primitive Predicates
5.2.1 Minus-sign Test: minus?; => hd
Comments: This operation tests if an integer bears a minus sign:
minus?; +1 =» minus?; <false,1> == hd <falgse,I> = false

Notice that a number bearing a minus sign is not the same thing as it being negative, since -0 bears a

minus sign. True positive and negative tests are defined later.

»'-' 5.2.2 Plus-sign Test: plus?; => not°minus?;

[.

g Comments: For example,

-

!

E’; plus?; +1 =s not°minus?; +1 = not(minus?; +1) = not false = true
.

\* Again, bearing a plus sign is not the same as being positive, since +0 bears a plus sign.

4

-

( 5.2.8 Zero Test: zero?; = zero”?y "magyz

X

Comments: For example,

:.\' zero?z; +1 = zero?y °magz; +1 =» zero?y(magz +1) =» zero?y 1 =» false
o

C

I
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$.3 Primitive Operations

v v vV v vy

531 Absolute Value: abs; =» plusz * mag;

Commenta: For example,
abs; -1 =» plusz(magz —1) => plusz 1 o= +1I
5.8.2 Negate: negz =+ pair°[plus?z magz)
Comments: This operation negates an integer. For example,

negz; —1 = pair° (plus?z;,magz) -1
=> pair (plus?; —1) (magz —1) = pairfalsel <« +1
zero?; n — +1
5.8.3 Successor: succ; => Ang plus?; n — plus; *succy *magz n
minus?; n — minusz °predy *magz n
Comments: This operation computes the successor of an integer. The main complication is to avoid

treating -0 and +0 as different integers. The cases are: .

succz £0 = +1
succz +n => plusz(succy (magz; +n)| = +(n+1)

succ; ~n => minusy[predy (mag; ~n)] = —(n-~1)
5.8.4 Predecessor: pred; => negz °*succz °negz
Comments: Notice that

pred; n => negz °succz °negz n => negz[succz(negz n)]

= -1+ (-n)] = -[1=n] = n-1

zero?z n - m

5.3.5 Sum: rec sumz = A(mn){ minus?z; n — pred; [sumz m (succz n)]

S plus?; n — succy [sumz; m (pred; n)]
-

b,

»

e Comments: The sum of integers is defined recursively by the following cases:
P‘,

.

"
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m~+0=m
m+n = m+(n+1)] -1, fn<0
m+n = m+(n-1)f+1 ifn>0

5.8.6 Difference: dif; => sumz:(lst, negz ° 2nd)
Comments: Note that

dif; m n = sumz:(lst,negz °2nd) m n = sumz m (negz n)

= sumz; m (negz n) = m+(-n) = m-n
5.4 Predicates and Relations
5.4.1 Equality: eq; => zero?;:dif;
Comments: This depends on the fact that m =n if and only if m —n is zero:
eqz m n => zero’z:difz m n = zero?z(dif; m n)
5.4.2 Negative Predicate: neg?; = and°(minus?z, not * zero?;)

Comments: This is a true negative test (in contrast to minus?; ), and depends on the fact that m <0 if

and only if m bears a minus sign and is nonzero:

neg?; m = and°(minus?z, not*zero?z) m => and (minus?; m) {not(zero?z; m))

5.4.3 Positive Predicate: pos?; =» andscric (plus?z, not ° zero?z) i
#_' Comments: An integer is positive if it is nonzero and bears a plus sign:

N

" pos?z; m =» and‘(plus?z, not-zero?z) m = and (plus?; m) [not(zero?; m)]
5.4.4 Less- Than Relation: 1tz => neg?;:dif;

e Comments: We make use of the fact that m <n if and only if m —n is negative:

it

e

It; m n = neg?;:difz m n =» neg?;z(difz m n)

R
5.4.5 Greater- Than Relation: gt; => pos?;:dif;
':.g Comments: Note
=
& |
3
® -24-
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gtz m n = pos?;:dif; m n =+ pos?;(difz m n)
5.4.6 Greater-or- Equal Relation: ge; = not:ltz
Comments: Here we make use of the fact that m >n is true if and only if m <n is false:
gez mn = not:lt; mn = not(lt; m n)

5.4.7 Less-or-Equal Relation: lez; =» not:gtz

(gezzy) - =
elge y

5.4.8 Mazimum: max; =» A(zy){
§.§ Multiplicative Operations

5.5.1 Product:

equiv (negz; m) (negz n) — plusz:prody (mag; m) (magz; n)
prod; = A(mn) else minusz:prody (magz m) (magz n) -

Comments: This definition operates by attaching the appropriate sign to the result of a natural

number multiplication of the magnitudes of the factors. The only complication is to take care of the sign ¢

of the result. In this connection note that

equiv (negz; m) (negz n)
is true if and only if the signs of m and n are the same.
5.5.2 Quotient:

equiv (negz m) (negz; n) — plusz:quoy (magz; m) (magz n)
quoz = A(mn)) g, minusz :quoy {magz m) (magz n)

Comments: Like the product operation, quotient operates by attaching the appropriate sign to the

result of the corresponding natural number operation.
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8. Rational Numbers

In this chapter rational numbers and their operations are defined, based on the representation of a

rational number as a pair of integers.
6.1 Primitive Ideas

6.1.1 Definition of Rational Number:

- A rational number is a pair (two element list), each of whose elements is an integer.
b
=
. 6.1.2 Construction: ratg => pair
4 Comments: Note that
9
¢
. ratg mn = pairmna = <m,n>
.
. .
= 8.1.3 Notation: m/ n = <m.n>

6.1.4 Denotations:

m/1l1 = m/+1

0/1 = +0/1

L e .
et 'rll.—.—"-—‘. oo
FARERPI .
AN e L

1/1 = +1/1

2/1 = +2/1
t:_ 1/2 = +1/ +2
W
A
N 6.1.5 Ezample Normal Form:
-'_'.j For concreteness we exhibit the normal form of 0/0:
: .
0/0 = <+0,+0>

= Ao (s false +0 Ae (s false ~0 As (s true | 1))
= As{s May)y Ao (s A(zy)y A(zy)y Ao (s Azy)y Ao (s A(zy)z L 1)
Ao (s AMzy)z L 1))
Ao (s Azy)y Ao (s A(zy)y Mzy)y Ae (o Alzy)y A (s A(zy)z o L)

As{s AMzy)z 1 1)) Ae(s Alzy)z 1 1)) |

The normal form of 1/2 is shown in Figure 1.
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1) 2 = (As
(s (AM(zy)y)
(Ae
(o (Alzy )y)
(Azy)y)
(As
(¢ (Mzy)y)
(s
(s (Mzy)y)
(Ao (o (Mzy)z)L L))
(Ao (s (Mzy)z) L _)))
(As (o (A(zy )z )L L))
{As

(s (A(zy)y)
(As

(s (A(zy)y)
(Mzy)y)
{As

(s (A(zy)y)
(As
(o (A(zy)y)

(Ao (s (A(zy)z) 1))

(Aa

(s (A(zy)y)
(As

(s (Mzy)z)L L))

(s (Mzy)z) L LN
(Ao (s (A(zy)z) L L1

(Aa (s (A(zy)z) L))

?igure 1. Normal Form of 1/2
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6.1.6 Nonstandard Objects:

discussed further at the end of this section.

6.1.7 Eztract Numerator: numg =» hd

Comments: Note that

numg(m/n) =» hdim/n) =» hd<m,n> = m

-27-

There are many equivalent representations of the same rational number; alternately, these may be con-
sidered different (nonstandard) rational numbers that behave the same under the arithmetic operations.
For example, +1/+2, +2/+4, -1/-2, -2/-4 etc. all behave the same. Similarly, +0/+1, +0/-1, +0/+2,
-0/-1, etc. all behave the same. ‘‘Infinite’” rational numbers, such as +1/+0, -1/-0, etc. are also permitted

by the representation, and can be considered nonstandard objects. Operations on nonstandard objects are
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6.1.8 Eztract Denominator: deng = hd-tl
Comments: Note that
deng(m/ n) = hd-tl(m/n) = hd*tl<m,n> = n
6.2 Arithmetie Operations
6.2.1 Sum:

sumg => ratg:isumz:({1 prodz numgq deng, 2 prod; deng numg),

Q1 prod; deng deng |
Comments: Alternately, replacing 2 with a dyadic composition we have
sumg = ratg:{sumz:|[prodz:(numgq ° st, deng *2nd), prodz :(deng °1st, numgq °2nd)},
prodz:(deng ° 1st, deng °2nd)}
This deﬁniti'on makes use of the equation
m/n+m’/n° = (mn’ +nam’)/ nan’
To see this note that

sumg (m/ n) (m "/ n°)
= ratg:[sumz:(Q prodz numg deng, 1 prod; deng numg ),
0 prod; deng deng|(m/ n)(m’/n’)
= ratg [sumz:() prodz numg deng, Q1 prodz deng numg) (m/n)(m '/ n I

[(Q prodz deng deng) (m/ n) (m“/ n ")}
Now note that

(Q prodz deng deng) (m/ n)(m '/ n’)

= prod; [deng(m/ n)| deng(m '/ n’)] = prodz n n ‘= an’

Also note that

Y
R Y
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sumz:(Q prod; numgq deng, 1 prod; deng numg) (m/ n)(m '/ n’)
- sum; [Q prodz numg deng (m/ n)(m "/ n ‘)] 1 prodz deng numg (m/ n)(m '/ n’)
= sumy {prodz [numg (m/ n)] deng (m "/ n o
{prodz deng (m/ n) numg (m '/ n 1)
= sumz (prodz m n’) (prodz n m ‘)
= mn’' +nam’

6.2.2 Absolute Value: absq = ratg °(absz *numg, absz *deng)

Comments: This definition is based on

jm/n| = |m|/ |In]|

To see this note

absq (m/ n) = ratq °(absz “numg, absz °deng) (m/ n)
= ratg |(absz *numg) (m/ n)| [(absz °deng) (m/ n)]

=> ratg (absz; m) (absz n) _
6.2.9 Negation: negg = ratq °(negz “numg, deng)
Comments: This is based on —(m/ n) = (-m)/ n. To see this note

negg (m/ n) => ratq *(negz *numg, deng ) (m/ n)
= ratq |(negz *numg) (m/ n)] [deng (m/ n)]

= ratg (negz m)n

r 6.2.4 Difference: difq => sumg:(lst, negq *2nd)

Comments: Note that

e difg r + = sumgq:(lst,negq °2nd) r s = = sumg r (negq ¢)
'_ 6.2.5 Product: prodg => ratg:(¥ prod; numg, ¥ prod; deng)

Comments: This is based on the identity

(m/n)(m/n’) = (mm’)/(nn’)
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Note that

prodg (m/ n)(m"/ n’) = ratg:(¥ prod; numg, ¥ prod, deng) (m/n)(m "/ a’)

= ratg [(¥ prodz numg) (m/ n) (m/ n’)] (¥ prodz deng) (m/ n) (m”/ n’)]
Now note that

(¥ prodz numg) (m/ n)(m '/ n’) == prodz numg (m/ n)| numg (m "/ n’)|

= prodz m m’
Similarly,
(¥ prodz deng)(m/n)(m°/ n’) = prodz n n’
6.2.6 Reciprocal:
) recippg = ratg °(deng,numg)
Comments: Note that

recipg (m/ n) = ratg °(deng,numg) (m/ n) ‘

= ratg [deng(m/ n)|numg(m/ n) = ratgnm < n/m

Notice that the reciprocal of zero is defined (has a normal form) since recipg 0/ 1 < +1/ +0, although

this is a nonstandard object.

6.2.7 Quotient: quog => prodg :(1st, recipg ° 2nd)

Comments: Note that

) ey

e

:i quog r s = prodg:(lst, recipg °2nd) r ¢ =» prodg r (recipg s)

o

:_':j 6.2.8 Floor: floorqg => quoz *(numg ,deng)

-

® Comments: The floor of a rational number is the greatest integer less than that rational number. Thus
‘_:: the floor of m / n is the integer part of the quotient of m and n:

. floorg (m/ n) => quoz *(numg,deng) (m/ n)

2

p.~ = quoz |[numg(m/ n)}[deng(m/ n) = quoz m n
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6.2.9 Ceiling: ceilg = floorg ° ‘sumg (1/ 2)!

Comments: The ceiling of a rational number is the least integer greater than or equal to that rational

number. To compute this we use the relation
ceily r = floorg (r + %)
Note that
ceilg r =» floorg °isumgq (1/ 2)] r = floorg sumg (1/2) r|
6.3 Predicates and Relations
6.3.1 Nonnegative: nonneg?q => equiv ° (neg?; *numg, neg?; *deng)

Comments: A rational number is nonnegative if both its numerator and denominator have the same

sign. Thatism/ n 2 0if and only if
equiv (neg?z m) (neg?z; n) <= true
Note that

nonneg?q (m/ n) = equiv°(neg?; “numgqg, neg?z °deng) (m/ n)
= equiv ((neg?z *numg) (m/ n)| [(neg?z <deng) (m/ n}]

=> equiv (neg?z m) (neg?z n)
€.8.2 Negative: neg?y => not°nonneg?,
Comments: A rational is negative if it is not nonnegative.
6.9.3 Less-Than: ltyg = neg?q:difg
Comments: A rational r is less than a rational s if and only if r — s is negative:
Itg r s = neg?q:difg r + = neg?q(difg r s)
6.8.4 Greater-Than: gtg = conv ltg

Comments: Note that Gtg r 4 => convglg rs = gty s 1
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6.83.5 Less or Equal: leg = not:gtg

6.3.6 Greater or Equal: geq == not:ltg

6.3.7 Equality: eqq = eqz:(Ql prod; numg deng, N1 prod; deng numg)
Comments: Alternately, we can replace the s with dyadic compositions:

eqq => eqz:[prodz:(numg °lst, deng ° 2nd),

prodz:(deng ° Ist, numg ° 2nd)]
Two rationals m / n and m °/ n * are equal if and only if mn " = m “n. Note

eqq (m/ n)(m"/n’)
= eqz:(f prod; numg deng, 0 prod; deng numg) (m/ n) (m°/ n’)
= eqz [( prod; numg deng) (m/ n) (m "/ n )| [( prod; numgq deng) (m/ n) (m "/ n’)]
= eqz {prod; [numgq (m/ n)| [deng (m °/ n °)|} {prodz [deng (m/ n)| [numgq(m °/ n )]}

=> eqz (prodz m n’) (prodz n m’)

(geqg z y) — =

6.9.8 Mazimum: maxq = A(zy )<else v

6.4 Operations on Nonstandard Rational Numbers
6.4.1 Infinite and Indefinite Rational Numbers:

o = +1/ +0
-00 = -1/ +0

x = +0/ +0

Comments: The chosen representation for rational numbers permits the nonstandard rationals 1/0,
-1/0 and 0/0. We show later that other nonstandard rationals, such as 2/0 and -3/0, are equal to one of

the three defined above.

In this section we explore the extent to which these nonstandard numbers can be manipulated con-
sistently, and the extent to which they have the expected properties. Although one goal of this report is

to show the development of real analysis without recourse to actual infinities, there is no problem with the
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computable manipulation of finite symbols representing infinities.
6.4.2 Predicates:

nonstandardg =» zero?z *deng
standard?q = not ° nonstandardg
infinite?y => and * (nonstandardg, not °zero?; *numg)

indefinite?y = and*(nonstandardg, zero?z °numg)
Comments: Thus, infinite? co <> true, nonstandardg oo <> true, etc.
6.4.9 Standard Equality:

eqq (m/ n)oo <= eqq (M/ n) —oo <> zero?y n

eqg 00 —00 <> eqq —0000 <> true

Comments: These results follow from the definition of ‘eqq ’, and reflect the fact that that definition is g
only appropriate for finite rational numbers. In the following subsection we extend the equality operation

to accommodate nonstandard rationals. N
6.4.4 Nonstandard Equality:

and (infinite? q) (infinite? r) — equiv (pos?z *numgq gq) (pos?z “numg r)
eqq. = Algr) elseeqq g r

TABLE 1. Equality Relation on Nonscandard Rationals

eqq + l r 00 —00 X
q |eqq qr false false true
o0 false true false true
—00 false false true true
X true true true true

Commenta: This operation has the properties shown in Table 1. Notice that the indefinite quantity x :

is equal to all quantities, finite or infinite. Therefore this relation is not transitive, since 0/1 equals x, and
x equals 1/1, but 0/1 is not equal to 1/1. On the other hand, the infinities (oa —od are unequal to all

finite quantities and are unequal to each other. Henceforth, we use ‘=’ as an abbreviation for ‘eqq.’.

q That is, ‘¢ = r’ means ‘eqq. ¢ r’.
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6.4.5 Nonnegative:

nonneg?q co e» true
nonneg?q —oo <« false

nonneg?g x <> true

Comments: These properties follow directly from the definitions:
nonneg?q oo = nonneg?q (+1/ +0)

= equiv (neg?; +1) (neg?z +0)

=> equiv false false

<> true

Similarly,

nonneg?q —oo = equiv (neg?; —1) (negz +0) <> false

nonneg?q x = equiv (neg?; +0) (neg?z; —0) <« true

Comments: As expected, oo is nonnegative and —oc is negative. That x, the indefinite quantity, is
nonnegative may seem incorrect. This situation is a result of our considering all zeros to be nonnegative,
including -0. Otherwise we could define a ‘“‘negative indefinite” quantity —x = -0/ +0. It can be seen
that it is reasonable to consider x nonnegative, since x is equal to every rational number, including zero.

Hence, it is nonnegative, in the sense that it is greater than or equal to zero.

6.4.6 Negative:

neg?’g oo =» false

neg?g —oo = true

neg?o x => false
6.4.7 Nonstandard Addition:

and (eqq ., ¢ r) [and (infinite? ¢ ) (infinite? r)] — ¢
sumg, = A(4r)] elge sumg ¢

Comments: The properties of this operation are shown in Table 2. These follow from the definitions,

for example




AN R B LA U hde Afs & S0 4he Ja & it as e

S T N N N T S T T W TV UV S T TR TN TV TR

TABLE 2. Addition of Nonstandard Rationals

sumg | v 0© -0 x

q Tq*r [~ ) -0 X

© | oo © X x

~00 i ) X - X

x | x X X X
m/n+1/0 = (mO+n-1)/{(n0) = m/0 = oqifm >0
m/n+-1/0 = (mO+n-1})/(n0 = -m/0 = -ogifm >0
m/an+0/0 = (mO+n0)/(n0) = 0/0 = x

A nonstandard addition is necessary if the operation is to have the expected properties, otherwise we

would have oo + o0 = x, since

]

00 + o0 1/0+1/0 = (10+01)/(00) = 0/0 =

8.4.8 Negation:

negg o© > -

Negg —0© <= &

negg x <= X
6.4.9 Difference:

The properties of subtraction with respect to the nonstandard quantities follows directly from those of

addition by the identity
difg ¢ r = sumg ¢ (negq r)

6.4.10 Ordering: ltg, => neg?q:sumg ,:(lst,negqy °2nd)

TABLE 8. Ordering of Nonstandard Rationals

lig ., l r 00 -0 X
q | ¢g<r true false false
) false false false false
- 00 true true false false
false | false false false false

Comments: The properties of this operation are shown in Table 3. As expected we have —00< ¢ < oo
by this ordering. Notice that x is neither greater than ¢ nor less than ¢, for it is equal to ¢, for every ¢,

finite or infinite.
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6.4.11 Products, Reciprocals and Quotients:

TABLE 4. Multiplication of Nonstandard Rationals

LG A AE A~ L B o —eag- ol

prodg LO r o0 -00 X
o [0 o x x «x

q 0 qr *oo Foo x
o0 X Too 0 -0 X
-0 X Fo90 —oo o ) X
X X X X X X

The properties of multiplication of nonstandard rationals, as deduced from the standard definition of
rational multiplication, are shown in Table 4. The sign + must be taken in the same sense as the sign of

g {or r), whereas the sign T must be taken in the opposite sense.

The nonstandard properties of the reciprocal are:

recipg 00 = recipg —oo = 0
recipg X = X
etc.

The properties of the quotient follow from the identity

quog ¢ r = prodg q (recipg r)
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7. Real Numbers

In this chapter we reach the culmination of our development, defining real numbers as convergent
computable rational sequences of a particular kind. Operations on real numbers are defined as comput-

able operations on these sequences,

7.1 Primitive Ideas

7.1.1 Definition of @ Regular Sequence:

A sequence of rational numbers z is called regular if and only if for any nonzero natural numbers m

and n we have

leg (absq (difg zm Z.)| [sumg (+1/ m) (+1/ n)] <> true

Intuitively, the sequence z is regular if and only if

— .r‘,_r
. RO
e ALt

-1 -1

| Zm — 2, | €$m~ '+ n

for all natural m, n > 0. Note that for any given m and n it is finitely decidable whether this condition

holds. However, it is not in general finitely decidable for arbitrary m and r.

7.1.2 Definstion of Real Number:

A real number is a regular sequence of rational numbers.

7.1.8 Egquality:

Two real numbers z and y are equal, written ¢ = y, if and only if for any nonzero natural number n

we have

leg (absg (difg z, ya)| [prodg (+2/ n)] <= true

Comments: Intuitively, £ = y if and only if

¢

: |2n-Vn|s2"-|

. for all natural n > 0.

4

: Note that while this condition is finitely decidable for a given n, it is not generally finitely decidable
“ for arbitrary n.

.
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7.1.4 Nonstandard Objects: There are two alternative notions of real numbers. First, real numbers can
be considered the equivalence classes under the equality relation of regular sequences of rational numbers,
Second, real numbers can be identified with the regular sequences themselves. In this case we find that
there are many different (nonstandard) real numbers that are treated as equal by the arithmetic opera-

tions and the equality relation.

We can also consider the nonstandard real number all of whose rational approximations are ca To see
if this object fits the definition of a real number we must see if the difference between its m and nth
rational approximations is greater than or equal to 1/ m + 1/ n. Now, the difference between its mth

and nth approximations is:
loo—ool = [x[ = x

We have previously seen that x is greater than or equal to every rational number, since it is equal to

every rational number. Thus,
|oo—o0] = x € I/m+1/n

and so the sequence composed of all o is a real number. The same applies for —~oc The following opera-

tions work, or can be extended to work, on infinite reals in much the same way as the rational operstions.
7.1.5 Creation of Reals from Rationals: realy =» Az (Anz)

Comments: This function converts a rational number into a real all of whose rational approximations

are the same:
realzg r = Az(Anz)r = Anr
Now notice that the k th rational approximation of realg r is:
(realp r)y => realg rk = Anr k = r
7.1.6 Real Denotations:

0.0 = realp (0/ 1)

1.0 = realy (1/1)
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7.1.7 Ezample Normal Form: For concreteness we exhibit the normal form of the real number 0.0:

0.0 = realp (0/ 0)
= An {0/ 0)
= An(Aa(s Mzy)y As(s Azy)y AMzy)y Ao(e Azy)y Ao (s A(zy)z 1 1)
As(s Alzy)z L 1))
As(s AMzy)y Ao (s A(zy)y Azy)y Aa(s Alzy)y Aefs Alzy)z L 1)
As(s Alzy)z L 1)) Ae (s Afzy)z 1 1))
7.1.8 Ezample Normal Form of Irrational Number: We have said that this computational approach to
real analysis represents all objects as finite structures. To illustrate this we will show the finite structure
that represents an irrational number, the square root of 2. The square root of two will be a regular
rational sequence s such that s, is the kth rational approximation of the square root. By Newton’s

Method observe that

o = %(z |ty + a_y), k> 1
The initial approximation, s, is 1. Thus the sequence can be defined recursively by the ruje:

k=1—-1

c =
rec ¢ else ';’(2/ 81 + 8‘_1)

Since this sequence converges quadratically it is regular and, hence, represents a real number. To show
that s is indeed a finite formula in the lambda calculus, we rewrite it using only the notational abbrevia-

tions introduced so far:

rec s

{(eq,, 1k) - 1/1
k else [prodg (1/ 2) (sumg {quog (2/ 1) (s (predy k)}} [s (predy k)})|

The above formula is finite; it will remain finite when all the abbreviations are eliminated, since each
symbol is rewritten by a finite string. We illustrate the first few steps of this process (we have replaced

the name ‘s’ by \/2'):
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{(eqN 1k) - 1/1
V2 = Y As Ak else {prodq (1/ 2) (sumg {quog (2/ 1) [s (predy k)i} (s (predy k)])|

= Y XaAk{(eqny 1 k) (1/ 1) [prodg (1/ 2)
(sumg {quog (2/ 1) s (predy k)[} s (predn k)})i}
= Y As Ak {(not:ney 1k) (ratg 1 1) {prodg (ratg 12)

(sumg {quog (ratg 21) (s (predy k)|} [¢ (predy k)|)|}

By eliminating all the abbreviations we would arrive at a seminormal form expression representing the

square root of 2. The full seminormal form of the square root of 2 is shown in the Appendix.
7.1.9 Rational Approzimation: approxp = conv Id

Comments: The function ‘approxy n’ gives then n th rational approximation of a real number. That

is, if z is a real number then ‘approxpy n z’is its nth rational approximation:

approxg n z = convldnz = Ildzn = zn o 1z, |

7.3 Arithmetic

7.2.1 Sum: sumgp = A(zy){sumgq °(z,y) ° (prody 2}

Comments: This definition makes the nth rational approximation of z+y the sum of the 2nth

rational approximations of 2 and y:
(z+V)n = I3a t VYo2n
Now note that:

(sumg z y), = sump z y n
= [sumgq °(z,y) ° (prody 2)| n

= sumg °(z,y) |(prody 2) n|

= sumgq °(z,y) (prody 2 n)

= sumgq [z (prody 2 n)| [y (prody 2 n)|

: It is easy to show that z +y is a real number and that this operation has the expected properties (commu-

tativity, associativity, etc.).

’

[ T e e T e e N . . ", . h e U
M “ . o P . PR - - - LIRS PP . TR . e . - .
\ . ‘. S A P P B RN LI - R A I O e e T e
'y S LS .. A e T e e .7 PP . PR L R FC S -

N R S j
A L S S

a N s P . WLAH S IP I SF SRS P AN SR ST S R 5




o 7 o 7 e R e m TR TR TR TELEARIMLI LIRS NSO I D

Ol

S T N N T T N T W T T e o e A

7.2.2 Marimum: maxg = @ maxg

Comments: The nth rational approximation of the maximum of two reals is the maximum of their

n th rational approximations:
(maxg £ y), = maxg z yn = ®maxg z y n = maxg z, ¥,
7.2.8 Negation: negpg = B negg

Comments: The nth rational approximation of the negation of a real is the negation of its nth

rational approximation:
(negp z)s = negp zn = Bnegg z n = negy (z n) <> negq z,
7.2.4 Minimum: ming => negp:(¥ maxy negy)

Comments: This is based on the fact that the minimum of z and y is the negation of the maximum of

the negations of z and y:

ming z y = negp: (¥ maxz negp)z y

=> negg (¥ maxg negg z y) = negp(maxy (negg z) (negp y)|
7.2.5 Absolute Value: absy = S maxp negp

Comments: The absolute value of a number is the maximum of the number and its negation:

absp z = S maxpy negy ¢ => maxy z (negy z)
}‘ .
:~_ 7.2.6 Canonical Bound: cbdg => ceilg ° [sumg (2/ 1)] ° absg (approxg 1)
¢
g . Comments: The canonical bound of a real is used in the definition of the product, which follows. The
r canonical bound of z is the least integer that is two greater than the absolute value of the first rational
[ approximation of z:
q
F-
o cbdg z = {ceilg ° [sumgq (2/ 1)] * absgy (approxz 1)}z
;-' = ceilg {sumg (2/ 1) {absg (approxp 1 z)|}
'A. = ceilg [sumg (2/ 1) (absq z,)]

The latter represents the ceilingof 2 + | z,] .
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7.2.7 Product:
prodg = /\(zy){prodq °(z,y) ° {prody 2) ° magz; ° prod; (¥ max; cbdy z y)}}

Comments: The n th rational approximation of zy is the product of the 2kn th rational approximations

of z and y, in which k is the maximum of the canonical bounds of z and y. First notice that
¥ maxz chdg z y => max; (cbdg z) (cbdy y) = &
Therefore,
(prodg z y), => prodg z y n
= |prodg °(z,y) ° (prody 2) * magz; ° (prodz k)| n
= prodg °(z,y) {prody 2 [mag; (prod; k n)i}
= prodg °(z,y) (2kn)
= prodg (z 2kn) (y 2kn)

= P"Odq Z2kn Y2in
7.2.8 Ezponentiation to Natural Power: expty = A(nz){rpt (prodg z) n 1]
Comments: The basis for this is:

expta n z => rpt (prodg z)n 1 = (prodgp z)" 1 = z"

We usually write ‘z"’ for ‘expty n z’.
7.2.9 Notation:

Since each of the classes of objects we have defined effectively includes the preceding, and the opera-
tions and relations of the latter classes extend the former classes, we will drop the subscripts (N, Z, Q

and R) and functional notation, and henceforth use conventional mathematical notation. Thus we will

i v T
v At | ——
& L .r L h

write ‘z + 2y’ for

sumpy z {prody (realp (2/ 1)} y}
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7.3 Predicates and Relations
7.8.1 Positive with Modulus: pos? = A(nz)gtg z. (1/ n)]

Comments: If n is a nonzero natural number and z is a real number, then z is called positive with

modulus n if and only if z, > 1/ n. The argument n names a place where z, deviates sufficiently from

zero. Notice that this predicate is algorithmically decidable; that is, if z and n are defined then

pos? n z is defined.

7.8.2 Positive: We say that a real number is positive if and only if there is a nonzero natural n such that

the real is positive with modulus n. That is, z is positive if and only if there is a nonzero natural n such

that pos”? n 1 < true.
P

Comments: Note that it is not in general algorithmically decidable whether or not a real number is
positive. Thus, it is not safe to treat a real number as a positive unless we have calculated (i.e., con-

structed algorithmically) the modulus n required by the above definition. This algorithmic undecidability

is inherited by all the other relations.
7.8.8 Negative with Modulus: neg? => pos?:(lst, neg° 2nd)
Comments: Here z is negative with modulus n if and only if —z is positive with modulus n :
neg’ n r => pos?:(lst, neg°2nd) n z = pos? n (neg z)

Notice that if —z is positive (with modulus n), then (—z), > 1/ n. Therefore, z is negative (with

modulus n) if and only if z, < -1/ n.
7.8.4 Zero with Modulus Predicate: zero? =» not °or* (pos”,neg?)

Comments: A number is zero (with modulus n) if and only if it is neither positive nor negative (with

modulus n ):

zero” £ = not°or° (pos?,neg?) z
= notfor ° (pos?,neg?) z |

= notlor (pos? z) (neg? z)]

Notice that z is zero with modulus n if and only if -1/ n < z, < 1/ n thatis, "z, <1/ n.
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7.8.5 Equality with Modulus: eq = An!(zero? n):dif]

Comments: Two reals are equal with modulus n if and only if their difference is zero with modulus n:
eqn ry = (zero? n)difz y = zero?(difz y)

Notice that since
;z'yln=}(z_y)n‘)="22n—y2u’

we know that z equals y with modulus n if and only if | z,, — y2a | < 1/ n. We will generally write
‘2 =, y’ to mean that z equals y with modulus n. Finally, notice that z equals y if and only if for all
nonzero naturalsn, z =, y.
7.3.6 Nonnegative: A real number z is called nonnegative if and only if for all nonzero natural numbers
n we havez, 2 -1/ n.

Comments: This is also in general algorithmically undecidable, since it depends on an infinite process,
viz., checking that the above condition applies for all n .

7.3.7 Greater- Than with Modulus: gt = An{(pos? n):dif]

Comments: We say that z is greater then y with modulus n when z —y is positive with modulus n:
gtnzy = (pos?n)difz y = pos?n (difz y)

Hence, since

(z - V)n = I3 ~ Vin
we have z is greater than y with modulus n if and only if z,, ~ y3, > 1/ n, that is,
Z3, > yan + 1/ n. Notice that this relation is algorithmically decidable, but that it requires supplying
the modulus n, which names the place where z sufficiently exceeds y. We will generally write z >, g
to mean that z is greater than y with modulus n.
7.8.8 Greater- Than Relation: We say z is greater than y and write z > y if and only if z — y is posi-
tive.

Comments: That is, if and only if there is a nonzero natural number n such that z is greater than y
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with modulus n:
gtnzry < true

This relation is not algorithmically decidable.
7.8.9 Less- Than with Modulus: 1t = An|conv (gt n)

Comments: Observe

Itnzy = convigtn)zy = gtnyz.

Thus, 23, ~ 1/ n < y3,.
7.8.10 Less- Than Relation: We say z is less than y and write z < y ifand onlyify > z.
7.8.11 Greater-or- Equal with Modulus: ge == An lor:(gt n, eq n )]

Comments: To see this, observe:

genzy = orfgtn,eqn)zy

= or(gtnzy)leqn z y)

Comments: Note that 1 is greater than or equal to y with modulus n if and only if

T2, T l/ n 2> Yaon -

7.3.12 Greater-or- Equal Relation: We say z is greater than or equal to y and write z > y if and only if

z — y is nonnegative.
7.8.13 Less-or- Equal with Modulus: le = An{conv (ge n)]
Comments: Note that z is less than or equal to y with modulus n if and only if z;, < y2a + 1/ n.

7.8.14 Less-or-Equal Relation: We say z is less than or equal to y and write z < y if and only if

T 2y.
7.8.15 Inequclity with Modulus: ne =s Aninot:(eq n)]
Comments: Observe that

nenzy = notfeqn)z y = notlfegn z y)
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Comments: Note that z is not equal to y with modulus n if and only if | 23, — y2, | > 1/ n.
7.8.16 Inequality Relation: We say z is unequal to y and write z # y if and only if either z > y or
T <y.

7.4 Reciprocals and Quotients

7.4.1 Reciprocal: If z and y are real numbers, then z is called a rectprocal of y if and only if zy = 1.

Comments: The following three sections define a function for computing the reciprocal of a real

number.
7.4.2 Zero Bound: zerobnd = A(nz)|floorq (recipq {quog [difg (absq z,) (1/ n}] (2/ 1)})]

Comments: If z is nonzero with modulus n, then zerobnd n z has the following property. Let

N = zerobnd n z. Then, forallm > N, z, 21/ N.

7.4.8 Reciprocal with Modulus:

k<N — 1/ (zy,)

recip = A(nz) Ak kSN =1/ (5,5)

where N = zerobnd n z

Comments: Notice that the reciprocal is computable only if a modulus of nonnullity is known. Intui-
tively,

(recipn z)y = 1/ (z,.), Fk<N

We will generally write ‘z™" for ‘recip n z’, omitting the modulus of nonnullity. It is important to

Comments: Therefore, the quotient is the product of the first and the reciprocal of the second:

. = 1/ (z,yq), f k2N
r.
[‘ observe that z 7! is computable only if we can compute this modulus.
ii.
t- _ 7.4.4 Quotient with Modulus: quo = An {prod:{lst, (recip n)°2ndi}
. ®
» .
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quozr y => prod:Ist, (recipn)°2ndiz y = prodz (recipn y) = zy~!

We will generally write ‘z/ ¢’ or 21 for ‘quon z y' Notice that z/ y is computable only if a modulus
y

of nonnullity for y is known. The modulus is implicit in the division notation.

7.5 Important Properties of the Real Numbers

7.5.1 Approzimation Theorem: The nth rational approximation of a real z approximates z to within

1/ n. That is, for all nonzero naturals n,
1 I -z, ' < l/ n
7.5.2 Rational Between Two Reals: meanrat = A(nzy )[prodg %(sumq Zan Via )

Comments: Notice that if z and y are reals and n is a nonzero natural number, then the result of

(meanrat n z y) is a rational number with the value

meanrat n z y <> %(z,, + Yan)
Since {meanrat n r y) is the average of the 2nth rational approximations of z and y, it is between
these approximations. We will generally write ‘meanrat, (z,y )’ for ‘meanrat n z y’.

7.5.3 Densences of Rational Numbers: If z and y are real numbers with z < y, then there exists a

rational number r such that z < r < y.

Proof: If z < y then there is some nonzero natural n such that < y with modulus n. We now

claim that
r = meanrat, (z,y)

is a rational number satisfying z < r < y. That r is a rational follows from the definition of meanrat.

To show z < r we must show r — z is positive. Therefore, recalling that (z — y), = 73, — Y3,, We

have
r -z 2 r -z,
2 r —z3a - | 234 ~ 2|
= %(120+y2n)—22n‘ | 235 — 2|
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1 .
= ?(!lzu —Z3.) - 1235 - 2
By the approximation theorem:

r-z > tyzm - 22) = (20)7

Since z < y with modulus n, we know y,, — z3, >n""!, therefore

r—z >%n"—(2n)_'= 0

Therefore r < r. A similar derivation shows that r < y.

7.5.4 Cantor’s Theorem: Let R be any sequence of rational numbers and u and v any real numbers

with u < v. Then there exists a rea}l number & between z and y, u < § < v, such that for all nonzero
naturals n we have £ # R, .
Proof: Since u < v there is some nonzero natural number x such that is the modulus of this relation,
v <. v. We will construct sequences of rationals z and y such that the following properties hold:
1. For all natural m 2 n 21,
U € 2z, € Iy < Yy < Yo S ¥
That is, the z,s are less than the y, s, and they are always growing closer together.

2. For all nonzero natural n, either z, >, R, or y, <. R, (or both). That is, the z,s and y, s are all

sufficiently different from the corresponding R, s.

3. For all nonzero natural n, y, — 2, <1/ n. That is, z and y are equal (in the sense of real

numbers). We will define £ =z = y.

We construct the sequences z and y using a ‘‘diagonalization” function ‘diag’, which constructs the
two sequences in parallel. If § = diag{x,u,v),then z = Sy;and y = §S,. Hence we introduce ‘x’ and ‘y’

as explicit abbreviations:

‘2’ = ‘diagxu v 0

‘y’ = ‘diagxu v 1
The definition of the diagonalization function is:

-48-




Wy wwW
- 0 Claill B e 353 Lol Mot S f Sl M o g Bl o T

NS il S "M a0 k0 R 0~ B - B 24t T D00 bn U B B i fip "R e WAe B - g e vy

rec diag (x,u,v,b) = An

(n=0 - u
b=0—-{ R, >, 2,y — meanrat [z, _,, min(R,, yo-1)]

R, <x Yn-1 — meanrat,'max(R,, Zo-1, ¥ — 1/ 0}, ya|

J \
(n=0 - v
b=1-{¢R, >, 2,_; - meanrat z,, min(R,, ¥y, Z, + 1/ n)]

LRn <u Yn-1 meanrat,{mu(R,,, zn-l)v vn—l]

It is necessary to show that the sequences z and y defined by this function have the above required pro-

perties (1) - (3).

Consider z, and suppose R, >, z,_,. Then,
1 1, = meanrat,(z,_y, min(R,, yp_,)|
- Therefore,

Iny < I, < min(Rann—l) < Yn-1

Similarly,

Yyn = meanrat|z,, min(R,, yo_y, 2. + 1/ n)]
Hence,

Zn < Yo < mMin(R,, ya-1, 24 +1/0) < pyay

(Notice that y, is constrained to be within 1/ n above z,.)

@ On the other hand, suppose that R, <. y,_;- Then,
E_.': Y. = meanrat, max(R,, zo-1), yo-1]
Therefore,
¢
: Ip-1 S ma‘x(anzn-l) < Yn < Un -1 |
Similarly, ;
I
[ ) , |
z, = meanrat, max(R,, 2,1, yo — 1/ 7)), ¥a] ‘
|
Hence, i
e -49-
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ooy < max(R,, Zo_1 ¥y — 1/ n) < 2, < g
(Notice that in this case z, is constrained to be within 1/ n below y,.) Combining these results we have
g = 2o < 23 < " < 2y < Yo < 7 < Yy < Yo TV

Thus condition (1) is satisfied. Also notice that since z, and y, are always constrained to be within 1/ n

of each other, y, — z, < 1/ n, and condition (3) is satisfied.

To see that (2) holds, consider any step in the construction of z and y. Since z,_; < y,.,, either

R, >« Zo_10r R, <. y._, (or both). f R, >, z,_, then
z, < min(R,,y._,) < R,
so z, < R,. Similarly y, < R,. On the other hand, if R, <. y,—, then
R, < max(R,,z,.4) < ya
so R, < y,. Similarly R, < z,. Thus we have that either z, > R, ory, < R,.

The rest of the proof is simple. First we must show that z and y are real numbers. Hence, suppose

that m > n. By properties (1) and (3) we have

[ Zm ~Zp| = ZTpm —Z, < Yo — 2, < 1/n < 1/m +1/n
Thus z is a real number; the result is analogous for y. Furthermore, by (3) we know that z = y.
Therefore, let £ = z = y.

To complete the proof we must show that the diagonal number £ does not appear in the sequence R.

That is, for all nonzero natural n, § # R,. Let n be chosen. By (2) either z, > R, or y, < R,. Sup-

pose z, > R,. Then, since (1) implies z > z, we know z > R, and hence { = z # R,. On the other
- hand suppose that y, < R,. Since (1) implies y < y, we know y < R, and hence £ = y # R,. So, in

either case £ # R, , and the theorem is proved.

Comments: Cantor’s Theorem is usually interpreted as saying that the real numbers cannot be

T

enumerated. Indeed, we have shown here how given any enumeration R of (computable) real numbers

¢
1
we can compute a real £ not in that enumeration. But this is paradoxical, since we clearly can enumerate
.
3 all lambda calculus formulas: just enumerate all finite strings of symbols in the (finite) alphabet, and
.
¢ -50-
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strike out those that do not fit the syntactic rules of the lambda calculus. Since this enumeration will
include all those formulas that compute real numbers, it seems that we have the enumeration of the {com-

putable) reals that Cantor’s Theorem denies. This is in effect the famous Lowenheim-Skolem Paradox.

We can escape from the paradox by looking carefully at the premises of Cantor’s Theorem, which
require that we be given a sequence R of real numbers. Recall that a sequence of real numbers is defined
as a lambda calculus formula R such that for every nonzero natural number n, R, is defined (i.e., has &
seminormal form), and R, is a real number. Now, our enumeration of lambda calculus formulas is not a
sequence of reals, since it generates many formulas that do not fit the definition of a real number, and
may not even have a seminormal form. Furthermore, we cannot convert our enumeration of lambda cal-

culus formulas into a sequence of reals by striking out those formulas that are not reals, since this pro-

perty is algorithmically undecidable.

This leads us to the following interpretation of Cantor’s Theorem: It is impossible to define a comput-

able enumeration that generates all the computable reals and only the computable reals.
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8. Calculus
8.1 Convergence, Limits and Series

8.1.1 Convergence:

If X is a sequerce of reals and N is a sequence of natural numbers, then we say that X converges to y

with modulus N if and only if for all nonzero natural numbers k and n such that n > N, we have
| Xo -yl <k
When N or y is not relevant we may omit mentioning them and say, for example, X converges or X is
convergent.
8.1.2 Limat:

limy X = 8 [X *{limmod N)| (prod 2)

where ‘limmod = AN {max-{prod 3, N *(prod 3)]

Comments: Intuitively, we have:

limy X = Ak[(Xp,)s] where M = Xk{max(3k, Ny,)!

That is, the kth rational approximation of limy X is the 2k th rational approximation of XM‘, where the
k th rational approximation of M is the maximum of 3k and N,,. To see that our definition gives this,

let M = limmod N and observe:

(limy X), = limy X &
= 8 {X °(limmod N)| (prod 2) k
~ X - (limmod N)] k (prod 2 k)
= X (limmod N &) (prod 2 k)
= X (M k) (2k)

(Xu)as

Now we check the definition of ‘limmod’:
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M, = limmod N &
= max-*{prod 3, N (prod 3)| k
= max (prod 3 k) [N (prod 3 k)|

= max 3k A‘v;‘

Notice that the limit of a convergent sequence is always computable, provided that the modulus of con-

vergence is supplied.

8.1.8 Convergence to Limits: If the sequence of reals X converges with modulus .V, then X converges to

limy X (with modulus N).

Proof: There are two parts to the proof. First we must show that limy X is a real number; second we

must show that X converges to limy X .

Let y = limy X. To show that y is a real number we have to show that for any nonzero rationals m,
n we have

1 -1

[ Um —Wal < mta”!

Without loss of generality assume that m > n and recall that M, = max(3k,Ng ). By the triangle
inequality, the definition of y and the approximation theorem we have:
P Ym=Unl S lym—Xu |+ | Xu — Xy | + | Xp —¥n i

= [ (Xu )am — X |+ | X = Xar, |+ | Xpg, — (Xag )2a |

N

(2m)™' + | Xp_ —Xp ) + (2n)7"

Since X converges with modulus N, it converges to some real number with this modulus. Call this
number z. Since X converges to z with modulus N we know that for any n > N, we have

X, - z! < k~'. Since M,, > N;, (by the construction of M), we know

e
| Xy, — 21 < (3m)~!
3 Similarly for M, > Ns,:
4
i
| Xp, — 21 < (3n0)7"
Combining these two inequalities with the previous inequality yields
. -53-
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L ym~¥a |l < (2m)7' = (3m)7' + (3n)7t + (2n)7"

< m 4 a?

Therefore y is a real number.

Now we must show that X converges to y; in fact we will show that it converges with modulus M.
Therefore, suppose that n > M, ; we must show that | y— X, | € k', By the triangle inequality, the

approximation theorem, the definition of y and the convergence of X we have:

(y=~Xal < ly-wal ~ {um=Xp | + | Xp,— X, |

N

nlt | (Xa o — X, | + | Xy — X, |

N

n' 4 (2n)7! + Xm,—Xa |

N

a4 (2n)7 e [ Xy —2 ) | Xy -2
Now, since M, > N;, and n 2 M; > Ny, we have

fy~Xal < n '+ (2n) '+ (3n)7t + (8k)!
Now, since n > M; > 3t we know

Ly —~Xa |

N

(3k)7" + (8k)™' + (9k)7! + (3k)7!

(1/3+1/6+1/9+1/3)k!

(17/ 18)k~!

< k™!

Thus X converges to y = limy X with modulus M. But since we were given that X converges to its

limit with modulus N, we know that X converges to limy X with modulus N.
8.1.4 Properties of Limits: Let X and Y be sequences, then

limsum°(X,Y) = sum(lim X, lim Y)
lim dif° (X,Y) = dif(lim X, lim Y)
lim prod (X ,Y) = prod(lim X, lim Y)

lim quo°{X,Y) = quo(lim X, lim Y)

That is, the limit of the sum is the sum of the limits, etc.
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8.1.5 Compact Interval: A pair of reals !a ,b! is called a compact interval if and only if a <b .

Comments: When we say that a real z is in the compact interval a.b| we mean that a < 1 <b.
Notice that it is not in general algorithmically decidable whether a pair of reals is a compact interval, or
whether a real is in a given compact interval. We will occasionally use other interval notations with their
obvious meanings. For example, we say that z is in the half-open interval (a,6] if and only if

a <z <b.

8.1.6 Compact Interval with Modulus: A pair of real numbers [a b is called a compact interval with
modulus n if and only if ¢ is less than or equal to b with modulus n. We say that a real z is in the com-
pact interval provided that & is less than or equal to z with modulus n, and z is less than or equal to b

with modulus n.

Comments: If the modulus n is provided, then it becomes algorithmically decidable whether a pair of

reals is a compact interval, and whether a given real belongs to the interval.

8.1.7 Notation for Limits: When the modulus of convergence N is understood or implied, we wiil write

‘lim X' instead of ‘limy X’'. We also permit the following abbreviations:
lim f(n) = limf

im g(n) = lim g(-n)
n -0

n - — 00

The first of these limits exists provided that there are N and y such that for all ¥ > 0 and all

m > N(k) we have | f(m) - y| < 1/ k. The second exists provided that there are N and y such

that forallk <Oandalim < N(k) we have | g(m)} -~y | < -1/ k.

If f is defined on (0,1] and g is defined on [—1,0) then we can write:

A lim f(z) = lim f(1/ n)

f. g -0+ n ~o0

g lim g(z) = lim g(~z)

..T 2 -0- s -0+

.\'.—.

. The first of these exists provided that there are § and y such that foralle >0 and all 0 < ¢ < 6(¢) we
q

[- have f(¢) - yi < e. The existence condition for the second is analogous.

N
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I lirgl f(z) = liron J (z), then we can write lin(\, J (z) to denote their common limit.
£ -0+ 3 ~0- z -

If f is defined on (y,y ~1] and g is defined on [y —1,y ) then we can write:

lim [ (z) = 6li*r;1‘f(a +6)

t 2t Iad

lim g(z) = 0lir(;l [ (a =~ §)

The first of these exists provided that there are § and y such that foralle >0 and all 0 < ¢ < 6(e) we

have | f{a + ¢) — y}| < e. The existence condition for the second is analogous. We use lim f (z) to
£ ~a
denote the common limit when the limits approaching from above and below a are equal.

If f is defined on the compact interval / = [u,v] then we can write:

plim f(z) = lim fla +é(v-a)

£ ~a +

flim [ (z) = Jim {[a +6(a=u))

E Bad Yoot
We will omit mention of the interval / and the direction from which the limit is approached when these

are not relevant. Again, we use ;lim f (z) for the common limit.
£ -—+a

n=0-~-0
8.1.8 Partial Sums of Series: rec £ X = An {elseE X (n-1)

Comments: A series is a sequence that is meant to be summed. If X is a series then £X is the

sequence of partial sums of X. That is:
(EX) =0
(ZX)h = X,
(EX) = X2+ X,
(EX),. = X" +X"-1+ tt +X3+Xl
o0
8.1.9 Infinite Sums of Series: 2 = lim * £

-]
Comments: If X is a convergent series, then EX is the sum of all its terms:




O

AP

P

el

il g S an s ot oy of

Re /SR AN dee ae e ol 04
Gt

2 '—".

Ealica A 2R A O M L L oA it Sl oAl R -

f}x = lim*£X = limEXX) = ll:r; (£X),
The modulus of convergence here is implicit; if we must be explicit about it we will write:
ch:N = limy ° X
8.1.10 Erponential Function: exp => Az 7§ quo ° (conv expt z, fac)]

©
Commenta: The basis for this definition isexpz = Y An(z"/ n!)

8.2 Continuous Functions

8.2.1 Continuity on a Compact Interval: If f and w are real-valued functions and f is defined on a
compact interval I, then we call f continuous on [ with modulus of continuity w if and only if for each

positive ¢ we have
Lf(z) - ()l <e
whenever z and y arein/ and i z — y| < w(e).

Comments: We often omit mention of the modulus of continuity when it is not relevant. Notice that
it is not in general algorithmically decidable whether a function is continuous, since that decision would

require testing the above condition for every z and y in the interval.

8.2.2 Continuity on an Arbitrary Interval: We say that a real-valued function defined on an arbitrary

interval is continuous on that interval provided that it is continuous on every compact subinterval of the
given interval.
8.3 Differentiation

8.8.1 Differentiabslity: If f , g and § are real-valued functions, and f and g are continuous on a com-
pact interval ‘a b’ with a <b, then we say g is a derivative of f on 'a ,b| with modulus of differentiability

§ if and only if for all positive ¢ we have
L fy)-f(z)-g(z)ly ~2)] S ely-z]

whenever z and y are in [a,b] and |y - z| < &(e). A function f is said to be differentiable on an
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interval if and only if there is a function g that is its derivative on that interval.

8.8.2 Derivative: D = A(If ) Az|;lim f(y) - f{z)

)
¥~z y — 7
Comments: Let ¢ = D; f ; then

g(I) — ,hm f(y!_ /(Z)

Y2 y -z

Notice that the derivative of a function is always computable, as is the result of evaluating that derivative

on any point in the interval.

3.8.8 Differentiation Theorem: If f is differentiable on an interval / then D, f is a derivative of f on

that interval. If f has two derivatives, then they are equal.

Proof: Since f is differentiable on I we know that there g continuous on / and there exists 6§ such

that foralle > O0andallz,y in [ for which | y — z| < §(e) we have
L f )= f(z)-g(z)y —z)] < ely~z|

Now, for any r in [ let

h(z) = (D;f)(z) = ;lim F(y),

| At

where F(y) = [f(y)- f(z)]/ (v — z).

We must show that the limit A (z )} exists and is equal to g ().

Notice that the definition of F includes a division, which is computable only if we know a modulus of

nonnullity. We can eliminate this problematic division be rewriting the limit:

Jlim F(y) = Jlirgl Fiz ~6(b-z)] = lim Fiz + (b-z)/ n!
-0+ n —00

Vs

Now notice that

. + (b - nl-— z 't ~(b-1 ]~
T

The troublesome division by y — z has been converted to a safe multiplication by n. (The division by

b - z is not troublesome because its modulus of nonnullity does not have to vary during the limiting
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We now show that F(y) converges to g{z) as y — z. Let an ¢ > 0 be chosen; we must find a

y > z such that | F(y) —g{z)] <e. Takey < z + §(¢), where 6§ is the modulus of differentiability.

Since f is differentiable we know

Iy - flz)—glz)ly —2z)] S ey -1z

Dividing both sides by y — z > 0 yields

(f!l—fl'_g(z”<€

- .

g e
£

b

3

b

Thatis,  F(y) - g(z)] €e. QE.D.

8.3.4 Properties of the Derivative: The derivative of the sum is the sum of the derivatives:

(]
F Disum=(f ,9)} = sum°(Df ,Dg)

F‘. The derivative of the product is the sum of the product of the first times the derivative of the second, and
E. the product of the second times the derivative of the first: .
{ Dlprod°(f .g)} = sum='prod-(f ,Dg}, prod-(g,Df )|
(
; The derivative of the reciprocal of a function is the quotient of the negative derivative of the function
'r:.

divided by the square of the function.
Drecipe f) = quo°ineg:Df , (expt 2)° f

L The derivative of the identity function is the constant 1 function:

(
-
; DId= K1
The derivative of a constant function is the constant O function:

P .
' D(Ke) = KO
8.3.5 Repeated Differentiation: D® = rptn D

‘ Comments: For example,

. D*f = rmpt2D { = D(D f)
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The conventional notations ‘dF / dz’ and ‘D, F' are equivalent to ‘D AzF'
8.3.6 Partial Differentiation: 3, = Af{A(z, "z, )P Az(f z, - i1 5 - z1,} 2}

Comments: Thus 3, is the partial derivative of an n-adic function with respect to its kth argument.

For example, if ¢ = 35 f then
g(u,v,w) = DAz(f vz w)|(v)

Thus the conventional notation ‘9F / dy’, where F is a function of z, y and z in that order, is

equivalent to ‘95 A{zyz)F .
8.4 Integration

b

8.4.1 Quadrature: quad = /\(fabn)[

_ a)]

Comments: Thus quad f a b n is the quadrature of f from a to b with n steps.

— 2 nilf(a + ib
i=0

n

8.4.2 Integral: f = A(fab)|lim(quad f a b)]

Comments: Therefore,

n

ffab 23hrn(qua,dfab):‘3 lim [6_0”21,(0+i6;a)]
n—~os +=0

b [
We usually write ‘fa J’ for ‘f f a b’'. Thus the conventional notation ‘fa F dz’ is equivalent to

IR

e — 4 a
Py 8.4.8 Reversed Range of Integration. f f = f f.ifa >b.
: [ ]
e
E'. 8.4.4 Propertics of Definite Integral:
. The integral of the sum is the sum of the integrals:
Ce b b »
o [ sume(f.9) = sum(f 1, [ g)
L The integral of a constant times the function is the constant times the integral of the function:
L
e b b
fa prod° (Ka, f] = prod(a, fa f)
The integral from a to b is the integral from a to ¢ plus the integral from ¢ to b:
] -60-

. .'.‘__;\_.’;_- * . -_."“ Lot . e ". . .. LA _ - Lt L ‘\'_".""\' o




I TR AT S G At 4 S D e S N o U e il e e At Bk~ e Snfle Nl Sl S g e vy TR atanl
- - - PR I N

............
e

[oro= LS

8.4.5 Indefinite Integral:

Notice that f f is an indefinite integral of f in the following sense: If ¢ = ff, then

v 3
glz.y) = f: f . Another notion of indefinite integral is fa f ,since if h = f¢ J then h(z) = f¢ f.
8.4.6 Properties of Indefinite Integral:

f,sume(f.9) = sum(f 1. [ 9)

fa prod° (Ka, f} = prod°(Ka,f¢f)

f.1 = sm- (1) [, 1]

8.4.7 Fundamental Theorem of Caleulus:

If f is continuous on a proper interval [/ and a is a point of I, then

p(f f) =t

That is, the derivative of the indefinite integral (of the second kind) is the original function. Further-

more, if h is any differentiable function such that DA = f , then for some real a,

dif°(f¢f,h) = Ka

That is, the difference of fa f and h is a constant function.

8.4.8 Natural Logarithm: In = flrecip
¢ Comments: Therefore,
s
b s z
= Inz = flrecip z = f: recip = fl 7 'z
¢
¢ y . .
i' 8.4.9 Definite Integral of N-adic Function:

b b ‘
4 k"fa f o= Mz, ln-l)[_L Az(f 2y - T n )]
N

¢ Comments: Thus ."f‘ f is the definite integral of the n-adic function f, taking its kth argument
,{. : from a to &. Notice that the definite integral of an n-adic function is and (n —1)-adic function. For

'
example, if ¢ = z’f' J , then

¢ -61-
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N
glu,v) = fa Azl f (u,z,v))
» ' - .
Thus, the conventional notation ‘f F dy’, where F is a function of z, y and z in that order, is
a
b
equivalent to ‘;fd Alzyz } F. .

8.4.10 Indefinite Integral of N-adic Function:

h"f‘f = Mz, - zu)[fof\‘(f I, LT Ly L) o J
Comments: As expected, the indefinite integral of an n -adic function is an n -adic function. For exam-
e 8
ple, ifg = zfof,then

gluv,w) = fu'Az[f (v,z,w)]
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= Appendix 1: Seminormal Form of Square-Root of 3

P . —

- We exhibit the first few pages of a seminormal form for v/2 computed by the formula derived in the

body of the report. Ellipses ( - - - ) indicate where major portions of the formula have been omitted; how-
ever, they look about the same as the portions shown below. The complete formula is 1974379 symbols in
length, which would occupy about 4700 pages in the format used below. It must be emphasized again
o that the formula, although large, is finste.

The formula was computed by converting the lambda calculus definitions into the corresponding LISP
program shown in Appendix 2. The length of the formula was computed in two ways: (1) by direct
counting (using a LISP program) of the output of Appendix 2, (2) by converting the Appendix 2 program
into the related length computation program shown in Appendix 3.

Several recurring features are visible in the portion of the formula shown here. The expressions
‘(A(zy)z)’ and ‘(A(zy)y)’ represent the truth values true and false. Formulas beginning

‘(As (s - - )) are list values, some of which end with ‘1 1’ and hence represent null lists. The formu-
las ‘(A(zyz )z)’, ‘(A(zyz )y )’ and ‘(A(zyz )z )’ represent the three basic selector operations on lists: null, hd

t . and tl.

(Y

N (As

.. (Ak

< (y

& (Af

[ (A(mn )

. ((n (A(zyz)z))

{ (Alzy)y)

- ((m (A(zy2)2)) )

(Mzy)z)

: (f (m (A(zyz)z))(n (A(zyz )2))))))))
As

(s (A(zy)y)
(As (s (Mzy)z) L
(As (s (AMzy)z) L
k)
(A(zy )z}
(Y
(Af
(A(mn)
((n (A(zyz)2))
(Alzy)y)
((m (A(zyz)z))
(A(zy)z)
(f (m(A(zyz)2))(n (A(zyz )2))))))))

)
D)

(Mg
3 ' (s (A(zy)y)
Ry (As (s (A(zy)z)
S (Ae (s (A(zy)z)
e (AMzy)y)
o (May)z))
y (As
‘ (s (Mzy)y)
- ((Ay

(Ae

(o (Mzy)y)

NI )
L LM
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(A(zy)y)
{As
(s (Alzy)y)
]
(Ae
(e (Mzy)z) = L))
(As
(s (A(zy)y)
(Ao (s (A(zy)z) L L))
(As (s (AMzy)z) L )
(As
(s (Mzy)y)
((Ay
(As
(6 (Mzy)y)
(Mzy)y)
(As
(s (M(zy)y)
v
(A
(s (A(zy)z)

IR
(As
(s (A(zy)y)
(Ao (s (A(zy)
(Ao (s (A(zy)
(Ao (s (A(zy)z) L

)
)

8 N

—
—
—
[
P
—

(As
(s (AM(zy)y)
(((rs
(s (A(zy)y)
((((re
(s (A(zy)y)
(Ay
(Ae
(s (A(zy)y)
(Mzy)y)
{As
(s (Mzy)y)
]
{As
(s (M=
v)
z)

1
LI
(As
(¢ (Mzy)y)
(As
(s (A(zy)z)
L
L))
(As
(4 (A(zy)z)
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(As
(o (A(zy )y
((Ay
(As
(s (Mzy)y)
(Alzy)y)
(As
(s (M=
v)
v)
y
(As
(e (A(z
v)
z)

LM
(Ae
(s (M(zy)y)
(As
(s (f\(z)v)

iR
1))
(As
(s (A(z
v)
v)
(Ae
(s (M=
v)
z)
1
)
(As
(s (A2
v)
z)

il
L)
(Ae
(s (A{zy)z)

IR 1))
(Mzyz)y))
(A(zyz)y))
(AMzy)y)
(Mzy)z))

(As

(s (A(zy)y)
(((As
(e (Mzy)y)
((Ay
(Ae
(e (Mzy)y)
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(As

(re
(s (A(z
v)
v)
y
(As
(s (AM(z
v)
z)

o
(As

(s (A(zy)y)
(As(s(Alzy)z) L - )
(A
(s (A(zy)y)
(As (s (Mzy)z) = L))
(As (s (Alzy)z) = L))
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(Azyz)y))
(A(zyz)z))
(Alzyz)y))
(Aafa(A(zy)z) = M)
(As
(s (A(zy)y)
((((rs
(s (Alzy)y)
(Y
(Af
(A(mn)
({({n
(A(zyz)
z))
(A(zyz)
v))
(AMzyz)z))
((n
(A(zyz)
v))
oY
(s (A(zy)y)
(((((((rs
(s (A(zy)y)
(((fm ‘
(({(n (Alzgz )2 )} (A2 )9 )
(A(zyz )z))
((Ay
(As
(s (M(zy)y)
(A(zy )y)
- (Ae
3 (s (A(zy)y)
g y
b‘ {As
- (8 (AM(zy,z)
« N
# LN
- (As
& (s (AM(zy)y)
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E ((Ay
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(s (A(zy)y)
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(Ae
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X (As
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((n (A(zyz)2))(Alzyz)y )
((ry
(Aa
(8 (A(zy)y)
(A(zy)z)
(Ae
(s (A(zy)y)
]
(As
(s (A(zy)z)

|
LM
({(n (A(zy2)2))(M(zy2)y))
(A(zyz)z)))))
(A(zyz)y))
(A(zy)y)
(Afzy)z))
(As
(s (A(zy)y)

((fm
((((n (A(zyz )2 ))(A(zy2)y))
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{As
(s (Alzy)y)
(Alzy)y)
(A
(s (A(zy)y)
y
(Ae
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z)
o+
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(As
(s (A(zy )y)
- (As
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Appendix 2: LISP Program to Compute Seminormal Form of Square-Root 3

TN

(& (x¥) ¥))

(& (xy) x))

(setq false
(setq true

(defun Not (x)  (list x false true))

(defun Or (x y)  (list x true y})

(defun Equiv (x y) (list x y (Not y}))
(setq 1of8 (& (xy 2) x))
(& (x y 2) ¥))
(& (xy z) 2))

(list & ’s (list s n h r)}))

{setq 20f3
(setq 30of3
(defun List (n hr)
{setq Nil

(List true "undef *undef})

(defun Cons (h r)  (List false h r))

(defun Null {x) (list x 1of3))

(defun hd (x)  (list x 20f3))

(defun tl (x)  (list x 3of3))

(defun pair (x y} (Cons x (Consy Nil})))
(setq n0  Nil)
(setq n1 (Cons Nil Nil))

(setq n2  {Cons Nil {Cons Nil Nil)))

(defun Nzero? (n) (Null n))

(defun Nsucc (n) (Cons Nil n))
(setq cNsucc (list & 'n (Cons Nil 'n})))
(defun Npred (x) (tl x))
(list 'Y (list '& ’r (list ‘& ’(f n a)
(list (Nzero? 'n) ’a
(list 'f (list ’r 'f (Npred ’'n) 'a}})))))

{setq rpt

(defun Nsum (m) (list rpt cNsucc m))

(defun Nprod (m n)  (list rpt (Nsum m) n n0))
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(setq cNI¢  (list 'Y (list "& *f (list '& '(m n) (list {Nzero? 'n) false
(list (Nzero? 'm) true
(list °f (Npred 'm) (Npred 'n}}}}))})
(defun NIt (m n)  (list eNlt m n))
(defun Ngt (m n) (NIt n m))
(defun Nne (x y)  (Or (NIt x y) (Ngt x y)))
(defun Neq (x y) (Not (Nne x y)))
(defun Zplus (n) (pair false n))
(defun Zminus (n)  (pair true n))
(setq p1  (Zplus n1))
(setq p2  (Zplus n2))
(defun Zmag (n) (hd (tl n)))
(defun Zminus? (n) (hd n))
(defun Zplus? (n)  (Not (Zminus? n}))
(defun Zzero? (n) (Nzero? (Zmag n)))
(defun Zneg (m) (pair (Zplus? m) (Zmag m)))
(defun Zsucc (n) (list (Zzero? n) pl
(list (Zplus? n) (Zplus (Nsucc (Zmag n)))

(Zminus (Npred (Zmag n))))))

(defun Zpred (n) (Zneg (Zsucc (Zneg nj)))

(setq cZsum  (list 'Y (list "& ’f (list '& ’(m n) (list (Zzero? 'n) 'm
(list {Zminus? ’n) (Zpred (list ’f 'm (Zsucc ’n}))
(Zsucc (list ’f 'm (Zpred 'n)))))))))

(defun Zsum (m n)  (list cZsum m n))

(defun Zprod (m n) (list (Equiv (Zneg m) (Zneg n))
(Zplus (Nprod (Zmag m) (Zmag n}))
(Zminus (Nprod (Zmag m) (Zmag n)))})

(defun Qrat (x y} (pair x y})

{setq 2/1  {Qrat p2 pl})

(setq 1/2  (Qrat pl p2))

(setq 1/1 (Qrat pl pl))

(defun Qnum (x} (hd x))
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(defun Qden (x) (hd (tl x}))
(Qrat (Zsum (Zprod {(Qnum x) (Qden y}))
(Zprod (Qden x) (Qnum y)))
(Zprod (Qden x) (Qden y)}))

(defun Qsum (x y)

(defun Qprod (x y)
(Qrat (Zprod (Qnum x) (Qnum y)) (Zprod (Qden x) (Qden y))))

(defun Qquo (x y) (Qprod x {Qrecip x}))

(defun Qrecip (x) (Qrat (Qden x) (Qnum x)))
(defun sqre2 () (list 'Y (list "& ’s (list '& 'k
(list (Neg nl 'k} 1/1
(Qprod 1/2 (Qsum (Qquo 2/1 (list ’s (Npred 'k)))
(list ’s (Npred "k)))))))))
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(setq false 8)
{setq true 8)
(defun Not (x) (add 2 x false true))
(defun Or (x y) (add 2 x true y})
(defun Equiv (x y} (add 2 x y (Not y)))
(setq 10of3 9)
(setq 20f3 9)
(setq 3of3 9)
(defun List (nhr) (add211(add21nh r)))
(setq Nil  (List true 1 1})
(defun Cons (h r) (List false h r))
(defun Null (x) (add 2 x 10f3))
{defun hd (x) (add 2 x 20f3))
(defun ¢l (x) (add 2 x 30f3);
(defun pair (x y)  (Cons x (Cons y Nil}})
(setq nO  Nil)
(setq n1 (Cons Nil Nilj)
(setqg n2  (Cons Nil (Cons Nil Nil)))
(defun Nzero? (n) (Null n))
(defun Nsuce (n)  (Cons Nil n))
(setq cNsucc (add 2 1 1 (Cons Nil 1)))
(defun .Npred (x) (tl x))
(setqrpt  (add 21 (add 211 (add 215
(add 2 {Nzero? 1) 1
(add 2 1 (add 2 1 1 (Npred 1) 1))))}))
(defun Nsum (m) (add 2 rpt ¢Nsuec m))

(defun Nprod (m n) (add 2 rpt (Nsum m) n n0))

-13.
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{add 21 (add 2 1 1 (add 2 1 4 (add 2 (Nzero? i) false
(add 2 (Nzero? 1) true
(add 2 1 (Npred 1) (Npred 1}})}}}))

(setq NIt

(defun NIt (m n) (add 2 cNIt m n))

(defun Ngt (m n) (NIt n m))

(defun Nne (x y) (Or (NIt x y) (Ngt x y)))

(defun Neq (x y)  (Not (Nne x y)))

(defun Zplus (n)  (pair false n))

(defun Zminus (n)  (pair true n))

(setq p1  (Zplus n1))

(setq p2  (Zplus n2))

(defun Zmag (n) (hd (tl n)})

(defun Zminus? (n) (hd n))

(defun Zplus? (n}  (Not (Zminus? n}})

(defun Zzero? (n)  (Nzero? (Zmag n}})

(defun Zneg (m)  (pair (Zplus? m} (Zmag m}})

(defun Zsucc (n) (add 2 (Zzero” n) pl

(add 2 (Zplus? n) (Zplus (Nsucc (Zmag n)))
(Zminus (Npred (Zmag n})}}))

(defun Zpred {n} (Zneg (Zsucc (Zneg n}}})

(setq cZsum  (add 21 (add 2 1 1 (add 2 1 4 (add 2 (Zzero? 1) 1
(add 2 (Zminus? 1) (Zpred (add 2 1 1 (Zsucc 1)))
(Zsuce (add 2 1 1 (Zpred 1))}})))))

(defun Zsum (m n) (add 2 cZsum m n})

(defun Zprod (m n) (add 2 (Equiv (Zneg m) (Zneg n})
(Zplus (Nprod {Zmag m) (Zmag n)))
(Zminus (Nprod (Zmag m) (Zmag n}}}})

(defun Qrat (x y) (pair x y))

(setq 2'1  (Qrat p2 pl))

(setq 1°2  (Qrat pl p2))

(setq 1 1 (Qrat pl pl}))

(defun Qnum {x) (hd x))
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(defun Qden (x)  (hd (tl x)})

. (defun Qsum (x yj (Qrat (Zsum (Zprod (Qnum x) (Qden y))
1 (Zprod (Qden x) (Qnum y)))
s (Zprod (Qden x) (Qden y))))

(defun Qprod (x y)
(Qrat (Zpred (Qnum x) (Qnum y})) (Zprod (Qden x) (Qden vy

b (defun Qquo (x y) (Qprod x (Qrecip x)))

g (defun Qrecip (x) (Qrat (Qden x) (Qnum x)})

o (defun sqrt2 () (add 21 (add 211 (add 211

(add 2 (Neq nl1 1} 1/1

’ (Qprod 1/2 (Qsum (Qquo 2/1 (add 2 1 (Npred 1)))
3 (add 2 1 {Npred 1)))))))))
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