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SUMMARY

“In Chapter I, a finite element methodology is described for analysis
of steady nonlinear periodic oscillaticns of axisvrmetric shells. The
technique is a combination of asvmptotic analvsis and the finite element
method and the results that it vields include the significant effect of
nonlinear interaction between the waves that travel in opposite directions
along the circumference.

In Cﬁapter II, an extended numerical method is described which is
applicable to shells rotating at a constant speed about their geometrical
axes.

In the final Chapter 1114”; general solution for the problem of non-
linear flutter of axisvmmetric shells is presented.

The method is expected

to be useful for developing a numerical scheme for analyzing this class of
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CHAPTER 1

FINITE ELEMENT ANALYSIS OF NONLINEAR OSCILLATIONS

OF SHELLS OF REVOLUTION
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INTRODUCTION

In this chapter a computational methodology is presented for analvsis
of steadvy nonlinear harmonic cscillations of stationary shells of revolu-
tion. The develcpment is based upon the results which were derived earlier [1]
in the context of the more general problem of vibrations of slowly rotating
axisvmmetric shells. In brief, the results in [1] are in the form of a
sequence of linear equaticns whose solutions can be used for the calculaticn
of the coefficients in the asymptotically exact nonlinear amplitude-frequency
equations for the shell. In what follows is presented a finite element method
for solution of these linear problems; also described herein are some riumerical
results which have been obtazined from an implementation of the proposed scheme
on a computer,

In the class of problems of interest in this chapter, the case of a
circular cylindrical shell has been most extensively studied. A historical
account of various investigations, which need not be recited here, was given
by Evensen [2] about a decade ago. Although even at that time some systematic
perturbation analvses of a simply supported circular cylindrical shell were
available [3,4], further studies of the simpler problem of a circular
ring [1,5-7] clarified a number of issues arising from Evensen's review. It
is apparent from this review, and from the results in {1,3,4] that the most
interesting feature of nonlinear »scillations of shells of revolution is the
interaction between the circumferentially traveling waves that occurs due to
the rotational symmetry of the structure. 1In light of the facts that some
proposed finite element based schemes for analysis of nonlinear oscillations
of elastic structures even in absence of mode-interaction are not generally

valid [8] and that attempts to use the finite element method for vibrations
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of axisyrmetric shells (bv virtue of vielding unacceptable results) have
generated much controversy [9-11], the methodology presented in what follows
appears to be of some technical interest.

Since the object of the analysis of the tvpe described here is to ob-
tain the relaticnships between the amplitude and frequency of oscillation
of the shell, the same calculations could be done, at least in principle,
bv using a commercially available finite-element code. Such a computation
would entail a series of time-integrations with different set of initial
conditions, with the amplitude and frequency cobtained from the time-history
of motion. This methodologv is, however, expected to be quite uneconomical
in comparison to the asymptotic method we propcse here: the economy evidently
results from a systematic elimination of both time and the circumferential
coordinate. The efficiency of the scheme becomes more evident in case of
the forced vibration problems for which the response of the shell is quali-
tatively very rich (cf. Fig. 2 of [3]). Although the forced response curve
on the basis of the asymptotic analysis can be obtained by solving a small
number of nonlinear algebraic equations, it is uunlikely that a brute-force
time integration scheme can predict all the features of the rather compli-

cated behavior of the shell near a natural frequency as in [3].
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ASYMPTOTIC RESULTS

For the sake of easyv reference, in this section we present the results
for stationary shells obtained from [1]. For our purpose these results have

obviously been modified to exclude the terms that arise due to the rotational

motion of the shell.

It is convenient to write the equations of motion in the weak fcrm

L! )111(q,5q) + Pll(q,fq) + PZl(q,éq) + P31(q,:q) =0, 1)

s where the notaticn due to Koiter [12] has been used. Specifically, the

arrav q represents the three displacement components of the shell. The

v

(g.%3) in (1) is the first variation of the guadratic term in

cuantitv

° 2 P11

the functionas for strain energy, i.e.

—y

P 1(as2q) = 5P2(q) (2)

and, similarly, P21 and P31 denote quadratic and cubic terms, respectively,

in the equilibrium equations. They represent the first variations of homo-

e . o - Y,
. .

geneous functionals of degree three and four, respectively, i.e.,

P

.fv‘i
\

4

P21(q,5q) = 6P3(q). P3l(q,5q) = GPA(q) . (3)

As should be obvious, the first term in (1) represents the inertia of the

shell in terms of the first variation of a quadratic functional Mz, with

Mz(i) being the kinetic energy of the shell.

The form (1) of the equilibrium equation represents them in a very com-

ey v_ﬁ'1 ) oA S

pact fashion. The form includes both the differential equations and the natural
boundary conditions (or algebraic equations for discrete systems) and is
valid for any structure. Moreover, for shells of revolution, which are of

interest here, each of the functionals in (1) is of the type exemplified by
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| rp,(a) d¢ ds, (4)

r’
Py(q) = |
> I

1 0

with the components of q depending upon the angular coordinate =, another
snarial coordinate s, and time t. Evidently, all the components of g must

e perisdic functions of -, with a peried 2-.

I

In order to chtain solutions of (1) which are pericdic in time witha

s e Te
frequency ., it is convenient to scale time by w. In terms of the sceled

time coordinate the equilibrium equations become

2 ..
e L Y £ =
“ >Lll(q, q) + Pll(q,fq) + P,y,(q,3q) + P3l(q,vq) o, (5

where, now, the superpcsed dots denote derivative with respect to the non-
dimensional time. To (5), one must append the appropriate kinematic con-
ditions on the two ends ) and S, of the shell, together with the periodicity
conditions
q{s,%,t) = q(s,3+27,t) = q(s,2,t+27). (6)

Equations (5, 6) define a set of nonlinear equations with w as a
paravreter; these equations have a trivial solution for all values of w. The
condition for the existence of bifurcation points on this trivial solution
branch in the (w,q) space leads to the classical linear free vibration
problem

~u,2M | (7,60) + Py (3,50) = O, 7

where @y is a natural frequency, and y is the associated natural mode of
oscillation. Due to rotational symmetry, there are two linearly dependent

solutions of (7) for a given natural frequency W i.e., y(s,8) is of the

form

8

Y(s)e1n . Y(s)e”ine
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with the time dependent motion being a linear combination of the four

sciutions
., .« *in~t zit
Y(s)e "Te T .
This, of course, is the result based upon the linear theorv. The asvmptotic

a-a2lvsis in [1! vields that near a natural frequency “o the sclution of (1)

Is wiven by {with c.c. denoting the complex conjugate of the term prece“ing it)

it =i
¢ = (ave  + c.c) + (¥t 4 clen)

(0)

Yy 04 -
+ (azz. . e + c.c.) + (-:x:z12

+ ¢.c.) + h.o.t., )

where h.o.t. represents terms which are at least cubic in the amplitudes z or £ or

(k)

linear in (. - 40). The participating modes zij in (8) are obtained

from the solution of the linear protlems

2 (2)

, 2 . (2) , =
=4y Mll(z11 ,5q) + Pll(zll ,6q) + le(y,Sq) 0 (9a)
Pll(zll(o),Sq) + P, (.50 = 0, (9b)
2 ) . (2) - -
—heg My (2, 70 2a) F Py (2570800 + Py (vayaSe) = 0 (9¢)
(0)
Pll(z12 ,8q) + Plll(y,y,Sq) = 0, 9d)
with ( )
2) _ = (2 0) _ 0
Zgy %1 s % T oo 10
and “-dependence of zij(k) is of the form
2 2in8
le( )(s’e) = 211(2)(5)6 in . 211(0)(5,0) = 211(0)(8)
(11)
2 2
212( )(s’e) = 212( )(S), 212(0) - 212(0) (s)eZine.
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{ Finally, the (complex) amplitudes a and £ are related to the frequency w

through the amplitude frequency equations

: —m(uz-u z)a + N 02; + v.ai- = 0 (12a)
, 0 "1 1 %= ’ -
[ 2. 2 -

-m(. . s+ P + PERE =0, (12b)

where
p
g m o= All(y,y), (13a)
i ) - - ) . = - -
\ 1T P (Egy T wey) Py (2 ey) F Py (), (13b)
r _ 0 . - 2 -
( = P YY) TR (2w y)
‘ 0) = = - -
1970205 Thyey) + ZPZH(,\',y,y). (13¢)

A N o G e e

Thus, the essential effects of nonlinearities on vibration of an axisymmetric

shell can be determined by calculating the coefficients vy, and v, in (12)

1 2

bv means of (13b,c). As a result, in addition to the solution of the linear

e A Si i regyy

free oscillations problem, it is sufficient to obtain the solution of the four

linear equations (9). In the next section a finite element method

S S G das s sk amu han o

is described which yields discrete approximations to equations (7), (9) and
(13), and this approximation allows one to implement the scheme just presented

on a digital computer.

’
!
i
i
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DISCRETIZATION

The develcopment in this section is based upon the shell theory
derived bv Sanders [13] under the classical Kirchoff's hypothesis and
the small-strains, moderate rotations approximation.

We first list the explicit form of various functionals in (1). If
the shell is assumed to be made of an corthotropic material, with the
principal directions of orthotropv being along the circumferential (-)

and meridional (s) coordinates, the strain energv is given by (see Fig. 1°

1’ S’) 4:7
= l - I a8
P(g) s, 'cr[pz(q) + p3(q) + pa(q)]d~ds
= P,(a) + P3(q) + P, Q) , (14)
where
1 2 2 ., 2
= = 2C
Ppl@) = 5 (Cppeg ¥ Copfan +Cp8 Eas + Coglsd)
+l(D »<2 + D Kz + 2D,.x «__. +D Kz) (15a)
2 11 ss 22735 12 ss 89 66 st
2 2 2 2
2 = 8
2p4(q) = Cpae (B + 87) + Copeg (By + 87)

2 2 2 2
+ Clzless(s9 +8%) + eee(es + 89)]

+ C66eseBSBe ’ (15b)
) 1 2 2.2 2 2.2 2.2.,.2..2
p4(q) =3 [cn(sS + B)” + c22(se + BY" + zclz(ss+a )(Be+3 )
+c,.8%% . (15¢)

66Bs89 )

. . i t
The linear strain components ess, €69? ees Kes etc., together with the

three measures of rotational displacements B , Be and B are given in terms of
8
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the three translational displacement components of the shell; the relevant

TETT
.

equaticns are given in the aprendix. The quantities Cij and Dij in (15)

L cd
. d
P .

are evidently dependent upon the elastic constants of the shell material

v

. " P -
L , .
» et e e

and the shell thickness.

The Linear Free Vibration Problem

The discrete approximation of the linear free vibration problem (7)

a

.

b. .

.

- can he obtained in a straightforward manner. The displacements associated

with the nattral mode of oscillation v are written as

. v= @™, civ® ey, W™ syl (16)

t

,‘ so that on using the kinematic relations one can obtain the other kinematic

5 variables associated with y in the form

¢

a8 _ (n) (n) ., ~(n), in®

?" (ESS, 555: Esa) = (ESS s Eae s —1 ESG )e s (173)

FF (8, 8,8 = @™, 1™,y g ind (17b)
s 2 s 6

; (n) (n) . (n) , ind

L< (Kss’ “g8° Kse) - (Kss » Kgg 2 T 1 Mgp Je : (17¢)

t. The relationship between the quantities E:s‘)’ Ee(g),.. etc., and displace-~

rann

(n)

ment variables U s V

(n) (n)

>

and W has been given in the appendix.

In a manner similar to (16), the virtual displacements 8q in (7)

®
t‘_ are written as
1
s (Su, 6v, sw) = T L™, —1ev(®, su®)in® L oy (18)
n=0
o
. with analogous expressions for the associated GESS, GEee, GESG s «.. €tC,
I
Substitution of these expressicns into (7) with (14, 15a) yields( )
82
o P, (y,89) = 2 [ L™ T g™ 4 g (MTp (M), (19)
[ 1
I
F : » The symmetric matrix E in (19) has the components Cij’ 1, £ 2, with its
I. third column being (0, O, c66)T' cf. (15). The matrix P is defined
r
b similarly.
b .
P s e et e e R P St A N ,i
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(n) (n),T . (n) (n)
s Eee . Es8 ), and,51milar1y,5g , I and <

) (E(n) (n)

where E(n =

are arravs with real elements. One can now chocse appropriate one-

. . . . . .(n .(n n ()T
dimensional basis functions for the displacements L( ) (L( ), V( ), J( )) ‘

(cf. (16)), i.e.,

(n)

£ ) = Flee) y (20)

. r N . . 4 L) . .
where T rerresents the shape functions and y is the array of generalized

b
v

displacements. Tinallv, with the relations (A.10, 12) written in the more

cemmact form

E(n) - E(n)g(n), é(n) - %(n)g(n)’ (21)
and with (20), we obtain
PG, ~ 2__:q(n)TK(n)y(n) , (22)

where

s

,

(n)

2
‘ rd

¢ =] @™ ED ™
S

+ ™D T ™) 10, (23)

is the stiffness matrix associated with a mode of deformation with the
circurnferential wave number n. The corresponding mass matrix, being ob-

tainable from the functional
52 (277
My (v, 8q) = D rp (udu + vév + wdw)dads, (24)

s, o

can be calculated in a similar fashion, and is given bv
s1 ;
g(“) = | roff ds, (25)
$q

vwhere ¢ is the density of the material of the shell. Obviously, both of

these matrices are obtained by means of the usual finite element assembly
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process. The solution of the generalized eigenvalue problem associated

with these matrices, i.e.,

ol
&

(- (n)

= 0, ;?y(“)éi ¥ 0, (26)

~
v

S+ My

provides an approximation to the solution of the preoblem (7), the linear

free vikration problem.

he Froblems for the Participating Modes and the Amplitude-Frequencv Equations;

For the solution of the nonlinear problem, it now remains to obtain
discrete analogs of (9a-d) and (13). For this purpcse it is convenient
to first consider the forcing terms in (9) (i.e., P21(y,5q),Plll(y,§,fq),etc.)
which require the calculation of the first and second variations (Frechet
derivatives) of the functional P3(q) defined by (14) and (15b). Although
the algebra is tedious, the calculations are conceptually quite straight-

forward. We begin byv noting, with equations (3), (14) and (15b), that

52 27

= Y &
P,.(a,849) (S JorPZI(q.-q)d.ds, (27)
1

and that

2 2
2, (a,8) = Se_[c) (62 + 6% + ¢ (87 + &%)

2 2 2 2
+ éeeeiclz(es + B8°) + c22(ee + 891

+ dcsﬁ[c662586]

+2 g +C

* feglac C12%06%s * C66°s6%]

[+
11%ss”s

g, +C

+ g l2C 2290658 * CeeEqpBs)

g B8 + 2C

lZCss

g + 2C12(css + eee)B]. (28)

+ 56[2916353 + 2C22cee
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In order to evaluate qu(y,éq) for (9a), we use the equations (16, 17a,b,

-

18, 27y and (28). The result is

)
R B R T TT (29)
2 s,
where
2 2 2 2
- - (1) (n) (n) (n)
a, = [c;, (B - B ) -Cy, (B B y1/2, (30a)
= . ™ o g7 (B(n)2 + B(n)z)]/Z (30b)
82 7 M2Vt 225 ’
_ (n) (m A
_ (n)_ (n) gz (n) (g (n)
b1 B Clltss [ ClZ Bs - C66E /2, (30d)
_ Mg &+ ()4 (n) (n) (n)
b, = C),E os Bg CopBzy By~ CeoEes /2, (30e)
_ (n) (n) (n) (n) (n)
b3 = [CllEss + C22E + ClZ( ))B . (301)
re . Lo (n) _(n) .
~e recall here that the quantities ESs s BS , etc. in (30) are related to

the displacements associated with y via equation (A.10, 11).

The discrete analog of (29) is obtained by using (18,20,21). Thus,

first the quantities a, and bi in (30) are calculated from (A.10, 11) and (18).

For example,

a

3 = Ceglli/r,: 0: T )y ™1ut0: stnofe: /el o)y ™

From the solution of the homogeneous problem, the quantity 2y and,
similarly, all components of a and k can be calculated for any value of s.

Using these functions in (29), one obtains

T
P,y (y,8q) 2 2n ég(zn) {(2) , (31)

where
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£ e e o) + B 01 o)) as (32)
°8
1

In (32) we have used the definition (21)1 and an analogous definition

g () gD G gGNT _ 5(5),(1) (33)
a¥ S v

had v

. (1) .
with B obtained from the equations (A.11).

The remaining forcing term in (9) is P.. . (v,v,*q) for which the second

111

variation of P3 needs to be calculated. Since the details are similar to

the ones described for computing le(y,fq), we list only the final results.

Thus, one obtains

(52
- . | ()T O
p ll(y’y"q) = JSlr(gg ¢ + 5% g)ds, (34)
where
2 2 2
¢; = €y @@ L g7y c, (B(“) + M7y, (35a)
S
2
c, = (B<“) + 3™ % +C 2(5(“) + 3™ ), (35b)
cy = 0, (35¢)
_ (n) (n) (n) (n) (n)_(n)
dl = 2 c11 s B + 2C12Eee . + c66E B . (35d4)
d2 = d3 = 0. (35¢é)

Finally, the discrete analog of (34) turns out to be

(o)

111(}’.3’, q) 2n 5q (36)

3

with

(0) T

S
2
£(°) - [ el [E(O)E ()17 ¢ + (B VF (s)1g)ds. (37)
S

1

Our description of the procedure for discretization of (9) is now

essentially complete. With the vectors {(2) and {(0) defined by (32) and




(37), the approximations to the participating modes zig) in (9) can be ob-
tained by seclving the linear systems(l)
,  2.(2n) (2n),.,(2) (2)
(-a. "M + K VBt f = 0, (38a)
)
T A (380)
. 2,(0) (0),,(2) (0)
o e e 1@ -0 G80
5(2“);1((2)) + 2g(2) = 0. (384)
o] 2
In (38) ﬁ(o), §(o), ¥(“n) and g(‘n) are defined bv (25,23) with n replaced
R o e . (k) . (k) |
bv zero and 2a, respectivelv., and ;ij are discrete analogs of Zij in (9).

Once the participating modes have been calculated from (38), one only

needs to use (13) to calculate the coefficients in the amplitude-frequency

equations (12). All the terms in (13) except lel(y,§,§) can be obtained

by using equations (31) and (37). Consequently, we proceed to calculate

the last term in (13b). For this purpose we write (15c¢) in the form

p, (@ = 210, (TR” + Cppy&T0)? + 20,aTE™D)
2.2
+ C66esse]’
where

T

. - a.m!
ne(BaB),  E= (BzB).

The second variation of Pa(q) is then found to be

IWe note that by definition, Plll(y,y,éq) =

2P21(y,6q) s0

term in (9d) is twice that in (9a).

(39)

(40)

that the forcing
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, ql,?q)dsde . (4N

n oy A SN I T\, Ts.
-p:ll(q9 qla C,) C [-—(~ l)("‘I -”‘) + (,r: ﬂ;)("vl-‘)]
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T. .1

~
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PR ind

[20g, niin

T' R
+2(_rj1 &>(v

Lz

Copl (--1"7¢

+ (5 T+
B S

and the kinematic quantities with subscript 1 are associated with displace-

29) + (1T (130

T+ cloe )

v ’\.’vl

£70) + (n'm) (5572 )]
N Y vy

+ A2 8 )= ¢

27l "g B

LA S - )
"4'5)("5"61 + ‘slhe)]’ («2)

ments corresponding to q;- We now use (17b) and (40-42) to obtain

S2
v = [ = = (43)
Pyyp(Vsysy) = 27§ prds 2ry
‘S
1
where
-1 2 2 2 + h 2
1 (n), (n),2 (44)
+ € p(280h) + gyhy) + 7 Ceo(Bg "B )
and
2 2 2 2
=5 (M (n) . p M7 _ g (44a)
gl Bs + B s g2 Bs B ’
2 2
- (n) (n) = - 44b
h, (B, + B ), hy h,. (44b)

Thus once the free vibration problem has been solved, the left hand side of (43)

can be evaluated by using the equations (20), (A.11) and (43). Finally, from
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these results one obtains the discrete form of (13) to be

+ ]

T
y(n) (M ()
A

v v

, (45a)

- v ¥

. T
2 (2)°,(2)
B vy - 2f 11 ¢

T
£ 4, (45b)

~
>
|

[

T T
. f(o) Z(o) + f(O) Z(2)

2 g 11 “12

T
+ 2€(2) gig) + 2y . (45¢)

In summary, the computations proceed in the following manner. First,
for a given circumferential wave number n, the stiffness and mass matrices are
obtained by wusing (23,25). The solution of the generalized eigenvalue
proble. (26) yields a natural mode of oscillation and the associated
frequency. The natural mode is used for calculation of the forcing terms
5(2) and £(0) via (32,37). Then the mass and stiffness matrices corres-
ponding to circumferential wave numbers 2n and zero are assembled so that
the participating modes can be calculated from (38). Finally with the scalar
v calculated by means of (43,44), equations (45a-c) are used to compute
the desired coefficients the amplitude-frequency equations (12). The

results from a computer implementation of the procedure just described are

presented in the next section.

NUMERICAL RESULTS

In the program that has been developed on the IBM 4341 at the Yale
Computer Center, one dimensional Hermite cubics were used as the shape functions
[ for all the three displacement components, together with four point

¥ - Gaussian quadrature rule for numerical integration. All the computations
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precision. For the purpose of comparing the results
previouslv, the scalars
o= 4/ (8mw 2) (462)

1 1 o ?
P, = Gy = v )/ (16me 2) (46%)
‘2 2 "1 "o 7° T

scalars occur in a set of amplitude-frequency equations

equivalent to (12), to wit,
~2 3 2
(" - Da+ (P, + Pla” + (P, + P_cos2)ab’ = 0 (47a)
1 2 1 2 ’
2 . ..
ab“sin2; P, = 0, (47b)
2 3 , 2
-~ - Db+ (P, + POb” + (P, + P.cos2y)ba” = 0, (48a)
1 2 1 2
-bazsin"" P, =0 8= ww (48b)
- 2 ’ O.
These equations are obtained by setting
L 1v
a =(a + ibe ") /4, (49a)
&= (a- ibel")/4, (49b)

in (12), adding (12a) to (12b) and subtracting (12b) from (12a), using the

definitions (46), and satisfying both the real and the imaginary parts of

the resulting equations. Evidently, equations (48) are equivalent to those

derived by Ginsberg [3] for the special case of a circular cylindrical shell.

In Table 1 are presented the results of a convergence study for a simply

supported circular

shell was analyzed,

cylindrical shell analyzed in [3]. Only half of the

with symmetry conditions imposed at s = 0, (w' = v' = u = ()

and the simple support conditions (v = w = 0) at s/R = L/2R, with L being the
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length of the shell and R its radius. It is evident from Table 1 that
the convergence of the various coefficients with increase in the number
of elements is rapid and menctonic.

In Table 2, the computed results have been compared with those
in {3]. Although one of the reasons for the differences could be the
different shell theorv used in [3], the rather substantial discrepancy
cannct be explained solelv on this basis. (We note here that ultimatelv
Ginsberg's analvsis is alsc a numerical scheme invelving summation of a
convergent series). It may alsc be noted here that a direct numerical
counterpart of Ginsberg's analvsis would entail the rather uneconcmical
computation of a large number (theoretically all) of the natural medes of
oscillation and the associated frequencies.

In Tahle 3 we have presented some results obtained for a simply
supported frustum (conical shell). Specifically, only the circumferential
and transverse displacements of the shell were constrained to vanish at its
twoe ends. For the semi-vertex angle o = 7/2, the frustum degenerates to
an annular plate, and our results indicate that for this case the non-
linearity is of the hardening type for both the circumferentially traveling

(1)

waves and standing waves.

(1)

equations can be derived:

(a) b=20, (92 -1) = (P1 + Pz)az; Standing Waves,

b,y = 0, (92 -1) = 2P1a2; Traveling Waves.

The character of these solutions can be readily verified by using (49) in

(b) a

the leading part of (8).

It may be noted here that from (47-48) the following amplitude frequency

:

C % . - . PRI
P N W e LA Y

|
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. A numerical method based on asymptotic results has been developed

for analvsis of steadv nonlinear harmonic oscillations of shells of re-
volution. Some results have been described for circular cvlindrical

and coni.al shells. As discussed in [1], once the coefficients in the
amplitude frequency ejuations have been obtained for the free vibration
protlem, the problem of forced vibration can be reduced to solution of

two complex nonlinear equations. Thus our results can be directly used for
the calculation of the response of harmonically excited shells of revolution.
Finallv, further extension of the numerical method to include the effect of

steady rotation of the shell is the subject of the next chapter.
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APPENDIX

A. Strain-Displacement and Rotation-Translational Displacement Relations

(See Fig. 1 for definitions of r, r and i).

Membrane Strains

g =u _ +w/r (A. 1)
ss »S :
;: c. = (v /r+ucos:/r+wsing/r) (A.2)
3 €. = (v Jtu JJr = v cosg/r)/2 (A.3)
?
Rotations
X I
' g =-w _+u/r (A.4)
S .S &
1
f fp= (~w _ + v sind)/r (A.5)
o= (v stV cosd/r - u e/r)/2 (A.6)
b . Bending Strains
K = =-w +u /r. -ur /r2 (A.7)
ss 4SS '8 0 ¢ss ¢
Keg = (89,8 + B cosé)/r (A.8)

“gg = [Be,s + Bs’e/r - 8, cos¢/r + (sin¢/r - l/r¢)8]/2 (A.9)

3 B. Kinematic Relations for the Quantities in (17) for Deformation Associated
? with Circumferential Wave Number n
b {
3 E(“)\ d/ds 0 1/r g™
ss é

E Eé;) = coso/r n/r sing/r V(n)
. E(n) -n/2r ;(d/ds—cos¢/r) 0 \W(n)

X 56 2
= . .n).(n)
s = kK- (A.10)
3
bR ST e
s ia Vi
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B 1/z, 0 ~d/ds u

Bfn) 0 sing/r n/r ALY

B(n) n/2r %‘(cos:/r + d/ds) 0 w(“)
= é(n)g(n) . (A-ll)

() d/ds 0

ss

(n) cos:/r n/r I%Lj(n)

() «n/2r l(d/ds - cos¢/r) l(s:irm/r-l/r)

s2 2 2 ¥
= M@ (A.12)
Y H *
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Fig. 1 Geometry and Coordinate System.

—-—
+

. . . .
. . . . . .
- . ) e -

B Tk R U L WP VSNUPIISE S VDU, AL IO NI, B _ U



LAD G e g

D Y N 2~

. vT.v. v

-3 MR AN A AN s A ol M el L A i

Fig. 2 Geometry of the Frustum Analyzed.

25

et At




26
Table 1
Convergence Studv for a Circular Cvlindrical Shell
of Isotropic Material, Poisson's Ratio v =,.3.
T Tew ] ] |
N . ! !
1 > 1 ) 1.
I/R(‘) i n(') i Elements ;(3’ i w(A) ! P(s) ’ P(S)
i ‘ ) ___'max 1 2
T o ' B
| 5 ' .6531 . .9576  -5.361 '  -74.17 |
i ‘ . : J
2 10 | 6531 . .9570 . -5.406 |  -74.21
© 20 [ .6531 © .9570 -5.410 ©  -74.22
1 5 f
! 5 {2436 .9914  -565.6 | -1271.3
| '
8 10 36 0 .99k | -566.7 | -1271.4
* .
; 20 J 2436 ' .9914  -566.7 -1271.4
! ‘ L
i ) ‘ -
| 5 . .1130 , .8836 = -1.489 ! -61.70
t ! i : '
2 L 10 | -1130 § .8836 [ -1.490 ¢ -61.70
! . ' : |
20 .1130 . .B8836 | -1.490 ¢ -61.70
: |
5 1824 | .9921 -6.805 -822.4
8 10 .1824 .9921 -6.809 -822.5
] 20 .1824 .9921 -6.810 -822.5
1. L/R = Length to Radius Ratio.
2. n: Circumferential Wave Number.
3. w = [(l-vz)oRz/E]l/ZS° where Bo is the lowest natural frequency associated
with n and E is the Young's Modulus.
4, ; = w___/R, where w is the maximum normal displacement associated
max max max )
with the normal mode, normalized such that (w 2 + v 2 + u2 YR =1,
max max max
as in [3].
5. Coefficients in amplitude frequency equations (47, 48).
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Table 2

A Comparison of Numerical Results with those in [3].

(Parameters and Notations are same as in Table 1.)

T e ,
!L/R B ! i "o whmax Pl p2
! ' —
! New
] .6531 .9576 -5.410 -74.22
Results
2
Results
.6531 .9576 -24.62 -96.00
from [3]
1
New
' . 2436 .9914 ~-566.7 -1271.4
: Results
’ 8
Results
L2437 .9914 | -1542 -1771
from [3]
New
.1130 . 8836 -1.490 -61.70
Results
2
Results
.1130 . 8836 -6.35 -68.15
from [3]
A
New
.1824 .9921 -6.810 -822.5
Results
8
Results
.1824 . 9922 ~109.2 -873.1
from [3}
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Table 3

Coefficients in the Amplitude Frequency Equation (47)

for a Simplyv Supported Frustum.

T
(Degrees) 4 P1 P2
15 i 0.5991 -6.49 -57.71
30 | 0.4983 +1.70 -37.24
45 0.3753 2.85 133.85
60 0.2511 10.43 -97.08
75 0.1303 32.56 -311.16
90 0.0340 469,14 233.60
(Annular Plate)

Table 1.]
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[v=0.3, R/h = 100, L/R = 1, (see Fig. 2), n = 2. Notation is the same as in
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INTRODUCTION

In this chapter we describe a finite-element methcodology for analvsis
of steadv nonlinear harmonic oscillations of rotating axisvmretric shells. As in
rarter 1, the methodologv is based on the asvmptotic results derived
earlier [1]}, and it vields an asvmptoticallv exact nonlinear relationship
tetween the amplitude of cscillation of the shell and its freguency.

The main in‘luence of rotation on axisvmmetric shells is that it
destrovs the reflection svmmetrv with respvect to the circumferential direction.
As a result, the two waves that travel in opposite directions along the
circumference are expected to exhibit different behavior, both in the linear
and in the nonlinear range. It is for the assessment of such differences
between the two circumferentially traveling waves that the numerical method
developed in this chapter can be utilized.

Although in mechanics literature there is a large number of accounts
of analytical, numerical and experimental studies on nonlinear oscillations
of stationary shells, the author's analysis [1] appears to be the only one
in which explicit results have been obtained on the oscillations of a rotating
shell tvpe of structure. Due to the analvtical intractability of the general
problem, the study in [1] was restricted to the simple problem of a ring:
evidently the finite-element method described here can be utilized for more

general problems.
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FORMULATION

As in Charter I, we use the Sanders' strain-displacement relations
under the small-strains, moderate rotations anproximation. The strain energy
of the shell is then riven bv the functional P(q) defined by (I.1l4, 15)(1).

In terms of this functional, the eauilibrium equation of the shell in a co-

crdinate frame rotating with the shell can be written as

S2 . o-
! I
P(c) + t(a “u + a‘v + a ‘w)rdsds. (1)
_'q ] S r
$1 c
Tn this enuation, - is the mass per unit area of the shell and the quantities
. . 2 ) . 2
a =u- 27v cos: = ©7 cosiu cosi + w sind) - Q2°r cos?¢ , (2a)
"o t 2
a. = v+ 20u cos: + 2% siny -~ Q'v, (2b)
- o 2 . . 2 n
a_ = w - 2°vsin: - 27 sint(u cos¢ + w sing) - Q'r sin¢ (2¢)

are the acceleration components of the shell in the rotating frame, see
Figure 1. Evidentlv, the quantity Q in (2) is the speed of steady rotation
of the shell about its geometrical axis.

The last terms of the eaquations (2a,c) lead to an effective centrifugal
force on the shell, so that prior to analvsis of oscillations one has to
calculate the steady prestressed state about which the vibrations occur.

This prestressing due to steadv rotation, denoted by qo, is governed by the
nonlinear equations obtained by dropping from (1,2) the terms that contain

time derivatives of displacements; to wit:

(1)

In this chapter, equation numbers beginning with Roman I refer to the

corresponding equations in Chapter I.

|
|

il
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2@+ TR (%) + 22 F(F,5q) = 0 (3)
- ll A . -- ’ll > I3 'y
where
#8592 . \
o cos:(u cos: + w sind)‘*u
Ry la, @) = ! rdsds, (4a)
o 'Sl e + viv 4+ sin:{u cos: + w sin:)'w
s
F2 -
| .
Fll(f, ) = = ‘ (r cos?* Su+ r sin: &w)rd“ds. (4b)
/s .
1 °°

The forcing term (4b) in the equation for prestress due to rotation is ob-

vicuslv —-indenendent: the prestress state is, therefore, axisvmmetric, as

exnected.
For a fixed value of 7, the solution of discrete analog of (3) can be
obtzined bv the usual Newton-Rabhson method for solution of nonlinear

algebraic equations. We write the solution of (1) in the form
g

o]
q

q + 3 (5

ja%
with q representing the oscillatory motion of the shell superimposed on the
steady deformation. On substitution of (5) in (1,2), together with the use
of the fact that qo satisfies (3), we obtain the homogeneous equation for the

free nonlinear oscillations of the shell. This equation can be written as

v N n "] N
M ,0d,8q) + G 1(as60) + Vy,(q,8q) + V,,(q,8q) + Vy,(q,5q) = O (6)
where
X} sz 2ﬂ .. .. ..
Mll(a,sq) = [ ( (G6u + Viv + wiw)rdeds, (7a)
[ J0
1
8
N 2 (2m (-véu + ubv)cosé
G,,(d,80) = ZQJ rdéds, (7b)
8y ‘o0 +{(wsv - v8w)sin¢
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o
r;
s Voo@, ) = P8, 0q) + P (q0,8.05q) + Pl (60,4, 7a) + SPR. L (4,4q) (7¢)
ﬁ 11 11 1110 2 211 DR B b
3
, R _ I , " o
\21(Q’“q) - P:l(q’Q) + Izl](‘l’ q 950)9 (7d)
" (a.%q) = (c,%q). (7e)
\Bl(q,-q) P31A,, q)

Here, as usual, Pll(q,fq) denotes the first variation of the quadratic part

of the strain energv functional; P71 and 931 are defined similarlv. We note

here that the bilinear functional G11 in (7b) is antisvmmetric with respect

to the argument, i.e., Gll(ql’ qz) = - Gll(qZ’ qlx as can be readilv verified.
v
f For subsequent discussion it is convenient to drop the over-tilda from q

and to scale time bv using the (vet unknown) frequencvy w of periodic vibration

of the shell. The equation (6) is then modified to

£ e ) i
M102589) + w G, (§,39) + V1 (a,3q) + V21(q’“q) + V3l(q,6q) 0, (8)

where, now, dot represents derivative with respect to the scaled time coordinate.
With this scaling, the obiect of our analysis reduces to obtaining solution of
(8) whose time dependence is periodic with a period 2w,

An asymptotic solution of the problem has been presented in [1 ]. Here
we summarize the main results.

First one calculates a natural frequency Wy and the corresponding natural

mode of oscillation, y, from the quadratic eigenvalue problem

2
~u, Mll(y,éq) + 1w Gll(y,ﬁq) + Vll(y,éq) =0, 9)

to which must be appended an appropriate normalization condition for y. If
‘ ' for a given natural frequency wo, the associated mode of oscillation is unique
up to a scalar multiplier, the results in [1] indicate that (8) admits solutions

of the forn
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- it 2 2i -
. q = (3ye1 + c.c.) + (2 2(2)e it c.c.) + aaz(o) + 0(33,3(w—¢0)) , (10)
Lr where c.c. represents the complex cenjugate of the term preceding it.
y W 4
- 2
§ In (10), the "participating modes" z(“) and 2(0) are obtained from the
linear time-independent prchlems
2 2y . () . (2) . ; :
-4, 0N Z 2i. 3 2 - + v z + Vv S = il
oo M (2Tt + 2 Gy Q)+ V(27 Eg) v (v, fe) = 0, (2L
: v, 2 ey + v (v LS50 = 0 - (12)
L 11 Y N 111 . LIRS | T - .
o
}g The comrlex amplitude 2 and the frequencv « are related bv the nonlinear
amplitude frequency equation
}
{ 2 > 2-
L. (w7 - “o Ymr + (L - wo)ql + e s = 0, (13)
b
’ where the nonlinearitv coefficient Yl,and the other scalars are obtained from
_ m= M, v, ¥), 8= 16,0, ), (14)
yn
o8 2) (0)
. - o - -
5 v, = + .
T 2Py vz ) + Py vz )+ Py (YLy,Y) (15)
.] The main object of our calculations, of course, is to obtain the
{ quantities m, g and Yy in (13) so that at least an asyvmptotic relationship
: . hetween the amplitude and frequency is explicitly available. For this purpose,
S
[ as we have discussed in this section, one needs the computation of (a) the
[ J
[ steady prestress due to rotation, (b) a natural frequencv and the associated
} mode of oscillation and (c¢) the participating modes. Following section is
. devoted to some aspects of these computations.
L-
p
b
b
3
@
\
L
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THE DISCRETE ANALOGS

Once the variaticns of the various functionals needed in (9,11,12,14,15)
have been calculated, standard finite element techniques can be used to obtain
the discrete approximations of these equations. Since the details are similar
to those given in Chapter I, here we onlv outline some of the main results.

On discretizations the equation (3) for prestressing due to steady

rotation beoomes

(o)

. ) ( (
n((®) = k(07000 L Ly 000y00) L Ly (€0)yq (@)
_— Al N 2 RO - 3 A n -
2 )
R R S (16)
~ Y
where K(O> is the constant stiffness matrix, with N1 and 32 being symmetric

matrices whose elements are linearly and quadratically dependent, respectivelyv,

on the argument q(o), the vector of generalized nodal displacements. Eguation

v

(15) can be solved bv the Newton-Raphson scheme (i = 1,2,...2%):

a1 o, (17a)
v v |
%9+ 31N+ p2ah
+ 22y aql 4 R(q(o)i) = 0, (17b)
Y
g (O L (5 ot (17¢)

n Y "N

with ¢ determined by means of a suitable convergence test.
After the prestressed state due to rotation has been obtained, one can
solve the discrete analog of the linear free vibration problem (9) which turns

out to be of the form

~
-
. B . . N T . -
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M P

(-0 Zym) c’(n) + 1((n)]y(n) - o,
o " o~ - -

(18a)

where n is the circumferential wave number, and the svmmetric matrices

n) . 1 : I
ﬁ(n), Q(n) and §(q' represent the mass, the Coriolis acceleratlon(‘) a

nd
the stiffness, respectivelv.
Although some attenticn has been given in the literature to the development

of special numerical methods for solving quadratic eigenvalue problem of

the tvpe (18), we use a simple Newton-Ranhson scheme for (18) as well; to

wit
i=1,2,..., till convergence,
!— i)ZM(“) + g i +K(n) (-2 i\q(n) +C(n) (n)i—T
i ! -(wo N wo oY N - wo K LY )}C
N ,(1%a)
T
2v b 0
L__ An
2.(n) (n) (n), ()i
i (_wo % + wo% + E )X
g~ , (19b)
( T .
v n)i (n)i -1
A,
()

We note that if we write the displacement components in the form (I.16)

and use the definition (7b), the functional iG in (9) becomes a real

11
symmetric, bilinear functional.
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SO i, () (19d)

y " Y

X i+l = i + A 1 . (198)
o o (o}

Since the calculations can be done for successivelv increasing values of the

~

speed of rotation O and since for - = 0 the quadratic eigenvalue prcbhlem

reduces to the standard algebraic eigenvalue problem due to vanishing of

G(n)

v

, the starting iterate for the scheme (19) for a fixed {7 can be taken
to be the solution obtained for a previous value of 7. Some more sophisticated
extrapolation schemes could obviously be devised for this purpose, but we
have found this method to be sufficient for our purpose.

The calculation of participating modes by solving the linear problems
(11,12) is a relatively simple task. The discrete analogs of these equations
turn out to be of the tvpe

N 2..(2n) (2n) +

(2n), _(2n) (2n) _
[—4‘0 M + 2wog K 1z + £ = g, (20a)
(o) _(o) (o) _
Kz + { = Q (20b)
which are linear algebraic equations for the quantities %(o) and %(Zn) and

therefore can be readily solved by, say, Gaussian elimination.
Finally, with the natural modes of oscillation and the participating
modes having been calculated according to the schemes just mentioned, the

coefficients in the amplitude frequency equations (13) are obtained from

T
m = (n) b,i(n)v(n) , (21a)
T
g =y ™ ™y (21b)
N n, n,
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eyt (2n) L (o). (0)
AR S DS SR (21c)

where the last term is calculated as in (I.43, 44).

NITERICAL RESULTS

-

The algorithm described in the previous sections has been impnlemented
an the 1B %4341 at the Vale Computer Center. The program emplovs one-
dimensional Hermite cubics for share functions for all the three displace-
ment components together with four-point Gaussian quadrature scheme for
integration.

In Table 1 are presented the results for a simplv supported circular
cvlindrical shell. All the computations were done bv using ten elements
for half-lenzth of the shell with svmmetrv conditions imposed at the mid-
length. It is evident that due to rotation there is further "softening" of
the nonlinear response. However, it appears from the results that in the
range of rotational speeds considered, the effect of rotation on the non-

linearitv coefficient v, is similar for both the forward traveling wave and

1

the backward traveling wave. Similar trends can be observed in Table 2, in

which the results of a similar calculation for a circular shell clamped at both

ends have been presented.
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Table 1
Coefficients in the Amplitude Frequency Equation (13)
for a Simplv Supported Circular Cvlindrical Shell
(L/R =1, 0.3, R/h = 100, n = 8)
P T !
i Tvpe of 5 |
LD (111) |
/‘V
iﬂ Wy ave w m g Y,
i
| n F,B 0.243 0.250 0 67.1
0.05 F 0.245 0.250 - 0.76 x 10> 67.9
0.05 B 0.248 0.250 + 0.76 x 10-3 67.9
0.10 F 0.251 0.248 - 0.15 x 1072 71.3
0.10 B 0.257 0.248 +0.15 x 1072 71.4
0.15 F 0.262 0.247 - 0.23 x 1072 78.4
0.15 B 0.272 0.247 +0.23 x 1072 78.6
0.20 F 0.279 0. 244 - 0.30 x 1072 90.2
0. 20 B 0.290 0.244 +0.30 x 1072 90.4
(D All the quantities are nondimensional with the scaling parameters being
the same as in Table 1 of Chapter 1.
(1D The quantity we is the dimensional lowest natural frequency for circum-
ferential wave number n = 8,
(11)

rotation of the shell) and B denotes backward traveling wave.

F denotes forward traveling wave (in the same direction as the sense of
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Table 2

Coefficients in the Amplitude Frequency Equation (13)

for a Clamped Circular Cylindrical Shell(l)
(L/R =1, +=0.3, R/h = 100, n = 8)
T T
Tvpe of ;
| f/@s Wave i N m g Yy
] H
1
0 F,B 0.295 0.225 0 110.7
-
I o.5 F 0.296 0.225 - 0.80 x 1072 111.2
i n.5 B 0. 300 0.225 +0.80 x 1072 111.9
0.10 F 0. 304 0.224 - 0.16 x 1072 115.5
0.10 B 0.311 0.224 +0.16 x 1072 117.1
0.15 F 0.318 0.222 - 0.24 x 1072 125.0
0.15 B 0.329 0.222 +0.24 x 1072 128.0
0.20 F 0.237 0.220 - 0.314 x 102 141.2
0.20 B 0. 351 0.220 +0.314 x 1072 145.9
(1)

All the footnotes of Table 1 apply to this Table as well.
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NONLINEAR FLUTTER OF SHELLS OF REVOLUTION
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INTRODUCTION

In this chapter we present an analysis of nonlinear flutter of shells
of revolution. A comprehensive summary of the related literature can be
found in the excellent reviews by Dowell [1,2] and Fung [3].

A number of experimental studies of flutter of cvlindrical shells

were conducted by Clson and Fung [4,5], Stearman [6] and Stearman et. al [7].
Although there is not much disagreement on the qualitative aspects of flutter
“ between the observations and analytical results, the agreement on the quan-

‘ titative features differs to a varying degree depending upon the approxima-

; tions made on aerodynamic forces in the mathematical model. Most of the

L comparisons have been made with the linearized theories of flutter, with the
main emphasis being placed on the flutter boundary which delineates, in the
Ef space of relevant parameters, the region wherein flutter occurs from those

: . in which the shell is stable.

Linearized models of flutter of a circular cvlindrical shell have been
studied by Miles [8], Dowell [9], Le Clerc [10], and Voss [11], among others.
’ Although the linear theory is adequate for the prediction of onset of flutter,
E' it does not provide any information on the amplitude of the fluttering

oscillations. For obtaining such results, analysis of the nonlinear procblem

;‘ is necessary. Another important use of the results from nonlinear analysis
?; is that on their basis it can be ascertained as to whether or not there is a
E possibility of the existence of fluttering motions at values of the relevant
T. parameters which are lower than the critical values predicted by linear theory.

- v Finally, for circular cylindrical shells, the linear theory fails to make any
distinction between the circumferentially traveling waves and standing waves

. ’ as modes of flutter. Thus, although some experimental results seem to suggest

S y . s . . . . . . . ; . s NP S N
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that the flutter of a circular cylindrical shell is always associated with
circumferentially traveling waves [5], the linear theorv predicts that flut-
tering motion in the form of standing waves is equally likely to occur.

In order to alleviate the aforementioned limitations of linearized
analvsis, some analyses of nonlinear flutter of a cyliadrical shell have
also been conducted [12,13]. Evensen and.OISon [12] have essentially used
an assumed mode approach together with the Galerkin's method to analyze
flutter of a shell using shallow-shell theory and first-order piston theory
for aerodynamic forces. Although their solution does include both traveling
wave and standing wave responses, the accuracy of the results is limited by
the fact that the analvsis does not include: (a) the nonlinear terms in the
boundarv conditions on axial stress-resultants for the case considered and
(b) in-plane inertia terms in the equations of motion. Although one of these
limitations has motivated an apparently more accurate analvsis [13], vet in
this solution, too, the nonlinear boundary conditions have been satisfied
only in an averaged sense, and, in contrast to [12], no interaction between
circumferentially traveling waves is considered.

In what follows is presented an analysis which takes into account the
structural nonlinearities in a consistent manner. The results obtained can
form a basis for a computational algorithm for analysis of flutter of shells
of revolution along the lines of the numerical schemes for nonlinear oscil-

lations described in the previous chapters.
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ANALYSIS
As for the nonlinear oscillations problem, the analvsis is most easily
carried out bv writing the equilibrium equations in the Koiter's notation

/

[14] in the form

) .
AV 2 ) > 5 b £
=M (g, tq) 4+ ~C.;(G5%q) + uAll(q.cq)

~~
(o)
~—

+ 7,0, 7a) + Pay(a,iq) + Pgi(g,0q) = 0.
The vector q in (i) represents the three displacements associated with the
shell, . is the frecuencv of oscillation, superposed dot denctes derivative
with respect to time nondimensionalized by the frequency of oscillation and
the svmmetric functional M]l represents the inertia terms. Further, the
terms Pil(i = 1,2,3) represent the first variation of homogeneous functionals
of degree (i + 1), and they, of course, arise from the structural stiffness,
with the nonlinearities being a consequence of the quadratic strain-displace-

ment relations. Finally, the functionals C11 and A,, represents, respectively,

11
the damping and the nonconservative forces on the structure. The quantity A
is a "load" parameter essentially representing, in case of aerodynamic flutter,
the speed of the fluid flowing over the shell. Although, in general, the load
parameter can appear nonlinearly as well, and in the other terms (particularly
in the damping term in the equilibrium equation) it is sufficient for describing
the basic methodology to assume the particular form (1).

It is also noted here that for shells of revolution each of the com-
ponents of q is periodic with respect to the angular coordinate: this is a
result of the invariance of the equilibrium equations with respect to angular

rotation and it leads to an interesting problem of interaction between cir-

cumferentially traveling waves in nonlinear flutter.
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Due to the scaling of the time coordinate in (1) by the frequency of
oscillation ., we seek ti~e periodic solutions of this equation with a
period 2-. The equation has a trivial solution for all values of w,). The
condition for the existence of bifurcation points on the trivial solution

nwranch leads to the linear eigenvalue problem

]

- - . or ;) , oz 3 A 2 . < = 2
v M (vs )+ in G (v, Te) + 2 A (v, ie) + Py (v,iq) = 0, (2)

. e~
‘'

vhere “o is the frequency at the onset of flutter and Ao is the associated

lcad parameter.
Equation (2) is derived from (1) on the assumption that the sclution

at the incipient loss of instability is of the form

~—— e ——
[y
rt

so that the functions

~ -it -it - it
y e s ¥V € y Y €

are such solutions as well. Due to rotational symmetry the flutter mode v
is of the form
in%

(3)

where § depends upon the axial coordinate only.

TR TN
<
[}
Ay
©

It is convenient to also denote here the solution of the problem adjoint

to (2) by z, i.e., z satisfies

el

2 *
<y Mll(z,éq) - iwocll(z,éq)

+ AOA’I*l(z,sq) +P,,(2,8q) = 0 (4)

* *
: where Cll and All represent the adjoints of the functionals C11 and All’

respectively; thus, for any displacements 9y 9ys
- - C* (
. Cll(q19q2) = 11 q29q1)'
For the values of (},w) near (Ao.wo), the solution of (1) is written as

q= (ay e1t +c.c.)+ By elt & c.c.) + W, (5)

‘ .
P SO P
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where w is as vet an unknown function satisfying an orthogonalityv condition

r:" .

; e 1t T, (0,2)dt = 0, (6a)

= e It vt z)ar = 0 (61)

! 1177 > ’
where 111 is the first variation of an arbitrarilv positive definite quadratic
functional. It mav be noted here that the choice of Tll together with the
orthogonality conditions (6) fixes the amplitude > and % uniquely, i.e.

2
2= D it (q3)ae (7a)
I 11
(2,
a = ! -it t 7b
g= e T, (a,2)d (7b)
vhere we have assumed that the solutions of (2,4) have been normalized so that
(217
jo Tll(y,z)dt =1
e27 _
Tll(y,z)dt =1,
Just as the solution has been decomposed in (5), we also decompose equation
(1) into three equivalent ones:
it 2" _ie
Lll(w,éq) = R(q,%q) - e Tll(y,éq)j e " "R{gq,z)dt + c.c.}
o
2n
—{eitTll(§, q) j e 1tR(q,z)dt + c.cd , (8a)
o
27 .
-1t -
J e " R(q,z)dt = 0, (8b)
)
2" ¢
J e ~R(q,2)dt = 0, (8¢)
)
where
- - et e "
a e te Al ry l—..& LW L Can LR S, SN b S . S, Y PN b PP, PPN J

P
D.l.

W

.
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9 -
L l(w,:q) = ., BHI(W,‘Q) + ‘OCI(W,“Q) + onll(w"q) + P110~,:q), (9a)
and
el . .
Rla,%g) = .7 - & , < (g,*q 3
Rla,%q) = . ™, (a,%q) + -Cy(q,fq) + XA, (q,%0) + Py (q,%q) + Py, (q, q)

It can be verified eacilv that there are no secular terms in (8a), i.e., on

e es o it - it . .
substitution of &q = ze or ze the equation (8a) can be shown to be
identicallyv satisfied. As a result of this, we can solve (8a) in an asymptotic
series in «,3, (v - wo) and (X - ko). The solution adequate for cur purpose

is found to be

e _ o 20 (2) 2it .. () 2 (2) 2it oT (o)
W= (2 ¥yq e + c.c.) + BXE g + (& Yoo e + c.c.) + Fi,,
] (2) 2it | 7. (0) 2383 -
+ (uﬁwlz e + c.c.) + (szlz + ¢c.c.) + 07,287, (v WO),(X Ao)).
(10)
‘s B (2) (o) . . .
where the participating mode Vi1 » Vg , etc., satisfy the linear, time
independent problems:
9., (w (2 8q) + P,,(v,8q) = 0 (11la)
11'711 ’ 217 i
w2 ,6q) + P (y,5.89) = 0 (11b)
Qll wlz »8q) 111 Y»¥s0Gq) = U,
(1) @) -
A A (g Ta8a) + Py (wyy T08Q) + Py, (y,ys6q) = 0, (11c)
s A O sq) + ) 6q) + 2P, (v,69) = O (11d)
oM1 ™12 1112 219> ,
and where
Q,;(a,%q) = - 4w°2M11(q,6q) + 2iw C,,(q,8q)
+ .
+ AoAu(q,Gq) P.,(q,8q) (12)
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Once the solutions of (11) have been obtained, the other participating modes

in (10) are calculated simplv from the relations

» Wap T Wy

which are obtained by examining the nonhomogeneous terms in equations for

(2) (o)
w w e

N,j,) , -),-, tc.

7ith (8a) having heen solved in the form of the series (19), we can sub-

stitute the result into (8b,c) to obtain the nonlinear equations relating
the flutter amplitudes, frequency and the load parameters. The equations

turn out to bhe

2 2 . . . . ~ - 2— . C_ =
-m(. - “o Yo + ic(e - “o)J + O )Jau + Yi2u + 21_5 0, (13a)
cnl? = w Ba Fdc(e - L )E 4+ O - 2 )aB+ v 826 + v, 847 = 0 (13b)
mlu™ = w8 RO R 1 /o8 ’
where
m = Mll(y,E), (14a)
c = Cll(y,E), (14b)
a = All(y’E)’ (l4c)
and
- (2) - - 1)y - - -
Yy = PGy s ¥e2) Py () Ty, 2) F Py, sy 2), (15a)
- - (0) (2) -
Y = 2Py (0w ) Py Wy TYs2)
P (. g2 + 2P, (v,3,2) (15b)
11111 oY 211Y»¥»2)-

Thus equations (13a,b) are the final results of the analysis. From these
equations one can obtain both the circumferentially traveling wave response

and the standing wave response, as well as the response that arises due to

- . - . Cee e
“e e .
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the interaction between them. Although these equaticns are four equations
in six variables — 3}, and the complex amplitudes u and 2 — it can be
shown that they admit solutions such that the phases of the (complex) ampli-
tudes are arbitrarv. Thus the equations (13) can be used for the calculation
of the lcad parameters and frecuency of harmonic flutter as functions of
the amplitudes c¢f the two traveling waves.

We end this section bv emphasizing that the results presented above are
asvmptotic in nature, and, therefore, thev are valid for sufficiently small but
nonvanishing amplitudes. (We note, also, that the linear theory cf flutter

is valid only for the limiting case of vanishing amplitude.)

CONCLLDINC REMARKS

We have presented an algorithm whose implementation within the frame-
work of the finite element methodology can provide a useful means for ob-
taining the effect of structural nonlinearities on the flutter of shells of

revolution.
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