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SM ARY

An Chapter I, a finite element methodology is described for analysis

of steady nonlinear periodic oscillations of axisynetric shells. The

technique is a combination of asymptotic analysis and the finite element

method and the results that it yields include the significant effect of

nonlinear interaction between the waves that travel in opposite directions

along the circumference.

In Chapter II, an extended numerical method is described which is

applicable to shells rotating at a constant speed about their geometrical

axes.

In the final Chapter I3, a general solution for the problem of non-

linear flutter of axisymmetric shells is presented. The method is expected

to be useful for developing a numerical scheme for analyzing this class of

problems. e ' -

/

- . - - .
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OF SHELLS OF REVOLUTION
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INTRODUCTION

In this chapter a computational methodology is presented for analysis

of steady nonlinear harmonic oscillations of stationary shells of revolu-

tion. The development is based upon the results which were derived earlier [1)

in the context of the more general problem of vibrations of slowly rotating

a7xisvnmetric shells. In brief, the results in [1] are in the form of a

sequence of linear equations whose sD!utions can be used for the calculaticn

of the coefficients in the asymptotically exact nonlinear amplitude-frequency

equations for the shell. In what follows is presented a finite element method

for solution of these linear problems; also described herein are some numerical

results which have been obtained from an implementation of the proposed scheme

on a computer.

In the class of problems of interest in this chapter, the case of a

circular cylindrical shell has been most extensively studied. A historical

account of various investigations, which need not be recited here, was given

by Evensen [2] about a decade ago. Although even at that time some systematic

perturbation analyses of a simply supported circular cylindrical shell were

available [3,4], further studies of the simpler problem of a circular

ring [1,5-7] clarified a number of issues arising from Evensen's review. It

is apparent from this review, and from the results in [1,3,4] that the most

interesting feature of nonlinear scillations of shells of revolution is the

interaction between the circumferentially traveling waves that occurs due to

the rotational symmetry of the structure. In light of the facts that some

proposed finite element based schemes for analysis of nonlinear oscillations

of elastic structures even in absence of mode-interaction are not generally

valid [8] and that attempts to use the finite element method for vibrations

"- -" - .. ." ; i -. ' [ "- . " " .'' " -." " . -. - . . - ~ ' . .;;i . . . ..
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of axisvmmetric shells (by virtue of yielding unacceptable results) have

1generated much controversy [9-11], the methodology presented in what follows

appears to be of some technical interest.

Since the object of the analysis of the type described here is to ob-

tain the relationships between the amplitude and frequency of oscillation

r. of the shell, the same calculations could be done, at least in principle,

by using a co=.nerciaily available finite-element code. Such a computation

would entail a series of time-integrations with different set of initial

conditions, with the amplitude and frequency obtained from the time-history

of motion. This methodology is, however, e.xmected to be quite uneconomical

in comparison to the as-mptotic method we propose here: the economy evidently

results from a systematic elimination of both time and the circumferential

coordinate. The efficiency of the scheme becomes more evident in case of

the forced vibration problems for which the response of the shell is quali-

tatively very rich (cf. Fig. 2 of [3]). Although the forced response curve

on the basis of the asy-mptotic analysis can be obtained by solving a small

number of nonlinear algebraic equations, it is inulikely that a brute-force

time integration scheme can predict all the features of the rather compli-

cated behavior of the shell near a natural frequency as in [3].

F

L

I.
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ASYMPTOTIC RESLITS

For the sake of easy reference, in this section we present the results

for stationary shells obtained from (1]. For our purpose these results have

obviously been modified to exclude the terms that arise due to the rotational

motion of the shell.

it is convenient to write the equations of motion in the weak form

+ P1 1 (q,fq) + P21 (q,fq) + P3 1 (q,5q) 0

where the notaticn due to Koiter [12] has been used. Specifically, the

array q represents the three displacement components of the shell. The

cuantitv P (q,5 ) in (1) is the first variation of the quadratic term in

the functional for strain energy, i.e.

P11 (q, q) = 5P2 (q) (2)

and, similarl, P and P31 denote quadratic and cubic terms, respectively,

in the equilibrium equations. They represent the first variations of homo-

geneous functionals of degree three and four, respectively, i.e.,

P2 1 (q,6q) = P3 (q), P31 (q,5q) = 6P4 (q) (3)

As should be obvious, the first term in (1) represents the inertia of the

shell in terms of the first variation of a quadratic functional M 2, with

M2 (q) being the kinetic energy of the shell.

The form (1) of the equilibrium equation represents them in a very com-

pact fashion. The form includes both the differential equations and the natural

0
boundary conditions (or algebraic equations for discrete systems) and is

valid for any structure. Moreover, for shells of revolution, which are of

interest here, each of the functionals in (1) is of the type exemplified by

"
S
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s, 2-
= [ dq) ds,(4)

(q) rP2 (q) d- ds
s1l 0

with the components of q depending upon the angular coordinate , another

sna:-al coordinate S, and time t. Evidently, all the components of q must

be ncric'dic functions of -, with a period 2-.

In order to obtain solutions of (1) which are periodic in time with a

frequencv, it is convenient to scale time bv . In terms of the scc-2ed

time coordinate the equilibrium equations become

"-> (q,-q) + P1 1 (q, q) + P 2 1 (q,5q) + P31 (q,5q) = 0, (5)

there, now, the superposed dots denote derivative with respect to the non-

dimensional time. To (5), one must append the appropriate kinematic con-

ditions on the two ends sI and s of the shell, together with the periodicity

conditions

q(s,&,t) = q(s,e+27,t) = q(s,e,t+27-). (6)

Equations (5, 6) define a set of nonlinear equations with w as a

parameter; these equations have a trivial solution for all values of w. The

condition for the existence of bifurcation points on this trivial solution

branch in the (w,q) space leads to the classical linear free vibration

problem

-W0 M11(y,6q) + Pll(y,6q) = 0, (7)

where w0 is a natural frequency, and y is the associated natural mode of

oscillation. Due to rotational symmetry, there are two linearly dependent

solutions of (7) for a given natural frequency w0, i.e., y(so) is of the

form

Y(s)e ine Y(s)eine

- _ "i~- . - . . . .. - -. * • - -j 7 "- .. ' - . . . . . ,. . .
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with the time dependent motion being a linear combination of the four

so7 utions

Y (s)e 
in -e --i

t

-7:is, of course, is the result based upon the linear theory. The asymptotic

a-Ivsis in f17 yields that near a natural frecuencv 0, the solution of (1)

I: :ve - hx (with c.c. denoting the co-,plex conjugate of the term prece 2ing it)

q = (ve i t
4- c.c.) + (- e~t + c.c.)

2 (2) 2it l (0)+ (zll e + c.c.) +

S(2) 2it - (0)+(.~ ~) e~i + c.c.) -4-:z2

(2 2t C.C.) + (.,:-z 2(0) + Cc.) + h.o.t., (S)
12 12

'here h.o.t. represents terms which are at least cubic in the amplitudes a or £ or

linear in ( -
) . The participating modes zij (k) in (8) are obtained

from the solution of the linear problems

2 (2) ,q) + (2) q) + P q) 0 (9a)
-4-0 MII (z1 P2 1 (, -- 0 P(1

Pl(z 11(0),A.q) + Plll(Yy, q) = 0, (9b)

2 (2) (2)
-4= 02M 1 (z 1 2  ,_q) + P1 1 (z 1 2( ,5q) + Plll(y,y,6q) = 0 (9c)

P1 1 (z1 2 (), q) + Pill(y,y,Sq) = 0, (9d)

with
(2) - (2) (0) (0)

z122 - 11 , 2211 (10)

and "-dependence of z.. (k) is of the form

(2) (2) 2ine (0 ) ( 0)Z1 1  (s,e) -=z1 1  Wse , 1 (s'e) Z= ()s
(11)

(2) (2) (0) (0) 21ne212 (s,e) = Z 12 (s), 212 - 12 We
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Finally, the (complex) amplitudes a and E are related to the frequency

through the amplitude frequency equations

2 2 2- =0 (12a)
-m(. + 1 + %2

2 2 2 .
-m(- 2.. + 2- + ? - = 0 , (12b)

1where

(13a)

(Z ) +P ( z (0,y,y)+ (vyy), (13b)
(z il(0), ' 'Y) + Pli(zl (2)11

ill 11 ill 1121())(2) -

+P P(z 12(,yy) + 2P, + P(VV(V). (13c)

Thus, the essential effects of nonlinearities on vibration of an axisyrnmetric

shell can be determined by calculating the coefficients y1 and v2 in (12)

by means of (13b,c). As a result, in addition to the solution of the linear

free oscillations problem, it is sufficient to obtain the solution of the four

linear equations (9). In the next section a finite element method

is described which yields discrete approximations to equations (7), (9) and

(13), and this approximation allows one to implement the scheme just presented

on a digital computer.

I.

o6, . ,
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DISCRETIZATION

The development in this section is based upon the shell theory

derived bv Sanders [13] under the classical Kirchoff's hypothesis and

the small-strains, moderate rotations approximation.

We first list the explicit form of various functionals in (1). If

the shell is assumed to be made of an orthotropic material, with the

nrincipal directions of orthotropy being along the circumferential (-)

and meridional (s) coordinates, the strain energy is given by (see Fig. I)

P(q)= r[P2(q) + P 3 (q) + P 4 (q)]dqdsjs1  I

P9(q) + P 3 (q) + P4 (q) , (14)

whe re

p2 (q) = EI +2 2 + 2C E + E 2ss 2 12 ss ee
(2 2 1 + ss 1 66 sd

1 2 2

D2(D 2 +D +2D K + D K (15a)
2 llss 9 D12 ss 9 66se

2p3(q) = 1 ( + 2) + c 2299 a

+ C2[ ($ 2 + 2 + (62+ B2

+ C s , (15b)

p4 (q) [C [ + 8 ) + C22  8 2 2+ 2C12 (+B 2(e2+6 )
4 8 11 s 22 61

+ C668
2 B 2 (15c)

The linear strain components c sso L' 8es &Ss''etc, together with the

three measures of rotational displacements 8 , 8 and 8 are given in terms ofB 6
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the three translational displacement components of the shell; the relevant

equations are given in the apnendix. The quantities C .. and D .. in (15)

are evidently dependent upon the elastic constants of the shell material

and the shell thickness.

The Linear Free Vibration Problem

The discrete approximnation of the linear free vibration problem (7)

can Tbe obtained in a straightforward manner. The displacements associated

with the natural mode of oscillation y are written as

= U(n) (n) (n) in'
Y U (s), -iV (s) , W (s))e ~,(16)

so that on using the kinematic relations one can obtain the other kinematic

variables associated with y in the form

(n) (n) (n) nE)
E: ~ =s Es (n) E -jE )e(1a
ss s~ ss ' e se(1a

(n) (n) (n) inO 1b
Us ,s S) = (B ,-i B s-i B )e(1bs e

(n)(n

The relationship between the quantities E,.. Ee etc., and displace-

(n) (n) (n)ment variables U ,V and W has been given in the appendix.

In a manner similar to (16), the virtual displacements 6Sq in (7)

are written as

(6u, 6v, 6Sw) = {((SU n), 6 wn)ee + C.C.} (18)
n- 0

0
F.with analogous expressions for the associated 6E (SEee, 6SE9 se . etc.

Substitution of these expressiens into (7) with (14, 15a) yields()

*2 P1 (,q T E (n)T~ () + 6KjnWT (nr) Ids, (19)

The syimmetric matrix C n(19) has the copnet Ci i,j ! 2, with its

third column~ being (0, 0, C 66) T cf. (15). The matrix is defined

similarly.
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wh (n) ((n) .(n) , (n))T(n()

where (E E E andsimilarlylE(n), •jr( ) and (n)

are arrays with real elements. One can now choose appropriate one-

dimensiona! basis Functions %or the displacements n  = (ujn) v(n) ,,(n))T

(cf. (16)), i.e.,

(n) T (n)
(n)(s) = (s) y (20)

where r rerresents the shape fun ctions and y (n) is the array cf generalized

displacements. Finallv, with the relations (A.10, 12) written in the nore

comact form
(n) -(n) (n) (n) -(n) (n)

and with (20), we obtain

(n)T (n) (n)P 1 1 (yq) 2-zq K y ,(22)

where

PS
S ((n) ( T)T ( T

s 1
-(n) T T -(n) l (23)

,( k ) s )3

is the stiffness matrix associated with a mode of deformation with the

circumferential wave number n. The corresponding mass matrix, being ob-

tainable from the functional

Mll(y, 6q) = J r(uu + v~v + w6w)d9ds, (24)
sl 0

can be calculated in a similar fashion, and is given by

(n)= rj Tds, (25)

S
2,

,here P is the density of the material of the shell. Obviously, both of

these matrices are obtained by means of the usual finite element assembly

_ .. L .X.-.S
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process. The solution of the generalized eigenvalue problem associated

with these matrices, i.e.,

(n)o K(n)) (n) , (n);,

0 n) + , 0, # 0, (26)

provides an approximation to the solution of the problem (7), the linear

free %-ibration problem.

_I V Frcblems for the Participating Modes and the A.plitude-Frequencv Equations,

.or the solution of the nonlinear problem, it now remains to obtain

discrete analogs of (9a-d) and (13). For this purpose it is convenient

to first consider the forcing terms in (9) (i.e., P2 1 (y,5q),Pilll(vy,q),etc.)

which require the calculation of the first and second variations (Frechet

derivatives) of the functional P 3 (q) defined by (14) and (15b). Although

the algebra is tedious, the calculations are conceptually quite straight-

forward. We begin by noting, with equations (3), (14) and (15b), that

P 2 1 (q,Sq) = rP21(q,5q)d~ds, (27)

and that

2~ +62 + C12 + 2)
2p21 (q,6q) = fts[C s  (E

21ss 11 s 12 a

+ 8Ee[C 2 (e2 + 62) + C2S + 62

+ f C [C6 :s8e]

s 66cese

+ E[2C11 E S +2C tEe 8  + C E+ 11[2llss s 1C2 66 s C66 esele

+ '6E0 [2C1 2 t ss + 2C22cE e + C66 C ses]

+ 68[2QiEssf + 2C22 Ee86 + 2C2 (css + E 8)]. (28)

12 s.. ee
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In order to evaluate P21 (y,6q) for (9a), we use the equations (16, 17a,b,

18, 27) and (28). The result is

r S2

21 (v,-q) = 2- r(5F( 2n)Ta . ,(2n)T )ds, (29)

where
2 (n2 2B2)

[C (B(n) - B -C( (n) + B (n)2)12 (30a)1 11 s l'?

a2 = [C12 (B kn) B (n) 2 C (B (n) 2 +B(I2 )1,(30b)
s 22

(n) (n)
=C B B, '/2, (30c)a C66 s

= C (n)n + (n)(n) (n) E(n)B(n)/2, (30d)bl =ii1 ss ,Bs +C 12! eBs - C 66 Es-,B 2 3d

b = C E (n) B (n) + C (n) (n) E (n) (n)/2, (30e)
2 l2 ss 6 22 z1 8 9 66 se s

n= + ( n ) + (n) B(n)
b. = CE +C ^ (E~n + E )B(30f)

b3 11I ss + 22 12 ss ee j  3f

(n) (n)-e recall here that the quantities Ess ,B s  , etc. in (30) are related to

the displacements associated withy via equation (A. 1O, 11).

The discrete analog of (29) is obtained by using (18,20,21). Thus,

first the quantities a. and b in (30) are calculated from (A.10, 11) and (18).
1 i

For example,
-d T (n)}{0  ~i

a3 = C6 6 {[l/r : 0: -ds] (s)y [0: sins/r: n/r]T (s)y (n
)

From the solution of the homogeneous problem, the quantity a3 and,

similarly, all components of k and k can be calculated for any value of s.

Using these functions in (29), one obtains

P (y,6q) 2 27 6q (2n)(31)
21

where

L



*k . . + - ., _ - ' . . , * - b - L b - , * - - , . ' + - . "

13

(2) = 2 n r[ T (s)]TP(s) + [(2) T(s)]Tk(s)} ds (32)
"SI

In (32) we have used the definition (21) 1 and an analogous definition

B = (B B i )  B ) = (i)U(i), (33)

"(i)
with B obtained from the equations (A.11).

The remaining forcing term in (9) is P ll(y,y,;q) for which the second

variation of P3 needs to be calculated. Since the details are similar to

the ones described for computing P2 1 (y,fq), we list only the final results.

Thus, one obtains

!rs2 T T

(s r(-,,q c + 6B( )ds (34)

where = C (n) 2 (n 2  +n) 2  B (n)2  (35a)

1 11 ( + B

(B(n) + BB ( n + B(n)2
2 12 s 22 n  + ), (35b)

c3 = 0, (35c)

dI = 2 C E(n)B (n ) + 2CE(n)B(n ) + CE (n ) (n )  (35d)
11 ss s 12 e0 s 66s0 0 '

d2 = d3 = 0. (35d)

Finally, the discrete analog of (34) turns out to be

Pill(y,y,6q) _ 2v 65q(O)T (°), (36)

with

(o) J.2 [T0
i { 1r [k(O)T(s) ]T + FT(s) ]}ds. 

(37)

Our description of the procedure for discretization of (9) is now

essentially complete. With the vectors (2) and (0) defined by (32) and
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(37), the approximations to the participating modes z(k ) in (9) can be ob-

1j

tained by solving the linear systems(I)

(-4- 2 (2n) (2n) (2) (2)o~ + " ) i + ,f = 0, (38a)

(o0) (o) f(o) (38b)1 +f =0O,(3b

2 (0) + (0) (2) (0)
- + )2 + )Z = 0 , (38c)

(2n) (0) 2t(2)
S 12 + = 0. (38d)

In (38) (o) (o) (2n) a (2n)

and K are defined by (25,23) with n replaced

by zero and 2n, respectively, and Z (k ) are discrete analogs of Z (k )
. in (9).izj iJ

Once the participating modes have been calculated from (38), one only

needs to use (13) to calculate the coefficients in the amplitude-frequency

equations (12). All the terms in (13) except P21 1 (y,y,y) can be obtained

by using equations (31) and (37). Consequently, we proceed to calculate

the last term in (13b). For this purpose we write (15c) in the form

1 T2 T' 2 + (T %TE
p = 8 1[C ) + C22( T) + 2C12 ( k

+ C 22 2 ],  (39)
66 SI0

where

TT
U 0 ( B)T  (40)

The second variation of P 4 (q) is then found to be

'We note that by definition, Plll(y,y,6q) - 2P21 (y,6q) so that the forcing

term in (9d) is twice that in (9a).

6
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,S,, ,2-
r "I

0(q. qq) rp 11 (q, q1, q)dsd , (41)

1 0

where

T T
2p, (c q :q) = C1 I[2( ri)(,T +(

T: T; T. -T; ]+ C2,2( 2 )C + ,  + C

+ c(1 2 12( J_1 ( T) + (.T )(. T

+2(nlT- )(JC) + (nTn)(6&T)]

+ ,1 C + , ).a

2 66 -1 s -s1 sl

(. - + " . )( " + Z4 )]2)

s s se1 slO

and the kinematic quantities with subscript 1 are associated with displace-

ments corresponding to q1 " We now use (17b) and (40-42) to obtain

Is

P2 1 1(y,yy) = 2 is p r ds --- 2y 4
" Si

where

1 (2g2 2  C22 (2h 2 h 2)
p = 1[C + g 2

2 ) 2 2  1 + 2

+ C (2glhl + h C66(B (n) B(n) 2 (44)

+ 1 2(gh + g2 h2) +L B8

and 2 2 (2 Bn2

B + B 2 a B - B , (44a)

h = (B (n )2 + B(n)2), h2 - - h (44b)

Thus once the free vibration problem has been solved, the left hand side of (43)

can be evaluated by using the equations (20), (A.11) and (43). Finally, from

* . ..* *. *. . . . . .- . - - * ...
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these results one obtains the discrete form of (13) to be

(n)T (n) (n) (45a)- (°TV° (45a)

T T

p i/2 2 (2)T7(2) + 1()zo + ,(4h

(o)T(0) (T(2)) "! + f  Z

T
+ 25(2) (0) (45c)

+ 12 +

In surnary, the computations proceed in the following manner. First,

for a given circumferential wave number n, the stiffness and mass matrices are

obtained by using (23,25). The solution of the generalized eigenvalue

nroble.a (26) yields a natural mode of oscillation and the associated

frequency. The natural mode is used for calculation of the forcing terms

f(2) and t(0) via (32,37). Then the mass and stiffness matrices corres-

ponding to circumferential wave numbers 2n and zero are assembled so that

the participating modes can be calculated from (38). Finally with the scalar

y calculated by means of (43,44), equations (45a-c) are used to compute

the desired coefficients the amplitude-frequency equations (12). The

results from a computer implementation of the procedure just described are

presented in the next section.

NUMERICAL RESULTS

In the program that has been developed on the IBM 4341 at the Yale

Computer Center, one dimensional Hermite cubics were used as the shape functions

for all the three displacement components, together with four point

Gaussian quadrature rule for numerical integration. All the computations

Io . . .. :,. .,. : .. . - , . . • r; A - - m'- W ;a -m
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were done in double precision. For the purpose of comparing the results

with those obtained previously, the scalars

= (80 2), ('46a)

~2

P=  1 - y1 )/(
1 6m 2 ) (461)

were computed. The scalars occur in a set of amplitude-frequency equations

equivalent to (12), to wit,

2
_)a + (P1 + P 2 )a + (P1 + P2 cos2)ab 0, (47a)

ab 2sin2$ P2 = 0, (47b)

( 2- 1)b + (P + P 2)b 3 + (P1 + P cos2y,)ba = 0, (48a)

-ba2sin24 P2 
= 0, Q = W/Wo. (48b)

These equations are obtained by setting

a =(a + ibe i)/4, (49a)

E = (a - ibe )/4, (49b)

in (12), adding (12a) to (12b) and subtracting (12b) from (12a), using the

definitions (46), and satisfying both the real and the imaginary parts of

the resulting equations. Evidently, equations (48) are equivalent to those

derived by Ginsberg [3] for the special case of a circular cylindrical shell.

In Table I are presented the results of a convergence study for a simply

supported circular cylindrical shell analyzed in [3]. Only half of the

shell was analyzed, with symetry conditions imposed at s - 0, (w' v' - u - 0)

and the simple support conditions (v w v - 0) at s/R = L/2R, with L being the
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length of the shell and R its radius. It is evident from Table 1 that

the convergence of the various coefficients with increase in the number

of eeeents is rapid and monctonic.

In Table 2, the computed results have been compared with those

in [3]. Although one of the reasons for the differences could be the

different shell theory used in [3], the rather substantial discrepancy

cannot be explained solely on this basis. (We note here that ultimately

Ginsberz's analysis is also a numerical scheme involving summation of a

convergent series). It may also be noted here that a direct numerical

counterpart of Ginsberg's analysis would entail the rather uneconomical

computation of a large number (theoretically all) of the natural modes of

oscillation and the associated frequencies.

In Table 3 we have presented some results obtained for a simply

supported frustum (conical shell). Specifically, only the circumferential

and transverse displacements of the shell were constrained to vanish at its

two ends. For the semi-vertex angle a = T/2, the frustum degenerates to

an annular plate, and our results indicate that for this case the non-

linearity is of the hardening type for both the circumferentially traveling

waves and standing waves.

M It may be noted here that from (47-48) the following amplitude frequency

equations can be derived:

(a) b = O, (Q2 _ l)= (PI + P2)a 2 ; Standing Waves,

(b) a = b, 0 = , 1) = 2Pa 2; Traveling Waves.

The character of these solutions can be readily verified by using (49) in

the leading part of (8).

I

: . . .- - - - .
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CONCLUDI\C REMARKS

A numerical method based on asymptotic results has been developed

for analysis of steady nonlinear harmonic oscillations of shells of re-

volution. Some results have been described for circular cvlindrical

and cor:i,a shells. As discussed in [1, once the coefficients in the

amplitude frequency equations have been obtained for the free vibration

problem, the problem of forced vibration can be reduced to solution of

two complex nonlinear equations. Thus our results can be directly used for

the calculation of the response of harmonically excited shells of revolution.

4
Finally, further extension of the numerical method to include the effect of

steady rotation of the shell is the subject of the next chapter.

K
4L.

K.
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APPENDIX

A. Strain-Displacement and ,otation-Translational Displacement Relations

(See Fig. 1 for definitions of r, r and ).

Membrane Strains

= u + w/r (A.1)

= (v /r + u cos:/r + w sip.'/r) (A.2)

E = (v + u ,/r - v cos,/r)/2 (A.3)

Rotations

-w + u/r (A.4)
S ,S

- (-w + v sin )/r (A.5)

(v + v cos6/r - u /r)/2 (A.6)

Bending Strains

=-w + u /r -ur 1 2  (A.7)
ss ss ,s r, O,,s r@

K 8  (B,e + 6s cos4)/r (A.8)

<se  [Bes + s,,,/r - Be coso/r + (sin4/r- 1/r )6]/2 (A.9)

F B. Kinematic Relations for the Quantities in (17) for Deformation Associated

with Circumferential Wave Number n
V

SE(n) d/ds 0 1/r U
•SS 4

(n) cos4/r nir sin4,/r V(n)

(n) -n/2r -(d/ds-coso/r) w

n)' k) (A.10)
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B()1 0~ -d/ds) n

B (n 0 sin ./r n/r (n

Bn/2r -I(cos: /r + d/ds) 0 (n

(n) (n)

K(n) d/ds 0 0

(n) - csr nr0(n)

*n/2r (/s- cos~r) 4 L(sin /r-1/r_)]
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Fig. 1 Geometry and Coordinate System~.
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L

Fig. 2 Geometry of the Frustum Analyzed.
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Table 1

Convergence Study for a Circular Cylindrical Shell

of Isotropic Material, Poisson's Ratio v -.3.

~No. of
n Elements max p5 2

5 .6531 .9576 -5.361 -74.17

2 10 .6531 .9570 -5.406 -74.21

'0 .6531 .9570 -5.410 -74.22

5 .2436 .9914 -565.6 -1271.3

8 10 .2436 .9914 -566.7 -1271.4

20 .2436 .9914 -566.7 -1271.4

5 .1130 .8836 -1.489 -61.70

2 10 1130 .8836 -1.490 -61.70

)0 .1130 .8836 -1.490 -61.70
4i

5 .1824 .9921 -6.805 -822.4

8 10 .1824 .9921 -6.809 -822.5

20 .1824 .9921 -6.810 -822.5

1. L/R = Length to Radius Ratio.

2. n: Circumferential Wave Number.

3.W= 2 2 1/2-
3. [(-v )pR /E]I/ 2 where w is the lowest natural frequency associated

with n and E is the Young's Modulus.

4. wmax = w maR, where wmax is the maximum normal displacement associated

+v2 + u2  )/2 -
with the normal mode, normalized such that (w )/R 1,

max max max

as in [3].

5. Coefficients in amplitude frequency equations (47, 48).
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Table 2

A Comparison of Numerical Results with those in [3].

(Parameters and Notations are same as in Table 1.)

L 'R n P! P2
a i m x 1

New
.6531 .9576 -5.410 -74.22

Results
~Results

R .6531 .9576 -24.62 -96.00

from [3]

New
.2436 .9914 -566.7 -1271.4

Results

8
Results

.2437 .9914 -1542 -1771
from [3]

New
.1130 .8836 -1.490 -61.70

Results
2

Results
.1130 .8836 -6.35 -68.15

from [3]
4

- New
S.1824 .9921 -6.810 -822.5

Results
8

Results
.1824 .9922 -109.2 -873.1

from [3)

__________ ______________________ ________

e

L'

A, . , .- , . '-.-,. . ." . .'A P . .. .-"~ * .. i - i " . " ' 7
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Table 3

Coefficients in the Amplitude Frequency Equation (47)

fo~r a Simply Supported Frustum.

T I

(Degrees) IP 1 P

15 0.5991 -6.49 -57.71

30 0.4983 +1.70 -37.24

45 0.3753 2.85 133.85

60 0.2511 10.43 -97.08

75 0.1303 32.56 -311.16

90 0.0340 469.14 233.60

(Annular Plate)

[v=0.3, R/h =100, LIR =1, (see Fig. 2), n =2. Notation is the same as in

Table 1.]
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CHAPTER II

FINITE ELEMENT ANALYSIS OF NONLINEAR OSCILLATIONS

OF ROIATING AXISY'TMETRIC SHELLS

-. "-. . ,, -- ' -.-. . -- .. ri a a 4" ." ~ -
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K

INTRODUCTION

In this chapter we describe a finite-element methodology for analysis

of steadv nonlinear harmonic oscillations of rotating a::isvym.ctric shells. As in

Cl Tarter 1, the methodolog'y Is based on the asymptotic results derived

earlier [11, and it yields an asvmptoticallv exact nonlinear relationship

etween the amplitude Df oscillation of the shell and its frequency.

The main inlucnce of rotation on axisvmmetric shells is that it

destroys the reflection symmetry with resoect to the circumferential direction.

As a result, the two waves that travel in opposite directions along the

circumference are expected to exhibit different behavior, both in the linear

and in the nonlinear range. It is for the assessment of such differences

between the two circumferentially traveling waves that the numerical method

developed in this chapter can be utilized.

Although in mechanics literature there is a large number of accounts

of analytical, numerical and experimental studies on nonlinear oscillations

of stationary shells, the author's analysis [1] appears to be the only one

in which explicit results have been obtained on the oscillations of a rotating

shell type of structure. Due to the analytical intractability of the general

problem, the study in [1] was restricted to the simple problem of a ring:

O evidently the finite-element method described here can be utilized for more

general problems.

. . - " .
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As in Charter I, we use the Sanders' strain-displacement relations

ander the small-strains, moderate rotations anproximation. The strain energy

of the shell is then T.iven b-y the functional P(q) defined by (1.14, 15)(I)

In terms cf t-i functimnal, the equilibrium equation of the shell in a co-

ordinate frame rotating with the shell can be written as

3P(q) + (a s u + a-v + a Sw)rd-ds. (1)
1

in this equation, ' S the mass per unit area of the shell and the quantities

a = u - .v:-os: -2: cos,'(u cos + w sint) - Q2rcos4 , (2a)
s

a =v+2-! cos: + 2..w sin,- 2v, (2b)

a = w - 2?v sin' - 2 sin4(u cos€ + w sin) - 2r sin4 (2c)r

are the acceleration components of the shell in the rotating frame, see

Figure 1. Evidently, the quantity Q in (2) is the speed of steady rotation

of the shell about its geometrical axis.

The last terms of the equations (2a,c) lead to an effective centrifugal

force on the shell, so that prior to analysis of oscillations one has to

calculate the steady prestressed state about which the vibrations occur.

This prestressing due to steady rotation, denoted by q is governed by the

nonlinear equations obtained by dropping from (1,2) the terms that contain

time derivatives of displacements; to wit:

(I)
In this chapter, equation numbers beginning with Roman I refer to the

corresponding equations in Chapter I.K ." . . ... '-. : - . - . - ' T " .
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) -4 .' l , ) + 22 Fll(f,fq) = 0, (3)

r. whe re

K
cos:(u cos; + w sin4,)t

[ . ( q) - : I rdeds, (4a)

RI-,q"o + v-v + sin'(u cos' + w sin:)w

S

o (fi c) = -h (r CoSn u + r sin; uw)rdods. (4b)

agThe forcing term (ab) in the equation or prestress due to rotation is ob-

|0

vithv '-independent: the prestress state is, therefore, axisvmmetric, as

e:.: e a ted.

d for a fixed value of 2, the solution of discrete analog of (3) can be

obtained bv the usual Newton-Ra~hson method for solution of nonlinear

algebraic equations. We write the solution of (I) in the form

o % (5q =q + q(5

with q representing the oscillatory motion of the shell superimposed on the

steady deformation. On substitution of (5) in (1,2), together with the use

0
of the fact that q satisfies (3), we obtain the homogeneous equation for the

free nonlinear oscillations of the shell. This equation can be written as

Mll(q,5q) + Gll(',6q) + V ll(,6q) + V2 1 (,Sq) + V31(q) = 0 (6)

where

S u + S, + w6w)rdeds, (7a)"!i ~ S 0s

- 2S S 27r t(-' u + h6v)cos
G 2S1j 6q I + Sv - Wsin rdeds, (7b)

. -.
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(q, = 1P](c,) q) - Pi 1 1 (q°,q',Sq) + P (q ,q,'a) + 2 (qRq), (7c)

21(, q) = PI (q, 'q) + P213 (q, q°,6a), (7d)

V3 1 (q,q) = P3 1 (c',5q). (7e)

Here, as usual, Pl (q,.q) denotes the first variation of the quadratic part

of the strain energy functional; P71 and P 31 are defined similarly. We note

here that the bilinear functional G in (7b) is antisvmmetric with respect
11

to the argument, i.e., G1 1 (ql, q2) - - 1 1 (q2, q1 ), as can be readily verified.

For subsequent discussion it is convenient to droD the over-tilda from q

and to scale time by using the (yet unknotcn) frequency w of periodic vibration

of the shell. The equation (6) is then modified to

2
'M 11(q,6q) + w G11(4,6q) + Vll(q,5q) + V2 1 (q,5q) + V3 1 (qSq) = 0, (8)

where, now, dot represents derivative with respect to the scaled time coordinate.

With this scaling, the object of our analysis reduces to obtaining solution of

(8) whose time dependence is periodic with a period 27.

An asymptotic solution of the problem has been presented in [1 1. Here
I

we summarize the main results.

First one calculates a natural frequency w and the corresponding natural
0

mode of oscillation, y, from the quadratic eigenvalue problem

-W2 M11 (y,6q) + iw o G11 (yq) + V11 (y,6q) - 0 , (9)

to which must be appended an appropriate normalization condition for y. If

for a given natural frequency w the associated mode of oscillation is unique

up to a scalar multiplier, the results in [1] indicate that (8) admits solutions

of the form

4
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it 2 (2) 2it - (o) 3,
q = (aye + c.c.) + ('z e + c.c.) + aciz + 0(0 ,(.'- )) , (10

[ P" 0

where c.c. represents the complex conjugate of the term preceding it.
, (2) (0)

In (10), the "participating modes" z (2) and z are obtained from the

linear time-independent problems

2)i) z(2 )' 1(z -q) + 2. (1l +q) +11 + V( a.) 0, (11)

'11l(z ,f) + Vlll(V ,v ,:) = 0 (12 ,

The comnlex ammlitude : and the frequency are related by the nonlinear

amplitude frequency equation

-( - )m- , (. 0 0)qa + a = 0, (13)

* where the nonlinearity coefficient y1,and the other scalars are obtained from

m = Mll(Y, y), g = i Gll(y, V), (14)

-. ~l =2(2) P1 1 yvz(o)
S P2 1 (YZ() + - ) + P2 11 y,y,y) (15)

The main object of our calculations, of course, is to obtain the

quantities m, g and y in (13) so that at least an asymptotic relationship

between the amplitude and frequency is explicitly available. For this purpose,

as we have discussed in this section, one needs the computation of (a) the

steady prestress due to rotation, (b) a natural frequency and the associated

mode of oscillation and (c) the participating modes. Following section is

devoted to some aspects of these computations.
6

6

6
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THE DISCRETE ANALOGS

Once the variations of the various functionals needed in (9,11,12,14,15)

d| have been calculated, standard finite element techniques can be used to obtain

the discrete approximations of these equations. Since the details are similar

to those given in Chapter I, here we only outline some of the main results.

On discretizations the equation (3) for prestressing due to steady

rotation becomes

SK ( (o) 1 (o) () 1 (o)q (o)

+ '20)a (o) + '.2f = 0 (16)

(o)
where K( is the constant stiffness matrix, with N! and Y2 being symmetric

matrices whose elements are linearly and quadratically dependent, respectively,

on the argument q(O), the vector of generalized nodal displacements. Equation

(16) can be solved by the Newton-Raphson scheme (i = 1,2,...Z):

(o)i1
q = 0, (17a)

4(o) (o)i (o)i
{'K + Nl(q + N2(q ° )

+ a 2 R(°)3 Aqi + h(q(0) i ) = 0, (17b)

q (o)i+l =q (o)i i(17c)qq + Aq ,(1)

with Z determined by means of a suitable convergence test.

After the prestressed state due to rotation has been obtained, one can

solve the discrete analog of the linear free vibration problem (9) which turns

out to be of the form
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(n) (n) (n) 0, 0 Sa)
M + G + K

(n) T (n)

where n is the circumferential wave number, and the svymetric matrices

* ~(n) (n) (n) in  n and K represent the mass, the Coriolis acceleration and

the stiffness, respectivelv.

Although some attention has been given in the literature to the development

of special numerical methods for solving quadratic eigenvalue problem of

the type (18), we use a simple Newton-Ranhson scheme for (18) as well; to

wit:

i = 1,2,..., till convergence,

i2(n) iG(n) (n) i(n) (n) (n)iiMn + W + K (-2w0 . + G~n))y n i

A (19a)

2v' 0

2 2M (n) + wo G (n ) + () n)i

0(-o 4 ot () (19b)

- (n)iT  (n)i

0

(I) We note that if we write the displacement components in the form (1.16)

and use the definition (7b), the functional iG in (9) becomes a real

symmetric, bilinear functional.

0 _ .. .. . ' . "
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/ (n) i\

A + g 0, (19c)
[!A o

(n) i+l (n)i (n)(i

v V + %V , (I19d)

|i+1 i i
o =o+ - o  (19e)

Since the calculations can be done for successively increasing values of the

speed of rotation 2 and since for 7 = 0 the quadratic eigenvalue problem

reduces to the standard algebraic eigenvalue problem due to vanishing of

(n)
the starting iterate for the scheme (19) for a fixed , can be taken

to be the solution obtained for a previous value of . Some more sophisticated

extrapolation schemes could obviously be devised for this purpose, but we

have found this method to be sufficient for our purpose.

The calculation of participating modes by solving the linear problems

(11,12) is a relatively simple task. The discrete analogs of these equations

turn out to be of the type

[-4w 2 (2n) + 2 G( 2n) (2n) (2n) + (2n) 0, (20a)

(o) (o) (o) = 0 (20b)

4 which are linear algebraic equations for the quantities z(o) and (2n) and

therefore can be readily solved by, say, Gaussian elimination.

Finally, with the natural modes of oscillation and the participating

4 modes having been calculated according to the schemes just mentioned, the

coefficients in the amplitude frequency equations (13) are obtained from

(n) M(n)( , (21a)

(n)T n) n)g - 7 C , (21b)

... " ,.
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T
(2n) f(2n) + (o) f(o) + ' (21c)

where the last term is calculated as in (1.43, 44).

NVM~1Cl.RTS1LTS

The algorithm described in the Drevious sections has been implemented

c -n the I" LA.1 at the 'ale Computer Center. The program employs one-

dimcnsional 'ermite cubics for shane functions for all the three displace-

ment components together with four-point Gaussian quadrature scheme for

integration.

In Table 1 are presented the results for a simply supported circular

cylindr cal shell. All the com7utations were done bv using ten elements

for half-lenath of the shell with symmetry conditions imposed at the mid-

length. It is evident that due to rotation there is further "softening" of

the nonlinear response. However, it appears from the results that in the

range of rotational speeds considered, the effect of rotation on the non-

linearitv coefficient 1 is similar for both the forward traveling wave and

the backward traveling wave. Similar trends can be observed in Table 2, in

which the results of a similar calculation for a circular shell clamped at both

ends have been presented.

F."

0'



39

-REFERENCE

1. Maewal, A., "Nonlinear Harmonic Oscillations of Cyroscopic Structural

Systems and the Case of a Rotating Ring", ASqI Journal of Applied

Mechanics, Vol. 48, 1982, p. 627-634 .



40

Q

[ Fig. 1 Geometry and Coordinate 'System.
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Table 1

Coefficients in the Amplitude Frequency Equation (13)

for a Simply Supported Circular Cylindrical Shell (1 )

(L/R = 1, v = 0.3, R/h = 100, n = 8)

Type of

,oS 1  ;ave I
Y1

0 F,B 0.243 0.250 0 - 67.1

I3
1 0.05 t F 0.245 0.250 - 0.76 x 10 - 67.9

0.05 B 0.248 0.250 + 0.76 x 10 - 3  - 67.9

!2
0.10 F 0.251 0.248 - 0.15 x 102 - 71.3

-2
0.10 B 0.257 0.248 + 0.15 x 10 - 71.4

-2
0.15 F 0.262 0.247 - 0.23 x 10 - 78.4

0.15 B 0.272 0.247 + 0.23 x i0o2 - 78.6

-2

I"0.20 F 0.279 0.244 - 0.30 x 10-  - 90.2

0.20 B 0.290 0.244 + 0.30 x 10 - 90.4

(I) All the quantities are nondimensional with the scaling parameters being

the same as in Table 1 of Chapter 1.

(II) The quantity ws is the dimensional lowest natural frequency for circum-

ferential wave number n - 8.

(II) F denotes forward traveling wave (in the same direction as the sense of

rotation of the shell) and B denotes backward traveling wave.

". " ' _ . .
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Table 2

Coefficients in the Amplitude Frequency Equation (13)

for a Clamped Circular Cylindrical Shell(T)

(L/R = 1, = 0.3, R/h = 100, n = 8)

Type of I
7/,Wave m 9

0 F,B 0.295 0.225 : - 110.7

I3
0.5 F 0.296 0.225 -0.80 x 10-  - 111.2

0.5 B 0.300 0.225 + 0.80 x 10.3  - 111.9

0.10 F 0.304 0.224 - 0.16 x 10 .2  - 115.5

0.10 B 0.311 0.224 + 0.16 x 10- 2  - 117.1

-2
0.15 F 0.318 0.222 - 0.24 x 10 - 125.0

-20.15 B 0.329 0.222 + 0.24 x 10 -128.0

0.20 F 0.237 0.220 - 0.314 x 10- 2  - 141.2

-20.20 B 0.351 0.220 + 0.314 x 10 - 145.9

(I) All the footnotes of Table 1 apply to this Table as well.

K
I_
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CHAPTER III

NONLINEAR FLUTTER OF SHELLS OF REVOLUTION
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I

INTPODUCTION

In this chapter we present an analysis of nonlinear flutter of shells

of revolution. A comprehensive summary of the related literature can be

found in the excellent reviews by Dowell [1,21 and Fung [3].

A number of experimental studies of flutter of cylindrical shells

were conducted by Olson and Fung [4,5], Stearman [61 and Stearman et. al [7].

Although there is not much disagreement on the qualitative aspects of flutter

between the observations and analytical results, the agreement on the quan-

titative features differs to a varying degree depending upon the approxima-

tions made on aerodynamic forces in the mathematical model. Most of the

comparisons have been made with the linearized theories of flutter, with the

main emphasis being placed on the flutter boundary which delineates, in the

space of relevant parameters, the region wherein flutter occurs from those

in which the shell is stable.

Linearized models of flutter of a circular cylindrical shell have been

studied by Miles [8], Dowell [9], Le Clerc [10], and Voss [11], among others.

OAlthough the linear theory is adequate for the prediction of onset of flutter,

it does not provide any information on the amplitude of the fluttering

oscillations. For obtaining such results, analysis of the nonlinear problem

is necessary. Another important use of the results from nonlinear analysis

is that on their basis it can be ascertained as to whether or not there is a

possibility of the existence of fluttering motions at values of the relevant

* parameters which are lower than the critical values predicted by linear theory.

Finally, for circular cylindrical shells, the linear theory fails to make any

distinction between the circumferentially traveling waves and standing waves

as modes of flutter. Thus, although some experimental results seem to suggest

6

...
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that the flutter of a circular cylindrical shell is always associated with

circumferentiallv traveling waves [51, the linear theory predicts that flut-

tering motion in the form of standing waves is equally likely to occur.

In order to alleviate the aforementioned limitations of linearized

analysis, some analyses of nonlinear flutter of a cylindrical shell have

also been conducted [12,131. Evensen and Olson [12] have essentially used

V an assumed mode approach together with the Galerkin's method to analyze

flutter of a shell using shallow-shell theory and first-order piston theory

for aerod-namic forces. Although their solution does include both traveling

wave and standing wave responses, the accuracy of the results is limited by

the fact that the analysis does not include: (a) the nonlinear terms in the

boundary conditions on axial stress-resultants for the case considered and

(b) in-Dlane inertia terms in the equations of motion. Although one of these

limitations has motivated an apparently more accurate analysis [131, yet in

this solution, too, the nonlinear boundary conditions have been satisfied

only in an averaged sense, and, in contrast to [121, no interaction between

circumferentially traveling waves is considered.

In what follows is presented an analysis which takes into account the

structural nonlinearities in a consistent manner. The results obtained can

form a basis for a computational algorithm for analysis of flutter of shells

of revolution along the lines of the numerical schemes for nonlinear oscil-

lations described in the previous chapters.



46

ANALYSIS

As for the nonlinear oscillations problem, the analvsis is most easily

carried out bv writing the equilibrium equations in the Koiter's notation

[14] in the form

2M 4 ( q j q ) + C ( 4j , fq ) + A ( , q

+ P11 (q, q) + Pl(q,.q) + P (qfq) = 0. 0)
1' 31

The vector q in (i) represents the three displacements associated with the

shell, - is the frecuencv of oscillation, superposed dot denotes derivative

with respect to time nondimensionalized by the frequency of oscillation and

the s%-mmetric functional Nf represents the inertia terms. Further, the

terms Pil(i = 1,2,3) represent the first variation of homogeneous functionals

of degree (i + 1), and they, of course, arise from the structural stiffness,

with the nonlinearities being a consequence of the quadratic strain-displace-

ment relations. Finally, the functionals C and A represents, respectively,

the damping and the nonconservative forces on the structure. The quantity X

is a "load" parameter essentially representing, in case of aerodynamic flutter,

the speed of the fluid flowing over the shell. Although, in general, the load

parameter can appear nonlinearly as well, and in the other terms (particularly

in the damping term in the equilibrium equation) it is sufficient for describing

the basic methodology to assume the particular form (1).

It is also noted here that for shells of revolution each of the com-

ponents of q is periodic with respect to the angular coordinate: this is a

result of the invariance of the equilibrium equations with respect to angular

rotation and it leads to an interesting problem of interaction between cir-

cumferentially traveling waves in nonlinear flutter.

. " - . - '- " .. i ' . ' "-"
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Due to the scaling of the time coordinate in (1) by the frequency of

oscillation .., we -seEt ti-.e periodic solutions of this equation with a

period 2-. T-he equation has a trivial solution for all values of The

condition for the existence of bifurcation points on the trivial solution

ro '-branch leads to the linear eigenvalue problem

' (vq)+ i' C (>',:q) + ) AX (y,-q y5)=0 2
*11 0 11 o 11 ,.)+P 1 (~)=0 2

where is the frequency at the onset of flutter and X is the associated
0 0

load parameter.

Equation (2) is derived -from (1) on the assumption that the solution

at the incipient loss of instability is of the form

it
6 V e

so that the functions

- it -it - it
y e ,ye ,ye

are such solutions as well. Due to rotational symmetry the flutter mode v

is of the form

inO
y ye (3)

where y depends upon the axial coordinate only.

It is convenient to also denote here the solution of the problem adjoint

to (2) by z, i.e., z satisfies

2-Wo M..(z,5q) - iO~~,qF:+ XA Al(z,5q) + Pll(z,6q) =0 (4)

where C1  and A 1 represent the adjoints of the functionals C1  and A1,,

respectively; thus, for any displacements q1 , q 29

* C1 1 (q 1 ,q 2) C1q2q

For the values of (X,w) near (X~,w) the solution of (1) is written as

q -(ax y et + c.c.) + (Byet + C.c.) + W, (5)
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where w is as vet an unknown function satisfying an orthogonalitv condition

it -(a

c T I(W z)dt = 0, (6a)

[, 0,(b

-itie T 11 .. ,z)dt = 0, (b

wi.ert! is the first variation of an arbitrarily positive definite quadratic

functional. It ma., be noted here that the choice of T together with thel11

orthcgonality conditions (6) fixes the &mplitude a and uniquely, i.e.

2r

TT 11 (q,z)dt (7a)

, -it
2 1(q, z)dt (7b)

where we have assumed that the solutions of (2,4) have been normalized so that

T (v,z)dt = 1J 1

JI T1 1 (Yz)dt = 1.

Just as the solution has been decomposed in (5), we also decompose equation

(1) into three equivalent ones:

it 21r it
LII(W,6q) = R(q,6q) - etTl(y,q) eitR(qz)dt + c.c.}

o

it 2 -it
-{e T1 1 (y, q) Je R(q,z)dt + c.cJ , (8a)

f2r e-itR(q,z)dt = 0, (8b)
0

2 e-itR(q,z)dt - 0, 
(8c)

Jo

where

*-: .- " -:.->-::::::- ... " "' >:: - -" " _" i- i
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L1 (Wi ) - (W, ) + C (W,'q) + XoAl(W,.q) (,q, (9a)o ]1 oo P ]

and

Mq= _-M1 (c, + + + (q, ) - XA(q~q) - P(q,'q) + P2 (q,-q)
A 1 11 i

ro + P3 1 (q,-q) - LII(W,-q). (9b)

T t n be verified easily that there are no secular terms in (Sa), i.e., on

it - it
substitution of :q = ze or ze the equation (8a) can be shown to be

identicallv satisfied. As a result of this, we can solve (Sa) in an asymptotic

series in w ,, (c - 0 ) and ( - 0 ). The solution adequate for our purpose

is found to be

2 (2) 2it - ( 2 (2) 2it 7 (0)
W e +4-C.C. ) -+ a w2  e -+ C.C.) +-4-

33(2) 2it (a) +, Q -x )).+ (] w 12 e + c.c.) + (a W12 (  + c.c.) + 0(a33(-0 ) ' ( X o )~('.0)

(2) (0) 
M)

where the participating mode w W 1 1  etc., satisfy the linear, time

independent problems:

Q1 1 (w1 1 
2 ),6q) + P2 1 (v,6q) = 0, (lla)

(2)(l)
Q11(W 12 ( ) ,6q) + Pill(y,y,6q) = 0, (11b)

(1), q) + P1 1 (Wl(1),6q) + P11 1 (y,y,6q) 0, (11c)

X•A 1o(W12()6q) + P1 1 (w12°),6q) + 2P21 (y,6q) = 0, (1ld)

and where

Q11 (q,6q) - 4wo 2M1 1 (q,6q) + 2iw C l(q,6q)

+ Xo A 1 l(q,6q) + P 1l(q,6q). (12)

0
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Once the solutions of (11) have been obtained, the other participating modes

in (10) are calculated simply from the relations

(2) - (2) (o) (0)

122 W22 11l

which are obtained by examining the nonhomogeneous terms in equations for

(2') (o)
W , )I) (0) etc.

,'ith (8a) having been solved in the form of the series (10), we can sub-

stitute the result into (Sb,c) to obtain the nonlinear equations relating

the flutter amplitudes, frequency and the load parameters. The equations

turn out to be

? 2-

- ) + ic(. - j): + (U - )ac + l 1 +V 2 = 0, (13a)

-(- - + ic(. - )E + ( - )aZ + Y 2T + = 0, (13b)

where

m = M (YZ), (14a)
11

c = C (y,Z), (14b)

11

and
(2) - - el l ll 1- -Y1 = P (W 2) yz) + P1il(w 11  ,y,z) + P2 11 (y,y,z), (15a)

- (o) (2) yY2 = 2P 2 1 (y'W 2  ) + Pill (l 2  yOz)

+ P ill (o) ,y,z) + 2P2 11 (y,Y,Z). (15b)

Thus equations (13a,b) are the final results of the analysis. From these

equations one can obtain both the circumferentially traveling wave response

and the standing wave response, as well as the response that arises due to
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the interaction between them. Although these equations are four equations

in siX variables - ' and the complex amplitudes a and 2 - it can be

shown that they admit solutions such that the phases of the (complex) ampli-

tudes are arbitrary. Thus the equations (13) can be used for the calculation

of the load parameters and frequency of harmonic flutter as functions of

*. the amplitudes of the two traveling waves.

Wo end this section !v emhasizing that the results presented above are

asymptotic in nature, and, tlherefore, they are valid for sufficiently small but

nonvanishing amplitudes. (We note, also, that the linear theory of flutter

is valid only for the limiting case of vanishing amplitude.)

CON CLUDINC R A'RKS

We have presented an algorithm whose implementation within the frame-

work of the finite element methodology can provide a useful means for ob-

taining the effect of structural nonlinearities on the flutter of shells of

revolution.

*-
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