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ABSTRACT
- ,__’___\ %
In a recent paper, Y. Renardy and D. D. Joseph study the Bénard problem

: for two layers of different fluids lying on top of each other and bounded by
-ﬁ? walls. Their study shows that, in contrast to the'ﬂlnard problem for one fluid,

the onset of instability can be oscillatory. The number of parameters involved
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in the problem is large, and there is yet no comprehensive picture of when the
instability is oscillatory and when it is not. The study of Timiting cases,
accessible by perturbation methods, may be helpful in this respect. In this

Havumen

-paper, an analysis is given for the case when the properties of the two fluids
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SIGNIFICANCE AND EXPLANATION

Flows involving two incompressible viscous fluids exhibit nonuniqueness in the sense

that many interface positions are allowed when their densities are equal. Two-fluid flows
also have quite different dynamical features from one-fluid flows. The one-fluid Bénard N
. problem in which the fluid, lying between parallel horizontal plates, is heated from below s
has a static solution for which a linear stability analysis yields no complex eigenvalues. On . ]
the other hand, the two-fluid problem yields complex eigenvalues. In this paper, we use

perturbation methods to examine the conditions under which such time-periodic instabil-

ities occur. This may have application to the theory of convection in the Earth’s mantle,

which is sometimes based on the assumption that convection takes place in chemically

uniform layers.
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¥ PERTURBATION OF A MULTIPLE EIGENVALUE i
g ~ IN THE BENARD PROBLEM FOR TWO FLUID LAYERS e
s‘ﬁ :_".:;
3:‘ Yuriko Renardy and Michael Renardy
1. INTRODUCTION N
*«i };_ X
, In the Bénard problem for one fluid, “exchange of stabilities” holds for a variety of :Q’:
. k.
:.:5 boundary conditions!, whether the fluid is bounded by walls or by stress-free surfaces, _
,\‘:5 or by a wall below and by a gas above. Critical eigenvalues are not oscillatory in time. \
, . The consideration of additional effects can, however, introduce “overstability”, that is, L
.; critical eigenvalues that are oscillatory in time. Overstability occurs, for example, if there ;:"
::: are temperature-dependent surface tension gradients?, if there is a temperature-dependent
" b
;:'. solute gradient?, in mixtures of superfluids*, or if two fluids lie in layers with different .:j:“.::
ey T
R solute gradients®. On ther other hand, the Bénard problem with two layers of fluids with X
different thermal and mechanical properties, without surface tension gradients or solutes,
o i
2 has only recently been examined for the possibility of overstability?. Moreover, Busse has E.-;
-;Z suggested that such a model may explain certain features of mantle convection, such as ;::::'-
[ J
:ji: the size and aspect ratio of the convection cells ® and the possibility of time-periodic ° g
’) In a recent study, Renardy and Joseph 7 show that, in contrast to Bénard convection P
E‘, for one fluid, the linear stability problem for two fluids in layers is not self-adjoint, so that \,
N A
e complex eigenvalues are possible. They then solve the eigenvalue problem numerically and r%_ ‘
)] ‘
a find an oscillatory onset of instability in a situation where the two fluids are only slightly Zf-:'-.l
;’:: ;.:-.'.‘
e Sponsored by the United States Army under Contract No. DAAG 29-80-C-0041 and -"..],
I supported in part by the Centre for Mathematical Analysis at The Australian National -,.:1
. University. F
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different. It would be interesting to know what determines whether the onset of Bénard

A i
:$‘ convection is stationary or oscillatory. However, an attempt to answer this question by
1 numerical calculations is not feasible because of f.he large number of parameters involved. L!F:
' We think that it is therefore helpful to first find out what happens in certain limiting :'j:
X
N situations accessible by perturbation methods. 5*-‘
y In this paper, we look at two horizontal fluid layers, lying between parallel boundaries
3
; which are kept at constant but different temperatures. In order that the solution to the
unperturbed problem be available in closed form,we require that slip boundary conditions
‘.: apply, that is, the normal velocity and shear stress vanish. When the properties of the
: two fluids are the same, the eigenfunctions at criticality and the critical Rayleigh number
can be determined exactly ! and there is a double eigenvalue. When the properties of
the fluids are slightly different, we obtain a regular perturbation expansion for the double
2 eigenvalue, for which we calculate the two leading terms. This allows us to investigate the
E following two questions: '
o
; 1. Which perturbations lead to eigenvalues with nonvanishing imaginary parts?
2. Which perturbations stabilize and which destabilize the flow?
.
>
:.;;;:.2:::; e e . . PR
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; 2. GOVERNING EQUATIONS

; We consider a fluid, filling the space between two parallel boundaries of infinite extent
= in the (z°,2*)-plane. Asterisks denote dimensional variables. The upper boundary at
$ 2" = I is kept at a constant temperature T, and the lower plate is kept at a higher
i s constant temperature Tj + A T°. At temperature T, the fluid has a coefficient of cubical
- expansion & , thermal diffusivity x, thermal conductivity k, viscosity u, kinematic viscosity
v and density p. We use the Boussinesq approximation in the Navier-Stokes equations,
5 that is, the density in the buoyancy term is approximated by p(1 — &(T* - Tg)).
Following Drazin and Reid !, we introduce dimensionless variables (without asterisks)
as follows:

(z,2) = (27, 2°) /17,
t=nxt" /1'%, ()
' g=u"l"/x,
T=T'/AT",

N p=p"1"%/(px?).

v

4 Here, u” = (™, w") is the velocity, p~ the pressure and T~ the temperature. We define

e s s

¢

a Rayleigh number

R = gaAT 1"%/(xv),

o
‘et + 1Y

where g denotes gravitational acceleration, and a Prandtl number

P=v/k.

YR |
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9 We study the linear stability of the static solution
> ©u=0,T=To+1-2
:] If disturbances are proportional to exp(ot + iazx), then the following eigenvalue problem

3 e,
A .._‘._: »
F, arises for the velocity u and perturbation © to the temperature: ':::.
£ ¢
00 = AO + w,

ou=-vp+RPOe,+ POy, (2) -
N At the boundaries, w = 0 and ©=0. At solid boundaries, we would, in addition, have . i
s u = 0. However, we prefer to look at the case of slip boundary conditions, where it is
i

: required that the shear stress be zero, or equivalently, du/3z = 0. Although this is not
_ physically realistic, this has the advantage that the eigenvalue and eigenfunction at the

f: critical Rayleigh number are known in closed form. It is well known ! that all eigenvalues

are real, and the critical case =0 occurs first at R = 2774/4. The wavenumber of the

: critical mode in the x-direction is a = 2—!/27,

l We perturb this marginally stable eigenvalue by the introduction of a second fluid,

-

whose properties are slightly different. At rest, this introduces an interface at z = I, as

.. indicated in Fig. 1. Subscripts 1 or 2 on the physical parameters will now denote fluid 1

&

4 or 2, respectively. There are 6 dimensionless ratios:

% My

.' m = —,

: H2

: P

r=—,
; P2
' 4
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_x
-5,
_k

2,
g=22,
a2

i
l]—i:—l*lz

(3)

The non-dimensionalization of the equations and the definitions of Rayleigh and Prandtl

numbers will be based on fluid 1; for example, R = g&,AT*I*3/(x,1,). We include a sur-

face tension between the fluids, described by a dimensionless parameter § = S*I* /(k111),

where S* is the dimensional surface tension coefficient.
The linearized eigenvalue problem reads now as follows:

For0<z </,

00 = wA, + A6,
ou = —-9p/dz+ P A u,

ow = —-3p/dz+ RPO + P A w,

ou  Ow
9z 9z

where A, = U._-:?T;i Forl; <z<1,

o,

00 =wA,+1n0,
Y

ou=—rQ£+—r—PAu,
9z m

dp RP r
0w-—78—2-+ 76‘*‘ ‘-"—IPAw,

(4)

(5)
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where Az = gAl.

The boundary conditions at 2=0 and 1 are as before:

Q@
]
o

(6)

O=w-=

The interface is perturbed to the position 2 = I; + h(z,t). The interface conditions
linearized about z={, are:

continuity of temperature: {[® ]|]=h [[A ]],

continuity of heat flux: [[k$2]] =0,

continuity of velocity: [[w ]]= [[u ]]=0, (7

continuity of shear stress: [[u(4% + §2) ]]=o0,

balance of normal stress:

ow 1 ow a3h
m—Pl+2P('bTI-'—n‘—a?2)+M1h—PS§=O.

Here, [[. ]]|denotes the jump of a quantity acroes the interface, for example,
[[4]] = 41 - 4,

and we have set

1-1
M, = RP{-&()_A_%): +12A2($ - l)}

The kinematic free surface condition yields, at z = [, Zj:.sl'-'-’

och = w;.
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We now proceed as follows. We fix R=""—71r‘ and keep P and [, fixed but arbitrary.
We consider only solutions to (4) - (8) proportional to exp(iaz) with a fixed at 27/2x.
We introduce a small parameter € and regard 1 - m,1-r,1 —~,1—¢,1—3,M, and S as

small quantities proportional to ¢; that is, we set

l"’m=ﬁl(,

1—r = fe,

"

;

9 1 -~ =47e,

: 1-¢ =,

P 1- ﬂ = B‘s

“ - 27x4P F

' M = Mqe, M, = y (-&IAT' + lz(f‘l" ﬂ)),

At € = 0, there is an algebraically two-fold, but geometrically simple eigenvalue o = 0.

F S = Se.
Y

One eigenvalue arises from the first criticality of the Bénard problem for one fluid and the

other arises from the presence of the interface. For small ¢, this eigenvalue is perturbed

into two eigenvalues which can be expanded in powers of €}/2. The purpose of the following

analysis is to find the coefficients of €¢!/2 and ¢ in this expansion.
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3. PERTURBATION OF MULTIPLE EIGENVALUES

The perturbation expansion for a double eigenvalue is not a simple series expansion
in ¢. In addition, eigenfunctions need not have series expansions in powers of ¢. The
perturbation of multiple eigenvalues iS discussed in Ref. 10, chapter IV , §1. The procedure
involves the generalized eigenspaces belonging to the eigenvalue o = 0 for the unperturbed
problem and its adjoint, and does not require finding the eigenspaces of the perturbed O(¢)

problem at all.

We now quote the pertinent results from Ref. 10. Suppose oo is an algebraically
2-fold eigenvalue of a matrix Lo. Let {a),a;} be a basis for the generalized eigenspace
of Lo with eigenvalue oo, and let {b,,b;} be a basis for the generalized eigenspace of L
(the adjoint of Lo) with eigenvalue &, (the overbar here denotes the complex conjugate).
Let Lo be perturbed into L(¢) = Lo + eLy(€) + O(e2) with L; depending smoothly on e.
Then the perturbed eigenvalues o are given by the zeros of the determinant of a matrix
¥,j(€,0),5,5,= 1,2, which represents to O(¢) the projection of L(¢) — o, first onto the

eigenspace of the unperturbed problem and then onto the adjoint eigenspace:
Vii(e,0) = (bi,(Lo + €eLy(€) ~ 0)a;) + O(€?). (9)

Some care must be taken when this result is applied to unbounded operators in infinite
dimensional spaces, for example, differential operators. Such an operator has a “domain”
that is specified not only by smoothness requirements on the function but also by the
boundary conditions. If the domain of the operator that is being perturbed depends on ¢,
we cannot apply (9); the domains of L(¢) and Lo may be different, and their combination

would not make sense. We can, however, circumvent this problem by not looking at the

@, e, et e,
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differential operator itself, but at its resolvent (L(¢) — AI)~ ! where A is not an eigenvalue of
L(¢). The domain of this does not depend on ¢ and we will need to redefine ¥;; accordingly.
As will be seen from the following, the resolvent itself does not ever need to be computed.

In order to make these ideas more precise, we introduce some notation. Let X denote

the set of functions (6, u,w, k). We introduce an inner product by

2”/0 h _
(X1, X3) = / / 0,0, + i u; + wwe dzdz
(o) z2=0

2x/a 1
+/ / 0,0, + tiup + W wy dzdz
0 =’|

/o _
+ / hihy dz (10)
0

to generate a Hilbert space. In this Hilbert space, we consider the subspace determined by
the “Hodge projection” (see space H in Theorem 1.4, Ref. 11), that is, by the conditions
that the velocity field be divergence-free, that the vertical velocity vanish at the bound-
aries, and be continuous across the interface. By L(¢)X we denote the right hand sides
of equations (4),(5) and (8). We regard L(e) as an operator in the subspace so that the
conditions on w in (6) and (7) and the normal stress balance in (7) are an integral part
of the definition of L(¢). The domain of definition of L(¢) is determined by the rest of the
boundary conditions in (6) and (7), which we write in the form B(¢)X=0. The range of
the operator L(¢e) must satisfy the following conditions in order for the pressure p occuring
on the right sides of (4) and (5) to be determined as a function of X: The “velocity part”
of L{¢)X must be divergence free, the vertical velocity must vanish on the walls and be
continuous across the interface, and the jump in p across the interface must be given by the

normal stress balance. Thus, the problem we wish to solve is: for small ¢, find o satisfying

.l -
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L)X =oX, (11)
B(e)X =0,

L(¢) = Lo + eLy + O(€?),

B(e) = Bo + ¢B) + O(€?).

Explicitly,

AO +w Lo

—§§+PAu -

-2 +RPO+PAW
w

in fluids 1 and 2, and S

L.~

Lox =

| o
e

L1X =

Qo
L]

©
ok

in fluid 1 and
300 - (i{w )
rE+(m-FPLu- 3
732 + BRPO + (m-F)PLw— §
0

in fluid 2, where p denotes the O(¢}-perturbation to the pressure,

0,-6atz=1
B - ratz=1

up—uzat z=1,
Q—“—‘-—Q-'ﬂatzzll ’

Box =

oz dz

©atz2=0,1 A

% .t z2=0,1 R

3; a = Y ,‘-.~.‘-!

B

and paeat

—hiatz=1 L—

—f"a'ag.* a.tz=l, .

_ Oatz2=1,
P -+ g atz=n | i
Datz=0,1

Oatz=0,1 -

n s
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With the above definitions, we are now ready to look at the resolvent of L(¢) and then

to redefine the matrix in (9). Since ¢ is small, the eigenvalues of L(¢) are close to those of

Lo, so that the ) in the resolvent should be chosen well away from zero. We choose A = 1.

Yl IRENEATURMASRY | R

Hence, instead of looking at (11) directly, we study the equivalent problem
(L) -1)'X=(0-1)"'X=:6X '

and perturb around 6 = —1. We note that the definition of (L(¢) — 1)~! already in-
corporates the boundary conditions. The relation (9) is applied to this problem. The

determinant of the matrix
Vi;(e,8) = (bi, ((L(e) — 1) = 8)a;) + O(€?), 4,5 = 1,2, (12)

where the b; and a; are as before, is set equal to zero. We will require an expansion of
the resolvent in powers of ¢ in order to carry out the calculation of ¥,;. We note that the
inverse of Lo — 1 is defined. Since parts of the calculation are rather lengthy, they will be
organized into several appendices of this paper.

We first have to find the boundary value problem adjoint to (11). This is done in
Appendix A. Then we determine the generalized eigenvectors at ¢=0 for both (11) and the

adjoint problem. These are denoted by a,,a2 and b,,b,, respectively, and satisfy:

Loay =0, Boa; =0,

Loa; = ay, Boag =0,

v AT

Liby =0, Bb, =0, (13)

Labz = bl, Babg =0.
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The generalized eigenvectors are determined in Appendix B. In order to apply formula

(12), we must determine the expressions
(bir (L{e) - 1) 'a;) (14)
to first order in ¢. To facilitate this calculation, we introduce x? and x,‘- defined by
(L(e) - 1) 'a; = 2§ + ez} + O(€?). (15)
Equating the coefficients of equal powers of ¢, we find the equations governing z;’ and z}
(Lo - l)z? = ay,

Boz? = 0, (16)

and
le? + (Lo - l)z,‘- =0,
B12? + Boz! = 0. (17)

From (16), we immediately find 2§ = —a,, 2 = —a;—a,. We will not need the solutions 1:,‘-

to the perturbation problem (17) but only certain inner products involving them, namely

(bi,z}). This is seen from (12) and (15):
\I’(J'(E,é) = (b.',z?) + e(bg,z}) - 5(6.’,0,‘) + O(fz). (18)

We calculate (b;,z}) from (17):

(b.‘,.‘l}-) = (thlz?) + (bisLOz,l')! (19)
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0 and an integration by parts:

ace o S

(b.-,Loz,'-) = (Lgbi, z}) + boundary integrals, (20)

where the boundary integrals are evaluated using the second part of (17). (The boundary . ’

integrals would vanish if Boz,‘- were zero.) Details of these calculations are in Appendix C. 5

: In the following section, we discuss the solution of the eigenvalue perturbation prob-

lem, which now reads det¥;; = 0, where ¥ is given by (18).
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4. RESULTS AND DISCUSSION

We set 3 = ~1+ r1€}/2 + r2¢ + O(3/?). Since 0 = 1+ 1/8,
0= —nVe— (1} + 12)e + O(e%/2).

For the first-order term, we find (see equations C2, C5, C7 and C10 of Appendix C)

F
a AT

P Pr3sin?xl,
17 3(P+))

(9xécot =y + g:’[— +1;(B+ 7))+ §5). (21)

The sign of this quantity determines whether the eigenvalue splits into real values or
complex conjugates. We note that, in the situation studied by Renardy and Joseph 7, ¢,
7 and S were 0, and § was positive. (Their boundary conditions are different from ours,
nevertheless, we expect some qualitative similarity). They find complex eigenvalues, in
agreement with the prediction of (21). It is also worth noting that (21) does not involve
the viscosity ratio, and that the sign does not depend on the Prandtl number.

If r} is positive, we always have instability. However, if 7 is negative, we have to find
r,’ + 73 in order to determine whether the perturbations are stabilizing or destabilizing.
‘_:: Unfortunately, the formula for ; is not nearly as simple as that for r; (see equations C5,

C6, C11, and C15 of Appendix C). We find

sinxl,

2, . _ sin%h
I Trany

x3? N &
(Pa'cos (-3 + 9—2—]§ -m) + (M, + ?PS)simrl.
+;(l — 11P)¢cos xly + P{%Rcal[c,(Q? ~ x2/2)2Q, cosh Q,!, ]|
3 Ixl
+H1+ P)f;x’(c—:?;—;;—" + 1y sinxly)

2
+(M, + Iz—PS)(zllcal[c.sinhqll.] +(1+ —}l;)é:; cosxly)
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4::};,1 (#la(3+ m-#-B)+ 'ii;ﬁ(ﬂ §-¢-B- ';")))
2 )
+72_l2(l B 3«(124 P)(g + :PP) (hycotxls + zle)))' (22)

where M, is defined after equation (8), ¢, and Q, are defined in Appendix B.

We examine some limiting cases below. If the Boussinesq approximation is to be
justified, then &, AT’ must be small’, eg. @ = 5.1074K~! and AT* < 10K. For the
purpose of computing graphs, we have taken &,AT* = 0.001. As P — oo, both 77 and

73 + 3 approach finite limits.

Casei. $£0.{=7F=8=vm=0. If § <0, then r? > 0 so instabilities are exponen-

tial in time and leads to mixing. If $ > 0, then 77 < 0 so the surface tension opposes the
tendency for convection. However, whether this leads to a growth or not depends on the
sign of (22) which depends nonlinearly on [, and the Prandtl number. Fig.2 shows this
dependence to be r? + r3 > 0 so that o is stable and oscillatory.

Caseii. ##£0,8=¢=8=m=0. Since &,AT" is small, 73 and # have the same

signs: if Fluid 1 is the less dense fluid, a convective instability takes place; if Fluid 2 is the
more dense fluid, stable wavy modes occur. The graph of r? + r; versus !, for # < O is
similar to Fig.2.

Case jij. 8 #0,85=#=¢=sh=0. The signs of 7? and J are opposite. A heuristic

explanation is as follows. In the Boussinesq approximation, the density at any depth {; in
the buoyancy term of the momentum equations is approximated by p;(1-é&;(T"~Tg)), § =
1,2 where (T~ - T35)/AT" = 1 - z + ©. Hence, at a depth z which is close to the interface
z = I, the densities are approximately p;(1 — &;l3). Therefore, if 8 < 0, the lower fluid

is less dense than the upper fluid, locally at the interface, so that r2 > 0. On the other
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hand, if 3 > 0, then the lower fluid is the more dense and r? < 0. Fig.3 presents r? + 7,
versus I, for B = 1, showing that for a wide range of I, close to 0 and of Prandtl numbers

greater than 0, there are unstable oscillatory modes. These modes are Hopf bifurcations.

SR S .‘s".'ﬂ‘.'_‘?

o

Caseiv. {#£0,8 =F=f = = 0. The dependence of 2 to!, is through —¢sin2xl;.

Hence, if the thicker layer has the lesser coefficient of conductivity, (i.e. if { > 0 and
05 <!y <1;0rif { <O0and 0 <I; <0.5) then convective instability results. If the
thicker layer has the greater coefficient of conductivity, then time-periodic modes occur,
but whether these would be stable or not depends on the sign of r? + r;. Fig.4 shows
a wide range of unstable oscillatory modes for 0 < [} < 0.5 when { = 1. This graph is

antisymmetric about !, = 0.5, as can be deduced non-trivially from the equations. We

note that when the fluid with the greater conductivity occupies most of the flowfield, the

stability of the time-periodic eigenvalue 0 depends on the Prandt] number: if the Prandtl

number is very small, the oscillatory modes are stable, and if the Prandtl number is well E:
away from O, the oscillatory modes are unstable. \,
Casev, m#£0,=S=r=F=0. We find that 1 = 0, and Fig.5 shows 7 + r; ‘::

versus [, for various Prandtl numbers. If Fluid 1 is the less viscous fluid, then there
stability, and if Fluid 1 is the more viscous fluid then there is convective instability,

regardless of the depth ratio, in agreement with heuristic expectation. -

Casevi #0,m=¢=8=F=L=0. The ratio 4 of thermal diffusivities plays a

similar role here to the ratio m of viscosities, which measures the rates of diffusion of

momenta. As in Case v above, r? = 0 and the graph of 77 + r; versus !, is shown in Fig.6.

If Fluid 1 has the lesser coefficient of thermal diffusivity, then o is stable. If Fluid 1 has
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the greater coefficient of thermal diffusivity, then convective instability ensues, regardless

.vw..-_-,- Tﬁﬁ
.

of the depth ratio, as expected.
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APPENDIX A: The adjoint problem for ¢=0

We denote the domains occupied by the two fluids by
M={0<z<2r/a,0< z2<1,}

and

N ={0<z<2r/a,l; <z<1}.

We denote the interface by 1, and the lower and upper boundaries by I’y and I';, respec-
tively. Let X; = (8, u,w,k) and X2 = (*,u”",w",h"). Asterisks denote the adjoint. We

have

(Xz,LoXx)=/ é‘Ae+é‘w-—ﬁ*a—p+Pﬁ'Au—w’a + RPw*© + Pu' Aw

Op
, oz 0z

+/ é'Ae+é‘w—a‘§';’+Pa‘Au—w‘a + RPw"O + Puw* Aw
Q2

d

0z

+/7z‘w1. (r‘li'
I

We integrate by parts and obtain, using the divergence condition div u = divu" =0,

(X2, Lo X)) = / 6(AO" + RPw*) +u(P A u" — :’1 J+w(PAw™ — % +67)
2,

=¥

+/ 6(AO™ + RPw’)+u(PA 4" - or Jtw(PAw - % +0)
2, oz 0z

~,00 06" _.Ou ou* _,Ow ow” | -
+/l‘; -0 22 +9¥—-Pu E+Pu8z - Pw $+Pw 32 +w'p— wp
~,00 96’ du ou* ow ow"
e‘— — -‘— —_ _\._ —_ —_— - L
+ 0.2 52 9—62 + Pa 32 Pu 32 + Pw 32 Pw-—az W p+ wp
- ~,00 90" ou dd*
h' ‘__ Pt —"_—___
+/' wy + [[© 3, @5, tPu 5, —Pug;
7] ow”
+Po 22— PuT — w'p+wp']]. (A2)

9z a9z
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:i‘ From this, we immediately read off the adjoint differential operator to be given by
ﬁ%’ + RPw’
- u - RN
E Lixe=| 0% %a: o | (A3) -.——-
0 e

Moreover, since X, satisfies the boundary conditions (6) on I'; and I';, the integrals over :

these boundaries vanish if i:&]

PR
AT

9"=w'=‘2.i=0. (A4)
0z
Into the interface term in (A2), we add S

_.,0u Ow ou* Jw*
-Pw (£+ az)+P"’( o + E

which is zero. We integrate the x-derivative by parts and use periodicity. This yields '

T. -~ .00 06" ., Ou
/,h w‘+[[9 0z eaz + Pa (8z+

ow  oa, T
0z oz

ow
5;) - Py(

_ . ow . ow" R
‘.:_- ~w"(p— 2P az) + w(p” — 2P 2 )] (A5) s
From this we find the adjoint interface conditions: '

: 50 =o.

[[w"]] =0, (46)

: ) =0

. L
: ou” ow" _ RE ‘
% G + 5 11=0 ”
2 (" - 2P2Z)) + 4 =0 :
o .
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APPENDIX B: Eigenfunctions of the unperturbed problem

If ¢=0, the variable h does not occur in the right hand sides of (4), (5) ,(8), or in the

interface conditions, and we have the eigenfunction

(B1)

N
f
0
-0 00

The equations (4)-(7) are precisely those characterizing the one-fluid Bénard problem. The

eigenfunction for this problem ! now yields a generalized eigenfunction:

sin ®a
taz T ta
e 1.8
a; = — o COSTZ 4 (B2)
sin xl, sinrz
0

The adjoint equations agree with the one-fluid Bénard problem if we set h® = 0. Thus the
eigenfunction of the one-fluid Bénard problem yields the eigenfunction for the adjoint:
2Px%sinnz

. [1.4
by =] aO872 | (B3)
SIN7z

0

The generalized eigenvector b2 of the adjoint satisfies
Lgbz = by,
Bb; = 0.
This leads to the equations:

A®" + RPw” = :—:szc“” sin7z,

. 9p" im0
- L _ Tt 4
PAu 3. = o C cosTz, (B4)




......

PAw'+6‘—Q—=¢‘°’sin1rz, NS
dz .
du’ + ow" 0 L
—— ——— o [T '..
or 0z :-‘—"J.--
We set w™ = w;e'>* etc., and obtain by combining the equations: : :
a2 .., 27 , 9 , 1
— - s+ Zxdwy = - =) sinxz. B5
(dz’ a’)’wg + g7 Wo= o7 (l+P)sm1rz (BS) ‘
The general solution of this equation is J
P
wg = ¢18inh Q32 + ¢3cosh Q2 + c3sinh Q22 + ¢4 cosh Q22 . R
+cssinxz + cgcosnz — L(l + l)z cosxz (BS)
6 P '

in fluid 1, and
wg = dy sinhQy(z — 1) + dacosh Q,(z — 1) + d3sinh Qz(z — 1) + dycosh Q;z(z ~ 1)

+dgsinn(z - 1) + decoan(z — 1) - 61—“(1 + %)zcosrz (B7)

in fluid 2, where

Qi =3 V52 ¢4/%,Q, = ZVB2 N2, (B8)

and ¢ is determined by cos¢ = 5/ V52, sing = 3./3/52. The coefficients ¢; - ¢g and

d, - d¢ must be determined such that the boundary conditions are satisfied. By using ——
(B4), we can show that the conditions (A4) at the walls reduce to \
d? d* e
._6"  ._& . _ ®
Wo = ;Ao = ;%o =0 (B9) L
At 2=0, this yields e
c2+cq+ce=0, ;%
: SRS
N
27 .':I\:‘\:
.‘-':.-':..
N
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» ¥Cz + Q;C4 - x3¢s = o, (B10)

LK

Q:c: + Q;c‘ + ‘l‘cs =0.

From this, we obtain ¢; = ¢4 = ¢g = 0. At z=1, we find

PERRCERENNND AR

1 1
da+de+ds+ 6;(1+ F) =0,
Qlds + Q3dy~ xds — S(1+ %) =0, (B11)
x3 1
Qids + Qid¢ + x'ds + ?(l + F) =0.

- This yields d; = d4 = 0, dg = — g (1+ $). The first five of the conditions (A6) lead, after

eliminating u* and ©* from (B4), to the conditions

[lws]] = [(828) = ((£28)) = [[42%8))

_ pdiwg
= [[ dz%

dcw;
x? dz:]] =0. (B12)

We can set the coefficient dg to zero for the following reason. The coefficient ds multiplies
w = sin#(z — 1) in the generalized eigenvector. The eigenvector b, has w = sin xz. Since
any multiple of b,, added to b, i.e. b3 + Cb,, is also a generalized eigenvector, we choose
C to be ds. This essentially gets rid of ds in 2, replaces ¢s5 in ; by ¢5 + ds, and we

rename cg + dg as cs. We thus obtain the following system of equations.
c18inh Q,ly + e3sinh @3ly + cgsinxly = —d; sinh Q12 — d3sinh Q3l2 + dg cos xl3,

€1Q1cosh Q!4 + ¢3Q2cosh Qaly + megcosxly = Q,dy cosh Q,ls

+Q2d3 cosh Q3ly + ndg sin xly,




¢1Q3sinh Q1) + c3Q3sinh Q3l; — x%cssin 7!y = —Q3d, sinh Q,l;
—Q;da sinh Q3l3 — 73dgcosnls,
c1Q{sinh Q,l, + ¢3Q%sinh Q;ly + x¥cssin 7!y = —Qid, sinh Q,l,
—Qddssinh Qal; + n'dgcos 7l;, (B13)
e1(Q3 — 72Q3) cosh @yl + ¢3(Q5 — 72Q3) cosh Qaly + 2¢57° cos wl,
= dy(Q3 - v2Q3) cosh Q,!; + d3(Q5 — 72Q3) cosh Qal3 + 2den® sinxl;.
We eliminate ¢, from the third and fourth equations by using the first equation.
(@3 - Q1) sinh Qslscs - (? - @F) sinwlycs + (@] - @3) sinh @ala = —(n? + QF) cos mlads,
(Q2(Q7 - »*) ~ Q1Q2(Q] -~ 7%)) cosh Qzlics + (27° — 7Q(Q] — #%)) cos xlscs
+(-Q3(Q% - 7°) + Q2Q1(Q] - 77)) cosh Qalads = (21° - Q}(QF - #%)) sin xlzds, (B14)
(Q2 — Q1) sinh Qal1es + (7 — @) sinxlies + (QF - Q) sinh Qalads

= (x4 — Q}) cos xl2ds.

The first and third equations of (B14) yield

cs = dGCOt ﬂ’lz, (315)

and

c3sinhQ3l, + dasinh Q2lz = 0.

The second equation of (B14) yields

e'e e a
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Hence,

_ dex(1 + V3i) sinh Q2!
8= 2Q;sin vl 5inh Q;

(B16)

and

_do(1 + V3i) sinh Qal,

ds = 2Q,sinh Q2 sinnl;

(B17)

From the first and second equations of (B13), we find that ¢, is the complex conjugate of

2 c3 and that d, is the complex conjugate of ds.
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‘ APPENDIX C: Evaluation of inner products
We first calculate the boundary integrals that arise in (20) and then the entries of \1
> the matrix W,; defined in (18). We denote b, = (8",u*,w",h") and z¥ = (©,u,w,h). ;":—“
3 In addition to the boundary terms arising in (20), we also integrate the term arising
| . from p in (b, L,z?) by parts. This yields another integral over the interface, which we

combine with those from (20) into an expression I';;. The form of I';; can be read off from
the calculation of the adjoint in Appendix A. The terms remaining in (b;,L.z?) will be

denoted by ((b;, L,z})). We thus have

{bi, Loz}) + (bis L127) = (Lgbi, ;) + ((bi, L123)) + T

_ where
'? .00 _ 36° ., Ou v
[y = /’é fa—z—fh—a:-'fpﬁ m(g'f' 3;)

; . ow N L
"o —n " — — -

X w°(—2Pm 2. + h(M, + 2 PS))dz (1)
N

}j Here, the interval of integration I extends over one wavelength in x, at z = {;. Hence,
- equations (19) become:

(b1, z}) = T11 + ((by, L123)),

(blsz%) = rl2 + ((thlzg»v

X (b2, 1) = T'a1 + {(ba, L12})) + (ba, 2}), (€2)
>, (b2,23) = '3z + ((b2, L123)) + (b1, 2}),
:E
:; where
73 _ n?

. | Y =2\/§(9P7{C087fl] +(M| + ?Ps)simrh),
”

L
% N

o
o

e R e
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T3 = 2vV2(Pxcosxl,((-3 + 9’-:;—)( -m)+ (M + ’;PS’) sinxl;),

and

x . vrae | W3
Iy = 2;(?3;’ + (M + -2-1’5))-=h
x ¢ 2 72, 3 M.,
= 2&(2(1‘11}’){(2081’]+2Px—3(¢1(ql— -?) Q,coshQ.h+c3(Q,- ?) taﬂthﬁ)
2
+1+ P)E%t’(%:%::—: + 1y sinxly)
_ 2 {
+(M, + z;—PS‘)(«:. sinhQ,l; + e3sinh Q3l; + (1 + %)E:_r cos xly)).

N We will see later that I';; is not required. Since L;z{ vanishes in both fluids, the first

equation reduces to (b,,z}) =T,;. Since z{ = —aq,,

‘I’u((,&) = —(1 + 6)(b1,a.) + ey + 0((3).

We find that (b;,a;) = O so that

\I‘"((, 6) = Eru + 0(62). (C3)

Since 29 = —a, — a3,

¥12(e,6) = —(1 + 8) (b1, a2) + €(T'12 + ((bs, L122))) + O(€?)

We set

6 =—-1+1€/2 4+ re + O(¥/?)

so that

Wy2(€,8) = —Vers(b1,a2) + €(—72(b1,a3) + ['13 + ((b1, L122))) + O(¥/?). (C4)
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We have
1 2x ['9Px%sin®xz  x%cos’nz 2
= ——= i d
(b1,02) sinxl, a ,/0 2(x2 + a?) T T
_3v2(1+P)
~ sinxl,
and
. 2r

((by, L123)) = (€12 /Oh §P1r2(--sin2 xz)dz

asinnl,

L
- ?\/5 Opriy+m-r—5)+ Prsin2nly(c+5-F— B - ).
sinxl, "4 8 3

Next,

W21(€e,6) = —(1 + 8)(b2,a,) + €(T'21 + (b1,2})) + O(€?).
We note that

(b2,ay) = (b2, Loaz) = (Lgba,a3) = (b;,a2).

Hence,

W21(€,6) = —/er1(b1,az) + (a1 + (b1, z})) + O(e/2).
We find

‘I’zz((, &) = <bz, zg) - (-l + \/ET])(bz,az) + 0(6)

= —(bg,al) - \/Erl<b2902) + 0(6).

Collecting the O(¢)-terms from the equation det¥,,; = 0, we find

r
% JERLY |

= T {bzar)

3

1
+ / sin? xz(;—)Par’fl; + gParz‘i + ngzﬁz - gPrz(i‘ +f)) + 3Pmn? cos® x2dz

(C6)

(o)

(C8)

(C9)

(C10)
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Collecting the O(e3/3)-terms, we find

o= T2 + T2y + ((by, L129))
? 2(b;,a2)

(b2,a3)
(bl ) a2>

+ (o4 uca)y (cn)

We now need to calculate (b3, az) given by

2 l 1 ©‘sinmz  ixcoswzi”
ba,ag) = —0 5* sinxz dz,
(b3, a3) asinal; {/o + A }(13 T a?) + S + @ sinxz dz

where b; = (0*,u*,w*,h*) and a; is given by (B2). We express the integrand in terms of

w* by using equations (B4): ii* = %; and ©* = 3sinxz + i—f A2 w*. Hence,

Nfl

sinxl, "x?

L 1
(b2, a3) = + (/ + / )i}; A? @*sinnz + 3w* sinwzdz}.
0 1, 3x
Integration by parts simplifies the first integral as follows:

3,5 4
/A’u‘)'sinrzdz = sinwll[[%]] + 9%—/u‘;"simr.zdz,

so that we are essentially left with having to evaluate [[%3—;3—.]] and [w*sinxzdz and

substituting them into

(b2,a2) =

2v2 .1 4Psinnl, 330" o
sinxl, ‘x2 + 3r4 “ 923 ]] +3(1+P)/w sin 7zdz}. (C12)

The former is facilitated by multiplying equation (B5) by sin 7z and integrating by parts.

This leads to
8%t 3731+ 1)
{ 023 I1=- 4sinxl; (C13)

From Appendix B, we have

b = ¢;8inhQ,z + ¢3sinh Q22 + cssinrz — zcosmz

1+ $)
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in fluid 1 and
. . . 1 1
®* = d,sinhQ,(z — 1) + dasinhQ2(z — 1) + 6}'(1 + -};)(l ~ z)cosxz

in fluid 2, with the coefficients given by (B15) - (B17). After some algebra, we find

/lu‘)‘ inwzd ——(Lt—é-)-(l cot iz + i) (C14)
0 s 2= 127 V! 3T ax

Using (C12) - (C14),

2v2 £+(1+P)’

(b2,a2) = T xsinxly ' 4P

({ycotnlz + 2%)} (C15)
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In a recent paper, Y. Renardy and D. D. Joseph’ study the Bénard problem
for two layers of different fluids lying on top of each other and bounded by
walls. Their study shows that, in contrast to the Bénard problem for one fluid,
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