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ABSTRACT ' ard

In a recent paper Y."Renardy and D. 0. Joseph study the problem

for two layers of different fluids lying on top of each other and bounded by

walls. Their study shows that, in contrast to the -4nard problem for one fluid,

the onset of instability can be oscillatory. The number of parameters Involved

in the problem is large, and there is yet no comprehensive picture of when the

instability is oscillatory and when it is not. The study of limiting cases,

accessible by perturbation methods, may be helpful in this respect. In this

- pee, an analysis is given for the case when the properties of the two fluids

are nearly equal and the flti ds are allowed to slip at the boundaries.

ANIS (MOS) Subject Classifications: 76E15, 76E20, 76T05, 76V05
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SIGNIFICANCE AND EXPLANATION

Flows involving two incompressible viscous fluids exhibit nonuniqueness in the sense

that many interface positions are allowed when their densities are equal. Two-fluid flows

also have quite different dynamical features from one-fluid flows. The one-fluid B6nard

problem in which the fluid, lying between parallel horizontal plates, is heated from below

has a static solution for which a linear stability analysis yields no complex eigenvalues. On

the other hand, the two-fluid problem yields complex eigenvalues. In this paper, we use

perturbation methods to examine the conditions under which such time-periodic instabil-

ities occur. This may have application to the theory of convection in the Earth's mantle,

which is sometimes based on the assumption that convection takes place in chemically

uniform layers.
. .7.
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PERTURBATION OF A MULTIPLE EIGENVALUE
IN THE BtNARD PROBLEM FOR TWO FLUID LAYERS

Yuriko Renardy and Michael Renardy

1. INTRODUCTION

In the B6nard problem for one fluid, "exchange of stabilities" holds for a variety of

boundary conditions', whether the fluid is bounded by walls or by stress-free surfaces,

or by a wall below and by a gas above. Critical eigenvalues are not oscillatory in time.

The consideration of additional effects can, however, introduce "overstability", that is, I.

critical eigenvalues that are oscillatory in time. Overstability occurs, for example, if there .-

are temperature-dependent surface tension gradients2 , if there is a temperature-dependent

solute gradient s , in mixtures of superfluids 4, or if two fluids lie in layers with different

solute gradients". On ther other hand, the Bdnard problem with two layers of fluids with

different thermal and mechanical properties, without surface tension gradients or solutes,

has only recently been examined for the possibility of overstability7 . Moreover, Busse has
..-4

suggested that such a model may explain certain features of mantle convection, such as

the size and aspect ratio of the convection cells s and the possibility of time-periodic -

flows.

In a recent study, Renardy and Joseph show that, in contrast to B6nard convection

for one fluid, the linear stability problem for two fluids in layers is not self-adjoint, so that
.4. . . ":.:-". complex eigenvalues are possible. They then solve the eigenvalue problem numerically and

find an oscillatory onset of instability in a situation where the two fluids are only slightly

Sponsored by the United States Army under Contract No. DAAG 29-80-C-0041 and
supported in part by the Centre for Mathematical Analysis at The Australian National
University.
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different. It would be interesting to know what determines whether the onset of B~nard

convection is stationary or oscillatory. However, an attempt to answer this question by

numerical calculations is not feasible because of the large number of parameters involved.

We think that it is therefore helpful to first find out what happens in certain limiting

situations accessible by perturbation methods.

In this paper, we look at two horizontal fluid layers, lying between parallel boundaries

which are kept at constant but different temperatures. In order that the solution to the

unperturbed problem be available in closed form,we require that slip boundary conditions

apply, that is, the normal velocity and shear stress vanish. When the properties of the

two fluids are the same, the eigenfunctions at criticality and the critical Rayleigh number - ."

can be determined exactly and there is a double eigenvalue. When the properties of

the fluids are slightly different, we obtain a regular perturbation expansion for the double

eigenvalue, for which we calculate the two leading terms. This allows us to investigate the

following two questions:'I?"

1. Which perturbations lead to eigenvalues with nonvanishing imaginary parts?

2. Which perturbations stabilize and which destabilize the flow?

2.

o. 2

.



2. GOVERNING EQUATIONS

We consider a fluid, filling the space between two parallel boundaries of infinite extent

in the (z',z*)-plane. Asterisks denote dimensional variables. The upper boundary at

z' P is kept at a constant temperature T-, and the lower plate is kept at a higher

constant temperature T; + A T'. At temperature T;, the fluid has a coefficient of cubical

expansion & , thermal diffusivity re, thermal conductivity k, viscosity ,s, kinematic viscosity

v and density p. We use the Boussinesq approximation in the Navier-Stokes equations,

that is, the density in the buoyancy term is approximated by p(l - &(T* T -

Following Drazin and Reid ', we introduce dimensionless variables (without asterisks)

as follows:

(z,z) = (ZZ./C,

t = ,a"/r2, (1)

U= 1[/s,"

T -T/AT*,

p =

Here, u = (u', w) is the velocity, p" the pressure and T" the temperature. We define

a Rayleigh number

R = g&AT'L 3 /(#cV), ""-

where g denotes gravitational acceleration, and a Prandtl number

5',..:.
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We study the linear stability of the static solution

u_=_, T= T+ I - z.

If disturbances are proportional to exp(ot + iax), then the following eigenvalue problem
* ...'.

arises for the velocity j! and perturbation E to the temperature: .-

0= AO + W,

= -Vp+RPO, +PA _, (2)

At the boundaries, to = 0 and 0=0. At solid boundaries, we would, in addition, have

u = 0. However, we prefer to look at the case of slip boundary conditions, where it is

required that the shear stress be zero, or equivalently, au/az = 0. Although this is not

physically realistic, this has the advantage that the eigenvalue and eigenfunction at the

critical Rayleigh number are known in closed form. It is well known I that all eigenvalues .,-

are real, and the critical case o=0 occurs first at R - 277r 4/4. The wavenumber of the

critical mode in the x-direction is c= 2-1/7r.

We perturb this marginally stable eigenvalue by the introduction of a second fluid,

whose properties are slightly different. At rest, this introduces an interface at z = as

indicated in Fig. I. Subscripts I or 2 on the physical parameters will now denote fluid 1

or 2, respectively. There are 6 dimensionless ratios:

P2 .

P2

4
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T=5 T1Z

fluid I

Z9

Sketch of B~nard problem perturbed by a second fluid.



• l,1 ; - .l ' .e, - - - - - - .-- - . . _ ... . t - . w'. .. . . " " " % " " -" .. - . - , - - - .. . - -

ICl .

(3)

1 = &2"-" -

1 1 = 1 = 1 1 2 . ' "

The non-dimensionalization of the equations and the definitions of Rayleigh and Prandtl

numbers will be based on fluid 1; for example, R = g&,ATPt1/(*,i). We include a sur-

face tension between the fluids, described by a dimensionless parameter S = S*l*1(#CJI),

where S* is the dimensional surface tension coefficient.

The linearized eigenvalue problem reads now as follows:

For 0 _< z < I,,--

oO =wAj + A9,

du= -ap/8x + P A u, ...

ow= -ap/z + RPO + P A w, (4)

au aw
0,0

where A, = I For 11 < z < 1,

5' 1. ..

O =wA2 + -A E,

OU= -ri-- + PA u,oz m

6 8 p RP r°w= -r- + - 0+ PAw, (5)

6 5

A-
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au aw+ 0=, -. '

where A2  CAI.

The boundary conditions at z=O and I are as before:

e = - = 0. (6) P
8.z

The interface is perturbed to the position z = 11 + h(z,t). The interface conditions

linearized about z=11 are:

continuity of temperature: [[O ] = h [[A ]],

continuity of heat flux: [ [k = 0,

continuity of velocity: [[w ] = [[u ] =0, (7)
continuity of shear stress: [[(ar + W) -=0

balance of normal stress:

P7W I Ow 2  82 h
p 2 - p+2P( ) + M h - PS-2 O.

Here, [[. ]]denotes the jump of a quantity across the interface, for example,

[[A]] = A, - A2,

and we have set

(1-f) r "'
M, - RP fi, T + 12A2( - 1)1.

&IAT-

The kinematic free surface condition yields, at z = 11,

ch = wi. (8) b

7



We now proceed as follows. We fix R=2-r 4 and keep P and 11 fixed but arbitrary.

We consider only solutions to (4) - (8) proportional to exp(iax) with a fixed at 2-

We introduce a small parameter e and regard 1 - m, 1 - r, 1 - -y, 1 - , 1 - , Mn and S as S

* small quantities proportional to c; that is, we set

1 - r = fE,

1 - =

4pp

1• - f3 .

27r 4 p r
M, =4 M 1 - + 12(f +)),

At e = 0, there is an algebraically two-fold, but geometrically simple eigenvalue o = 0.

One eigenvalue arises from the first criticality of the Benard problem for one fluid and the

other arises from the presence of the interface. For small c, this eigenvalue is perturbed

into two eigenvalues which can be expanded in powers of e/ 2 . The purpose of the following

analysis is to find the coefficients of e/' and e in this expansion.

8
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3. PERTURBATION OF MULTIPLE EIGENVALUES

The perturbation expansion for a double eigenvalue is not a simple series expansion

in (. In addition, eigenfunctions need not have series expansions in powers of t. The

perturbation of multiple eigenvalues is discussed in Ref. 10, chapter IV , §1. The procedure

involves the generalized eigenspaces belonging to the eigenvalue o = 0 for the unperturbed

problem and its adjoint, and does not require finding the eigenspaces of the perturbed 0().

problem at all.

We now quote the pertinent results from Ref. 10. Suppose oo is an algebraically

2-fold eigenvalue of a matrix L0 . Let {al,a 2) be a basis for the generalized eigenspace

of Lo with eigenvalue ao, and let {bl, b2} be a basis for the generalized eigenspace of L; p

(the adjoint of Lo) with eigenvalue do (the overbar here denotes the complex conjugate).

Let Lo be perturbed into L(e) = Lo + eLI(E) + O(I2) with L, depending smoothly on c.

Then the perturbed eigenvalues a are given by the zeros of the determinant of a matrix

*j(eja),i,j,= 1,2, which represents to 0(c) the projection of L(c) - a, first onto the

eigenspace of the unperturbed problem and then onto the adjoint eigenspace:

*ij(f,= (b,,(Lo + cLi(e) - o)aj) + 0(e 2). (9)

Some care must be taken when this result is applied to unbounded operators in infinite

dimensional spaces, for example, differential operators. Such an operator has a "domain"

"* that is specified not only by smoothness requirements on the function but also by the

boundary conditions. If the domain of the operator that is being perturbed depends on E,

we cannot apply (9); the domains of L(t) and L0 may be different, and their combination

would not make sense. We can, however, circumvent this problem by not looking at the

9
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differential operator itself, but at its resolvent (L(e) - I)- where A is not an eigenvalue of

L(e). The domain of this does not depend on E and we will need to redefine *ii accordingly.

As will be seen from the following, the resolvent itself does not ever need to be computed. S

In order to make these ideas more precise, we introduce some notation. Let X denote

the set of functions (0, u, w, h). We introduce an inner product by

29/a 
(XI,X2) 0102 + lIU 2 + Iw 2 dzdz -

+ f W/ 1602 + GIlu2 + tDIw2 dzdx

+f 2 h1 h2 dx (10)

to generate a Hilbert space. In this Hilbert space, we consider the subspace determined by

the "Hodge projection" (see space H in Theorem 1.4, Ref. 11), that is, by the conditions

that the velocity field be divergence-free, that the vertical velocity vanish at the bound-

aries, and be continuous across the interface. By L(e)X we denote the right hand sides

of equations (4),(5) and (8). We regard L(e) as an operator in the subspace so that the

conditions on w in C6) and (7) and the normal stress balance in (7) are an integral part

of the definition of L(e). The domain of definition of L(e) is determined by the rest of the

boundary conditions in (6) and (7), which we write in the form B(e)X=0. The range of 0

the operator L(e) must satisfy the following conditions in order for the pressure p occuring

on the right sides of (4) and (5) to be determined as a function of X: The "velocity part"

of L(e)X must be divergence free, the vertical velocity must vanish on the walls and be

continuous across the interface, and the jump in p across the interface must be given by the

normal stress balance. Thus, the problem we wish to solve is: for small e, find a satisfying 0

10 ~
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-..i .. ,

LIcQX - X,11)::.

L(e) = Lo + L +0(( 2),

B(i) = Bo + tB, + 0(2).

Explicitly,
- ef + PW u" -.

LOX +PA
+ RPO + PA ...W)

in fluids 1 and 2, and

LIX -- , ,'

0/

in fluid I and

S+ (,,,-)P A U-9 H188l
, + ORPO + ( -)P A w -

0

in fluid 2, where denotes the 0(c)-perturbation to the pressure,

- e2 at 2=11l"

1 -u02 at z=11
:.. BOX -- .y - ii at , I '.-..-

-eat z 0,1 '

U-U at Z=11

-- "L -, at 2"t
O at z = 11

and -h at z = 11..

"" - - ) at z =
0at z = 11 :...:": eX = ~-ph( + Ef". ) at z ,:.:

0 at z = 0,1
0 a t z = O, 1. . . .

.. -.-
-A4.



With the above definitions, we are now ready to look at the resolvent of L(c) and then

to redefine the matrix in (9). Since ( is small, the eigenvalues of L(e) are close to those of

Lo, so that the A in the resoivent should be chosen well away from zero. We choose A 1.

Hence, instead of looking at (I]) directly, we study the equivalent problem

(L(c) - i)-IX - (a - 1)-'X =: 6X

and perturb around 6 = -1. We note that the definition of (L(e) - 1)-' already in-

corporates the boundary conditions. The relation (9) is applied to this problem. The i i

determinant of the matrix

%,,) = (b,, ((L(c) - I) - ' - a)-,) + O(2), ij = 1,2, (12)

where the bi and a3 are as before, is set equal to zero. We will require an expansion of

the resolvent in powers of e in order to carry out the calculation of tij. We note that the

inverse of Lo - 1 is defined. Since parts of the calculation are rather lengthy, they will be

organized into several appendices of this paper.

We first have to find the boundary value problem adjoint to (11). This is done in

Appendix A. Then we determine the generalized eigenvectors at t=0 for both (11) and the

adjoint problem. These are denoted by an,a2 and bl,b 2 , respectively, and satisfy:

Loa,= 0, Boa, =0,

Loa 2  a 1 9 Boa 2  0, 3-

LoOb = 0, Bob = 0, (13)

L~b2 =b9 B.b2 =0.
* ..- *.

12
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The generalized eigenvectors are determined in Appendix B. In order to apply formula

(12), we must determine the expressions

(b,,lL(e) - 1)-'o) (14)

to first order in E. To facilitate this calculation, we introduce xand xJ defined by

(L I) - l)-'a = + +i o1). (15)

Equating the coefficients of equal powers of E, we find the equations governing z andz

(Lo - l)x -a,

Bo 0 0, (16)

and

LI °z + (Lo - 1)z! =0,

B, ° + Boz' -0. (17)

From (16), we immediately find z° = -aI, 2 -a 1-a. We will not need the solutions x

to the perturbation problem (17) but only certain inner products involving them, namely

(b;,z!). This is seen from (12) and (15):

) (b1 x9) + t z! - 6 (b1, a.) + 0( 2).(1

We calculate (bi, z! from (17): .--.--.

(b,) = (b,,LIx) + (b,, Lox,), (19) _

13
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* and an integration by parts:

(bi, Loxi) =(L~bi, x;!) + bouandary integrals, (20)

* where the boundary integrals are evaluated using the second part of (17). (The boundary

integrals would vanish if Bfz4 were zero.) Details of these calculations are in Appendix C.

In the following section, we discuss the solution of the eigenvalue perturbation prob-

*lem, which now reads dett,, 0, where 9is given by (18).

* 14



4<N.

4. RESULTS AND DISCUSSION

We set # = -I + re 1I2 + r2f +O(E3 l2 ). Since a = 1+ 1/,

0 = - (I + 72)( +. Q(3I2

For the irst-order term, we find (see equations C2, C5, C7 and CIO of Appendix C)

Pr2sin2  (9cot 7 + 2 r"r - 2T+ 12 (0 + I)1 + (). (21)
2. 3(P+l1) 29qo~ri- I T

S ..

The sign of this quantity determines whether the eigenvalue splits into real values or

complex conjugates. We note that, in the situation studied by Renardy and Joseph ', ,

F and S were 0, and i was positive. (Their boundary conditions are different from ours,

nevertheless, we expect some qualitative similarity). They find complex eigenvalues, in

agreement with the prediction of (21). It is also worth noting that (21) does not involve

the viscosity ratio, and that the sign does not depend on the Prandtl number.

If T2 is positive, we always have instability. However, if r? is negative, we have to find

rv + r2 in order to determine whether the perturbations are stabilizing or destabilizing.

Unfortunately, the formula for r2 is not nearly as simple as that for r, (see equations C5,

C6, ClI, and CIS of Appendix C). We find

2 sin2 It 2-
2

sin ' (Pwcos 1 (-3+9 j- )+ IP)sinli''r2 + p) 2 2-""

1 2

A ." .

+ 11l)tosx/, + P 4 .e [CIlQ2- 7r/2)2Q, coshQI1,1-J"

+ 3 coFs2 l 
...

4+1i'I + I, si+ I

1r2  1 12""

+(M, + 9PS)(2Real[esinhQI + (1 + 1 cosz1I)

....L,..

" " ,&-* **%**" ***,*.*.*.*.....*..., .. . .' . :,, . .•.. . . • ,.. . ,. ,. '. , .. . ,... ... . .,.._..'p.,'.,'p . ' ' p. ._ ,, .,_ 'p . , . ,' , . . --.



w- d7 7°P

.,9rP- - t - t -~l,"))).
4sin Irl, n "
+s (120 + *I 0-) + -- ~'-f-h -

+ 12/ 2 (p+ (1 + (22)
+ 13 ( -! P) P+ CP(icot 1 2 + (22)

where fl, is defined after equation (8), cn and Qn are defined in Appendix B.

We examine some limiting cases below. If the Boussinesq approximation is to be

justified, then &,AT* must be small', e.g. I = 5.10-4K - 1 and AT* < 10K. For the

purpose of computing graphs, we have taken &,AT = 0.001. As P -- oo, both r and

T, + r2 approach finite limits. IRA

Case i. 6 0,= r=/ = = 0. If 9 < 0, then r2 > 0 so instabilities are exponen-

tial in time and leads to mixing. If 9 > 0, then r < 0 so the surface tension opposes the

tendency for convection. However, whether this leads to a growth or not depends on the

sign of (22) which depends nonlinearly on 11 and the Prandtl number. Fig.2 shows this

dependence to be r + T2 > 0 so that a is stable and oscillatory.

Case ii. 0.S= =/= = 0. Since &AT* is small, r2 and F have the same

- signs: if Fluid I is the less dense fluid, a convective instability takes place; if Fluid 2 is the

*., more dense fluid, stable wavy modes occur. The graph of rj + T2 versus 11 for 7 < 0 is

similar to Fig.2.

Case iii. A ;6 0. === =0. The signs ofT and are opposite. A heuristic

explanation is as follows. In the Boussinesq approximation, the density at any depth 11 in

the buoyancy term of the momentum equations is approximated by pi(I -&,(T' - Tj)), i =

1,2 where (T- - Tj)/AT- = 1 - z + 9. Hence, at a depth z which is close to the interface

z = I, the densities are approximately pi(i - 64 2 ). Therefore, if / < 0, the lower fluid

is less dense than the upper fluid, locally at the interface, so that T2 > 0. On the other

* 16
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Fig. 2
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hand, if > 0, then the lower fluid is the more dense and r2 < 0. Fig.3 presents T2 + r2

versus 11 for = 1, showing that for a wide range of 11 close to 0 and of Prandtl numbers

greater than 0, there are unstable oscillatory modes. These modes are Hopf bifurcations.P

Cae iv. 0., = S = B = =W 0. The dependence of r tol is through - sin2wt.

Hence, if the thicker layer has the lesser coefficient of conductivity, (i.e. if > 0 and .

0.5 < 11 < 1; or if < 0 and 0 < 11 < 0.5) then convective instability results. If the

thicker layer has the greater coefficient of conductivity, then time-periodic modes occur,

but whether these would be stable or not depends on the sign of r, + r2. Fig.4 shows..

a wide range of unstable oscillatory modes for 0 < 11 < 0.5 when 1 1. This graph is

antisymmetric about 11 = 0.5, as can be deduced non-trivially from the equations. We

note that when the Auid with the greater conductivity occupies most of the flowfield, the

stability of the time-periodic eigenvalue a depends on the Prandtl number: if the Prandtl

number is very small, the oscillatory modes are stable, and if the Prandtl number is well

away from 0, the oscillatory modes are unstable. . -

Case v. f 3 O.t F 0. We find that r2 = 0, and Fig.5 shows r2 + r2

versus 11 for various Prandtl numbers. If Fluid 1 is the less viscous fluid, then there

is stability, and if Fluid 1 is the more viscous fluid then there is convective instability, I

* regardless of the depth ratio, in agreement with heuristic expectation.

Case vi. 1 * O. = = S = = = 0. The ratio -y of thermal diffusivities plays a

* similar role here to the ratio m of viscosities, which measures the rates of diffusion of

momenta. As in Case v above, r, = 0 and the graph of r? + T2 versus 11 is shown in Fig.6.

If Fluid 1 has the lesser coefficient of thermal diffusivity, then a is stable. If Fluid I has

18
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the greater coefficient of thermal diffusivity, then convective instability ensues, regardless

of the depth ratio, as expected.
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APPENDIX A: The adjoint problem for E=O

We denote the domains occupied by the two fluids by

fl0 = {< < z < 2r/a,O < z < L1}

and

f12 = {< _ z < 27r/a, 11 z < 1}.

We denote the interface by I, and the lower and upper boundaries by r, and r2, respec-

tively. Let X1 = (O,u,w,h) and X2 = (EO,u',w,h'). Asterisks denote the adjoint. We

have

(xLX\0p*.el .8p
(X2,LoXl)=f OAe+o'w - -+PV Au-IL -+RPr°O+Pro* Aw OPP-

+ ) + O'W - fs* + Pa" A U - W* L- + RPt*O + Pb* A w ..

+jh vi. (A i

We integrate by parts and obtain, using the divergence condition div u = div u= 0,

(X 2 ,LoXI) = O(AO- +RPtVD) +u(PA V -" +w(PAa"- -i +--

C, U aft ,-W a+/ + pf) + PU P + -W + a" T- - "

Oz " +i- w(P CA c," -I 0-", z " :

a@ aea* Clu alf& C7W 8tr
f 82 'z 49Z Cz 8z 8 +P 8 +tpt

S- au. 811*

+ -°-- + f- - +P° + -- 0 Pf* -zP ++ p-l" .....

+jZj+ 8z 8z 8z

aw atIv _

+Pt0)" _Twj P j ] -. (A2)
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From this, we immediately read off the adjoint differential operator to be given by

e-+ RPw'...: ~ ~ A U" - (3 :"-
L ,X2 P(A3"+)"

PAW, --...

Moreover, since X, satisfies the boundary conditions (6) on rF and 1r2, the integrals over

_l these boundaries vanish if

•W* O" 0 . (A4)
.z

Into the interface term in (A2), we add -.
|I

-Po*( + -)+ P,,( + ):-

which is zero. We integrate the x-derivative by parts and use periodicity. This yields

a8u aw ail 8tb*
h-W,~~~~, + 0,0 e( U'd0 z ax az a x

- 2P5z) + w(p" - 2P-z)]] (A5)

From this we find the adjoint interface conditions:

ffe")] =0,

=09
I

S[[Ul =0, (A6)

[W-.] =0,

au.-0 , 
..

-[ - 2P aw ] + h =0.

25



APPENDIX B: Eigenfunctions of the unperturbed problem

If e=O, the variable h does not occur in the right hand sides of (4), (5) ,(8), or in the

interface conditions, and we have the eigenfunction

I0\.

a1 = 0 (BI) ____-

The equations (4)-(7) are precisely those characterizing the one-fluid B~nard problem. The

eigenfunction for this problem 1 now yields a generalized eigenfunction:

I sn WS

e Lw cosr z
sin rl 1  sin'z ('2)

0]

The adjoint equations agree with the one-fluid B&nard problem if we set h" = 0. Thus the

eigenfunction of the one-fluid B6nard problem yields the eigenfunction for the adjoint:

,,X~i =wo i7Z::.
be 0 (B3)

sin 7rz

The generalized eigenvector b2 of the adjoint satisfies

L b2 =b,

B;b2 = 0.

This leads to the equations:

AO" + RPw" = P7r e sin z,
2

PL a p' e - cos wz, (B4)
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PA W" + "-P--- e ' sin 7rz ,

az
8z -.-,-

a--. + o-- = o

We set w" = w 0e'a etc., and obtain by combining the equations:

(62 a9)W, r r 4 (1 + P)sin irz. (BS)
(a)3w - --. '- "1-+

The general solution of this equation is • -.

w= cj sinh QIz + c2 cosh Qz + cs sinh Q2z + C4 coh Q2z +

+cSsinz + c6 coz -( + -)zcosffz (B)

in fluid 1, and --

w= d, sinhQj(z - 1) + d2 coshQi(z - 1) + d 3 sinhQ 2 (z - 1) + d4 coshQ 2 (z -1)

+ds sin ,(z - 1) + d6c ,(,- 1)O- -1 + -)z COB a (M7)
61r P

in fluid 2, where

Q= = / ,i/'2 eQ'2 (B8)
2 2

.. and 4 is determined by cos4 = 5/v'52, sinO = 3V4/52. The coefficients c, - c6 and

dl - d6 must be determined such that the boundary conditions &e satisfied. By using .

(B4), we can show that the conditions (A4) at the walls reduce to

=; -W = W; . (B9)

At z=0, this yields :..:

C2 + c4 + CO 0,
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Q ~ 2+QC4 =0 (BIO)

Q4C2 + Q4c + W4c6 0.

1. 14 2C

From this, we obtain C2  C4= C6 0. At z=], we find

41 +14+d +I( 1 06v

Q~~d2+Q~d 4 -w~oM (I +~)O B1

QId 2 +Qd 4+wdi -- (I +- =.

This yields d2  d4  0, d- * (+.) The first five of the conditions (AM) lead, after

eliminating u* and 0e from (B4), to the conditions

[[ W;]] [[V!Q] 11 [['ZWO1

=[[dSW; f2 SWoI -0. (B12)

* We can set the coefficient d5j to zero for the following reason. The coefficient ds multiplies

wo sin 7r(z - 1) in the generalized eigenvector. The eigenvector b I has wo sin urz. Since

* any multiple of bl, added to b2 , i.e. b2 + Cbj, is also a generalized eigenvector, we choose

* C to be 4. This essentially gets rid of ds in 012, replaces cs in fl by es + ds, and we

* rename es + 4r as cs. We thus obtain the following system of equations.

czsinhQ 1L 1 + CasinhQ 2 11 + c5 sinirL, -dlsinhQ 1 2 - d3 sinhQ 2l 2 +decoswl12,

c1Q1 coshQ1L1 + C3 Q2 coshQ 2 11 +irc 5 coswl1 = Q~d1 coshQ 1 12  ::

+ QdA coshQ 212 + irdr sin W12,
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4 aQsinh Q I I + C3Q2sinh Q2 1, s r~in AL I Qd I sinhQ 112

2Qd sinh Q212- rdcf1,

c Q4 sinh Q it + C3Q4 sinh Q211 + ir4CSsin irl, -Qldu sinh Q112

-Q~d3sinh Q2 12 + ?r d6 cos w12, (B13)

-IQ IrIQ3)coshQ I I + C3(Q5 -w
2Q3) cosh Q211 + 2esir5 coswl1

-d, (Q5 - , 2 Q3) cosh Q 112 + d3 (Q5 - w2Q3) cosh Q212 + 2d,07r sin x12.

*We eliminate c, from the third and fourth equations by using the first equation.

(Q2- Q~snQLc-(f sin iL~cs + ( -Q)sinh Q212 =(r+Q)sr1 2 d6 ,

(Q 3(Q 2  j 2) Q 2 (Q 2 - f2)) coshQ 2 Q L c + (2 -- f2)) C ciir7 c

- iQ2 2 ) +9(Q 2  1 2) cosh Q212d3 =(20~-q~ - -i))sinX112, (B 14)

(Q4 - ~sinh Q2L11C3 + (ir I Q)ifLc+(Q Q)sinh Q2L2d3

2 (1f - Q'I)csiWIz4.

The first and third equations of (B14) yield

es d6 Cot ff12, (BIS)

and

C3 sinh Q2 11+ d3 sinh Q 2 12 =0.

The second equation of (B14) yields

C3 coshQ 211 C3 ccoshQ 2 12 = ido( + i
* 2Q2 sin Af2
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Hence,

deir(I + V3i) sinh Q212
2Q 2 sinw l2 sinhQ 2 ' (B16)

and

""da3 = + 1)i)sinhQ2 1 (d" 2Q 2 sinhQ 2 sin rL2 (-1"

From the first and second equations of (B13), we find that c is the complex conjugate of P

c3 and that di is the complex conjugate of d3 .
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APPENDIX C: Evaluation of inner products ".5%

We first calculate the boundary integrals that arise in (20) and then the entries of

the matrix *,j defined in (18). We denote bi = (O',u',W',h') and x9= (e9U-WI).

In addition to the boundary terms arising in (20), we also integrate the term arising

from I in (6i, L1z ° ) by parts. This yields another integral over the interface, which we

combine with those from (20) into an expression rij. The form of ri can be read off from

the calculation of the adjoint in Appendix A. The terms remaining in (bi, LIz ° ) will be

denoted by ((bi, LIz°)). We thus have

(biL + (b,, Ll (L;b,,z + ((b,,i Lz) + r,,

where

a - W2~

-ro*(-2PMT + h(M + -- PS))dz (Cl)

Here, the interval of integration I extends over one wavelength in x, at z = 11. Hence,

equations (19) become:

(6 1 ,x~).= T 1 1 .

(b,, 2 - r, 2 + (bjO)

(b2 ,z I) = T21 + ((b2,L1 z')) + (b1,z'), (C2)

b2,4X = r22 + ((b2,L.To)) + (b 1,x),

where

F11  2Vf2(9P-cosxr1i A 1 +-S sin wl 1),
2 2
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a - **- .i - . -. 'h , o . ,-. " . w-o . o.o - ... . . .. . ° . ° . . . . -.•n

r12 = ~2i(Pircou il-s3 + 9 - ,) + 1 + sin t,),

and
z 2r21,2!( - +ID;(M, + yjPa#))a=, -:5 '

-. _3 s2(oS oQ + .Qsj
+(I + rjfIr +a 11+ sin xl,) :4 sin2 21

+(/i+j-P,)(cisinhQi1 + esinh Q2 1 + (I + cos cW,))..

We will see later that r 22 is not required. Since Liz, vanishes in both fluids, the first

equation reduces to (b,z) = rI1 . Since z, = -a,,

*i(E,&) = -(1 + &)(b,,a,) + er,, + oe).

We find that (b1 ,a 1 ) = 0 so that

(,b,) = cri, + o(e2). (C3)

0S
Since z2= al - a2,

%1 2(, ) = -(1 + )(b,,aO) + e(r 12 + ((b,, l,20))) + 0(2)

We set

-1+ TIC I/ 2 + 72E + O(e3/ 2 )

so that

I1(EU) = -Veirl(bi,as) + e(-r 2 (b1 ,as) + r, 2 + ((b,LzT))) + O(e/2). (C4)
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We have

12v '9wsi 2 rz w icerz 2(bI, a2) =sin irt a Jo 2(W 2+ 02) + a +r irzdz(Ci

3,/2(I+ P)
Sir) wi

* and

((bL x02)) = siw, r~1 sin2 wz)dz

+ sinj~ wz( Pr P2L+Pr2 ~P~in -Pir +)+ 3PMw Cos xzdz
2 2 2 2

- 2 i(9 20 + ~ M +Pw sin 2xL,(+ f -j-)) (C6)
sinil, 4 83

Next,

02=e& -(1 + &)(b 2,al) + 10 2 1 + (bl,,4) Qi

We note that

(b2,al) =(b 2,Loa2) =(Lb 2 ,o2) =(b,,a 2). (C7)

Hence,

21(, y -.'ir1(b1, a2) + e (r 2 , + (b 1,z) + 1 (/) (C8)

We find

*22(Ef,&) =(b 2 ,XO) - (-I + vrerl)(b2,a2) + 0(4

-(2,= - V/er,( 2 a 2) + 0) (C9)

* Collecting the 0(4)-terms from the equation det ji~= 0, we find
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Collecting the O(e 3 2)-terms, we find

r,12 + r + ((b,,LIA)) + - ( b2 ,a2)

2(bi, a2) (b, a2) '" •

We now need to calculate (b2, a2) given by

2w f1  ''O sin rz ixcos rzt
(b2,. 2) = in{ +-2+2) + + Win7z dz, -

where b2 = (6 ,u,,h*) and a2 is given by (B2). We express the integrand in terms of

w*~ by using equations (B4): ift = ' and * = 3sin irz + -4E A2 t. Hence, -

2V2 I +o' f. )4P A2 -"'
ab,.2 ) - 1 {i+( + , 2 

t* sin7z + 3ro' sinwzdz}.

Integration by parts simplifies the first integral as follows:

fAiisinwzdz =sin71[[-- I + -i- J * sinrzdz,

so that we are essentially left with having to evaluate [[y-]] and f b* sin wzdz and

substituting them into

2V2 1 4Psin ri al 8 
Ut,- / ..- -} C2

(b2 ,a 2 ) = 4 t J+ 3 (1+P) T sinzdz. (12)si7- 1  2+ 8Z3J

The former is facilitated by multiplying equation (B5) by sin wz and integrating by parts. S

This leads to

arbs* l l  3w2 (1 + )
"LOz3JJ = 4sin l "'(C13)

From Appendix B, we have
5., ." .,

W cl sinhQz + c3 sinhQ 2 z + cSsinirz -+ zCosz
67r
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w7S

* in fluid 1 and

W disinhQ I(z- 1) +d Bsinh Q2 (Z -1) + j-(1+ -(I -z)cosrz

in fluid 2, with the coefficients given by (BI5) - (B1 7). After some algebra, we find

f 0b sin 7zdz V, (+ (Lcot r12 +21 I). (C14)

* Using (C12) - (C14)1

2_V2_ P (I+p) 2  I(b2, a2 ) Vi~ + + 1 Cot W12 + -).(CIS)

7rsinxL1  7r 4P 2,x

W

.04 ---

* 35



REFERENCES

1P. G. Drazin & Wd. H. Reid, Hydrodynamic Stability (Cambridge University Press,

Cambridge, 1981), p. 50.

MK. Smith & S. H. Davis, J. Fluid Mech. 132, 145 (1983).
3 D. 1. J. Hurle & E. Jakeman, J. Fluid Mech. 47, 667 (1971).

4p
4G. W1. T. Lee, P. Lucas & A. Tyler, J. Fluid Mech. 135, 235 (1983).

5R. S. Schechter, N. G. Velarde &J. K. Platten, Adv. Chem, Phys. 26, 265

(1974).
6T. G. L. Shirtcliffe, J. Fluid Mech. 57, 27 (1973).

YRenardy & D. D. Joseph, Phys. Fluids, to appear.

8F. H. Busse, Phys. Earth Planet. Inter. 24, 320 (1981).

9F. H. Busse, Geophys. J. R. astr. Soc. 52, 1 (1978).

V.~ A. Yakubovich & V. M. Starzhinskii, Linear Differential Equations with

Periodic Coefficients 1, Halsted Press, Jerusalem, 285-296 (1975).

1R. Temam, Navier-Stokes Equations, North-Holland (1979).

YR/MR/Jvs

36

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~! A. *..N'~ >K* .**.-** *... ~ ..... *



SECURITY CLASSIFICATION4 OF THIS PAGE ("ohn Date Ent~@j_________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
REPOT DOUENTTIONPAGEBEFORE COMPLETING FORM

1. REPOT NUMBE GOVT ACCESSION NO. 3. RECIPItNT'S CATALOG NUMBER

4. TTLE And ubtile)S. TYPE OF REPORT 4 PERIOD COVERED

Perturbation of a Multiple Eigenvalue in the SmayRpr oseii
B~nard Problem for Two Fluid Layers reporting period

6. PERFORMING ORG. REPORT NUNSER

7. AUTNOR(e) S. CONTRACT OR GRANT 'UMSER(s)

Yuriko Renardy and Michael Renardy DAAG9-80-C-0041

9. PERFORMING ORGANIZATION NAMIE AND ADDRESS 10. PROGRAM ELEME~rt PROJECT, TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS

610 alnu Steet iscosinWork Unit Number 2 -
610 alnu Steet iscosin Physical Mathematics

IMadison. Wisconsin 53706 ___ _______

11. CONTROLLING OFFICE NAME AND ADDRESS IL. REPORT DATE
U. S. Army Research Office December 1984
P.O. Box 12211 13L NUMBER OF PAGES
Research Triangle Park. North Carolina 27709 36

I.MONITORING AGENCY NAME & ADOREKSS~lf diffetent hose CIond Office) If. SECURITY CLASS. (at this repo"t)

UNCLASSIFIED
ISa. DECLASSIFICATION/OOWNGRADING

SCHEOULE

IC. DISTRISUTION STATEMENT (of A@ e powd)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (.f Me. abstract seme in Sleek 20. If d~fleted Ion Repo"t)

IS. SUPPLEMENTARY NOTES

W. KEY WORDS (CaoIlrme an revers olde it neces~ary oW olntitp by Maock teinbge)

Overstability, Ednard instability, Two-component flow, Convective instability

20. ABSTRACT (Continue an reverse side if aneeauv mn, Identify by block momber)7
In a recent paper, Y. Renardy and D. D. Joseph study the B~nard problem

for two layers of different fluids lying on top of each other and bounded by
Iwalls. Their study shows that, in contrast to the B~nard problem for one fluid,
the onset of instability can be oscillatory. The number of parameters involved
in the problem is large, and there is yet no comprehensive picture of when the
instability is oscillatory and when it is not. The study of limiting cases,
accessible by perturbation methods, may be helpful in this respect. In this
paper, an analysis is given for the case when the properties of the two fluids

0 F1'ORM 143 91I0 FI04V6 5OSLT are nearly equal and the f luids are allowed tuDo ~ *.~ EDIIONOF~ OVO IS SSOETEUNCLASSIFIED slip at the boundaries.
SEICURITY CLASSIFICATION OF THIS PAGE (When oes Engted)

.. ~. .* .. . . .

..Z. .



FIME

2-85

DTIC


