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u-) Control strategies in most complex problem-solving systems, though highly

parameterized, are not ad ptive to the characteristics of the particular task being solved. If
the characteristics of the task are atypical, a fixed control strategy may cause incorrect or
inefficient processing. -WA presentsan approach for adapting the control strategy by
introducing a meta-level control component into the problem-solving architecture. This

J meta-level control component is based on the paradigm of Fault Detection/Diagnosis. - k /
presentation will concentrate on modeling the problem-solving system and on the inference

WJ, techniques necessary to use this model for diagnosis. I feel that meta-level control .
* ,.- based on the Fault Detection/Diagnosis paradigm represents a new approach to introducing

more sophisticated control into a problem-solving system. - --

1.0 INTRODUCTION

This paper explores the use of meta-level control in a problem-solving system to ,--.

adaptively change the system's control parameters in order to make problem solving more

robust and efficient. In many complex problem-solving systems the control strategies are
This research was sponsored. in part, by the National Science Foundation under Grant MCS-8306,7
and by the Defense Advanced Research Projects Agency (D)OD). monitored by the Office of Naval
Research under Contract NR049-49. ,'/
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2 Introductlon

highly parameterized. These parameters control decisions such as:

1. what importance to attach to information generated by different sources of
knowledge;

2. what type of search to perform (e.g., breadth vs. depth first; data vs. goal .. :.

directed);

3. what type of prediction to generate from partial results;

4. what criteria to use to judge whether a solution is acceptab.c.

These parameter settings, which are often determined in an ad hoc manner, are based on

typical characteristics of the tasks being posed to the problem-solving system and the

characteristics of the problem-solving system itself. Even though such a parameterization -

makes it relatively easy to change control strategies, the system is rarely allowed to change

its own control parameters as the task or system characteristics change during processing.

Thus, if the characteristics of a particular task are atypical or the system characteristics"
L

change during execution, the resulting incorrect parameter settings may cause inefficient or

incorrect processing.

Our approach to adapting these problem solving control parameters is to introduce a

meta-level control component into the problem-solving system architecture, based on an

extension of the Fault' Detection/Diagnosis (FDD) paradigm [DAVISZ, GENE82a] to handle

problem-solving control errors resulting from inappropriate parameter settings. The FDD

system has three components: the Fault Detection module, the Fault Diagnosis module, and

the Strategy Replanning module. See Figure 1 for a diagram of the system architecture.

The Fault Detection module monitors the state of problem solving in orde to detect when

the problem-solving systems behavior deviates from the expected behavior. The criteria for

expected behavior are based on standards for acceptable problem solving performance and

internal consistency in the problem-solving system data base. Examples of detection criteria

are:

1. a large number of highly rated processing goals not being achieved;

2. tasks on the problem solving agenda being too low rated or the agenda being
empty;0

3 Prevous work has examined this approach in a distnibuted prom cl e nvironment where it is
likely for proceon. communication channels, and sensors to be faulty [HtDL848.

We use the term fault in a very liberal sense to include inappropriate pa rmter vathue -don
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3. low credibility of intermediate remits or contradictory information being

generated;

4. result not being produced in a timely fashion or no results being produced for
problems where a solution is expected.

If such a situation is encountered by the Fault Detection module, the Fault Diagnosis

module is invoked to analyze why the situation occurred. The Diagnosis module, using a

detailed model of the problem-solving system and the current state of problem solving,

determines which control parameter settings were responsible for reaching the undesirable

* situation. A Strategy Replanning module is then invoked to adjust the parameters so that

appropriate problem solving activities are performed. .

This approach to meta-level control, which involves adapting the control strategies, is

a generalization and extension of earlier work by Hayes-Roth and Lesser on policy

knowledge sources for Hearsay-fl (HAYE77, the Hayes-Roths multi-level control structure°L

for planning [HAYEgl], and Wileusky's work on meta-level control [WIEgl]. It is,

however, much different in character and emphasis from the work on meta-level control by

Davis (DAVISO), Genesereth and Smith [GENES2b], and B. Smith [SMJTS2]. Though the

general frameworks they posit for meta-level control can be used to build the type of meta-

level control proposed here, their emphasis is different. Their work is oriented more

towards how to layer control knowledge within a single uniform inference framework to

accomplish each control decision rather than the type of knowledge and inference required to

introspect about the behavior and the performance of the system. It is this latter

orientation which will be the focus of the remainder of this paper.

" We will illustrate the use of our approach to adaptive control by examining the

knowledge and inference structure necessary to implement the Fault Diagnosis module for a

problem-solving system based on a goal-directed Heanay-f architecture, the Vehicle

Monitoring Testbed (VMT) (LESS83]. The task of this system is to interpret acoustic

signals produced by vehicles moving through a two-dimensional are and generate a map 1 74

* of the environment, indicating what types of vehides there are and what paths they took.

, Section 1 describes how we model the VMT system structure and function. Section III

, illustrates by way of example bow this model is used by the Diagnosis module of the FDD

system to diagnose a faulty parameter setting. Section IV describes the status of the

* system and directions for future research.

... ,.'Z.,
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4 Mdeling a Fralem.'&lvng System

2.0 MODELING A PROBLEM-SOLVING SYSTEM

This section describes our model of the Vehicle Monitoring Testbed (VMT) problem-

solving system and explains bow this model can be used to understand why the system

arrived at a particular state. The VMT system derives its results from the input data (see -"

Figure 2a) by incrementally consructing and aggregating intermediate level hypotheses

until hypotheses that reprset a complete map of the environment are generated. As

past of the processing of the system, the creation of an intermediate hypothesis causes the

generation of several types of goals. These goals are descriptions of the classes of higher

level hypotheses that can potentially be generated given the existence of the newly created

hypothesis [CORW18]. Once a goal has been generated, the system attempts to satisfy the

goal by scheduling and executing knowledge sources to produce the higher level hypotheses.

This is the basic system cycle.

The system behavior thus consists of a series of events. Each event results in the

creation of an object (e.g., hypothesis, goal, or knowledge source instantiation) or the

modification of the attributes of some existing objects. We can represent the system

behavior by specifying either the events or the changes these events cause in the system in

terms of their effects on the attributes of the system objects. We chose the latter as the

basis for our representation and model the problem-solving system behavior by a state

transition diagram (see Figure 2c). Each state represents a specific state of some object in

the VMT system in terms of its attribute values. Each state is specified by a schema,

which contains links to other states in the model (such as states preceeding it and following

it), pointers to the descriptions of the system objects the state refers to (these descriptions

of the VMT objects am called abstracted objects; see Figure 2b), and a constraint expression

over the abstracted objects attribute values. This constraint expression is evaluated during

diagnosis to determine whether the state has been reached by the VMT system; i.e.,

whether there exist objects in the problem-solving system whose attribute values satisfy the

constraint expression associated with the state.

For example, the proces of generating a hypothesis at a higher level of abstraction

from one at a lower level of abstraction can be described as follows: the creation of a

lower level hypothesis causes the creation of a goal to produce a specific result (i.e., the

higher level hypothesis) that incorporates the lower level hypothesis. This causes the

,, .'.. . , . ....,: ;'_',,,,,.,,_ ; '_,; ., ,';,.' ',',. '.','. ,'.--.' .- " "''.'.'2.2.2.;,',*,"."."."." ;
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scheduling of a knowledge source instantiation (KS!) which later executes and produces the

higher level hypothesis. In our model this series of events is represented as the sequence

of states: LOW-HYP-CREATED, GOAL.CREATED, KSI-SCHEDULED, KSI-EXECutES,

and HIGHER-HYP-CREATED (see Figure 2). The state transition arcs, which connect

the individual states in the model, represent causal relationships among the states. In some

cases there may be more than one state transition arc coming in or out of a given state.

For example, in Figure 3, states A, B, and C precede state D. The model needs to

represent the exact relationship among the four states. If all three states A, B, and C are

necessary before state D can be reached, then the relationship among the three states

preceding stateDilogical AND (Figure 3a). If any one of the states A, B, or C is

sufficient to reach state D, then the relationship among the three states is logical OR

(Figure 3b). aeer

States are related not only by their causal connections but also by constraint
,'.'. relationships among the abstracted objects associated with them. T1he abstracted objects are.--

represented as schemas consisting of a(ibute Me three s of Figure 2

illustrate how the State Model and the Abstracted Object Model and the actual objects in
the VMT system relate to one another.) Each object contains information that allows the

system to determine the values for that objects attributes using objects whose attribute

values are already known. Constraints among states can then be specified by states sharing

the same object or via the relationships among the attributes of the objects attached to the

states. For example, each HYP object (see Figure 2b and 2c) has an attribute LEVEL.

The relationships among the LEVEL attributes of the HYP objects attached to the states

LOW-HYP-CREATED and HIGHER-HYP-CREATED is expressed by the following sets of

constraints. The value of attribute LEVEL of object HYP attached to state LOW-HYP.

CREATED is obtained by calling the function GET-LOWER-LEVEL with the value of

attribute LEVEL of object HYP attached to state HIGHER-HYP-CREATED. Conversely,
the value of attribute LEVEL of object HYP attached to state HIGHER-HYP-CREATED

is obtained by calling the function GET-HIGHER-LEVEL with the value of attribute

LEVEL of object HYP attached to state LOW-HYP-CREATED.

The abstracted objects either point to existing objects in the VMT system or specify

characteristics of objects that should exist in the system. The ability to represent not only

objects that already exist in the problem-solving system but also objects whose existence is
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necessary in order for the system to achieve a particular state allows the model to serve as

the basis for a high level simulation of the underlying problem-solving system. This

simulation is accomplished by propagating attribute values among the interrelated abstracted

objects based on the causal relationship among the states.

In addition to reasoning about system behavior in terms of sequences of states, we

also need to reason qualitatively about how system object attribute values are computed

from the attribute values of other objects and from system control parameters. This

-requires modeling some of the internal computations performed by the problem-solving

system. n order to model the problem-solving system at this level, we use a model very

similar to the one used for modeling the behavior of the system. In this case, the states

represent values of attributes of the system objects, values of controls parameters, and

values of important intermediate states of the internal computation. The transition arcs

represent how the value of a state is computed from the values associated with the states

*that precede it. We are currently using a simple causal model in which the arcs are

labelled as either having an increasing or decreasing effect on the value of the state that

represents the result of the computation [CROS83]. Two states arc connected by an

increasing arc if an increase in the value of one state causes an increase in the value of

the other state. In some cases not shown in this paper, we also need to reason using the

exact formula representation of the computation.

The states in the model can thus represent different aspects of the underlying VMT

*" system. One of the attributes in the state schema is the STATEVALUE attribute. This

attribute can represent one of several aspects of the problem-solving system. In some cases

we are interested in whether a particular intermediate state has been reached; i.e., is there

an object in the VMT system that matches the characteristics of the abstracted object

associated with that state. In these cases the STATE-VALUE is true if the object does

exist, and false otherwise. In other cases we need to reason about the value of some

attribute of a particular object and relate it to the value of the corresponding attribute of

another object. For example, we need to reason about the relatively low rating of a

hypothesis with respect to another hypothesis. In these cases the SATE-VALUES

represent the relationships among two or more objects in the VMT system. The values of

the STATE-VALUES attributes are then low, high, or equivalent.

S7 ..-
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Modeling a ProtbmSolving System 7

The model is organized into dustes of states (Figure 4 illustrates three such dcusters).

Each cluster represents an aspect of the system behavior at some level of detail. The .

representation is hierarchical in that only certain events are represented at any one level of .- -'

the hierarchy. For example, the Answer Derivation Model represents only the answer

hypothese and their support structure in terms of intermediate hypotheses; vehicle track

(VT) preceded by vehicle location (VL) preceded by group location (GL). It does not

represent any of the knowledge sources scheduled and executed in the process. This

information is represented in dusters at a lower level of the mode hierarchy. Beause of

this hierarchical representation two states may be contiguous in one duster while in fact a

number of other states occur in between which are represented by a cluster at a lower

level of the model hierarchy. Equivalent states in clusters at different levels of abstraction

are connected via duster links. Objects may be shared across the different dusters. This

hierarchical structure allows fast focusing into the problem area during diagnosis by avoiding

detailed analysis until the part of the model that is relevant has been identified.

The system model represents a subset of all the possible system behaviors, which we

think is sufficient for detecting and diagnosing a significant number of faults. We call

this model the system behavior model (SBM). The SBM is used by both the Fault

Detection module and the Fault Diagnosis module. The Detection module identifies a

specific undesirable situation in the monitored system; i e., a specific abstracted object along

with an associated state. This state-obj ct pair constitutes the symptom detected by the

Detection module, which is passed on to the Diagnosis module. Diagnosis is accomplished

by constructing a representation of the current system state, constructing a model of how

this state was reached and comparing this with the correct system behavior as represented

by the model. Any points of departure from this expected behavior are traced to the

states at the lowest level in the SBM. These states are marked as primitive. A primitive

state that is found to be false during diagnosis constitutes a reportable failure.

The current system state representation is constructed using information from the SBM

and the VMT system data structures. The constnction begins with locating the symptom

state in the SBM. The predecessor states of this state are then found. along with their

S'The system model could be extended to reresent the code level of the VMT ystem. However
we have not found it necessary to reprsent the VMT system at such a low level of detail in
order to effectively reason about its behavior.

S:.:-.
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8 Modeling a Problem.Soving System

abstracted objects descriptions. First, the attributes of these abstracted objects are evaluated,

using the constraint relationships between the existing abstracted object and the one being

evaluated. Once these attributes have been evaluated, the Diagnosis module looks for the

corresponding objects in the VMbT system. If such objects are found, they are linked to

the abstracted object. Finally, for each abstracted object the corresponding state is created

and the STATEVALUE attribute is evaluated. Depending on the type of state and its

value, the type of reasoning may now change. The next paragraph describes the different

types of reasoning.

The underlying mechanism for all the different types of diagnostic reasoning is bi-

directional constraint propagation, which begins at one or more state-object pain in the

SBM whose values have already been determined. This constraint propagation makes

possible sophisticated diagnostic reasoning. In the next section we show how the system

model supports four different types of reasoning necessary to diagnose inappropriate

parameter settings: 44.

I. Backward causal tracing: given a particular state and its value the system can go
back through the model and explain, in terms of the model states, why that
state was reached.

2. Comparative reasoning: the system can compare two different objects and explain
why they were different, in terms of the model states.

3. Unknown value derivation: the system can determinp a value of an unknown state
in the system model by finding the value which is consistent with the known
values of the surrounding model states.

4. Resolving incoensisencies: having found two inconsistent objects, the Diagnosis
module can decide which one is correct by comparing both objects to a model
of an ideal or expected object.

3.0 AN EXAMPLE OF FAULT DIAGNOSIS

The following example (see Figure Sa) represents a scenario in the VMT system in

which the system is receiving data from two input sources; sensors, A and B. The two

sensors overlap, so some data are sensed by both, but because the system is more confident

about sensor B the sensor weight parameters are set such that the data generated by that

source are valued more than the data generated by sensor A. This results in the data

from sensor B being rated higb and the data produced by sensor A in the same area being

rated low. In the example scenario the supposedly reliable source of data for the
* 4,
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particular task (sensor B) does not in fact generate reliable data because it is

malfunctioning. It is instead generating very short noise segments that cannot be

incorporated into a single vehicle track. Because sensor Bs sensor weight parameter has

such a high value, these short noise segments are very highly rated. The goal of the

diagnosis is to recognize that sensor B is malfunctioning and change the sensor weight

parameters so that the systems begins to process data generated by sensor A.

A vehicle is moving through the monitored area, from left to right, generAting signals

at locations I through 8 (see Figure 5a). Sensor A senses all 8 locations but, because of

the sensor-weight parameter, locations 5 through 8 are rated low. Sensor B, because it is

malfunctioning, is not sensing the vehicle signals but rather is generating very highly

rated noise segments. The VMT system generates a vehicle track (VT) hypothesis

connecting locations I through 4 based on the strong data from sensor A (see Figure

5b). As a result of sensor A's data being weighted low in the area where signals 5

through 8 appear, sensor B malfunctioning, and sensor B's sensor weight parameter being

high, the knowledge source instantiation (KSI) that would extend the partial track to

include the location in time 5 is rated low. Because the short segments of noise generated

by sensor B arc rated high, they cause the scheduling of knowlege sources which are highly

rated. The system queue has a number of these highly rated KSIs that delay the

execution of the low rated KSIs which would extend the true vehicle track hypothesis.

As a result, the system spends all its time forming short segments from the noise signals

and the true vehicle track remains unextended.

This situation can generate a number of symptoms. Due to lack of space we will

illustrate the diagnosis by pursuing only one of the symptoms. The symptom we pursue

here is a highly rated goal, VMT-GOAL#I, which represents the system's intent to extend

the existing vehicle track hypothesis connecting locations I through 4 to include location 5

(see Figure 5b). This goal has remained unsatisfied for a long time and has therefore been

selected by the Fault Detection module as a representative symptom. Diagnosis begins with

the arrival of the symptom from the Detection module. A symptom consists of a state-

object pair; the unachieved state is GOAL-SATISFIED and the abstracted object is GOAL,.

OBJECT, which points to the object VMT-GOAL#I in the VMT system.

A KSI rating is a function of. among other thinp. the input data.

...............---... . .. .. . ............... .:



10 An Example of Fault Dtagnosts

First, the SBM cluster that contains the state GOAL.SATISFIED and it associated

abstracted objects must be located. This is the Answer Derivaion Model custer. The

relevant objects and states in this duster are evaluted, using the constraint expressions in

the SBM and the already evaluated attributes of the symptom state and its object. The

values of the states in this duster can be either true or false depending on whether

objects of the desired characteristics exist in the VMTf system or not. In this case the state

GOAL-SATISFIED is false because the associated object (VMT-GOAL01) has not been

satisfied in the VMT system (i.e., there is no vehicle track hypothesis connecting locations

I through 5). We continue backward causal tracing through the SBM model to the state

preceeding the GOAL-SATISFIED state: the state VT-HYP-EXISTS and its associated

object, VT-HYP. The attribute values of this object are determined from the attribute

values of the object VMT-GOAL#1 using the constraint relationships described in the

previous section. The state VT-HYP-EXISTS evaluates to false, since no VT hypothesis of

the desired characteristics exists in the VMT system. The reasoning continues backwards

through the SBM attempting to find the first state that evaluates to true (i.e., the last

point where desired system behavior stopped). Because a vehicle track can be formed from

a shorter vehicle track or a set of vehicle locations (VL) the state VT-HYP-EXISTS is

preceeded by the states VT-HYP-EXISTS' or VL-HYP-EXISTS. The objects associated with

these states are VT-HYP and VL-HYP respectively. Again, we look for the associated

objects in the VMT system in order to evaluate the states. In this case the objects are

track fragments containing locations I through 5, or the locations I through 5 themselves,

which could lead to the desired hypothesis. This brings us to another instantiation of the

state VT-HYP-EXISTS and object VT-HYP, this time with the hypothesis connecting

locations I through 4. Because such a hypothesis does exist in the VMT system, this state

evaluates to true. This is where the generation of the vehicle track that would satisfy the

goal VMT-GOAL#I stopped. The evaluated model is in Figure 6a.

At this point we cannot continue reasoning using the Answer Derivation Model duster

because it does not represent the events occurring in between the last true state (VT-HYP-

EXISTS; VT hypothesis connecting locations I through 4) and the first false state (VT.

HYP-EXISTS; VT hypothesis extending the hypothesis 1-4 through location 5). Anytime

'The state VT-HYP.EXISTS rccaats all track hypothess up to some fized track length.
Therefore it is a reflexive state, pointng back to itself.

V . -%



An Example of Fault Diagnosis 11

such a trucostate/falseotate pair is found, we must find the duster which represents the

states occurring between those two states. The duster pointed to by the VT-HYP-EXsT

state is the KS! Scheduling Model cluster shown in Figure 4b.

% We continue determining the types of objects and evaluating the states. The result

is the evaluated model in Figure 6b. We find another gap in the expected processing: the

KSI that would produce the desired hypothesis was scheduled but did not execute. Again,

following the cluster links, we switch to a duster that describes in more detail what occurs

in between the true state (KSI-SCHEDULED) and the false state (KSI-EXECUTES). This

is the cluster KS1 Execution Model in Figure 4c. We eventually arrive the state

KSI-RATED-MAX. This state represents the fact that a KSI must be rated the highest of

all the KSIs on the queue in order to execute. This state is false since the KSI that could

extend the 1-4 VT hypothesis is rated low with respect to the other KSIs on the queue.

The evaluated model is in Figure 6c.

The state KSI-RATED-MAX is a different type of state. Unlike the states

mentioned so far, which represent the existence of some object in the VMT system, the

state KSI-RATED-MAX represents a relationship among a group of objects; in this case, the

relationship among the knowledge source instantiations on the scheduling queue. Whenever

this type of a state is reached, the system switches to comparative reasoning.' This involves

comparing some attributes of two objects in the system: one that achieved a desired state

(in this case, the KSI that is maximally rated) and one that did not (in this case the low

rated KSI that would extend the VT hypothesis 1-4 to include location 5). The system

builds a model of how those objects were created and attempts to discover what differences

along the object creation paths were responsible for the different outcomes. Two slots in

the state schema are important here: the ACTUAL-VALUE slot, which represents the value

of the attribute of interest, and the RELATIVE-VALUE slot, which represents the

relationship among the ACTUAL-VALUES of the two objects in the parallel investigation.

In this type of reasoning the states do not represent the existence or non-existence of some

object but rather the relationship among the values of a particular attribute of some object

(for example the rating of a knowledge source or a hypothesis) as compared to the

'Comparative reasoninA contains many complexities which we cannot go into in this paper. For
more detailed description of the types of reasoning mentioned in this paper :e [HUDL8401 .

"



12 An Example of Fault Iagnosis

corresponding attribute of the other object in the parallel investigation. In this case the

relevant attribute is the RATING attribute of the KS! object. The two objects being

investigated here are the two KSIs (the low rated KSI to create a hypothesis connecting

locations I through 5 and the KS! which is rated the highest on the scheduling queue).

We investigate, in parallel, how the ratings of the two KSIs were derived in an attempt to

identify what caused the lower rating of the KSI that would extend the 1-4 track.

We first switch to a duster where the attribute of interest (KSI-RATING) is

represented by a state. This is the KSI and Hypothesis Rating Model in Figure 7. Because

we are investigating two objects we must instantiate two copies of this duster. One copy

will represent the creation of the low rated KSI that would extend the VT hypothesis

through location five (we will call this the low ksi path). The other will represent the

creation of the highest rated KSI on the queue (we will call this the high ksi path). We

begin with the state KSI-RATING. Because the rating of the KSI of interest is lower than

the highest rated KSI we assign the value low to the RELATIVE-VALUE attribute of

the state representing the relationship among the two values. We go back through the

SBM and find that what determines a KSI rating is the DATA-COMPONENT-RATING

of the KSI. We compare the data components of the two KSIs and again find that the

DATA-COMPONENT-RATING of the low-rated KSI is lower than the corresponding

DATA-COMPONENT-RATING of the high-rated KS!. We continue evaluating the model

for the derivation of the KSI rating for both KSIs, via the KSI data components at various

levels of abstraction (vehicle location, VL, preceeded by group location, GL, preceeded by

signal location, SL) arriving finally at a point that represents how the sensor weights and

the strength of the data signal determine the value of the sensed signal for each sensor.

Because the signal location rating on the low ksi path is lower than the signal

location rating on the high ksi path, the value of the state SL-HYP-RATING for the low-

rated KS! is low. We reason that in order for this value to be lower than the

corresponding value in the high ksi path, the two objects that influence this value (sensed-

value by sensor A and sensed-value by sensor B) must be rated lower than the

corresponding objects on the other path. When we enumerate the relationships among the

two pairs of sensed-values we get four relationships:

,'.'¢. . . . . . . .. . . . ...............
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I. Sensed-value for sensor A on the low ksi path < sensed-value for sensor B on
the high ksi path.

2. Sensed-value for sensor A on the low ksi path > sensed-value for sensor A on
the high ksi path.

3. Sensed-value for sensor B on the low ksi path - sensed-value for sensor A on
the high ksi path. (They are both 0 because no signal was sensed at that place
by the other sensor.)

4. Sensed-value for sensor B on the low ksi path < sensed-value for sensor B on
the high ksi path.

In this case the RELATIVE-VALUE attribute of the state SENSED-VALUE for SENSOR

A can have two values, depending on which of the corresponding sensed values in the

other path we compare the state to: the values are low for case 1 above and high for case

2 above. Because we are trying to determine why the SL-HYP-RATING is lower, we

follow paths to any states that contain a lower relationship. In this case, both the state

SENSED-VALUE of SENSOR A and the SENSED-VALUE of SENSOR B contain a lower

relationship so both are followed in parallel.

We have two paths to follow now: investigating why the SENSED-VALUE for

SENSOR A was low with respect to SENSED-VALUE for SENSOR B in the high ksi path

investigation and investigating why the SENSED-VALUE for SENSOR B was low, again

with respect to SENSED-VALUE for SENSOR B in the high ksi path investigation. We

first follow the path from state SENSED-VALUE for SENSOR A backwards. We reason

that the sensor weight was low, the data signal was low, or both. We then find that

value for SENSOR-WEIGHT for SENSOR A is indeed low compared to the SENSOR-

WEIGHT for SENSOR B. Because this state is a primitive state (no transition or duster

arcs connect it to any other part of the model), we can report this finding as one fault

responsible for the low KSI rating that led to the original symptom. We have found one

problem that explains the low KSI rating but the investigation is not complete. We still

need to find the value for the state DATA-SIGNAL and follow the path of low SENSED-

VALUE by SENSOR B. This latter path also leads to the state DATA-SIGNAL since it is

one of the predecessor states of the state SENSED-VALUE for SENSOR B.

Since there is no way of knowing what the actual data signal was, we must employ

the unknown value derivation type of reasoning where an unknown value is determined by

examining the values of the neighboring states. This type of rasoning is necesary anytime
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the state value cannot be determined from the problem-solving system's data base. In this

type of reasoning the ACTUAL-VALUE (or STATE-VALUE) attributes of the states

represent the value that is derived by looking at the surrounding states. Depending on

the types of values represented by those states, this value can be either the value the states

agree on or inconsistent if contradictory values can be determined from the surrounding

states. The unknown state is DATA-SIGNAL. We attempt to derive the value for this

state, which represents the actual value of the data signal in the environment, by examining

the ACTUAL-VALUE slots in its surrounding states: SENSOR-WEIGHT for both sensors

and SENSED-VALUE for both sensors. In fact we cannot find a consistent assignment for

*. all these states. According to sensor A the value sensed is low; according to sensor B, no

, value is sensed at all. The value for the state DATA-SIGNAL is therefore

-" INCONSISTENT. In a case where an inconsistency is discovered among two objects in the

VMT system we have to use inconsisrency resolving reasoning in which we compare the

two objects (in this case the two disagreeing sensors) with a model of the expected behavior

of that object (a sensor) and try to determine which one is correct. In this case we

compare the characteristics of each of the two sensors with the characteristics of an ideal

sensor which produces correlated data. We determine that data from sensor A is well

correlated (all data fits into one track) whereas data from sensor B is only correlated for

at most 2 location track segments. We therefore conclude that sensor B is faulty.

We have now found both reasons for the initial symptom (unsatisfied goal): the faulty

sensor B in conjunction with the low SENSOR-WEIGHT parameter for sensor A.

4.0 STATUS AND FUTURE RESEARCH

The basic model and the constraint propagation mechanisms have been implemented.

We are currently extending the system to handle the comparative reasoning. Currently

the system behavior model represents only the system behavior. It does not make an

attempt to represent the reasons for the expected behavior in terms of the system

architecture (e.g., a goal represents the intent to produce a hypothesis in the goal's area) or

in terms of the assumptions about the domain (e.g., the characteristics of goals based on

hypotheses that led to them). We believe that such deeper models of both the architecture

and the domain would increase the FDD system's expertise by allowing it to detect more

subtle errors (e.g., redundant satisfaction of goals) and to detect a wide range of faulty

d
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assumptons about the task domain. An example of the latter case is having a model of

bow the goal characteristics depend on the hypothesis characteristics, for example, the

maximum acceleration of a vehicle and its turning radius. We also believe that such a

deeper model of the problem-solving system could serve as a knowledge-base that the

system could use to automatically generate the complex criteria necessary for fault detection

and the knowledge needed to implement the Strategy Replanning module.

We feel that meta-level control based on the Fault Detection/Diagnosis paradigm

represents a new approach to introducing more sophisticated control into a problem-solving

system. In addition, the system can be of great help in debugging complex problem-solving

systems. It also presents interesting issues in modeling and reasoning about a problem-

solving system.
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