META-LEYEL CONTROL THROUGH FAULT DETECTION AND
DIAGNOSIS(U) MASSACHUSETTS UNIY RHHERST DEPT OF
COMPUTER AND INFDRHHTION SCIENCE HUDLICKH ET RL
UNCLASSIFIED 30 MAY 84 NO@@14-79-

AD-A149 064

P
o




&
=3
8
% 8
W
-2
Z <
Q&
T—'
38
x E

[}
£ g
ON
g2
oz
=

{ =
| = EE
.L —— — 2l

_ =_—— === =

LA

-

e S

OB . YT DI P g Fany 3  2um e § T ey - P . -
3 r g s e te T Ve v, RCIRCEAE N SN : \ 7 f PR TEXT T e v e e e e, s
,\tm X IR P PR SRS R A AN | e 'e ¥ [N RN LA AEA L e

Lt et o g . AR AN |




META-LEVEL CONTROL THROUGH
FAULT DETECTION AND DIAGNOSIS

Eva Hudlicka and Victor R. Lesser
Department of Computer and Information Scieace
University of Massachusetts
Amberst, Massachusetts, 01003
CSnct address: eva.umass-cs@Csaet-relay

ELECTE
May 0, 1984 JAN1 1185
Contract N00014.79.(C-0439
, (/ B
s/
/ T4.: docemert  ABSTRACT

\) Control strategies | in most complex problem-solving systems, though highly
paramecterized, are not adaptive to the characteristics of the particular task being solved. If
the characteristics of the itask are atypical, a fixed control strategy may cause incorrect or
inefficient processing. presents,an  approach for adapting the control strategy by
introducing a2 meta-level control component into the problem-solving architecture. This _. 3
meta-level control component is based on the paradigm of Fault Detection/Diagnosis. Que ‘ne guthre ool
presentation will concentrate on modeling the problem-solving system and on the inference 3
techniques necessary to use this model for diagnosis. )h\t feel that meta-level control

based on the Fault Detection/Diagnosis paradigm represents |a new approach to introducing
more sophisticated control into a problem-solving system.

Jhs
10 INTRODUCTION

This paper explores the use of meta-level control in a problem-solving system to

A

adaptively change the system’s control parameters in order to make problem solving more :::::fi-::
. '.\.'.- '.\

robust and efficient. In many complex problem-solving systems the control strategies are RENEAX
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2 Introduction '%

highly parameterized. These parameters control decisions such as: ‘

1. what importance to attach to information gencrated by different sources of r

; knowledge; Ay
2. what type of search to perform (eg., breadth vs. depth first; data vs. goal -.]

directed); o

“ 3. what type of predictions to generate from partial results; ﬁ
4. what criteria to use to judge whether a solution is acceptable. - ]

These parameter settings, which are often determined in an ad boc manner, are based on

typical characteristics of the tasks being posed to the problem-solving system and the .______:
cbaracteristics of the problem-solving system itself. Even though such a parameterization " 2

makes it relatively easy to change control strategies, the system is rarcly allowed to change ce]

its own control parameters as the task or system characteristics change during processing. :

Thus, if the characteristics of a particular task are atypical or the system characteristics’ .-:-.1

]

change during execution, the resulting incorrect parameter settings may cause inefficieat or

incorrect processing.

Our approach to adapting these problem solving control parameters is to introduce a
meta-level control component into the probiem-solving system architecture, based on an
extension of the Fault® Detection/Diagnosis (FDD) paradigm {DAVIS2, GENES2a] to handle
problem-solving control errors resulting from inappropriate parameter settings. Tbe FDD
system has three componeats: the Fault Detection module, the Fault Diagnosis module, and
the Strategy Replanning module. See Figure 1 for a diagram of the system architecture.
The Fault Detection module monitors the state of problem solving in order to detect when
the problem-solving system's bebavior deviates from the expected bebavior. The criteria for
expected behavior are based on standards for acceptable problem solving performance and
internal consistency in the problem-solving system data base. Examples of detection criteria
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are:
1. a large number of highly rated processing goals not being achieved;
2. tasks on the problem solving ageada being too low rated or the agenda being
empry;
? Previous work has examined this approach in s distributed proble cavironment where it is % R
likely for processors, communication channels, and sensors to be (anlty L84a). | e
? We usc the term fault in a very liberal scnse to include inappmprinc paramcter values. "“_' ::i:::::
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: Introduction 3
X 3. low credibility of intermediate results or cootradictory information being i
' geaerated; v
4. results not being produced in a timely fashion or no results being produced for :
: problems where a solution is expected. s
7 If such a situation is encountered by the Fault Detection module, the Fault Diagnosis f-_i_:i’
i . module is invoked to analyze why the situation occurred. The Diagnosis module, using a ,_-:
X detailed model of the problem-solving system and the curreat state of problem solving, L
L determines which control parameter settings were responsible for reaching the undesirable 5
{': situation. A Strategy Replanning module is thea invoked to adjust the parameters so that RS
2 appropriate problem solving activities are performed. “ S
This approach to meta-level control, which involves adapting the control strategies, is
; a generalization and extension of ecarlier work by Hayes-Roth and Lesser on policy
. knowledge sources for Hearsay-Il [HAYE77], the Hayes-Roths multi-level control structure Lr{
for planning [HAYES]), and Wilensky’s work on meta-level control [WILES1. It is, N
bhowever, much different in character and empbasis from the work on meta-level control by \.
Davis [DAVIS), Genesercth and Smith [GENESD], and B. Smith [SMIT2]. Though the e
general frameworks they posit for meta-level coatrol can be used to build the type of meta- L
level control proposed here, their emphasis is different. Their work is oriented more
towards how to layer control knowledge within a single uniform inference framework to 5.:
accomplish each coatrol decision rather than the fype of knowledge and inference required to
introspect about the bebavior and the performance of the system. It is this latter .
orientation which will be the focus of the remainder of this paper.
We will illustrate the use of our approach to adaptive control by examining the _:
knowledge and inference structure necessary to implement the Fault Diagnosis module for a —~—
problem-tolving system based on a goaldirected Hearsay-ll architecture, the Vehicle s
Monitoring Testbed (VMT) [LESSE3]. The task of this system is to interpret acoustic
signals produced by vehicles moving through a two-dimensional area and generate a map il
of the environment, indicating what types of vebicles there are and what paths they took. f;'.-_

Section I describes how we model the VMT system structure and function. Section INI N
illustrates by way of example bow this model is used by the Diagnosis module of the FDD
system to diagnose a faulty parameter setting. Section IV describes the status of the
system and directions for future research. \.
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4 Modeling a Problem-Solving System

20 MODELING A PROBLEM-SOLVING SYSTEM

This section describes our model of the Vehicle Monitoring Testbed (VMT) problem-
solving system and explains how this model can be used to understand why the system
arrived at a particular state. The VMT system derives its results from the input data (see
Figure 2a) by incrementally constructing and aggregating intermediate level bhypotheses
until hypotheses that represent a complete map of the cavironment are generated. As
part of the processing of the system, the creation of an intermediate hypothesis causes the
generation of several types of goals. These goals are descriptions of the classes of higher
level hypotheses that can potentially be generated given the existence of the newly created
hypothesis [CORKS2). Once a goal has been generated, the system attempts to satisfy the
goal by scheduling and executing knowledge sources to produce the higher level hypotheses.
This is the basic system cycle.

The system behavior thus consists of a serics of events. Each event results in the
creation of an object (eg., hypothesis, goal, or knowledge source instantiation) or the
modification of the attributes of some existing objects. We can represent the system
bebavior by specifying ecither the eveats or the changes these ecvents cause in the system in
terms of their effects on the attributes of the system objects. We chose the latter as the
basis for our representation and model the problem-solving system behavior by a state
transition diagram (see Figure 2c). Each state represents a specific state of some object in
the VMT system in terms of its attribute values. Each state is specified by a schema,
which contains links to other states in the model (such as states preceeding it and following

it), pointers to the descriptions of the system objects the state refers to (these descriptions .

of the VMT objects are called abstracted objects; see Figure 2b), and a constraint expression
over the abstracted objects’ attribute values. This constraint expression is evaluated during
diagnosis to determine whether the state has been reached by the VMT system; ie.,
whether there exist objects in the problem-solving system whose attribute values satisfy the
constraint expression associated with the state.

For example, the process of generating a hypothesis at a higher level of abstraction
from one at a lower level of abstraction can be described as follows: the creation of a
lower level hypotbesis causes the creation of a goal to produce a specific result (i.c., the
bigher level bypothesis) that incorporates the lower level hypothesis. This causes the
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Modellng a Problem-Solving System [

scheduling of a knowledge source instantiation (KSI) which later executes and produces the
higher level bypothesis. In our model this serics of cveats is represented as the sequence
of states: LOW-HYP-CREATED, GOAL-CREATED, KSI-SCHEDULED, KSI-EXECUTES,
and HIGHER-HYP-CREATED (sce Figure 2). The state transition arcs, which connect
the individual states in the model, represent causal relationships among the states. In some
cases there may be more than one state transition arc coming in or out of a given state.
For example, in Figure 3, states A, B, and C precede state D.  The model needs to
represent the exact relationship among the four states. If all three states A, B, and C are
necessary before state D can be reached, then the relationship among the three states
preceding state D is logical AND (Figure 3a). If any onc of the states A, B, or C is
sufficient to reach state D, then the relationship among the three states is logical OR
(Figure 3b).

States are related not only by their causal connections but also by counstraint

relationships among the abstracted objects associated with them. The abstracted objects are
represented as schemas consisting of attribute-value pairs. (The three parts of Figure 2
illustrate bow the Staze Model and the Abstracted Object Model and the actual objects in
the VMT system relate to onc another.) Each object contains information that allows the

RO
SaLa T,

system to determine the values for that object’s attributes using objects whose attribute
values are already known. Coostraints among states can then be specified by states sharing
the same object or via the relationships amoag the attributes of the objects attached to the
states. For example, each HYP objct (see Figure 2b and 2c) bas an attribute LEVEL.
The relationships among the LEVEL attributes of the HYP objects attached to the states
LOW-HYP-CREATED and HIGHER-HYP-CREATED is expressed by the following sets of
constraints. The value of attribute LEVEL of object HYP attached to state LOW-HYP-
CREATED is obtained by calling the function GET-LOWER-LEVEL with the value of
attribute LEVEL of object HYP attached to state HIGHER-HYP-CREATED. Conversely,
the value of attribute LEVEL of object HYP attached to state HIGHER-HYP-CREATED
is obtained by calling the function GET-HIGHER-LEVEL with the value of attribute
LEVEL of object HYP attached to state LOW-HYP-CREATED.

The abstracted objects cither point to existing objects in the VMT system or specify
characteristics of objects that should exist in the system. The ability to represent not only
objects that already exist in the problem-solving system but also objects whose existence is

................
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6 Modeling a Problem-Solving System

necessary in order for the system to achieve a particular state allows the model to serve as
the basis for a high level simulation of the underlying problem-solving system. This
simulation is accomplished by propagating attribute values among the interrelated abstracted
objects based on the causal relationship among the states.

In addition to reasoning about system bebavior in terms of sequences of states, we

also need to reason qualitatively about how system object attribute values are computed

from the attribute values of other objects and from system control parameters. This
requires modeling some of the internal computations performed by the problem-solving
system. In order to model the problem-solving system at this level, we use a model very
similar to the one used for modeling the bebavior of the system. In this case, the states
represent values of attributes of the system objpects, values of controls parameters, and
values of important intermediate states of the internal computation. The transition arcs
represcat how the value of a state is computed from the values associated with the states
that precede it. We are currently using a simple causal model in which the arcs are
labelled as either bhaving an increasing or decreasing effect on the value of the state that
represents the result of the computation [CROS83). Two states are connected by an
increasing arc if an increase in the value of one state causes an increase in the value of
the other state. In some cases not shown in this paper, we also need to reason using the

exact formula representation of the computation.

The states in the model can thus represeat different aspects of the underlying VMT
system. One of the attributes in the state schema is the STATE-VALUE attribute. This
attribute can represent one of several aspects of the problem-solving system. In some cases
we are interested in whether a particular intermediate state has beea reached; i.c., is there
an objct in the VMT system that matches the characteristics of the abstracted object
associated with that state. In these cases the STATE-VALUE is frue if the object does
exist, and false otherwise. In other cases we need to reason about the value of some
attribute of a particular object and relate it to the value of the corresponding attribute of
another object. For example, we need to reason about the relatively low rating of a
bypothesis with sespect to another hypothesis. In these cases the STATE-VALUES
represent the relationships among two or more objects in the VMT system. The values of
the STATE-VALUES attributes are then [low, high, or equivalent.
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Modeling a Problem-Solving System 7

The model is organized into clusters of states (Figure 4 illustrates threc such clusters).
Each cluster represeats an aspect of the system behavior at some level of detail. The
fepresentation is hierarchical in that only certain eveats ase represeated at any one level of
the bierarchy. For example, the Answer Derivation Model represcats only the answer
, bypotbeses and their support structure in terms of intermediate hypotheses; vehicle track
. (VT) preceded by vebicle location (VL) preceded by group location (GL). It does not
represent any of the knowledge sources scheduled and executed in the process. This
information is represented in clusters at a lower level of the model bierarchy. Because of
this bierarchical representation two states may be contiguous in one cluster while in fact a
number of other states occur in between which are represeated by a cluster at a lower
level of the model hierarchy. Equivalent states in clusters at different levels of abstraction
are coanected via cluster links. Objects may be shared across the different clusters.  This
bierarchical structure allows fast focusing into the problem area during diagnosis by avoiding

detailed analysis until the part of the model that is relevant has been identified.

The system model represeats a subset of all the possible system behaviors, which we
think is sufficient for detecting and diagnosing a significant oumber of faults. * We call
this model the system behavior model (SBM). The SBM is used by both the Fault
Detection module and the Fault Diagnosis module. The Detection module ideatifies a
specific undesirable situation in the monitored system; ie., a specific abstracted object along
with an associated state. This state-object pair constitutes the symptom detected by the
Detection module, which is passed on to the Diagnosis module. Diagnosis is accomplished
by coastructing a representation of the current system state, constructing a model of how

this state was reached and comparing this with the correct system behavior as represeated
by the model. Any points of departure from this expected bebavior arc traced to the
states at the lowest level in the SBM. These states are marked as primitive. A primitive

state that is found to be false during diagnosis constitutes a reportable failure.

The current system state representation is constructed using information from the SBM
and the VMT system data structures. The coastruction begins with locating the symptom
state in the SBM. The predecessor states of this state are thea found, along with their

* The system model could be extended to represcot the code level of the VMT em. However
we bave not found it necessary to rcrccnt the VMT systemn at such s low | of detail in
order to effectively reason about its behavior.
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§ abstracted objects descriptions. First, the attributes of these abstracted objects are evaluated,
i using the coastraint relationships between the existing abstracted object and the one being od
:5 cvaluated. Once these attributes have been cvaluated, the Diagnosis module looks for the \5
: corresponding objects in the VMT system. If such objects are found, they are linked to
3z the abstracted object. Finally, for cach abstracted object the corresponding state is created NS
and the STATE-VALUE attribute is evaluated. Depending on the type of state and its
value, the type of reasoning may now change. The next paragraph describes the different
types of reasoning.

) The underlying mechanism for all the differeat types of diagnostic reasoning is bi- "
L directional constraint propagation, which begins at onec or more state-object pairs in the
; SBM whose values bave already been determined. This constraint propagation makes
N possible sophisticated diagnostic reasoning. In the next section we show how the system -

F model supports four different types of reasoning necessary to diagnose inappropriate :
'E parameter settings: 4
F' 1. Backward causal tracing: given a particular state and its value the system can go '

back through the model and explain, in terms of the model states, why that
state was reached.

Bop el

2. Comparative reasoning: the system can compare two different objects and explain '
o why they were different, in terms of the model states. N
i 3. Unknown value derivation: the system can determine a valuc of an unknown state N
in the system model by finding the value which is coasistent with the known

o values of the surrounding model states. N
::,; 4. Resolving inconsistencies: having found two inconsistent objcts, the Diagnosis '_l:'
" module can decide which one is correct by comparing both objcts to a model o
el of an ideal or expected object. g
5 30 AN EXAMPLE OF FAULT DIAGNOSIS

.- The following example (see Figure Sa) represents a scenario in the VMT system in _,
'-:C which the system is recciving data from two input sources; sensors, A and B. The two %
< sensors overlap, so some data are sensed by both, but because the system is more confident B
i:: about sensor B the sensor weight parameters are set such that the data generated by that X
f.' -".
e source are valued more than the data genecrated by secansor A. This results in the data .
.__‘ from sensor B being rated bigh and the data produced by sensor A in the same area being ’_
'-::_: rated low. In the example scenario the supposedly reliable source of data for the \
,n -

’. --_
'» .
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An Example of Fault Diagnosis ' 9

particular task (sensor B) does not in fact generate reliable data because it s
malfunctioning. It is instead generating very short poise segments that cannot be
incorporated into a single vehicle track. Because sensor B’s sensor weight parameter has
such a high value, these short noise segments are very highly rated. The goal of the
diagnosis is to recognize that sensor B is malfunctioning and change the sensor weight
parameters so that the systems begins to process data gencrated by sensor A.

A vehicle is moving through the moaitored area, from left to right, generating signals
at locations 1 through 8 {sec Figure 5a). Semsor A senses all 8 locations but, because of
the sensor-weight parameter, locations 5 through 8 are rated low. Seansor B, because it is
malfunctioning, is not sensing the vehicle signals but rather is geoerating very bighly
rated noisc scgments. The VMT system gencrates a vehicle track (VT) bypothesis
connecting locations 1 through 4 based on the strong data from sensor A (see Figure
Sb). As a result of semnsor A°s data being weighted low in the area where signals §
through 8 appear, sensor B malfunctioning, and sensor B’s sensor weight parameter being
high, the knowledge source instantiation (KSI) that would extend the partial track to
include the location in time 5 is rated low? Because the short segments of noise generated
by sensor B are rated bigh, they causc the scheduling of knowlege sources which are highly
rated. The system queue has a number of these highly rated KSIs that delay the
execution of the low rated KSIs which would extend the true vehicle track  bypothesis.
As a result, the system spends all its time forming short segments from the noise signals

and the true vehicle track remains unextended.

This situation can generate a number of symptoms. Due to lack of space we will
illustrate the diagnosis by pursuing only onc of the symptoms. The symptom we pursue
here is a highly rated goal, VMT-GOAL#1, which represents the system’s intent to extend
the existing vebicle track bhypothesis connecting locations 1 through 4 to include location 5
(see Figure Sb). This goal has remained unsatisfied for a long time and has therefore been
selected by the Fault Detection module as a representative symptom. Diagnosis begins with
the arrival of the symptom from the Detection module. A symptom coasists of a state-
object pair; the unachieved state is GOAL-SATISFIED and the abstracted object is GOAL-
OBJECT, which points to the object VMT-GOAL#1 in the VMT system.

? A KSI rating is a function of, among other things, the input data.
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10 An Example of Favlt Diagnosls

First, the SBM cluster that contains the state GOAL-SATISFIED and its associated
abstracted objects must be located. This is the Answer Derivation Model cluster. The
relevant objects and states in this cluster are evaluted, using the constraint expressions in
the SBM and the alrcady evaluated attributes of the symptom state and its object. The
values of the states in this cluster can be cither true or false depending on whether
objects of the desired characteristics exist in the VMT system or not. In this case the state
GOAL-SATISFIED is false because the associated object (VMT-GOAL#1) has not been
satisfied in the VMT system (i.c., there is no vehicle track bypothesis connecting locations
1 through 5). We continue backward causal tracing through the SBM model to the state
preceeding the GOAL-SATISFIED state: the state VT-HYP-EXISTS and its associated
object, VI-HYP. The attribute values of this object are determined from the attribute
values of the object VMT-GOAL#1 using the coustraint relationships described in the

previous section. The state VT-HYP-EXISTS evaluates to false, since no VT bypothesis of :
the desired characteristics exists in the VMT system. The reasoning continues backwards 1
through the SBM attempting to find the first state that cvaluates to true (ic., the last J
point where desired system bebavior stopped). Because a vehicle track can be formed from

a shorter vehicle track or a set of vehicle locations (VL) the state VI-HYP-EXISTS is -ﬂ
preceeded by the states VT-HYP-EXISTS' or VL-HYP-EXISTS. The objects associated with "
these states are VT-HYP and VL-HYP respectively. Again, we look for the associated
objcts in the VMT system in order to evaluate the states. In this case the objects are :-:

track fragments containing locations 1 through 5, or the locations 1 through 5 themselves,

et which could lead to the desired bypothesis. This brings us to another instantiation of the
o state VT-HYP-EXISTS and objct VT-HYP, this time with the hypothesis connecting
locations 1 through 4. Because such a hypothesis does exist in the VMT system, this state

evaluates to true.  This is where the generation of the vehicle track that would satisfy the
goal VMT-GOAL#1 stopped. The evaluated model is in Figure 6a.

At this point we cannot continue reasoning using the Answer Derivation Model cluster

.'.A _".t ! because it does not represent the cvents occurring in between the last true state (VT-HYP-
EXISTS; VT hypothesis connecting locations 1 through 4) and the first false state (VT-
| HYP-EXISTS; VT hypothesis extending the hypothesis 1-4 through location 5). Anytime

'
A

* The state VT-HYP-EXISTS represcats all track h&polbaa up to some fixed track length.
Therefore it is a reflexive state, pointing back to itself.

B SN A A
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An Example of Fault Diagnosis 1 1
such a truo-state/false-state pair is found, we must find the cluster which represents the J
states occurring between those two states. The cluster pointed to by the VT-HYP-EXISTS -
state is the KSI Scheduling Model cluster shown in Figure 4b. <

We continue determining the types of obpcts and evaluating the states. The result
is the evalvated model in Figure 6b. We find another gap in the expected processing: the
KSI that would produce the desired bypothesis was scheduled but did not execute. Again,
following the cluster links, we switch to a cluster that describes in more detail what occurs :.:E:Z\
in between the true state (KSI-SCHEDULED) and the false state (KSI-EXECUTES). This ]
is the cluster KSI Execution Model in Figure 4c. We cventually arrive the state s
KSI-RATED-MAX. This state represents the fact that a KSI must be rated the highest of .
all the KSIs on the queue in order to execute. This state is false since the KSI that could
extend the 14 VT bypothesis is rated low with respect to the other KSIs on the queue. -
The evaluated model is in Figure 6c.

The state KSI-RATED-MAX is a different type of state. Unlike the states ‘
mentioned so far, which represent the existence of some object in the VMT system, the __3
state KSI-RATED-MAX represcats a relationship among a group of objects; in this case, the e
relationship among the knowledge source instantiations on the scheduling queue. Whenever
this type of a state is reached, the system switches to comparative reasoning.’ This involves
comparing some attributes of two objects in the system: one that achicved a  desired state --'l
-

(in this case, the KSI that is maximally rated) and ome that did not (in this casc the low
rated KSI that would extend the VT hypothesis 14 to include location 5). The system

builds a model of bow those objcts were created and attempts to discover what differences
along the object creation paths were responsible for the different outcomes. Two slots in
the state schema are important bere: the ACTUAL-VALUE slot, which represents the value

of the attribute of interest, and the RELATIVE-VALUE slot, which represents the

relationship among the ACTUAL-VALUES of the two objects in the parallel investigation.

In this type of reasoning the states do not represent the existence or non-existence of some T
object but rather the relationship among the values of a particular attribute of some object
; (for example the rating of a knowledge source or a hypothesis) as compared to the }:‘:
4 N

! Comparative reasoning contains many complexitics which we cannot go into in this paper. For
more detailed description of the types of reasoning mentioned in this paper see [HUDLGAEE
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12 An Example of Fault Disgnosls

corresponding attribute of the other object in the parallel investigation. In this case the
relevant attribute is the RATING attribute of the KSI objct. The two objects being
investigated here are the two KSIs (the low rated KSI to create a hypothesis connecting
locations 1 through S and the KSI which is rated the highest on the scheduling queue).
We investigate, in parallel, how the ratings of the two KSIs were derived in an attempt to
identify what caused the lower rating of the KSI that would extend the 14 track.

We first switch to a cluster where the attribute of interest (KSI-RATING) is
represented by a state. This is the XSI and Hypothesis Rating Model in Figure 7. Because
we are investigating two objects we must instantiate two copies of this cluster. One copy
will represent the creation of the low rated KSI that would extend the VT bypothesis
through location five (we will call this the low ksi pash). The other will represent the
creation of the highest rated KSI on the queue (we will call this the high ksi parh). We
begin with the state KSI-RATING. Because the rating of the KSI of interest is lower than
the highest rated KSI we assign the value low to the RELATIVE-VALUE attribute of
the state representing the relationship among the two values. We go back through the
SBM and find that what determines a KSI rating is the DATA-COMPONENT-RATING
of the KSI. We compare the data components of the two KSIs and again find that the
DATA-COMPONENT-RATING of the low-rated KSI is lower than the corresponding
DATA-COMPONENT-RATING of the bigh-rated KSI. We continue evaluating the model
for the derivation of the KSI rating for both KSIs, via the KSI data components at various
levels of abstraction (vehicle location, VL, preceeded by group location, GL, preceeded by
signal location, SL) arriving finally at a point that represents how the sensor weights and
the strength of the data signal determine the value of the sensed signal for each sensor.

Because the signal location rating on the low ksi path is lower than the signal
location rating on the high ksi path, the value of the state SL-HYP-RATING for the low-
rated KSI is low. We reason that in order for this value to be lower than the
corresponding value in the high ksi path, the two objects that influence this value (sensed-
value by sensor A and secnsed-value by sensor B) must be rated lower than the

corresponding objects on the other path. When we enumerate the relationships among the

two pairs of sensed-values we get four relationships:
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Sensed-value for sensor A on the low ksi path < sensed-value for sensor B on
the high ksi path.

Sensed-value for sensor A on the low ksi parh > sensed-value for sensor A on
the high ksi path.

Seased-value for sensor B on the low ksi path = sensed-value for sensor A on
the high ksi path. (They are both O because no signal was scused at that place
by the other sensor.)

Seased-value for sensor B on the low ksi path < sensed-value for sensor B on
the high ksi path.

In this case the RELATIVE-VALUE attribute of the state SENSED-VALUE for SENSOR
A can have two values, depending on which of the corresponding sensed values in the

other path we compare the state to: the values are low for case 1 above and high for case

2 above. Because we arc trying to determine why the SL-HYP-RATING is lower, we
follow paths to any states that contain a lower relationship. In this case, both the state
SENSED-VALUE of SENSOR A and the SENSED-VALUE of SENSOR B coatain a lower
relationship so both are followed in parallel.

We bhave two paths to follow now: investigating why the SENSED-VALUE for
SENSOR A was low with respect to SENSED-VALUE for SENSOR B in the high ksi porh
investigation and investigating why the SENSED-VALUE for SENSOR B was low, again
with respect to SENSED-VALUE for SENSOR B in the high ksi path investigation. We
first follow the path from state SENSED-VALUE for SENSOR A backwards. We reason
that the sensor weight was low, the data signal was low, or both. We then find that
value for SENSOR-WEIGHT for SENSOR A is indeed low compared to the SENSOR-
WEIGHT for SENSOR B. Because this state is a primitive state (no transition or cluster
arcs connect it to any other part of the model), we can report this finding as one fault
responsible for the low KSI rating that led to the original symptom. We have found one
problem that explains the low KSI rating but the investigation is not complete. We still
need to find the value for the state DATA-SIGNAL and follow the path of low SENSED-
VALUE by SENSOR B. This latter path also leads to the state DATA-SIGNAL since it is
onec of the predecessor states of the state SENSED-VALUE for SENSOR B.

Since there is no way of knowing what the actual data signal was, we must employ
the unknown value derivation type of reasoning where an unknown value is determined by

examining the values of the neighboring states. This type of reasoning is pecessary anytime
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the state value cannot be determined from the problem-solving system’s data base. In this
type of reasoning the ACTUAL-VALUE (or STATE-VALUE) attributes of the states
represent the value that is derived by looking at the surrounding states. Depending on
the types of values represented by those states, this value can be cither the value the states

agrec on or inconsistent if contradictory values can be determined from the surrounding
states. The unknown state is DATA-SIGNAL. We attempt to derive the value for this
state, which represents the actual value of the data signal in the environment, by examining
the ACTUAL-VALUE slots in its surrounding states: SENSOR-WEIGHT for both sensors
and SENSED-VALUE for both sensors. In fact we cannot find a consistent assignment for
all these states. According to sensor A the value sensed is low; according to sensor B, no ;"i;;‘
value is sensed at all. The value for the state DATA-SIGNAL is therefore
INCONSISTENT. In a casec where an inconsistency is discovered among two objects in the

L

VMT system we bave to use inconsistency resolving reasoning in which we compare the
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two objects (in this case the two disagrecing sensors) with a model of the expected behavior
of that object (a sensor) and try to determine which one is correct. In this case we
compare the characteristics of cach of the two sensors with the characteristics of an ideal

sensor which produces correlated data. We determine that data from sensor A is well

ool b

correlated (all data fits into one track) whereas data from sensor B is only correlated for -

PRI

at most 2 location track scgments. We therefore conclude that sensor B is faulty.
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We bave now found both reasons for the initial symptom (unsatisfied goal): the faulty
sensor B in conjunction with the low SENSOR-WEIGHT parameter for sensor A.

40 STATUS AND FUTURE RESEARCH

The basic model and the constraint propagation mechanisms bave been implemented.

. 1
.4

We are currently extending the system to handle the comparative reasoning. Curreatly

the system behavior model represents only the system behavior. It does not make an
attempt to represent the reasons for the expected behavior in terms of the system
architecture (e.g., a goal represents the intent to produce a hypothesis in the goal’s area) or
in terms of the assumptions about the domain (e.g., the characteristics of goals based on
bypotheses that led to them). We believe that such deeper models of both the architecture
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and the domain would increase the FDD system’s expertise by allowing it to detect more

subtle errors (e.g., redundant satisfaction of goals) and to detect a wide range of faulty
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assumptons about the task domain. An example of the latter case is baving a model of ....d
bow the goal characteristics depend on the bypothesis characteristics, for example, the
maximum acceleration of a vebicle and its tuming radius. We also believe that such a
deeper model of the problem-solving system could serve as a knowledge-base that the .
system could use to automatically geacratc the complex criteria necessary for fault detection —--
and the knowledge needed to implement the Strategy Replanning module.
We feel that metadevel control based on the Fault DetectionDiagnosis paradigm =
represents a new approach to introducing more sophisticated control into a problem-solving ’
system. In addition, the system can be of great help in debugging complex problem-solving '
systems. It also presents interesting issues in modeling and reasoning about a problem-
solving system.
-
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