
,RD-A149 851 ARRAY PROCESSOR UTILISATION IN THE COMPUTATION OF i/i
REAL-TIME IMAGES(U) AERONAUTICAL RESEARCH LABS
MELBOURNE (AUSTRALIA) L N LESTER AUG 84 RRL-SYS-TM-73

UNCLSSIFIEDG 17/ N

I flfllflhh...h.

b * .- ..
"

.&.

ill~~~-EM 12.0

1.25 11 . 01.6" ;.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

4v

-. . - .-I- - - - - , , -.- . ,-'- . . - - . - , • * , ", .,-., .% • . , , ,,'

a~~~~7 11F.* .- - -- -.-

F .

UNCLASSIFIED

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES 5 5

MELBOURNE, VICTORIA

SYstems TeCcmc Nhmorandm 73 0 0

ARRAY PROCESSOR UTILISATION IN THE COMPUATION OF REAL-TIME __..._...._.

flnA

LS.U.~lfL TO3

REPRODUCE ~ ~~ AN SLLTHS EPR

L*A1
Wp

(C)~~ ~ ~ ~ COSIU O UI,10

84... 12 31 (1 6'
.

AR-003-953

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION -

AERONAU"TICAL RESEARCH LABORATORIES

• . .a- '.. -.-

Systems Technical Memorandum 73

ARRAY PROCESSOR UTILISATION IN THE COMPUTATION OF REAL-TIME

IMAGES

L.N. LESTER

SUMMARY

The application of an array processor to the real time generation of
aircraft images in Air Traffic Control tower simulation is described. Par-
ticular emphasi . is placed upon the problems which arise in achieving
efficient utilisation of the array processor. It is shown that the time
required to transfer data from the host to the array processor is a serious .-
consideration in the partitioning of the algorithm between the two proces- -""-.

sors. It is also shown that array processor execution speed is about ten
times faster than a host Fortran routine, provided that the array processor
code is written to maximise the number of parallel computing elements used 0
and to minimise loop lengths by pipelining of operations. These require- -
ments result in a considerable software development effort. A timing
analysis of the resultant array processor code is also presented.

COMMONWEALTH OF AU:STRALIA 1984

POSTAL ADDRESS: Director, Aeronautical Pesearch, Laboratories,
P.O. box 4331, Mlbourne, Victoria, 3001, Auistralia.

a,. ...

- 7.

CONTENTS6

1* INTRODUCTION *.* . 3

2. OVERVIEW OF THE ARRAY PROCESSOR ARCHITECTURE .*.........*....**o 3

3. ALGORITHMS FOR RENDERING DISTANT AIRCRAFT IMAGES o 5

4. DISTRIBUTION OF WORKLOAD BETWEEN HOST AND ARRAY PROCESSOR 6

5. DETAILS OF ARRAY PROCESSOR WORKLOAD e.... 8

5.1 Scan Conversion ease 8

5.2 Key Frame Interpolation ** 9 * -

5.3 Filtering and Decimation * 9

6. ALGORITHM IMPLEMENTATION ON THE ARRAY PROCESSOR 10

6.1 Algorithm Coding on the Array Processor 10

6.2 Software Link between Host and Array Processor 14

7. ALGORITHM TIMING ANALYSIS 14

8. CONCLUSION o.. *s . oo~~~~.o. 18

REFERENCES

DISTRIBUTION

DOCU1MNT C0112ROL DATA

f2)

1. INTRODUCTION

Array processors have potentially very high computing power, extending
well beyond the capabilities of conventional computers. However, problems
arise in efficiently managing the combination of host and array processor
so that such potential can be realised. This Memorandum examines some of
the problems in relation to an application involving the real time
generation of imagery, with particular emphasis on the role of the array
processor.

This application arose out of the requirement for the Royal Australian
*Air Force to upgrade their existing Air Traffic Control training simulator,

by incorporating computer graphics for generation of the out-of-tower .
scenes, so that controller/traffic interaction could be extended to a vir-
tually unlimited number of scenarios. The more difficult aspect of
generating these scenes is to synthesise, in real time, the motion of
distant moving aircraft, since images of close proximity aircraft (e.g. on
taxiways or runways), presenting the greatest visual detail and spatial
extent, follow pre-determined routine manoeuvres which can be pre-computed
in non-real time and stored on disk.

Sandor and Lester [1) considered the feasibility of generating the real
time images with a VAX-11/780 computer in conjunction with an AP-120B array
processor as an alternative to expensive special purpose hardware for the
graphics computations. A novel approach was taken to synthesise the
distant images in real time by employing a technique used in animation
[2,31 to reduce the rate of computation. This technique involves cal-
culating image frames at half the required rate (12.5 frames per second)
and using interpolation to maintain 25 updates per second. This allows
more moving aircraft to be generated, and also provides enough computation
time between frames so that images can be spatially filtered and hence
reduce scintillation and edge "staircasing" effects.

It was originally intended that most of the calculations would be per-
formed in the VAX, with the array processor handling the spatial filtering.
This decision was made because the internal organisation of the array
processor is well suited to digital signal processing (see [4] for exam-
ple). However, timing considerations led to the array processor handling a
larger share of the computations, and this Memorandum examines these
aspects, as well as the process of restructuring the appropriate parts of
the algorithm to optimise the parallelism of the array processor
architec" ure.

2. OVERVIEW OF THE ARRAY PROCESSOR ARCHITECTURE "

The AP-120B array arithmetic processor exploits parallelism by overlap-
ping several operations within a single processor. It consists of eight
functional sub-units interconnected via multiple data paths, and is linked -.
to the host machine (a VAX-11/780) through a direct memory access (DMA) in-
terface (see Figure 1). The AP-120B is a synchronous machine, that is,
there is a single master-clock signal which operates all sub-units at the
same speed, which is one cycle every 167 nanoseconds. The sub-units will
now be described.

The program memory has a capacity of 4K instruction words of 64 bits.
This sevaration of code fetches from data fetches allows both to proceed
simultaneously without mutual interference.

Table memory is used for storage of constants, and is separate from main
memory to allow parallel access. It has 4.5K of 38-bit read only memory
(ROM) and 1.5K of 38-bit writeable memory. (All floating point quantities
are expressed as 38 bits, comprising a 10-bit exponent and a 28-bit

[3]

HOST

COMPUTER

PROCRR), SPTS

LRIGUR 1: ARRA I RCSO ARHTCE ITOT

MULTIPLIE ADDE

STRCE 2ST'CE.

3..

FIGUE 1:ARRA PRCESSR ARHITETUR

mantissa.) The ROM contains useful constants (such as 1.0, 0.5, 7r, etc.)
and the writeable memory is available for storing of ten-accessed values or
for use as a memory which can be accessed in parallel with main memory.

The data pads each contain thirty-two 38-bit registers. One register
can be read and another written from both pads on every cycle, allowing a
total of four simultaneous accesses. 0

The main data memory contains 64K words of 38-bits, and is the primary
store for data. It can also function as a secondary store for instruction
words when a program is too big to fit completely into program memory and
has to be divided into overlays.

The "S-pad" or scratchpad contains sixteen 16-bit registers and an
arithmetic and logical unit. It is used for address calculations, and for
integer arithmetic. The S-pad also has a hardware bit reverse function to
accomplish the bit swapping necessary to access data in scrambled order af- -

ter a fast Fourier transform.

The floating point adder and multiplier handle the arithmetic. The ad-

der also does data format conversion, such as floating integers. S.

Not all the functional sub-units can complete a given operation in a
single cycle - a floating multiply or a main memory access take 3 cycles; an .
add or table memory access take 2 cycles. These units operate as pipelines,
so that by keeping the pipelines full, a result can be obtained on every
cycle.

The AP-120B thus allows a maximum of ten distinct operations on each
cycle - 1 add, 1 multiply, 1 address calculation, 2 memory accesses, 4 data
register accesses and 1 conditional branch. However, it is not always pos-
sible to specify all ten, because the 64-bit instruction words are not wide
enough so that certain fields of the instruction word have different
meanings dependent upon other fields. In order to gain maximum speed from
the array processor, it is sometimes necessary to manipulate desired
operations within a sequence of instructions to overcome this inability to
specify all operations simultaneously. For further information on the
AP-120B, see [5] or [6].

3. ALGORITHMS FOR RENDERING DISTANT AIRCRAFT IMACKS

In order to render aircraft images, it is necessary to have a data base
describing them in machine-readable terms. For the present study, aircraft
are modelled as sets of polygons in three dimensional space. Each polygon
is stored in the data base by specifying the (3-D) coordinates of its ver-
tices, which are ordered so that traversing the edges of a polygon in ver-
tex order leaves the interior to the left when viewing the polygon from _
outside the aircraft. The colour of the aircraft is specified by assigning
a colour to each polygon.

The visual environment of the Air Traffic Control tower simulatorfom-
prises five window sectors (each spanning 45 in azimuth and 33 in
elevation), so that given the polygon description of an aircraft, the fol-
lowing steps are taken to synthesise its image:

1. For each aircraft modelled as a set of polygons in 3-D space:

1.1 Determine the aircraft's position and orientation by Integ-

ration of its translational and angular velocities

1.2 Compute the vertex coordinates in 3-D space from the air-

craft's position and attitude

1.3 Determine on which window sector(s) the aircraft will be

visible

(5)

I7Vj'SS~~W. g. ~ J tS~p~. ~CU . - 7. . .- - .7 , - n - . .

2. For each window sector on which the aircraft is visible:

2.1 Transform the appropriate polygon vertex coordinates to the
coordinate system of the window sector

2.2 Eliminate polygons which belong to parts of the aircraft that
are obscured by the aircraft' s own volume (back-face
elimination) and adjust the colour of each polygon to take
account of the position of the sun

2.3 Transform the 3-D coordinates of the in-view polygon vertices
into a two-dimensional representation as would be seen by an
observer (perspective transformation)

2.4 Remove polygons which are outside the window sector boundary
and truncate those which are partially outside (clipping)

3. For each in-view polygon of the transformed and clipped aircraft:

3.1 Convert vertex coordinates to high resolution space

3.2 Draw polygons, in back-to-front order, into the picture buf-
fer array (scan conversion)

3.3 Low pass filter the high resolution image by performing a
discrete two-dimensional convolution on it with an ap-
propriate filter function .

3.4 Decimate the high resolution image back to display resolution

At this point, the picture buffer array will contain the synthesised image
ready for display. The above sequence constitutes the algorithm for
producing each "key" frame. Each interpolated frame is produced by linear-
ly interpolating between two key frames to obtain an intermediate high
resolution picture buffer array which is then filtered and decimated as
described above in steps 3.3 and 3.4.

4. DISTRIBUTION OF WORKLOAD BETWEEN HOST AND ARRAY PROCESSOR

The assembly language for the AP-120B is called APAL, and provides great
flexibility for utilising the parallel and pipelining features of the har-
dware. It is a difficult language in which to program or make program
modifications. However, Floating Point Systems provides a library of
mathematical and signal processing functions which are written In APAL and
are callable from a host-resident Fortran program. One such APAL routine
is available to perform the two dimensional convolutions required for the0
spatial filtering, and hence it was decided originally to process the low
pass filtering and decimation (algorithm steps 3.3 and 3.4) in the array
processor.

* However, this turned out to be costly In terms of the real time
*available for such calculations. The computation "cycle time" is 80 mil-
ILlisec, during which time one interpolated frame and one key frame are corn-

puted and displayed 40 millisec apart. For the present study, distant
moving aircraf t were rendered onto a 50 x 50 picture buf fer array, and
double resolution was selected since it involves the minimum additional
storage and execution time. The high resolution (l00x 100) picture buffer
therefore comprises 10000 elements, and in order to perform the con-
volutions in the array processor, it is necessary to transfer the buffer

* across the DMA interface - a time-consuming operation. A graph of measured
time as a function of the number of words transferred is shown in Figure 2.
As can be seen, the relationship is linear, and can be summarised in the

* following equation:

[61

10-

8-

-4

-4

0 200 400 600 800 1000

NUMBER OF WORDS TRANSFERRED

FIGURE 2: GRAPH OF TIME TO TRANSFER DATA TO THE ARRAY PROCESSOR

1717

I?., 1. - -'- j

T(n) - 2.6 +0.00 4n

where T(n) is the number of millisec required to transfer n words. Note

that in measuring these times, the test program and all its data were loc-

ked into the physical memory of the VAX to ensure that there was no paging

or swapping, so that these times represent the best achievable. So, the

transfer of a 10000 word array from the VAX to the array processor would
0

require approximately 42 millisec, and since a picture frame is required to

be computed and displayed every 40 millisec, application of the array

processor in this manner would be inappropriate.

It was therefore necessary to restructure the process so that data tran- ""-".7
sfer time could be reduced. One approach considered was to pack the com- 0
ponents of the picture buffer array. Since each element requires only 8
bits, these can be packed four to a word and transmitted as such, so that
transfer time would be reduced to 12 millisec. There would also be an
overhead of 9 millisec for the array processor to unpack the picture buf-
fer, so that the effect would be to halve the original transfer time. This
was still considered to be excessive, and it was therefore necessary to
reduce the amount of data that was to be transferred, rather than compac-
ting it. The method for doing this was to put more steps of the algorithm
into the array processor since in earlier steps the picture data exists as
polygon vertices rather than as individual pixel colours. It was con-

sidered that an appropriate choice of algorithm division would be at the
point where the VAX has removed all occulted polygons, so that only the ,_
vertices of the visible polygons are transferred. That is, the VAX would
perform the computations as far as determining the polygons for each pic-
ture update (steps 1. and 2. in section 3) and the array processor would
complete the process (step 3.). It turned out to be expedient for the array
processor program to work directly with the high resolution vertex coor-

dinates, and hence that transformation (step 3.1 in section 3) was included
in the VAX program.

5. DETAILS OF ARRAY PROCESSOR WORKLOAD

As discussed above, the array processor handles the scan conversion and
filtering parts of the algorithm for rendering distant aircraft images in
key frames, and also produces the interpolated frames. These parts of the .
algorithm will now be described in detail.

5.1 Scan Conversion

The array processor receives a list of polygons from the VAX with each
polygon represented by its colour, number of vertices and vertex coor-

dinates (in high resolution space). The polygons are ordered so that those 0

near to the head of the list are behind those further down the list. Thus,
the hidden surface problem is solved by overwriting the polygons behind
with those in front. The method of scan-converting each polygon will now be

described.

Let V1, V2 , ... , VN be the polygon vertices, where each vertex has coor-

dinates (V .xl i.y), t - 1,2, ...,N, with the vertices arranged in counter-

clockwise order. Further let PRED(Vi) and SUCC(V) denote the predecessor

and successor of Vi in the counter-clockwise ordering. Note that PRED(V l)

is VN and SUCC(VN) is V1. Let PIC be a matrix whose (i,j)-th element con-

tains an integer representing the colour of pixel (i,j).

1. (Initialise.) Determine MAX and MIN, the indices of the vertices with

highest and lowest y-coordinates (raster scan is from top to bottom).

Note that since the vertices are in counter-clockwise order,

[8]

- .. - . ".

SUCC(VMAX), SUCC(SUCC(VMAx)), ,.., PRED(VMIN) will be on the left of the ,0.

polygon, and PRED(VMAX), PRED(PRED(VMAX)), ... , SUCC(VMIN) will be on

the right. Set LEFT and RIGHT edge pointers to MAX, and set SCANLINE to

ROUND(VMAX.y - 1) where ROUND(x) is formed by rounding x to the nearest

integer. Set DECISIONLEVEL to SCANLINE + 0.5 (a pixel will be completely

filled in if its centre is not outside the polygon). 0-...

2. [Check that left edge is still current.] If VLEFT. , <DECISIONLEVEL then

decrement XLEFT by LEFTSLOPE and go to Step 4.

3. [Set up new left edge. I Set LEFT edge pointer to index of the next vertex --

below the current SCANLINE. The new left edge is the line joining VLEFT

to PRED(VLEFT). Set LEFTSLOPE to the inverse of this line's gradient,

and set XLEFT to the intercept of this line with the line

Y - DECISIONLEVEL.

4. [Check that right edge is still current.) If VRIGHTY <DECISIONLEVEL

then decrement XRIGHT by RIGHTSLOPE and go to Step 6.

5. [Set up new right edge.] Set RIGHT edge pointer to index of the next

vertex below the current SCANLINE. The new right edge is the line

joining VRIGHT to SUCC(VRIGHT). Set RIGHTSLOPE to the inverse of this " •

line's gradient, and set XRIGHT to the intercept of this line with the

line Y - DECISIONLEVEL.

6. [Fill in the scan line.] Set PIC[I,SCANLINE] to the polygon colour for

I =ROUND(XLEFT), ROUND(XLEFT)+ 1, ... , ROUND(XRIGHT)- I.

7. [Check for end of polygon.) If SCANLINE -ROUND(VMIN.Y) then terminate

the process; otherwise decrement SCANLINE and DECISIONLEVEL both by I

and return to Step 2.

5.2 Key Frame Interpolation

As discussed in Section 1, key frames are calculated at the rate of 12.5
per second, and apparently smooth visual motion of distant aircraft is
achieved by interpolating between these to produce 25 frames per second.
This approach is justified by noting that visual images of distant aircraft

will not change significantly from one display instant to the next (frame- 0
to-frame coherence), so that an observer will, in general, be unaware of
the fact that alternate frames are not computed exactly. The interpolation
process is executed by maintaining two high resolution picture buffer ar- -.-

rays, K and K ., in the array processor, where K represents the scan-n 11t- n "' ' '

converted image at key frame n. The interpolated image, I , is computed as
[K +K +1]/2, and the final (display resolution) image is displayed such 9
that its centre is halfway between the positions of the aircraft centre at
the n-th and (n+l)-th sampling intervals.

5.3 Filtering and Decimation

In this part of the process, the high resolution image is filtered to
attenuate high frequencies by a two dimensional convolution of it with an 9
appropriate filter function. The result is then decimated for display at
normal resolution. Since the filter convolution need only be evaluated at
those high resolution sampling points that correspond to display pixels,

filtering and decimation can be accomplished simultaneously, thus saving

[91

significant computational time. Formally the convolution can be expressed 6

as

M M

P[iJ] =a H[21+r,2j+sl
rs

r--M s-H,

where H[-.•] is the high resolution image array (with boundary conditions

l[m,n] -0 for m or n outside the high resolution image), a is a symmetric

low pass filter kernel with finite support specified byS
P and Pf-,.] is

the filtered image at display resolution. In the present case a Bartlett 0
filter with M -I and

a 0 .5 lr+Isl+2 r,s -- 1,0,1
rs

was found to produce satisfactory results. The filtering and decimation

used can thus be summarised in the following equation:.-

Pti,j] - ROUND(

0.0625 *H[21,21J + 0.125*H[2i+1,2J] + 0.0625*H[2i+2,2j]
+ 0.125 *H[2i,2j+l] + 0.25 *H[21+1,2j+l] + 0.125 *H[21+2,2j+l]
+ 0.0625*H[21,2j+21 + 0.125*H[2i+1,2j+21 + 0.0625*H[2+2,2j+21) *0

Note that in the case of interpolated frames, this equation can be modified
so that all coefficients are halved thus eliminating the division by 2 in

the interpolation. The two sets of coefficients are stored in the
writeable table memory of the array processor, with each being used on al-

ternate frames.

6. ALGORITHM IMPLEMENTATION ON THE ARRAY PROCESSOR

The implementation of the array processor's part of the algorithm invol-

ves two aspects - the restructuring of the algorithm code to utilise the

array processor architecture most efficiently, and the construction of the
software interface between the two machines. These aspects will now be
considered.

6.1 Algoriths Coding on the Array Processor

To write fast code for the array processor, it is necessary to maximise - -

the utilisation of the parallel and pipelining features of the architec-

ture. To illustrate this, consider the following program fragment which S

copies x-coordinates from an argument list and then computes differences:

for i :- 1 to N do
begin

x[li] := arglist[ptr];
ptr - ptr+1

end;

for i := 1 to N-i do
deltax[i] :- xi+l] -x[li I

deltax[N] :- x[l]-x[N];

This calculation is used in the scan conversion of polygons when the inver- .

se gradient of an edge is required. To reduce loop overheads, the two loops

can be gathered into a single loop in the following manner:

[101

x[l] :argl-stptr];

ptr :- ptr+l;
for i :- 1 to N-1 do
begin

x[i+l :- arglist[ptr];
ptr :- ptr+1;
deltax[iJ :w x[i+1J -X~i]

end;
deltax[N] :- x[1]-x[NI;

A straightforward translation of this into the machine language of the ar-

ray processor is given below. The following symbols are used:

MD - "register" into which main data memory contents is read

MI - "register" from which data is written into main data memory

FA - the contents of the floating point adder output stage

< - indicates replacement of the item on the left with that on

the right
- denotes the next instruction is in the same cycle as the

current one
- is used to introduce comments

The machine language translation now follows, with the numbers on the
left

indicating machine cycles:

"Initialise before entering the loop - fetch x(1) from memory,

"set up the loop counter to I less than the number of x values

"and save x(1) for the first and last Ax computations.

1. LDSPI XREG; DB=XBASE "Get base address of x into s-pad reg

2. MOV ARGREG,ARGREG; SETMA "Fetch x(I) (ready at cycle 5.)

3. LDSPI DELTAXREG; DB=DELXBASE-1 "Put base address of Ax in s-pad

4. LDSPI COUNTREG; DB=N-1 "Set up loop counter in s-pad reg

5. MOV XREG,XREG; SETMA; MI<MD; "Put x(i) where it can be found

DPX(MD; "Save x(l) in data pad X

DPY<MD "And again in data pad Y for last calc

"Enter the loop - compute Ax(I), Lx(2), ... , I)

"where Ax(i) x(i+) -x(i)

LOOP:
6. INC ARGREG; SETMA "Fetch x(i+l) (i-I initially)

7. NOP "Wait for memory fetch

8. NOP "To be finished

9. INC XREG; SETMA; MI<MD; "Put x(i+l) where it can be found

FSUBR DPX,MD; "Start x(i+l)-x(i)

DPX<MD "Save x(i+l) in data pad X

10. FADD; "Push subtraction through adder

DEC COUNTREG "Decrement loop count

11. INC DELTAXREG; SETMA; MI<FA; "Store Ax(i)
BGT LOOP "Branch back if more to do

"End of loop - compute Ax(n) x(1) - x(n)

12. FSUB DPY,DPX "Start x(1)-x(n)

13. FADD "Push subtraction through adder

14. INC DELTAXREG; SETMA; MI<FA "Store Ax(n)

fi" - -

This code implements the above fragment with the copy and calculation :

being executed in a single loop. In so doing, the program takes 8+6N

cycles, where N is the number of times the loop is executed (one less than

the number of x-values). This approach to the problem is inefficient

because it does not fully exploit the pipelining capabilities, nor does it

fully utilise the parallel elements of the array processor. To make better

use of pipelining, it is important to note that it is not necessary to per-

form all the calculations associated with x(i) in iteration i of the loop,

as illustrated in the following code:

"Initialise before entering the loop - fetch x(1) and x(2) from

"memory, set up the loop counter to 1 less than the number of
"x values, store x(l) and save it for the first and last Ax -
"computations.

1. LDSPI XREG; DB-XBASE "Get base address of x into s-pad reg

2. LDSPI DELTAXREG; DB-DELXBASE-1 "Put base address of Ax in s-pad
3. MOV ARGREG,ARGREG; SETMA "Fetch x(1) (ready at cycle 6.)

4. INC ARGREG; SETMA "Fetch x(2) (ready at cycle 7.) .
5. LDSPI COUNTREG; DB-N-1 "Set up loop counter in s-pad reg

6. MOV XREG,XREG; SETMA; MI<MD; "Put x(1) where it can be found
DPX<MD; "Save x(1) in data pad X

DPY<MD "And again in data pad Y for last calc

"Enter the loop - compute A(1), Ax(2), ... , Ax(n-1),
"where Ax(i) - x(i+l) - x(i)

LOOP:

7. INC XREG; SETMA; MI<MD; "Put x(i+1) where it can be found
FSUBR DPX,MD; "Start x(i+l)-x(i) (i-1 initially)

DPX<MD "Save x(i+l) in data pad X . -

8. INC ARGREG; SETMA "Fetch x(i+2)
9. FADD; "Push subtraction through adder

DEC COUNTREG "Decrement loop count
10. INC DELTAXREG; SETMA; MI<FA; "Store Ax(i)

BGT LOOP "Branch back if more to do

"End of loop - compute Ax(n) x(1) - x(n)

11. FSUB DPY,DPX "Start x(1)-x(n)

12. FADD "Push subtraction through adder
13. INC DELTAXREG; SETMA; MI<FA "Store Ax(n)

This code allows x(i+2) to be fetched during the loop iteration which

computes Ax(i). This pipelining of the program has reduced the loop length
from six cycles to four cycles, which is a significant saving in time, par-
ticularly in the real-time context. Reducing loop length in this way is
referred to as "loop-folding", and is probably the most important technique _0
for writing fast code.

A further saving of one loop cycle can be achieved by better use of the

parallel elements of the array processor. Since every cycle of the loop in-
volves an s-pad instruction, whereas the floating adder is used for only
two of the four cycles, the loop length can be reduced by one cycle by per-
forming the loop counting in the adder, so that only three s-pad references
are needed. This is achieved by using the constant 1.0 from table memory

and subtracting It off the loop count in the adder, as follows (TM refers to
the table memory contents from the most recent fetch):

. ...

"Initialise before entering the loop - fetch x(1) and x(2) from
"memory, store x(l) and save it for the first and last Ax
computations. It is assumed that the loop count has been set up

"as a floating point number in data pad DPY(2). 7

1. LDThA; DB-!ONE "Fetch 1.0 from table memory
2. LDSPI XREG; DB-XBASE "Get base address of x into s-pad reg 0
3. NOV ARGREG,ARGREG; SETMA; "Fetch x(1) (ready at cycle 6.)

FSUBR Th,DPY(2) "Start calculating N-I in adder
4. INC ARGREG; SETMA; "Fetch x(2)

FADD "Push N-i through adder
5. LDSPI DELTAXREG; DB-DELXBASE-I;"Get base address of &x into s-pad

DPY(2)<FA "Store N-i in data pad Y 0
6. NOV MREG,XREG; SETMA; MI<MD; "Put x(l) where it can be found

DPX<MD; "Save x(l) in data pad X
DPY<MD; "And again in data pad Y for last calc -

FSUBR TM,DPY(2) "Start decrementing loop count

"Enter the loop - compute Ax(i), Ax(2), ... , 6x(n-i), U
"where &x(i) - x(i+l) - x(i)

LOOP:
7. DPX<HD; "Save x(i+l) (il initially)

FSUBR DPX,MD; "Start x(i+l)-x(i)
INC ARGREG; SETMA "Fetch x(i+2)

8. INC XREG; SETMA; MI<DPX; "Put x(i+l) where it can be found
DPY(2)<FA; "Save loop count

FSUB DPY,DPX "Start x(1)-x(i+l) in case i+l-n"
9. INC DELTAXREG; SETMA; MI<FA; "Store Ax(i)

FSUBR TM,DPY(2); "Start decrementing loop count
BFGT LOOP "Branch back If more to do

"End of loop - save &x(n)
* o.. •%

10. INC DELTAXREG; SETMA; MI<FA "Store Ax(n)

Note that this final version of the code has only one cycle following
the loop whereas the previous versions have three. This further reduction
results from the fact that the floating adder is needed for only two of the
three cycles, so the available cycle is used to start the calculation of
Ax(N). This means that Ax(N) is actually computed N-i times during the ex-
ecution of the loop.

Thus, the original program fragment time has been reduced from 8+6N
machine cycles to 7 + 3N cycles by making full use of the machine architec-
ture. However, it is a difficult and tedious task for the programmer, and
leads to much longer software development times than would be expected for
other high speed computers (see [101 for example, for a table comparing
software development times on various machines).

The manufacturer has alleviated this problem to some degree by providing
a Fortran-to-AP-120B-machine-language compiler and a set of machine
language routines to perform common functions. The AP-Fortran compiler has
been found to produce code about three to four times slower than tightly-
coded machine language (for example, (101,(I1I) and is therefore un-
suitable for real time applications such as that considered in this
Memorandum.

The manufacturer-supplied machine language routines fully utilise the
pipelining capabilities of the array processor. However, they cannot al-
ways fully exploit the parallel processing features, simply because of

(h131 .

their generality. For example, the above program fragment could be coded
using two library routines, VMOV, which copies a vector from one area of
memory to another, and VSUB, which subtracts each element of a vector from
a corresponding element of another, storing the result as a third vector.rK VMOV takes 12 +2N cycles, and VSUB takes 16 +3N cycles, so that the com-
bination (neglecting initialisation cycles) requires 28 +5N cycles. This
is not much of an improvement over the original straightforward translation
which used 8+6N cycles. For real-time applications such as that of the
current study, it is therefore essential to produce software which fully
exploits the parallel and pipelining features of the array processor
architecture.*

6.2 Software Link between Host and Array Processor
Communication between the VAX and the AP/120B Is achieved through an In-

terface which comprises a simulated front panel and a DKA control. The
simulated front panel consists of three registers called the "switch",
"lites" and "function" registers whose functions closely parallel those of
the switches and lights on the console of a stand-alone computer. There are
a further four registers for controlling the DMA. The host uses the front
panel registers for loading and starting programs, and for examining and
modifying array processor memories and internal registers during debug-
ging. A manufacturer-supplied package of Fortran callable routines
("APEX") for manipulating these registers facilitates communication.

Thus, apart from the development of code within the array processor, a
link must be established within the host program so that data can be trans-
f erred and array processor programs can be set up and executed. This can be
achieved using another manufacturer-supplied program called APLOAD. This
links and relocates separate APAL routines, and produces a load module and
an interface routine ("HASI"). The load module is a Fortran subroutine
which contains the array processor code in a form appropriate for DMA tran-
smission, and the relevant APEX calls required to effect the transmission.
The HASI ("host-array processor software interface") is a group of Fortran
routines which invoke the execution of the array processor modules. The
HASI as produced by APLOAD is very general, in that it checks for and hand-
les various situations, such as array processor modules being overwritten
in program memory by others and needing reloading, and transfer of data to
s-pad registers prior to each module execution. For the present study, a
different software link was written so that array processor routine ex-
ecution could be initiated as fast as possible.

A further consideration in the real time context is the time required
for transferring data to the array processor. As discussed In section 4,
the overhead for initiating a DMA transfer is of the order of 2 millisec.
Since integer and floating-point quantities must be transferred
separately, the most efficient method of transfer is to convert all quan-
tities to one type and hence use only one DMA transfer. A routine to do this
and initiate the transfer was written as part of the software link.

7. ALGORITHM TIMING ANALYSIS

The evaluation of the algorithm was conducted using a typical jet air-
craft which traversed the display screen under oscillatory rotation about* .

one axis at a simulated distance of approximately 1000 metres. This
distance was close enough to allow the vehicle to be discernible as an air-

- craft, yet far enough to ensure that dynamic modelling could be employed
rather than invoking pre-computed routine manoeuvres. Under these

*conditions, the aircraft was satisfactorily represented by twenty
* polygons, with, in general, half of them visible at any one instant.

The relative timing of the VAX and array processor computations is shown
in Figure 3. In each 80Qmillisec computation cycle, one interpolated frame

(14)

C4C

I~~.4~ .C0Ib j

cc C C C
o 48 048+

-~C1 $ 4 *
+ -

m 0

lU U8dI. .

481 4J 41
0-4 .4144 . 84

%- 4W 0

-PI

++

06 .L C6

WS W

and one key frame are computed and displayed 40 millisec apart. During each
"cycle", the array processor interpolates between two key frames, H(Kn) and

H(K +,) (where H(,) refers to the high resolution form of the frame), to -

produce the high resolution interpolated frame, H(I). This is then 0

spatially filtered and decimated to produce In , which is displayed at the

next 40 millisec point. In the meantime, the VAX performs its calculations
for key frame H(K+), and transfers the visible polygon details to the ar-

ray processor. The DMA transfers take place in parallel with the proces-
sing of both the VAX and array processor, although there could be some
slight degradation of processing speed if a processor and the DMA attempt
to access the same memory location simultaneously. Once all polygons are
transferred, the array processor scan converts them to produce H(Kn+ 2), and

spatially filters and decimates the previous frame, H(Kn+I), ready for

display. While this is proceeding, the VAX updates the position of the air- 0
craft ready for the next key frame calculation. Thus, there is a fair deg-
ree of overlap in the VAX and array processor operations.

Timing of the array processor code was achieved with the aid of a
manufacturer supplied simulator, which is a Fortran program that simulates
the instruction by instruction execution of array processor code. Since
the array processor is a synchronous machine, such simulated execution ac-
curately reflects the states and timing of the AP-120B. However, it is ex-
tremely slow - for example, it takes approximately 10 minutes of computer
processing to simulate 5 millisec of array processor computation. Timing
of the VAX processing enlisted the aid of the VAX interval clock which is
accurate to I microsec.

TABLE I '-.""""

TYPICAL TIMES FOR IMAGE GENERATION

Typical time
(msec/f rame) . .

Computation of polygons in VAX and DMA
transfer to AP-120B (without clipping) 22
Computation of polygons in VAX and DMA
transfer to AP-120B (when clipping required) 34
Update of aircraft position 4
Scan conversion in AP 2
Interpolation in AP 5

Spatial filtering and decimation in AP 4

- - .. .

Typical times as measured are listed in Table 1. The VAX times are
listed for cases with and without clipping (step 2.4 in section 3) since
this is a time-consuming event which is rarely required, so these times
represent best and worse estimates for VAX processing. Table 1 also shows

* that the VAX provides a considerable part of the computation required. " "
However, transferring more of the computational load to the array processor N-
has to be weighed against the time required to transfer more data from the
VAX.

[161[~~ 16 "-"-'

'- '. -, - S - * - --- - -- - -.. ' .

It is of interest to look more closely at the scan conversion times,
since these are the only component of the array processor operation that Is
data dependent. Interpolation and filtering/decimation perform the same
set of operations on constant-sized arrays, and hence there Is no variation
in their execution times. On the other hand, scan conversion time depends
upon the Input polygon, apart from a constant overhead of 1.7 millisec per
frame (10200 array processor cycles) to zero the 10200 element picture buf-
fer array. Table 2 lists the times required to scan convert certain regular

TABLE 2

POLYGON SCAN CONVERSION TIMES

-- octagon "rotated" square "parallel" square

area dimension time dimension time dimension time
(pixels) (jsec) (pixels) (psec) (pixels) (j sec)

2 1.68 73 2.00 55 1.41 52
*.10 3.76 91 4.47 66 3.16 64

25 5.95 104 7.07 87 5.00 69
50 8.41 119 10.0 104 7.07 93
75 10.3 134 11.2 120 8.66 109
100 11.9 147 14.1 135 10.0 109
150 14.6 166 17.3 158 12.2 127
200 16.8 185 20.0 180 14.1 146
250 18.8 204 22.4 202 15.8 166
500 26.6 286 31.6 286 22.4 235
750 32.6 359 38.7 367 27.4 316
1000 37.6 432 44.7 440 31.6 377
2000 53.2 678 63.2 703 44.7 591
4000 75.2 1125 89.4 1166 63.2 1054

polygons (assuming a clear picture buffer). Three polygons are considered
-a regular octagon with one vertex uppermost, a square with one vertex up-

permost and a square with its edges parallel to the screen boundaries. Each
row of the table compares polygons with equal areas (unit dimension is one
pixel). The table shows that the dimensions of the polygon play a sig-
nificant part in determining the scan conversion time. This is a direct
consequence of the scan conversion process - the polygon is scanned from
top to bottom, filling in the pixels in each row which are inside the
polygon. The height of the polygon is of greater importance than the width
in timing, since the filling of a row requires only one array processor
cycle per pixel (step 6 of the algorithm as described in section 5.1),
whereas steps 2 to 7 must be executed for each row occupied by the polygon.
Table 2 also demonstrates the effect of the number of vertices - more

* processing Is required each time a vertex is encountered (steps 3 and 5 of
section 5.1). This can be seen by comparing the times for the two square
orientations. The interaction between vertex count and dimension can be
s een by comparing the octagon and rotated square times - the octagon always
has the smaller dimension, but for the smaller areas the increase in -

processing due to the larger vertex count is not offset by the decrease due
to smaller dimensions.

The gains made by performing scan conversion in the array processor are
illustrated in Table 3, which compares array processor and VAX scan con-
version times for the octagons of Table 2. The VAX routine was written In

(171

(optimised) Fortran, as were all the other VAX routines. Table 3 shows that

TABLE 3

COMPARISON OF VAX AND ARRAY PROCESSOR SCAN CONVERSION TIMES

VAX time AP-120B time
area (usec) (usec)

2 440 73
10 640 91
25 730 104
50 920 119
75 1100 134
100 1270 147
150 1530 166
200 1820 185
250 2100 204
500 3470 286
750 4760 359
1000 6040 432
2000 10900 678
4000 20400 1125

the array processor is significantly faster at scan conversion, even for
the smaller polygons.

S. CONCLUSION

In this Memorandum, the use of an array processor in the computation of
real time images for an Air Traffic Control tower simulation has been
described, together with some of the problems that arose in the implemen-
tation. It has been shown that in this application, the time required to
transfer data from the host to the array processor is significant to the
extent that it dictates the partitioning of the algorithm between the two
processors. The coding of the array processor program is also an important
factor in achieving high-speed execution. Hand-coded software, which ful-
ly exploits the parallel and pipelining architecture of the array proces-
sor, has been shown to be about ten times faster than a host Fortran
routine, although at considerable expense in software development time.
The processing efficiency derives from the utilisation of the maximum num-
ber of parallel computing elements together with the pipelining of
operations to minimise loop lengths ("loop-folding"). Without such con-
siderations, the resulting code can be much slower (for example, half the
speed for a simple loop computing first-order differences). Other methods
of developing array processor code (AP-Fortran compilation or stringing
together a sequence of calls to manufacturer-supplied library routines)
are also shown to be inferior, in terms of execution speed, to careful
hand-coding in the machine language.

Thus, although the high-speed potential of the array processor is well-
suited to real time applications such as described here, realisation of
this potential cannot be achieved without considerable effort. S

(181

REFERENCES 7

I. Sandor, J. and Lester, L.N., Computer graphics for air traffic con-
trol tower simulation. Proc. Conf. Computers and Engineering, Syd

ney, Sept. 1983, pp. 24-29.

2. Booth, K.S., Kochanek, D.H. and Wein, M., Computers animate films andvideo. IEEE Spectrum, Vol. 20, No. 2, Feb. 1983, pp. 44-51.

3. Parke, F., Parameterized models for facial animation. IEEE Comp.
Graph. and Appl., Vol. 2, No. 9, Nov. 1982, p 61-70.

4. Bucy, R.S., Ghovanlou, F., Moura, J.H.F. and Senne, K.D., Nonlinear
filtering and array computation. IEEE Computer, Vol. 16, No. 6, June
1983, pp. 51-61.

5. Charlesworth, A.E., An approach to scientific array processing: the
architectural design of the AP-120B/FPS-164 family. IEEE Computer,
Vol. 14, No. 9, Sept. 1981, pp 18-27. . .

6. Floating Point Systems, Inc., AP Programmer's Reference Manual.

Publication No. 860-7319-O01A, 1981.

7. Gupta, S. and Sproull, R.F., Filtering edges for grey-scale displavs.
ACM Computer Graphics, Vol. 15, No. 3, 1981, pp 1-5. 0

8. Newman, W.M. and Sproull, R.F., Principles of Interactive Graphics,
Wiley, New York, 1979.

9. Sutherland I.E., Sproull, R.F. and Schumaker, R.A., A charac-
terization of ten hidden-surface algorithms. Coup. Surveys, Vol. 6,
No. 1, Mar. 1974, pp !-55.

10. Karplus, W.J. and Cohen, D., Architectural and software issues in the

design and application of peripheral array processors. IEEE Com-
puter, Vol. 14, No. 9, Sept. 1981, pp. 11-17.

11. Forsstrom, K.S., Array processors in real-time flight simulation.
IEEE Computer, Vol. 16, No. 6, June 1983, pp. 62-70.

1199

5' -. .~*

"..

d '. ,o

DISTRIBUTION

AUSTRALIA

Department of Defence

Central Office

Chief Defence Scientist)
Deputy Chief Defence Scientist)
Superintendent, Science and Program Administration) (copy)
Controller, External Relations, Projects and Analytical Studies)
Defence Science Adviser (U.K.) (Doc Data sheet only)
Counsellor, Defence Science (U.S.A.) (Doc Data sheet only) ag
Defence Central Library
Document Exchange Centre, D.I.S.B. (18 copies)
Joint Intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General - Army Development (NSO) (4 copies)

Aeronautical Research Laboratories

Director
Library
Superintendent - Systems Division
Author: L.N. Lester

Materials Research Laboratories

Director/Library " -

Defence Research Centre

Library

Navy Office

Navy Scientific Adviser •
Directorate of Naval Aircraft Engineering

Army Office

Scientific Adviser - Army
Engineering Development Establishment, Library
Royal Military College Library

Air Force Office

Air Force Scientific Adviser
Aircraft Research and Development Unit

Scientific Flight Group
Library

Technical Division Library
RAAF Academy, Point Cook

... /contd.

DISTRIBUTION (CONTD.)

Central Studies Establishment

Information Centre

Universities And CollegesUO
Adelaide Barr Smith Library

Latrobe Library

Melbourne Engineering Library

Monash Hargrave Library

Newcastle Library

Sydney Engineering Library

N.S.W. Physical Sciences Library

Queens land Library
I..

Tasmania Engineering Library

Western Australia Library

R.M.I.T. Library
Dr H. Kowalski, Mech. & Production

Engineering

Macquarie Library

UNITED KINGDOM

Royal Aircraft Establishment, Bedford, Library

British Library, Lending Division

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility

SPARES (10 copies)

TOTAL (69 copies)

- . .

- .-

L-.o

Department of Defence

DOCUMENT CONTROL DATA

i 0.Ah X;Nob 90~1 Iw:o 2bs00m~1tDan 3.To&No

AR-003-953 ARL-SYS-TM-73 AUGUST 1984 DST 84/040

a. document
ARYPOESRUTILISATION IN THE UCLASSIFIED 18

COMPUTATION OF REAL-TIME IMAGES b. Twwb t 11htw o"f

U U 11

9. Daseiradsm Iiniwrefl

IC. Cmgsps Authw an Add-w ll A r? (0 WPWS'*t

Aeronautical Research Laboratories
* PO Box 4331, Melbourne, Vic. 3001

Approved for public release. .

Owv onavis @uSd owndm ionm~t.s Omut he teferroc VooL AS~iS. Detona infawtotgon Srfvaws Stench.
Dfp~Ry~,tofDrfen CwrfmpbsJPhk,kCANBUERRA ACT 2501

13 6 TW* dspewtri ay be Aft%OLDNCED 'te cotalou oneU bo-o.01 Ww mft 0iao to

No limitations.

* 3. b Cnranm 11 0eW' PWPOW (aW CWam shfiftMrIMw) M" be 1rJt untur'"001i 13I~

14 rw 16. COSATI Grome

Fomputer graphics
Real time operations >09020
Pipelining (computers)',*
Image synthesis
Array processors

LThe application of an array processor to the real time genera-
tiort of aircraft images in Air Traffic Control tower simulation is
described. Particular emphasis is placed upon the problems which arise
in achieving efficient utilisation of the array processor. it is showr
that the time required to transfer data from the host to the array
processor is a serious consideration in the partitioning of the
algorithm between the two processors. It is also shown that array pro-
cessor execution speed is about ten times faster than a host Fortran
routine, provided that the array processor code is written to maximise
the number of parallel computing elements used and to minimise loop
lengths by pipelining of operations. These requirements result in a
considerable software development effort. A timing analysis of the1
resultant array procesgor code is also presented, A--~ r"-** S~

L -I-- Pp5

This pop is to be mod t or nformtvion wh~h is requimed by the Eaheblismem fot its own wn but
* ~~viieh will not be added go Ow DISTIS dau bmedmlspedficely mqtmad.

* 16- Abum IKmJ

* 1?. Iflf lto"

* Aeronautical Research Laboratories, Melbourne

* SYSTEMS TECHNICAL MEMORANDUM 73 716490

22. Esmawhwdnn Pd. Refle)

FILMED

2-85

DTIC

DFI i

