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1. INTRODUCTION

A number of problems involving the interaction between a
given finite-sized geometry and a far field such as potential flows
about aerofoil sections [1), [2), [3], scattering of two dimensional
long waves [4], [5] and stress concentration around two dimensional
holes [6], [7] can all be neatly solved using external conformal
mappings. Their solutions are derived from those for the simple
basic circular geometry. Therefore the common problem is to find the
conformal transformation from the unit circle I;I = 1 to a given
closed curve in the z plane [8). This is equivalent to determining
all the equipotentials and force lines external to the given closed
curve, Solution of the potential problem using the greatest lower
bound of superharmonic functions [9), [10] is not a practically
attractive method unless the field is discretized and handled in a
Finite Difference scheme. This leaves conformal mapping as the only
direct method. However the required conformal transformation must

satisfy the following conditions.

(a) The mapping must be one-to-one onto between the

regions under consideration. (l1a)
(b) The mapping must be continuous and conformal

between the two regions. (1b)
(c) The difference (z - ) must vanish to order

‘—v at infinity, where v is a positive number. (1c)

These conditions are illustrated by examining the following
familiar transformations:

The Joukowski transformation
z= (g - -0 - (m+n)/2)"" (2)

vhere m = 1, lnl < 1 satisfies all three requirements and is widely
used in theoretical aerodynamics. Likewise a slight change in the
roots m, n turns the curve in the z plane into an ellipse which is

also widely used in elastostatic and elastodynamics.

Finite trailing edge aerofcils and lenticular shapes
bounded by two circular arcs are generated by the K4rmin - Trefftz
formula ((11), page 78)

z+v g+ 1 )“

where v is a positive number 0<vS2. Again the three requirements are




satisfied. Two cuts are required, between [ = -1, [ = +1 and between

2 =~-y, z=+y, for the [ plane and z plane respectively. The sucess
of these two transformations is in part owing to the containment of
all singularities of dz/4dy inside the circles in the [ plane.

The Schwarz - Christoffel transformation S(o), ([10), page
236) defined by

as »? 28 B
T sMl(c-0.) k, L B =1, M a complex constant, (4)
o} k k
k=1 k=1

is general enough to generate a number of polygonal curves but it

does not satisfy the condition (1c), and therefore is not appropriate to
the present problems. It should be noted that if the ok's are placed

at the vertices of a regular n-sided polygon, all Bk are equal to

1/n, then we get a transformation from the circle passing through n
points ok's in the ¢ plane to a regular n-sided polygon in the z

Plane. As the number n tends to infinity the Schwarz - Christoffel

transformation becomes

as M
— - e '}
do o2

which is a mapping from the outside of one circle to the inside
of another. A modification of this transformation will be considered
in Section 5.

Another transformation method uses the infinite series

-1 -2

z{f) = + a + azc + .. (5)

1(
and can generate any shape as the series is a Laurent expansion for
the complex function z(f) which is analytic outside the unit circle

I:I = 1, However it requires quite a number of terms even for the
simplest aerofoil sections and yields no information whatsoever about

the singqularities or one-to-one onto property. It is noted that Glauert
[11) has applied this method to the problems of aerofoils. A well
developed theory on the determination of these coefficients for
aerofoils is due to Theodorsen and can be found in [12].

Here we propose a transformation of the kind given below
by equation (6) or (10) subjected to the condition (7). This

transformation will be shown to be indeed the general form for any

conformal mapping satisfying the three conditions (1). A formula
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is then derived for transformation from the unit circle to an arbitrary

given shape. A test case is given for transformations of the finite
product type. One special case of this transformation is very similar
to that of Schwarz and Christoffel. Application to the problem of
aerofoil sections gives some fairly flexible formulae of the finite

product type.

2. ANALYSIS OF THE NEW TRANSFORMATION

Let t be a real variable (0stsl), a(t) be a periodic complex
valued function of t with bounded variation and ¢(t) (|¢(t)|s 1)
be a periodic continuous complex-valued function of t. We have the

function

2(2) = [Je()dat) + [Te(t)at + exp(f log(z-#(t)Ha(t) + [Tlog(t-4(t) Hit)
(6)

defined for all [¢| > 1 as all the conditions for the Riemann - Stieltjes
integrals are satisfied. The function log ({-¢(t)) is chosen such

that it is continuous for 0stsSl with each given value of ;. Furthermore,
if the images of the circles |;| =1+¢, € >0, € very small, are non-
self-intersecting closed paths and also if it-is assumed that

! -1 — a (a(t) +t) #0 for all finite g, [g| > 1 7

o L-¢(t)

then all the requirements (1) are satisfied. This significance of the
assumption (7) is discussed in detail below, in Section 4.

First z(gz) is continuous, its derivative is

1
L-¢(t)

e exp [leog(;-O(t))d(a(t) + t)]fz

a d(a(t) + ¢t), (8)

and z(Z) is thus an analytic function. The exponential factor is
always non-zero and the last integral has been assumed in equation

(7) to be non-zero. Hence condition (1b) is satisfied.
For large value of { we have the expansion

1 1 t
z - [e()aca(e) + £) = ¢ exp|[llog(l - AL;—’ 1atate) + ¢
= zep {-F 1 [maem 4 t)} . (9)
k=1 k °

1

using Arzela's theorem. After an expansion for the expcnential
function we get the condition (lc) satisfied. It is then easy
to show that for large enough value of |[{| the mapping z({) is one-

to-one.




N The remaining part of the proof is to prove that the
mapping z2({) is one-to-one onto between the exterior of the unit

.

circle in the [ plane and the exterior of its image in the z plane.

Now let [ describes a circle of very large radius centered

AN

on the origin of the { plane. The image z(7) describes a closed

path in the z plane which is very close to this large circle if we
superimpose the two planes. Let the large circle in the [ plane
expand continuously as Icl tends to infinity. The closed path in the
z plane then also expands continuously and sweeps through every point
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exterior to its initial state. Hence outside some circle |c| = M,

the mapping 2({) is one-to-one onto.

Since the mapping is conformal with dz/d; non-zerc everywhere
we can unambiguouslydefine the "interior"” and "exterior” of each
closed path which is the image of some circle centred on the origin
in the [ plane. Now draw a nest of concentric circles in the [ plane
between |z| = 1 + ¢ and |t| = M. The image of this nest is another nest
of closed paths in the [ plane. Each closed path of this nest iswhollyon the
interior or exterior of every other of the nest, and it can have closed
paths as close to it as we like on both its exterior or interior. We now draw
a circle || = M in the z plane and let it shrink continuously to |z] = 1 + €.
Its image closed path also shrinks continuously from its initial state
to its final state. No region on the z plane bounded by these two
closed curves can be left outside this sweep by consideration of the
properties of the nest of image closed paths in the z plane.

The mapping z(f) is also one-to-one in the range uz|c|z1 4+ €.
For points of different radii in the [ plane we have different closed
paths in the z plane. The image of each circle centered on the origin
of the { plane can not fold back on itself either, as 4z/d7 is
everywhere non-zero. Therefore no two points in the { plane between
the circles |f| = 1 + € and || = M can have the same image.

This completas the proof.

The function z(§) for |{]| = 1 is defined to be the limit
as [¢]|+1, |c]>1 of z(7). Note that due to the one-to-one property

of the mapping, |z(¢)| is bounded as || tends to unity.

vhen ¢(t) assumes the value exp(i2nt), we have a special

case of equation (6), which is

i2nrt
e

) ([da(t) + dt]]. (10)

2(7) = Iz .i2wt

da(t) + exp [[i log(g -




With an appropriate cut in the [ plane, we can show that equation
(10) is indeed the general form for any conformal transformation
satisfying conditions (1), as in the following:

Let W({) be a given conformal transformation satisfyiné

i2nt

conditions (1) and W(e ) is a function of t with bounded@ variation

Choose a point wc strictly interior to the image of the
unit circle |C| = 1. Consider the contour integral

$ log W) - w)—2L =0

co -
- 14

with the cut on the { plane following the unit circle w then radiating

from the point +1 to +»°, The curve Y is along the unit circle, the
radial cut, the infinite circle, and back to the unit circle along the
radial cut. 1In this way the function log (W(l) - Wo) is defined and
single-valued for all points{ not on the cut. The components of this
contour integral give

dx

-27i log (W(Z) - W) = § log [W(o) - W] —— + j‘ i

- ‘9 log [W(o) =~ L ] ;—:—E ’
where QR is a circle of radius R centered on the origin, R tending
to infinity.

The first integral on the right hand side is then integrated
by parts. The third integral has its integrand expanded using the
condition (1c). The result is

1 i2nt log (w(ei2lt) - "c)
log (W(L) - W) = It-olog (x -e“"Ha T

The square bracket is a continuous complex-valued function
iant

of t. Due to our assumption that W(e ) is of bounded variation
the square bracket in the last integral also has buunded variation.
Therefore

wig) - w_ = exptfl log (k- ¢ ¥™a(s(e) + ey

t=0




where B(t) is a continuous periodic, complex valued function of t,

having bounded variation. (The function B(t) may not have bounded

variation if Wc is on the image of the unit circle).

Routine integration shows that

i2nt
[P o f 108 WD W Ly,
t=0 i2n

satisfying the requirement
W o= !1 elzntds(t)
c
0
of equation (6).

Hence formula (10) is indeed the general form for any
conformal transformation z () satisfying the conditions (1) subjected

to the conditions (7) and that w(elz"t) is of bounded variation.

Section 3 will show that equation (6) is only a special
case of equation (10), both subjected to the condition (7). Henceforth

we take (10) as the standard form for our transformation.

The form of equation (10) can be simplified even further
when the imaginary part of the function a(t) is continuous. Let

us denote Im(a(t)) by b(eiznt) and consider the integral

1 iznt iz2nt
e

1
!t-o log(g - e ydb( i2nt eiZﬂ’t

) = = [iuo Pl&7 A 1og(z - )

which is the imaginary part of the second integral in equation (10)
Since b(eizwt) is continuous, the internal boundary value problem for
the unit circle has a solution b(f + in) which is harmonic in the (§, n)

plane and takes the given boundary values on the unit circle. Therefore

‘ b{o)at (o) - 9 it (o) %% ds where b!{f, n) is harmonic

Y Y
and t(f + in) is an analytic function, is identically ze?o for any
closed loop Yy which can be shrunk to a single poirt without crossing
any pole of b(f, n) and (£ + in) (Proof at the end of this section).
The unit circle can be shrunk to the origin without passing through any
pole of b(g, n) or 1(f +in) and is one such closed path. Therefore

we have
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[} be'?™a 1091z - 1™ & if* 109z - oi27t) 3B 4
t

t=0 =0 an

In a similar manner, we have

Il .:I.Zwtdb(eilﬂ:) - - !1 b(eiZ'n_’t)d(eiZﬂt)
t=0 t=0
Il i2wt 3b
= - e n ds
t=0

Consequently if the periodic function a(t) has its real
part of bounded variation and its imaginary part continuous formula
(10) becomes

2@ - [*e'*™aait) = 20) - [ ™arreta(t)) + 203> ¢
0
=exp  [huolog@ - €¥HaRe(a(t)) + A + 202D) 1) (11)

where b(;, n) is a harmonic function defined on the disc || s 1 and
equal to Im (a(z)) for Icl =1, ‘

Putting y = 1/ E', wiy) - WB = EIIIW) - Zo we have a formula

corresponding to (10) for the internal problem.

-i2nt
e

log(y) - w) = - [ 109(%'- )aly(t) + t1° (12)
0

where y(t) is a complex valued periodic function of t with bounded
variation.

Notes to Section 2

Let an integral I be defined by

I =§ blo)ar(o) = [blo)T(o)) - § T(0)db(o)
Y Y Y

where vy is a closed path containing no pole of either b(c) or t(c), b(o)
being a real-valued harmonic function of (£, n) = (Re(c), Im(c)) ana
t(o) being a (complex valued) analytic function of o inside the curve Y.
The integrals are defined when one of the functions is continuous

and the other is of bounded variation on Y.
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We have

9t_(g,n) 3t. (g,n)
I=§DblE, n)(—— + i—Tx—) ds.
Y .

By the analyticity of t(0) = T, + iti we can wvrite

3'tr(€.n) 3‘ti(5cn)‘ds
on + an '

I =i b(g,n) ¢
Y

The real and imaginary part of the above integral is of the

aC
form Bf;;;ds where B and C are harmonic and n is the normal for the

curve vy, Noting that Green's identity is

| (B9 - CVB).nas = [ (BV3C - CV3B)da = 0,
m - - - A

where A is the part of the plane (¢, n) enclosed by the curve y, we have

§ ble,mar(g + im - if 1(g + ini2 ds = 0 (13)
Y Y ‘

for any closed path y not containing any pole of b(§, n) or 1(0), and s
is the arc length of the curve v.

As an example we choose b(f{, n) such that it vanishes on the

unit circle. The familiar real valued Green's function becomes.

g - a

o -1/a

1-1/a

1< a + log

b(o) = log

Its poles are at a (|a| < 1) and 1/a which is outside the unit circle.
Choosing the curve y encircling the point a, then along a radial line,

the unit circle and back to the small circle around a we have - .;s

ab : b RS
§ blo)ar(o) - § blo)dt(o) = if T(0) 3-ds - 1¢w1(cr 3. ds. AR

Y& w Ya

The second integral is zero as b(c) is identically zero

on w. The first integral vanishes as the radius Ya reduces to zero
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as 1(o) is analytic at the point a. The left hand side is thus zero.
The right hand side gives

. . 1 g-~a 1 g -
i2m(a) = 1§ 1{0) = cos (arg ) - cos (arg aj| ds
" Io a| 0 (o- %) —
a
=§ t(®) g _ 1, 40
w Gae-n@~ 2 5
- a

a

which reduces to a standard Poisson formula upon simplification

(see [13] and its notes).

3. DETERMINATION OF THE FUNCTION a(t)

Let us consider initially the problem of determining a(t)

of equation (10) for a given function z (%) of the form

n T n
2(@) =2z +1 (£-B)k LT =1, (14)
k=1 k=1 k

where Tk's may be complex and each ¢k is ins;de-the unit circle (|¢k|$1)
unless its corresponding Pk has a positive integer value (1, 2, 3,...).

In this way, the function z(f) is defined unambiguously outside the unit

circle |z| = 1. Its derivative is
2n-1 A 2n-1
dz k
—= I (-8 ) ’ bX = 0, (15)
X k1 k k=1 %

with all the ¢k assumed to be contained in the unit disk unless its

corresponding Ak is equal to zero. The (n-1) values of ¢k for k =n +1,
2n - 1, are the roots of a polynominal resulting from the differentiation
of 2(z). Wwhen two conditions of (14) and (15) are satisfied we have all

our requirements (1) satisfied with z, standing for

z_ = [ e qaqy). | (16)
c
0
Now let the function a(t) be the value of a complex function
n{(g) on the unit circle g = elzﬁt. The problem is to determine a

function n(g) such that equation (10) is satisfied on the unit

circle of the { plane.
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Since the contour integral

2n-1
§ (1 w-80% T a
W k=1

has the purely imaginary value of 27i we can define a single-val:

analytic function n(r)

14 2n-1 (4, -r.)
n@ =gy {1 e-gp * ¥ o100},
i k
o=1 k=1

where the integral path is outside the unit disc. On the unit ci

we have
i2nrt 2n-1 (8, - T.)

at) =5 ([* (1 (o-8) k a0} - ¢

o=l k=1

Substitution of this function a(t) into equation (10)
‘ noting that
2n-1 (8, -T ) n °T
d
n (o - ¢k) Ak ko2 a0 (log Il (c -9) k),

k=1 k=1 k

does give equation (14). Also substitution of this function af
into equation (8) gives equation (15). Therefore the functio
a(t) is the required function.

As an application of the above calculations we can wr
down the expression for ({ - @) where l¢| <1 as
1 i2 1 i2
;-gaexp{f log (¢ - e “)md [log (e' “t-ﬂ)l}
t=0
The familiar transformation from a circle to an ellif

or a Joukowski aerofoil therefore can be written as

+n, -1
20) - =g -mg -m -5, In|, |l 52
. i2nt
el i2ne, 1 (e -
. = exp {f log (¢ - e ) 5,7 Allog ot
t=0 e




If we employ the method of deriving equation (11) then the
quantities inside the square brackets in the last two integrals can be
replaced by two purely real ones. However it is simpler in practice

to use finite factorization rather than the formulae just derived.

The next case we consider is very practical. It is the

problem of determining the transformation (10) when the shape of

a non-self-intersecting, continuous, closed curve C in the z-plane is

given in parametric form A 1

L
w(u)eC, w(0) = w(l), OsSus1l (19) ‘
(An example is the ellipse w = cos(2mu2?) + 2isin(2wu2) given in the _ _i
z-plane). . @

The problem is to determine a function z({) such that

- -]
-n
T+ 20 4 (20a)
n=

z (%)

and
kz(z) for ¢ = 2", (20b)

where k is a positive scaling constant and t is a monotonic

w(u)
continuous function of u with
t(0) =0, t(1) = 1. (20¢)

For the moment we assume that such a function t(u) and

the function z(Z) has been determined.

Take a point z, interior to the image of the unit circle Icl =1

and examine the function (z(f) - zc)/c. This function is single-valued

and analytic for all values of [ outside the unit circle. The image

of any continuous curve external to Icl = 1 in the { plane can be

continuously shrunk to a single point +1 in the (2(3) =~ zc)/§ plane. Therefore
a single-valued function log ((z(f) - zc)/;) can be defined for all points

l;lZI and has a Laurent expansion
z(5) - g

log (‘—*—Z"—‘) = I }-'>nc-n

with bo equal to zero due to the condition (20a).




By taking a contour integral around the unit circle |c| =]

we have

Ii_o (log(z(g) - zc)-iZﬂt)eizﬂmtdt(u)-o for m = 0,1,2,3.. (21)

Especially, for m = 0

f:so (log(w(u) - w )-i27t)dt(u) = log k.

Thus
I; loglw(u) - w_| dt(u) = log k (22)

for all points Wg interior to the curve C.

The function t(u) determined by this equation (21) is the
required function if it is monotonic. It is not difficult to see that
dt/du is the charge distribution (with respect to u) on the boundary
C of a two dimensional conductor in an exterqal potential problem.

Once the function t(u) is solved from (22), the required
function a({t) = log (z(eiZWt)- zc) is determined. There is only
one function t(u) satisfying equations (20). Its uniqueness is
proved by showing that any function z([) satisfying all conditions
(1) and

lz(z)| =1 for |g] =1

must be identically equal to . The proof uses Laurent series

expansion and the Maximum Modulus theorem.
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4. THE RESTRICTION POSED BY EQUATION (7)

The restriction (7) has to be observed for the proposed
transformation (10) to work. The physical meaning of this restriction
is now examined. Equation (11) has shown that for any continuous
a(t) we can find another real function [Re(a(t)) + (1 + 273b/3n)t)
of equivalent effect therefore we shall content curselves with the

case of only real a(t) in this section.

Consider the real part of the last integral on the right o
hand side of equation (10). It is the potential generated by a R
charge distribution proportional to da/dt on the periphery of the unit ;_‘ >1
circle. The restriction (7) then requires that its corresponding

electric field should not vanish anywhere outside the unit circle.

This vanishing can precipitate the formation of kinked potential ;Ei!fj
lines (such as those apple shaped curves associated with log z = . @
(1 +k) log g -k log (f - a)) which leads to a finite area in the o
z plane being the image of a line segment in the [ plane. 1In other ;:?ff&
] words the area of uniform potential in the z plane is more than the fti}:?
area interior to the curve C, hence there may exist some area of o

uniform potential adjacent to some two-dimensional conductors which

is not totally enclosed by the conductors. There are analogous

et
ottt Te T N
I B BRI

results for three dimensional problems. One advantageous use of such

results is with the operation of Van der Graaff static generators.

There is more than one way to satisfy the condition (7)

The easiest way to satisfy this condition is to have [a(t) + t]

monotonically increasing.

The existence of those "regions of degeneration" has ’
diverse physical meanings besides that already cited: In problems
of potential flows we have regions of separation, in wave scattering jf;tf%

problems we require points of complex mass attached to the boundary

of the basic circular hole to generate all patterns of far-field

scattering.

5. RELATIONSHIP TO THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Remember that a Schwarz-Christoffel transformation is of the
form given by equation (4). This makes the point l;l=‘= a singular
peint. We now consider a modified formula




2 1 n p )2yk ' | n

—_—u - I ( - e Y.'Sreal, all |} =1, I vy =1 (23)
3

a B, k k k k=1 K

It is obvious that £(l) describes a polygonal curve when [ describes
the unit circle just as with the Schwarz-Christoffel transformation.
However the transformation (23) can satisfy condition (lc) whereas
the other can not.

By writing

1
n

eiZwk/ll) (24)

m
T=1lim I (¢ -
mbe k=l

we can readily put equation (23) into the form (15) which has been
proved to be a particular result of the formula (10).

Using ¢ to denote 1/ we can write (23) as dz/do =

n 2yk
kgl (/0 - ¢k) , which gives
n - =2 n - =2y
ﬂ[(l-ﬂ)(o-ﬂ)l k}gz__n (o-D)konthecirclolol-l
o k k do k
k=1 k=1

(25)

This last expression is very similar to the Schwarz-Christoffel
formula (4). We can therefore consider the latter transformation as
a composite one from the ¢ = 1/ plane to the final S plane with the
ratio dS/dz real on the circle Iol = 1, This consideration explains
its peculiar mapping from the interior to the exterior of the unit circle
in the o-plane as n tends to infinity.

Just as with the Schwarz-Christoffel transformation there
is a linear form for formula (10). This is obtained by applying the
inverse Mobius transformation 1 = i(l 4+ {)/(1 - 7) to the [ plane.
The combined transformation z(f (1)) is then from the half-plane

Im(t) < 0 onto the exterior of a closed continuous curve C.

6. APPLICATION OF FORMULA (6) TO THE GENERATION OF AEROFOIL SECTIONS

In generating aerofoil sections it is preferable to employ

formula (6). The method is to hLave one zero of order (1 - b) for




dz/4; on the unit circle |{| = 1 while keeping all its other singular
points inside the unit circle. The real value b is the internal angle
of the corner (trailing edge) of the aerofoil section.

The Joukowski sections are thus the case with

2@) -z = (L -mC-m - EH, (26)
m+n m=-n m+n m=-n
a_ C-T ¢ - -
—_—= (27)
az m+n, 3
(¢ - -1?4

and the complex constants m,n are chosen such that one of the values
(!§E E 1253) is on the unit circle and the other is inside. The pole of
dz/4r is the center of these two points and is therefore put inside
the unit circle.

The Karman-Trefftz sections are given by

v
e’ o
q(o) = v o T 19 s 1 <v g2 (28)
o-1 "1 .
and
(o + l)v
d 4 c -1
3’3' @*Dlo-1 Fer1v (29)
[~ -1

which require cuts between gq = =v , g = +v and ¢ = -1, ¢ = +1 in the
q and ¢ planes respectively (see [14], page 64).

Employing the intermediate transformations w(q) and u(o) we

have

I -v@ =) = G

This shows clearly that there is no gingularity of dq/doc outside the
circle |o| s 1 save for a possible singularity at |o| == . This

latter point is shown by to be not a singular one. Two new
variables z2(g) and 7 (c) are then introduced as the same linear function
of q and ¢ respectively. The composite transformation z(f) then gives
a Karman-Trefftz section as the image of a unit circle Icl = 1.




Note that the image o(f) of |z| = 1 in the o plane must not cross the
cut between 0 = -1 and ¢ = +1. By examining the intermediate variables
u(c) and w(q) we see that the last condition automatically ensures that
no singularity for z () can exist outside the disc |C| s1. H

Following the previous two methods of generating aerofoil
sections we can have quite a range of transformations in the form
a a o k

z(g) - 2z, = (T + "1) 1(; + “2) 2...(; + "k) » I oy =1, (30)
i=1

where ai's are all real. For z({) to be defined uniquely every mg mist
be contained inside the unit disc |c| £ 1 unless its corresponding power

index is a positive integer (1, 2, 3 ...).

%4
The derivative dz/4dr is given by

] a
l_. *zn + ...+ :k
4 2 g +m

and all singularities (zeros and poles) of dz/dr[ are contained within

the disc {¢| s 1. This last condition in turn requires that |‘1| is

inside the unit disc [{]| s 1 unless its corresponding power index

dz f
a = (z(7) - lc)tc ¥ m

] (31)

o, is equal to one. (The Joukowski aerofoil given by (6.1) has one

zero of order one of z(f) outside the unit circle).

For examples, a few aerofoil shapes have been produced
using the following formulae

1.9 0.1 -1
2(g) -2z = (L +1)"°7(g - 0.1 -0.2i) (z + 0.1 -0.2i)

1.9 0.1 =1
z(g) - 2o = (3 +1) (g - 0.1 - 0.24) (¢ + 0.1i)

-0 5

1. -4 -0
£R) - 2o = 2 + D120 B¢ 4 0.1)70%,
or we can even use complex powers (in this case we require that
|mi| S 14f (a, - 1) is real and non-zero,lmil < 1if o, is
complex) to have

2(z) - £ = (C + 1)1.9“)0.1--0.31(c + 0.1)-1+0.31.
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. Not all choices of m, and a, give acceptable aerofoil shapes.
For the above four functions z({) a computer program has been used to
ensure that all singularities of Az/4dy are contained in the unit disc
|;| S 1 except for one at 7 = 1 to generate a finite acute angle at
the trailing edge. The resulting aerofoil sections have been pl&tt.d
by a computer and the effect of ni's and ai's on thickness, camber
stc.. was examined (The computer programs are written by Mr. C. A.
Martin, the author acknowledges his help to substantiate the proposed

method).

7. CONCLUSIONS

The transformation (10) subjected to condition (7) is
a continuous form of that given by equation (23). Our representation
for z2(f) in egquation (6) or (10) has some similarities to Wierstrass'

theorem on entire functions (see [10], page 195).

The shapes not covered by the transformations (6) or
(10) due to the restriction (7) may have regions of finite area
which are not in the range of the conformal mapping. For these cases
it is mathematically satisfactory to modify the boundary to exclude
those regions. )

It is noted that the conformal mapping here has some
relationship to the more general problem of the existence of a conformal
mapping from the interior of a unit circle to an arbitrary simply
connected region (see [10), page 230). The latter problem is associated
with such famous mathematicians as Riemann and Wierstrass (see (15),
page 186). The difference between the mapping considered here and
that of the general problem is our requirement (lc). It ought to be
mentioned here that the numerical method which combines numerical
solution to the external potential field for a given conductor shape
with a Fourier series analysis to determine the series expansion (5)
for the corresponding conformal mapping can be considered a logical
outflow of Riemann's idea for the existential problem.
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