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1. INTRODUCTION

A number of problems involving the interaction between a 6

given finite-sized geometry and a far field such as potential flows

about aerofoil sections 111, 121, [31, scattering of two dimensional

long waves (4], (51 and stress concentration around two dimensional

holes [6], (7] can all be neatly solved using external conformal . .

mappings. Their solutions are derived from those for the simple

basic circular geometry. Therefore the conon problem is to find the

conformal transformation from the unit circle k I 1 to a given

closed curve in the z plane [8]. This is equivalent to determining _

all the equipotentials and force lines external to the given closed

curve. Solution of the potential problem using the greatest lower

bound of superharmonic functions [9], [10] is not a practically

attractive method unless the field is discretized and handled in a .6

Finite Difference scheme. This leaves conformal mapping as the only

direct method. However the required conformal transformation must

satisfy the following conditions.

(a) The mapping must be one-to-one onto between the

regions under consideration. (la)

(b) The mapping must be continuous and conformal

between the two regions. (lb)

(c) The difference (z - ) must vanish to order

C at infinity, where v is a positive number. (1c)

These conditions are illustrated by examining the following

familiar transformations:

The Joukowski transformation

z =(C m) (C n) (C (m + n) /2) 1  (2)

where m- 1, Inj < 1 satisfies all three requirements and is widely

used in theoretical aerodynamics. Likewise a slight change in the

roots m, n turns the curve in the z plane into an ellipse which is

also widely used in elastostatic and elastodynamics.

Finite trailing edge aerofoils and lenticular shapes 6

bounded by two circular arcs are generated by the Kfrmin - Trefftz

formula ((111, page 78)

z + v + 1 V

-. 
, ( 3 )

where v is a positive number 0<v2. Again the three requirements are
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satisfied. Two cuts are required, between F - -1, - +1 and between

Z a -v, z a +v, for the C plane and z plane respectively. The sucess

of these two transformations is in part owing to the containment of ..

all singularities of dz/d inside the circles in the C plane.

The Schwarz - Christoffel transformation S(O), ([101, page **.*..5

236) defined by
n n"" : "

dS -20
do )K(- )-k, E ', 1, N a complex constant, (4)

k-1 k=i k

is general enough to generate a number of polygonal curves but it

does not satisfy the condition (1c), and therefore is not appropriate to
the present problems. It should be noted that if the k 'S are placed

at the vertices of a regular n-sided polygon, all are equal to

1/n, then we get a transformation from the circle passing through n

points ak'S in the a plane to a regular n-sided polygon in the z

plane. As the number n tends to infinity the Schwarz - Christoffel

transformation becomes

dS M
da T

which is a mapping from the outside of one circle to the inside
of another. A modification of this transformation will be considered

in Section 5.

Another transformation method uses the infinite series

-l -2
z(O] - + a1e + a2  + .. (5)

and can generate any shape as the series is a Laurent expansion for

the complex function z (-) which is analytic outside the unit circle

j " - 1. However it requires quite a number of terms even for the

simplest aerofoil sections and yields no information whatsoever about

the singularities or one-to-one onto property. It is noted that Glauert

111 has applied this method to the problems of aerofoils. A well

developed theory on the determination of these coefficients for

aerofoils is due to Theodorsen and can be found in [121.

Here we propose a transformation of the kind given below

by equation (6) or (10) subjected to the condition (7). This

transformation will be shown to be indeed the general form for any

conformal mapping satisfying the three conditions (1). A formula

I I l IIII I IIi * - " ~ 5



is then derived for transformation from the unit circle to an arbitrary

given shape. A test case is given for transformations of the finite

product type. One special case of this transformation is very similar

to that of Schwarz and Christoffel. Application to the problem of
aerofoil sections gives some fairly flexible formulae of the finite

product type.

2. ANALYSIS OF THE NEW TRANSFORMATION

Let t be a real variable (0<tl), a(t) be a periodic complex

valued function of t with bounded variation and #(t) (I,(t)i 1) rQ

be a periodic continuous complex-valued function of t. We have the

function

Z(R) -f 1 *ctOdact) + f' (t)dt +e amxpf0logC-t))C0(t) + f 1 log( -c())ItoS

(6)

defined for all [ > 1 as all the conditions for the Riemann - Stieltjes

integrals are satisfied. The function log (C-4(t)) *s chosen such

that it is continuous for Ot~l with each given value of ;. Furthermore,

if the images of the circles I - 1 + c, c > 0, c very small, are non-

self-intersecting closed paths and also if it is assumed that

1o q-%Ct) d (W(t) + t) #i 0 for all finite , > 1 (7)

then all the requirements (1) are satisfied. This significance of the

assumption (7) is discussed in detail below, in Section 4.

First z(4) is continuous, its derivative is

dz . 10d x (p [% log(-(t))d((t) + t)]ot (8)

and z(C) is thus an analytic function. The exponential factor is

always non-zero and the last integral has been assumed in equation

(7) to be non-zero. Hence condition (ib) is satisfied.

For large value of C we have the expansion

z - f(t)d(aft) + t) C expj log(l - )d(a(t) + t)

C g exp {- # fl4k(t)d(a(t) + t) , (9)
k-l k

using Arzelk's theorem. After an expansion for the exponential

function we get the condition (1c) satisfied. It is then easy S

to show that for large enough value of IJ the mapping z(C) is one-

to-one.



(4),S

The remaining part of the proof is to prove that the

mapping z(C) is one-to-one onto between the exterior of the unit

circle in the C plane and the exterior of its image in the z plane. & 5

Now let C describes a circle of very large radius centered
on the origin of the C plqne. The image z(C) describes a closed

p- path in the z plane which is very close to this large circle if we

superimpose the two planes. Let the large circle in the C plane

expand continuously as ICI tends to infinity. The closed path in the

z plane then also expands continuously and sweeps through every point

exterior to its initial state. Hence outside some circle j1 I - M,

the mapping z(1C) is one-to-one onto.

Since the mapping is conformal with dz/dC non-zero everywhere

we can unambiguouslydefine the "interior" and "exterior" of each
closed path which is the image of some circle centred on the origin

in the C plane. Now draw a nest of concentric circles in the 4 plane

between I " 1 + £ and M " 1. The image of this nest is another nest

of closed paths in the 4 plane. Each closed path of this nest is wholly on the

interior or exterior of every other of the nest, and it can have closed

paths as close to it as we like on both its exterior or interior. We now draw .. .'

a circle m " N in the z plane and let it shrink continuously to ICI 1 + C. "..

Its image closed path also shrinks continuously from its initial state

to its final state. No region on the z plane bounded by these two

closed curves can be left outside this sweep by consideration of the

properties of the nest of image closed paths in the z plane.

The mapping z() is also one-to-one in the range )QIr(al + C.
For points of different radii in the C plane we have different closed
paths in the z plane. The image of each circle centered on the origin

of the C plane can not fold back on itself either, as dz/dC is

everywhere non-zero. Therefore no two points in the plane between

the circles I -1 + cand - c can have the same image. -

This completes the proof. .".-.

The function z(;) for Id - 1 is defined to be the limit

as ICI+i, k1>l of z(4). Note that due to the one-to-one property
Of the mapping, Iz(d)I is bounded as IcI tends to unity.

When $(t) assumes the value exp(12wt), we have a special

case of equation (6), which is

z d) o d"o(t) + exp [f' log(C - e )(do(t) + dt0. (10)
0 0
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With an appropriate cut in the C plane, we can show that equation

(10) is indeed the general form for any conformal transformation

satisfying conditions (1), as in the following:

Let W(C) be a given conformal transformation satisfyin..

conditions (1) and W(ei2 rt) is a function of t with bounded variation '.

Choose a point W strictly interior to the image of the
cunit circle IW1 - 1. Consider the contour integral

Slog (W(C - W 0cna

with the cut on the C plane following the unit circle w then radiating

from the point +1 to +-. The curve y is along the unit circle, the
radial cut, the infinite circle, and back to the unit circle along the

radial cut. In this way the function log (W() - W0 ) is defined and

single-valued for all points C not on the cut. The components of this

contour integral give

-27ri log (W(C)-W) c fo [1o aW + C I 2vi xdxcdo d ...

- log [W (o) - W I -
c a-

RRwhere nR is a circle of radius R centered on the origin, R tending

to infinity.

The first integral on the right hand side is then integrated
by parts. The third integral has its integrand expanded using the

condition (lc). The result is

[2w ict
log (w(C) - -J log (C- )d log W(e t ) - ,.)c I2wi

The square bracket is a continuous complex-valued function
12wrt

of t. Due to our assumption that W( ) is of bounded variation

the square bracket in the last integral also has buanded variation.

Therefore

W(C) - Wc exp( I  log ( - (t) + t))
t-0



[6]

.7N

where O(t) is a continuous periodic, complex valued function of t, .

having bounded variation. (The function B(t) may not have bounded

variation if W is on the image of the unit circle).

5'° .

Routine integration shows that S

Il ei2,rt F1o. (W(ei2wt) - W ] W

t-0 dL i2

satisfying the requirement -

fl i2 tdOct)

0
of equation (6).

Hence formula (10) is indeed the general form for any

conformal transformation z(C) satisfying the conditions (1) subjected
i2.rt

to the conditions (7) and that W(e t) is of bounded variation.

Section 3 will show that equation (6) is only a special

case of equation (10), both subjected to the condition (7). Henceforth

we take (10) as the standard form for our transformation.

The form of equation (10) can be simplified even further

when the imaginary part of the function cl(t) is continuous. Let
12vtus denote Im(a(t))by b(e t ) and consider the integral

1 i2t 12wt fl  ( 12wt 12wt

Jt- log( - e )db( t.- b(. )d log(C - 0

which is the imaginary part of the second integral in equation (10)

Since b(e 2 ) is continuous, the internal boundary value problem for

the unit circle has a solution b(K + in) which is harmonic in the (C, n)
plane and takes the given boundary values on the unit circle. Therefore

b(o)d'r(a) - (aiTo) L ds where b((, n) is harmonic .
3nY Y ,,..' '

and T(& + in) is an analytic function, is identically zero for any

closed loop y which can be shrunk to a single poirt without crossing ":'"

any pole of b(R, n) and (& + in) (Proof at the end of this section).

The unit circle can be shrunk to the origin without passing through any

pole of b(&, n) or U(E +in) and is one such closed path. Therefore

we have



(7)

jib(a 1td loci(c - Jilt (C e1 *2,wt) b s

In a similar manner, we have

I e 1wdb (e 1t)--f b (e 12vt e )~
t-0 t-o

fl e1j *2vt Sb ds
t-o

Consequently if the periodic function a (t) has it. real

part of bounded variation and it. imaginary part continuous formula

(10) becomes

z (V - e dft) MM zc W f11e12rd[Re(as(t)) + 2 lb tJ
0 0

ep ftwo10g(C - eiW)d[Re(amt) + (1 + 2 iin- (11

where b(C, n~) is a harmonic function defined on the disc Id 1 and

eqalto Im (a(C)) forId-.

Putting l. / ,W(*) W 0 -z(l/.) -zo we have a formula

corresponding to (10) for the internal problem.

*log(W4. - -f log (i - 9i M~dYMt + t] (12)0 o 1

where y (t) is a complex valued periodic function of t with bounded

variation.

Notes to Section 2

Let an integral I be defined by

I b b(0) dT () -[b(0) T (0) T '(0) db (0)

where y is a closed path containing no pole of either b~a) or TOa), b(c))

being a real-valued harmonic function of QF, ni) - CRe~C), Im W) ) and

'rWa being a (complex valued) analytic function of a inside the curve y.

The integrals are defined when one of the functions is continuous

and the other is of bounded variation on y.



We have

3T ,_ n) 3r . n).

rr

I ib(, ) n(Fn) i ds

(g ,n) Qn
z.- b( r(-a + -s ds.......

an an

The real and imaginary part of the above integral is of the9
ac

form af-ds where B and C are harmonic and n is the normal for the

curve y. Noting that Green's identity is

f (SVC -CVB).nd. f (B72C- CV2B)da -0,

3A - - A

where A is the part of the plane ) enclosed by the curve y, we have

Sb(,)drT( + in) - if -r( + in) ds 0 (13)
Y Y• .

for any closed path y not containing any pole of b(&~, n) or 'r(o), and s

is the arc length of the curve y.

As an example we choose b(, n) such that it vanishes on the

--- a

uncre . Ntne falar Greal' vadety Gresfunction ecomes

.- 1 a

b~o) - og + lg-- 1/

Its poles are at a (jai < 1) and 1/a which is outside the unit circle.

Choosing the curve *y encircling the point a, then along a radial line,

the unit circle and back to the small circle around a we have

abbb(a)d ) -( b (a)d() - if T() T ds - M0 3-L) ds.
S

T 
W-a W'"

The second integral is zero as b(o) is identically zero

on w. The first integral vanishes as the radius y reduces to zero

a.-
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* - as T(a) is analytic at the point a. The left hand side is thus zero.

The right hand side gives 0

.1a aa 1i2wi(a) if- (F) cos (arg -) - cos (arg ds
- r

aS

•~a Cy (a .1) -)da2i--
W- a-a a- 1)-

"a

which reduces to a standard Poisson formula upon simplification

(see [13] and its notes).

3. DETERMINATION OF THE FUNCTION C (t)

Let us consider initially the problem of determining a(t)

of equation (10) for a given function z(;) of the form

n n -"

Z(C) c +n -Q- =1 (14)

k=1 k=1Fk

kwhere rkS may be complex and each k is inside-the unit circle (Ikl)

unless its corresponding rk has a positive integer value (1, 2, 3,...).

In this way, the function z(C) is defined unambiguously outside the unit

circle 1 1. Its derivative is

dz 2n-l Ak 2n-1 (.5)
"~ R-d =  E -C Ak  0'o (15)./

kl k-l 0

with all tkh,.e 0 k assumed to be contained in the unit disk unless its

corresponding Lk is equal to zero. The (n-l) values of Ok for k = n + 1,

2n - 1, are the roots of a polynominal resulting from the differentiation

of z(;). When two conditions of (14) and (15) are satisfied we have all

our requirements (1) satisfied with z standing for

fl ei2nt ;':
zc 0 e dc(t). (16)

-- 0

Now let the function a(t) be the value of a complex function
"" i27it

-(&) on the unit circle C - e The problem is to determine aJ- 6' %

function n(C) such that equation (10) is satisfied on the unit

circle of the r plane.
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.. Since the contour integral

2n-1
(A -rl ka ,( K ) do

k-1 kl

has the purely imaginary value of 2i we can define a single-valh

analytic function n(C)
=.-2 n -1 (( -1 (ak - rk

Wn- fkI ( k do -logo
2i o=1 k=1

where the integral path is outside the unit disc. On the unit ci

we have

{ ei2wt 2n-1 1) - rk)
CL =-- ( 11 (a - 0 k )  do) t

ct)-2wi a-i k-i kdo -t

Substitution of this function a(t) into equation (10)

noting that

2n-1 (Ak-rk) d n r
TI (- ) - (log1 (o ) k

k=i k-i k

does give equation (14). Also substitution of this function a('

into equation (8) gives equation (15). Therefore the functio:

a(t) is the required function.

As an application of the above calculations we can wr

down the expression for ( - 0) where 101 < 1 as

-0 -explf 1  log (- ei2 t )1 d tlog (ei2wt -0))

The familiar transformation from a circle to an elliF

or a Joukowski aerofoil therefore can be written as

m+n m+n. -I, mI k1
z(;) -2 ft - m)( - (- -n- l

i2-) iI •i 2 t

i~li21Tt 1(ei2 -M,
exp if log (f - e ) -dlog -mr

,il t-0 e



(11]

If we employ the method of deriving equation (11) then the

quantities inside the square brackets in the last two integrals can be

replaced by two purely real ones. However it is simpler in practice

to use finite factorization rather than the formulae just derived.

The next case we consider is very practical. It is the 9

problem of determining the transformation (10) when the shape of

a non-self-intersecting, continuous, closed curve C in the z-plane is

given in parametric form
O

w(u)Cc, w(0) = w(1), OU'sI (19)

(An example is the ellipse w = cos(2ru2) + 2isin(2ru2 ) given in the

z-plane). .0

The problem is to determine a function z(4) such that

z = + E an4 (20a)
n=O O_

and

w(u) = kz(4) for = e (20b)

where k is a positive scaling constant and t is a monotonic

continuous function of u with

t (0) 0 O t(l)= 1. (20Oc)

For the moment we assume that such a function t(u) and

the function z( ) has been determined.

Take a point z interior to the image of the unit circle k I = 1

and examine the function (z() - z c)/;. This function is single-valued

and analytic for all values of ; outside the unit circle. The image

of any continuous curve external to = 1 in the plane can be

continuously shrunk to a single point +1 in the (z() - z )/ plane. Therefore
c

a single-valued function log ((z() - z c)/) can be defined for all points

I flai and has a Laurent expansion z.'-.'-'.',
z( c Z c -n "'''='

log( )= nn=O """

with b equal to zero due to the condition (20a)• .
0



[12)

By taking a contour integral around the unit circle I i - 1 ,

we have
,l' i":.mt

k10 (log(z() - zc)-i2wt)e tdt(u)-O for m 0,1,2,3.. (21)

Especially, for m -0

u 0 (low(u)- W)-12wt)dt(u) = log k.
-4

Thus

I' loglw(u) - I% dt(u) - log k (22)

for all points wc interior to the curve C. -

The function t(u) determined by this equation (21) is the

required function if it is monotonic. It is not difficult to see that

dt/du is the charge distribution (with respect to u) on the boundary

C of a two dimensional conductor in an external potential problem.

Once the function t(u) is solved from (22), the required

function a(t) - log (z(e 1t)- zc) is determined. There is only

one function t(u) satisfying equations (20). Its uniqueness is

proved by showing that any function z(C) satisfying all conditions

(1) and

- for 1 1

must be identically equal to C. The proof uses Laurent series

expansion and the Maximum Modulus theorem.

,: ::i::::-A-

"- ,>.'-:.

. %" 9--
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4. THE RESTRICTION POSED BY EQUATION (7)

The restriction (7) has to be observed for the proposed

transformation (10) to work. The physical meaning of this restriction
.°S .-.. .

is now examined. Equation (11) has shown that for any continuous

a(t) we can find another real function [Re(a(t)) + (1 + 2vab/an)t]

of equivalent effect therefore we shall content ourselves with the

case of only real a(t) in this section.

Consider the real part of the last integral on the right

hand side of equation (10) . It is the potential generated by a

charge distribution proportional to do/dt on the periphery of the unit S

circle. The restriction (7) then requires that its corresponding

electric field should not vanish anywhere outside the unit circle.

This vanishing can precipitate the formation of kinked potential -- -

lines (such as those apple shaped curves associated with log z = - ]

(1 + k) log - k log ( - a)) which leads to a finite area in the

z plane being the image of a line segment in the C plane. In other

words the area of uniform potential in the z plane is more than the

area interior to the curve C, hence there may exist some area of

uniform potential adjacent to some two-dimensional conductors which

is not totally enclosed by the conductors. There are analogous

results for three dimensional problems. One advantageous use of such

results is with the operation of Van der Graaff static generators. 3 _

There is more than one way to satisfy the condition (7)
The easiest way to satisfy this condition is to have [(t) + t)

monotonically increasing.

The existence of those "regions of degeneration" has

diverse physical meanings besides that already cited: In problems

of potential flows we have regions of separation, in wave scattering

problems we require points of complex mass attached to the boundary

of the basic circular hole to generate all patterns of far-field

scattering.

5. RELATIONSHIP TO THE SCHWARZ-CHRISTOFFEL TRANSFORMATION

Remember that a Schwarz-Christoffel transformation is of the

form given by equation (4). This makes the point 1J1 a singular

point. We now consider a modified formula



i-. -" '-

[141

dz 1 nk n-.
a 7 - k y  k' real, all -0kl 2, E Yk - 1 (23)
k-l k-l

It is obvious that z(C) describes a polygonal curve when C describes

the unit circle just as with the Schwaz-Christoffel transformation.

However the transformation (23) can satisfy condition (ic) whereas

the other can not.

By writing

m ei2wk/m m (24)

*-a k-l

we can readily put equation (23) into the form (15) which has been

proved to be a particular result of the formula (10).

Using a to denote I/C we can write (23) as da/da-
n 2y

kil (1/0 - 0k) which gives

(- ) (a - 0k>  4 - f ( - on the circle Jli "

1 k-i
(25)

This last expression is very similar to the Schwarz-Christoffel

formula (4). We can therefore consider the latter transformation as

a composite one from the a - i/C plane to the final S plane with the

ratio dS/dz real on the circle jt - 1. This consideration explains

its peculiar mapping from the interior to the exterior of the unit circle

in the a-plane as n tends to infinity.

Just as with the Schwarz-Christoffel transformation there -

is a linear form for formula (10). This is obtained by applying the

inverse Mobius transformation T = i(l + C)/(l - €) to the C plane.

The combined transformation z(C(r)) is then from the half-plane --

Im(t) < 0 onto the exterior of a closed continuous curve C.

6. APPLICATION OF FORMULA (6) TO THE GENERATION OF AEROFOIL SECTIONS

-1 *In generating aerofoil sections it is preferable to employ

formula (6). The method is to have one zero of order (1 - b) for

*0 * .°%°



dz/dC on the unit circle I I1 while keeping all its other singular

points inside the unit circle. The real value b is the internal angle

of the corner (trailing edge) of the aerofoil section.

The Joukowaki sections are thus the case with p.,

Z(O zc (C SH n)(C m+n -16

m -n m+n -

dc (27)

and the complex constants mn are chosen such that one of the values

* -) is on the unit circle and the other is inside. The pole of2 2
du/dC is the center of these two points and is therefore put inside

the unit circle.

The Karman-Trefftz sections are given by *

q(o) V v I < v 6 - 'v 2 (28)

and a

(o + 1 V

(o (a +1 (29)
do (a )( l)[O )V]

which requir cuts between q -v ,q +v anda=-1, a +1lin the

q and a planes respectively (see (14), page 64).

Employing the intermediate transformations w (q) and u (c) we -a

have

w~ - (q) u u(a) cl

This shows clearly that there is no singularity of dq/do outside the

circle jol s 1 save for a possible singularity at lol-m This ~ ~.

latter point is shown by to be not a singular one. Two new a.

variables z(q) and C(a) are then introduced as the same linear function

of q and a respectively. The composite transformation z(r ) then gives

a Karman-Tref ftz section as the image of a unit circle I CI -1.*..**.
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Note that the image aft) of I -1 in the a plane must not cross the

cut between a a-1 and a -+1. By examining the intermediate variables

u (c) and w (q) we see that the last condition automatically ensures that

no singularity for z(C) can exist outside the disc ICI 5 1.

Following the previous two methods of generating aerofoil

sections we can have quite a range of transformations in the form

kk
z (4) -Zc (C a + a) ... C+ .)D E a 1, (30) -

where a. 's are all real. For z(C) to be defined uniquely every ma must

be contained inside the unit disc Id~ 9 1 unless its corresponding power

index ais a positive integer (1, 2, 3 ... )

The derivative dz/dC is given by

dz 1 2___a
dC (ZC W Z )[ + +* 1 (31)dC C +~a C

and all singularities (zeros and poles) of dz/dC are contained within

the disc IC 5 1. This last condition in turn requires that Jil~ is

inside the unit disc IcI s 1 unless its corresponding power index

a is equal to one. (The Joukovski aerofoil given by (6.1) has one
zero of order one of z(C) outside the unit circle).

For examples, a few aerofoil shapes have been produced

using the following formulae

1.9 0.1 -1
z()-Zc- (C + 1) (C -0.1 -0.21) (4 + 0.1 -0.2i)

19 0.1 -

z(C) tzr (t 1) (C -0.1- 0.21) (C + 0.1i)

1.9 -45 .0-45
z(C zc - (C + 1) (C) (C + 0.1) ,*.

or we can even use complex powers (in this case we require that

Im15 1 if (a. 1) is real and non-zero,ImiI < 1 if 0. is

complex) to have

1.9 0.1-0.31 1l+0.31
Z(C) -z - (C + 1) (C (C + 0.1)
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Not all choices of m£ and ai give acceptable aerofoil shapes.

For the above four functions z(4) a computer program has been used to

ensure that all singularities of dz/dC are contained in the unit disc

I l s 1 except for one at C - 1 to generate a finite acute angle at

the trailing edge. The resulting aerofoil sections have been plotted

by a computer and the effect of mi's and mi's on thickness, camber
O

etc.. was examined (The computer programs are written by Mr. C. A.

Martin, the author acknowledges his help to substantiate the proposed

method).

7. CONCLUSIONS

The transformation (10) subjected to condition (7) is

a continuous form of that given by equation (23). Our representation

for z(C) in equation (6) or (10) has some similarities to Wierstrass'

theorem on entire functions (see [10), page 195).

The shapes not covered by the transformation (6) or

(10) due to the restriction (7) may have regions of finite area

which are not in the range of the conformal mapping. For these cases

it is mathematically satisfactory to modify the boundary to exclude

those regions.

it is noted that the conformal mapping here has some

relationship to the more general problem of the existence of a conformal

mapping from the interior of a unit circle to an arbitrary simply

connected region (see [101, page 230). The latter problem is associated

with such famous mathematicians as Riemann and Wierstrass (see [15),

page 186). The difference between the mapping considered here and

that of the general problem is our requirement (Ic). It ought to be

mentioned here that the numerical method which combines numerical

solution to the external potential field for a given conductor shape

with a Fourier series analysis to determine the series expansion (5)

for the corresponding conformal mapping can be considered a logical

outflow of Riemann's idea for the existential problem.

S. , o

4% o
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