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V 

VECTTORIZATION AND IMPLEMENTATION OF AN EFFICIENT 
MULTIGRID ALGORITHM FOR THE SOLUTION OF 
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 

INTRODUCTION 

Elliptic partial differential equations arise in a wide variety of 

problems in computational physics and engineering.  These applications 

include, for example, the calculation of incompressible flows in 

hydrodynamics, electromagnetic potentials in magnetohydrodynamics, and 

molecular states in quantum chemistry.  Elliptic equations also arise 

from time-implicit formulations of diffusion problems, after discretization 

of the time variable.  For applications involving time-dependent physical 

systems, the equations must be solved over the spatial domain at each 

timestep.  Over the duration of a typical simulation, this amounts to 

solving thousands of equations in hundreds or thousands of unknowns. 

Executing this imposing task in a practical fashion calls for the 

development and use of accurate and highly efficient numerical techniques. 

The importance of elliptic equations in applied mathematics has led to 

extensive and varied efforts in this direction [cf. Schultz 1981]. 

During the last decade, much attention has been devoted to the 

development of a new class of methods, multilevel adaptive techniques [cf. 

Brandt 1977], for solving many types of numerical problems.  The general 

principles of multilevel techniques apply equally to finite-difference and 

finite-element approaches to solving partial differential equations, as well 

as to problems not associated with such equations, and can be summarized as 

follows.  As for all numerical methods, one begins by specifying a 

discretization of the original (continuous) problem, and then seeks the 

solution to this discretized problem in the appropriate finite-dimensional 
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(physical or function) space.  The essence of the multigrid approach is to 

establish a sequence of smaller, perhaps nested, auxiliary spaces, and to 

use solutions obtained in these smaller spaces to approximate the desired 

solution in the largest space.  The solution in any space can be improved by 

combining relaxation iterations in that space, which smooth the fine-scale 

errors, with solving correction problems using the smaller spaces, which 

reduce the coarse-scale errors.  The smaller spaces have geometrically fewer 

unknowns, and so require far less computational effort to yield a solution 

than does the largest space.  The final result is a substantial savings in 

the work required to solve the problem. 

Multigrid algorithms for elliptic boundary-value problems have been 

proposed and analyzed by several authors [cf. Douglas 1984, and references 

cited therein].  Douglas [1982] found a particularly efficient multigrid 

algorithm for solving elliptic problems, one which in numerical tests 

yielded solutions with accuracy comparable to that obtained by several 

alternative algorithms, for a smaller amount of effort.  His algorithm has 

been implemented in finite-difference form in a manner suitable for use in 

large-scale numerical simulations on a high-speed vector computer.  In this 

report I summarize the principles guiding its implementation, discuss the 

modifications to the algorithm required by these principles, and present the 

results of numerical tests of the method. 

^ 

A 



THE MULTIGRID ALGORITHM 

Suppose we are given an elliptic equation to solve on the unit 

square [0,1]>:[0,1] in the (x,y) plane.  Lay a uniform NxN mesh on the unit 

square, and denote the mesh spacing by h = 1/N.  After finite-differencing 

the differential equation and incorporating boundary conditions, the problem 

is reduced to solving the matrix equation 

A^ u^ =  f^,     - (1) 

ii V* Vt 

where A is the matrix of coefficients, u is the sought solution, and f  is 

the inhomogeneous term, defined on the discrete domain D .  We might attempt 

to solve Eq. (1) by a direct method such as sparse Gaussian elimination, or 

by an iterative method such as Gauss-Seidel relaxation.  For the direct. 

approach, the operation count is O(N^) to obtain a solution for the N^ 

unknowns in Eq. (1), and thus rapidly becomes very large for large problems. 

For the iterative approach, the operation count is just proportional to the 

number of unknowns; owing to the slow relaxation of the coarse-scale errors 

in the solution, however, many iterations must be done in order to obtain an 

accurate result, and the operation count is again very large, because the 

coefficient of N^ is large. Multigrid techniques take advantage of the 

rapid reduction in effort expended by direct methods as the number of 

unknowns is reduced, and of the rapid relaxation of fine-scale errors in the 

solution by iterative methods, by utilizing a combination of the two. 



A simple multigrid algorithm for solving this elliptic problem is the 

following.  Choose N to be even, and lay two uniform grids on the unit 

N N 
square:  one NxN with mesh spacing h, the other -r-x-r- with mesh spacing 2h. 

Vi 2h 
On the fine grid D we have Eq. (1), while on the coarse grid D  we have 

, 2h 2h    j-2h /AN 
A  u   =  f  . i2) 

We begin by solving Eq. (2) using a direct method.  Since the number of 

unknowns is smaller by a factor of 4, this task, requires a factor of 2^ = 8 

less work than does the same task on D .  We then interpolate the solution 

U  to Eq. (2) onto D , 

u^ = 4 u^^, O) 

where I is an interpolation operator.  The result U possesses fine-scale 

errors due to the lack of fine-scale information in A  and f  , and thus 

U  , as well as any introduced by the interpolation process.  We therefore 

do a small number of relaxation iterations on U to smooth these fine-scale 

errors, and obtain 

U^ = R U^. (4) 

where R is a relaxation operator.  U is our first approximation u     to        /\ 

the solution to Eq. (1). 
I' 
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V 

We can improve the approximation to u by solving a correction problem. 

Define the residual r and the correction v on D by the expressions 

r^  =  f^ - A^ U^ (5) 

and 

V  = u - U , KO) 

respectively, so that v satisties 

A V  = r . W; 

Notice that Eq. (7) has the same form as Eq. (1). We now use a projection 

h     „2h 
operator P to project r onto D , 

2h    _,2h h f r/s r   = P,  r , (.o; 
h 

and solve directly the coarse-grid equivalent of Eq. (7), 

2h 2h     2h ,q>. 
A  V   = r  , (.y; 

to obtain V  . We apply the interpolation operator I to the correction V  , 

and add the result V to U .  Smoothing the fine-scale errors by applying 

the relaxation operator R, we obtain 

u'"^^^  = R (U^ + V^), (10) 



our second approximation to the desired solution on the fine grid. 

This simple algorithm is a 2-level, 2-cycle algorithm for solving 

elliptic boundary value problems.  It can readily be extended to make use of 

additional coarse grids with mesh spacings 4h, 8h, etc. (more levels can be 

utilized) or to solve additional correction problems (more cycles can be ^ 

done), or both.  Further options to be exercised in the implementation of a 

multigrid algorithm include the selection of a direct solver and of a 

relaxation technique, and the specification of interpolation and projection 

schemes.  The best choices for many of these options will in general depend 

upon the characteristics of the problem to be solved (the properties of the 

coefficients in the equation, the number of spatial dimensions, the number 

of unknowns, the accuracy required in the solution) and the characteristics 

of the computing machinery to be used (capabilities for vector or parallel 

processing, relative costs of execution and core storage time). 

Several multilevel algorithms for elliptic boundary value problems have 

been suggested and analyzed by various authors, for both finite-element and 

finite-difference discretizations.  I show schematically in Fig. 1 a 4- 

level, 2-cycle example of each of four algorithms.  The first is due to 

Federenko [1961], the second is due to Brandt [1977], the third is an 

iterative extension by Brandt [1978] of a 2-level algorithm also due to 

Federenko [1961], and the fourth is a hybrid of the latter two schemes 

investigated by Douglas [1982].  The general N-cycle hybrid algorithm 

A 
consists of N-1 cycles of the second algorithm followed by a half-cycle of 

the third.  The first two algorithms are different in that in the first case      i^ 

smoothing iterations are done after projection, while in the second they are 



(a) 

(b) 

(c) 

oSh ds  ds      ds  ds ds  ds     ds ds 
\c/ \b   / \c/ \b /  \G/  \b   /  \c/ \b 

D^h m   0  m   m   0 m   m   0  m   m 0 
\c/         \b /         \c/ \b 

02h m          0 m          m 0 
\c/ \b 

Dh m 0 

D8h ds  ds     ds  ds ds  ds     ds ds 
\c/ \b   / \c/ \b / \c/ \b   / \c/ \b 

D^^ m   m  0   m   m 0   m   m  0   m m 
\c/         \b /         \c/ \b 

D2^ 
m          m 0          m m 

\c/ \b 
«h m m 

Ij8h ds        d s 
Mj 

\c      / \b 
D^h 1      m 1 

\c   / \b 
o2h 1  m 1 
»J 

\c/ \b 

^ 1 1 

(d)  D'^    ^^      ^°     ^^ '^^ ^^ 
\c/ \b   / \c/ \b      / \c 

,4h      m   m  0   m   m     0   1 
\c/ \b   /     \c 

2h m m  0      1 
\c/        \b 

h m 1 

ds = direct solve 
m = m smoothing iterations 
1 = one smoothing iteration 
0 = no smoothing iterations 
b = bilinear interpolation 
c = cubic interpolation 

FIGURE 1.  Four multigrid algorithms for elliptic boundary value 
problems, illustrated by 4-level, 2-cycle examples. 



done after interpolation; they are alike in that they are both recursive, 

i.e., they cycle at all levels save the lowest one.  The third algorithm 

allows smoothing after both projection and interpolation, and is not 

recursive, cycling occurring only at the highest level.  Douglas [1982, 

1984] has shown that the recursive algorithms are optimal order algorithms, 

i.e., the operation count for a solve to truncation error is proportional to 

the number of unknowns, if the condition 

,5 
2 < C < 2" (11) 

is satisfied, where C is the number of cycles and 6 is the number of space 

dimensions in the problem.  For the case C = 2  (e.g., a 1-dimensional 

problem solved by a 2-cycle algorithm), the operation count for N unknowns 

is O(NlogN). * 

Douglas [1982] carried out extensive numerical experiments on these 

algorithms, using sparse Gaussian elimination for the direct solves and 

Gauss-Seidel relaxation for the smoothing iterations.  He considered various 

schemes for the interpolation of the solutions and corrections and for the 

projection of the residuals.  His results indicate that a combination of 

high-order (cubic) interpolation of the solutions and low-order (bilinear) 

interpolation of the corrections is optimal; high-order interpolation of the 

corrections often degrades the accuracy of the resulting 'corrected' 

solution, and additional smoothing iterations are necessary to compensate. 

He found it advantageous to smooth the residuals on projection by using a 

weighted average of the neighboring values on the finer grid.  Both of these 

f^ 

f 

A 



findings reflect the purpose of the correction problem, which is to improve 

the accuracy in the coarse-scale features of the solution, leaving the fine- 

scale features to the relaxation scheme.  Douglas further found that the 

hybrid algorithm yielded solutions with accuracy comparable to that obtained 

by Federenko's [1961] and Brandt's [1977] algorithms, for a smaller amount 

of work.  By comparison, sparse Gaussian elimination on the finest grid 

yielded the same accuracy at a substantial increase in computational 

resources:  a factor of 10 in operations and a factor of 4 in memory, for a 

problem in 1000 unknowns.  Gauss-Seidel relaxation to convergence on the 

finest grid required an increase of a factor of 100 in operations over the 

multigrid algorithms for that problem. 



VECTORIZATION OF THE ALGORITHM 

Efficient computational techniques make optimal use of computer . _ 

resources by minimizing some machine-dependent combination of execution and 

core storage time.  Given that a consideration of the tradeoffs between 

execution and core storage for a particular technique establishes a minimum 

memory requirement for its efficient use, the task which remains is to ^ 

minimize the execution time subject to this memory constraint.  For a scalar 

(sequential) processor, which can execute one instruction on one scalar or 

pair of scalars at a time, this task is essentially identical to that of 

minimizing the total number of arithmetic operations performed.  For a 

vector processor, which can execute a single instruction on all of the 

elements of a vector or pair of vectors serially, the direct correspondence 

between execution time and number of operations fails, owing to the marked 

difference in speed of execution (an order of magnitude or greater) of 

vector code vis-a-vis  scalar code.  This circumstance places a premium on 

the use of vectorizable instructions, even at the expense of a substantial 

increase in the total number of operations performed.  Similar 

considerations apply to an n-component parallel processor, which can execute 

n different instructions on n independent vectors or pairs of vectors 

simultaneously; a larger operation count can be borne by a more highly 

parallel algorithm, at a net reduction in execution time. 

Vectorization of several of the component operations of the multigrid r\ 

algorithms, specifically the generation of the matrices, the interpolation 

of the solutions and corrections, and the calculation and projection of the 

10 



residuals, is straightforward.  The direct solver is employed only on very 

coarse grids, to solve problems with few unknowns.  Its operation count is 

therefore usually a negligible fraction of the total, and furthermore the 

vectors on which it operates are generally too short for a significant gain 

in speed by the processor, so that vectorization is not an overriding 

consideration in its selection.  The largest share of the arithmetic 

operations executed by a multigrid algorithm is performed by the relaxation 

method, primarily on the finer grids possessing many unknowns.  The 

advantages accruing to extensive vector processing thus figure prominently 

in the selection of a smoothing technique.  A discussion of these / 

considerations for parallel processing applications has been given by Brandt 

[1981], 

A classical relaxation method eminently suited for use on a vector 

processor is Jacobi relaxation.  Given the set of simultaneous equations 

where M^,'^ 0, and an estimate X , the iteration reads 

<'' = t\ - ^i^\A^ I \k- ^13) 

A more rapidly convergent method is Gauss-Seidel relaxation, in which the 

updated values of X^ ., are employed on the right in Eq. (13), i.e.. 

^'  '   ^"'^ " l^<^'^^^'  ~  Ok"^^"^^ ' '^^' ^''^ 

11 



The latter iteration, however, does not vectorize because the operands in 

the calculation of X, depend on the results of the same instruction carried 

out for X^^^. 

A method which realizes an increase in the convergence rate by using 

updated values of X, but which vectorizes completely, is red-black or 

checkerboard relaxation.  In this scheme, Eq. (13) is first applied to all 

'red' (even k) points; then for all 'black' (odd k) points, calculate 

even Z odd x. 

A potential shortcoming of red-black relaxation is that the retrieval and 

storage of the operands and the results is effectively reduced by about a 

factor of two due to the on-off pattern of the iteration.  If the machine 

has a narrow memory bandwidth, the execution speed may be reduced 

sufficiently below that of Jacobi relaxation to negate most of the gain in 

the rate of convergence.  This inefficiency can be circumvented by storing 

all 'red' points contiguously in memory, and likewise with all 'black' 

points, but at a substantial increase in complexity in other components of 

the solver.  The simplicity and the ease of implementation of the Jacobi 

relaxation scheme may in many cases make it the superior method. 

y 

1/ 
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IMPLEMENTATION OF THE ALGORITHM 

In numerical hydrodynamics calculations using finite differences, it is  • 

advantageous after subdividing the domain of the calculation to define the 

fluid variables at points interior to the subdomains (i.e., at the cell 

centers), as shown in Fig. 2(a) for a 2-dimensional problem.  Fluxes are 

defined on the boundaries of the subdomains (i.e., at the cell interfaces) 

which describe the transport of mass, momentum, and energy from each cell to 

its neighbors.  With the exception of the fluxes through the boundary of the 

system, no net change in the total mass, momentum, and energy of the system 

is effected, since a flux loss by one cell is balanced by a flux gain by its 

neighbor.  The conservation of mass, momentum, and energy required by the 

laws of hydrodynamics is therefore achieved by the numerical solutions. 

When applying multigrid techniques to solve elliptic boundary-value 

problems, on the other hand, it is advantageous to define the dependent 

variable on the cell interfaces, as shown in Fig. 2(b).  The coarse-grid 

points are then coincident with points on the finest grid, and this 

coincidence simplifies the intergrid transfers (interpolations and 

projections) required by the multigrid algorithm.  Douglas [1982] used 

such nested grids to obtain his numerical results. 

Modifications to the intergrid transfers in Douglas' multigrid 

algorithm have been made to accomodate the change from cell-interface to 

cell-center locations for defining the dependent variable.  Fig. 3 shows the 

spatial relationships between nine coarse-grid points and sixteen fine-grid 

points, and some of their associated cell interfaces.  None of the coarse- 

13 
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FIGURE 2.  Subdivision of a 2-dimensional rectangular domain into 3^ = 9 
subdomains.  For hydrodynamic calculations, dependent variables 
are defined most conveniently at points interior to the 
subdomains, at cell centers (a).  For multigrid solutions to 
elliptic problems, dependent variables are defined most 
conveniently at cell interfaces (b). 
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FIGURE 3.  Spatial relationships between coarse-grid points (•) and fine- 
grid points (•), and between their associated cell interfaces. 
The indices of the one coarse-grid point and the four fine-grid 
points in the center of the figure are shown. 
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and fine-grid points are coincident.  The fine-grid mesh spacings in the x- 

and y-directions are denoted by Ax and Ay, respectively. 

The interpolation formulae are easily derived.  Define for a given pair 

^0' yo ■ 

F^^ =  F(XQ + oAx.yQ + BAy), (16) 

for any function F(x,y).  A Taylor series expansion yields 

^1/2 1/2  "  16 ^00 + 16 ^22 "•" 32 *'^20 "*" ^02 " ^"20 ~ ^0-2^    ^^^^ 

to 0(Ax^, Ay^), and 

Fl/2 1/2  = |FOO +i (^20 + F02) (18) 

to 0(Ax2, Ay^).  The quadratic interpolation of Eq. (17) is applied to the 

solutions U, while the bilinear interpolation of Eq. (18) is applied to the 

corrections V.  Thus, for example, referring to Fig. 3, at the fine-grid 

point (2i,2j) we have 

yh     ^ i5  2h ^l_u2h 
^2i,2j    16 ^,j   16 1+1,j+1 

(19) 

+ 3_  2h      2h   _ 2h   _ 2h 
32 ^^i+l,j ^ i,j+l   i-l,j   i,j-r 

and 

yh     = 1 v^l^ +1 (v^^   + V^^. ,). (20) 
^2i,2j    2 \,2  ^  4 ^ i+l,j   i,j+r 

r- 

16 



At the boundary of the domain, where the necessary coarse-grid points do not 

exist, quadratic or bilinear extrapolation is used, as appropriate.  The 

cubic interpolation of the solutions employed by Douglas is rather unwieldy 

for use here, since the interpolation must be performed at every fine-grid 

point, in two dimensions.  In his implementation, interpolation must be done 

only at the new (non-coincident) fine-grid points, and then primarily only 

in one dimension, x or y, since most of the new fine-grid points are 

collinear with the coarse-grid points. 

The residual projection is accomplished by taking an equally-weighted 

average of the sixteen nearest fine-grid neighbors of each coarse-grid 

point.  Again referring to Fig. 3, the residual projection at (i,j) is 

therefore given by 

2i+l  2j+l ■ ■ 

r'\ =    ^      I I rl. (21) ■i,j    16  ^     ^    kJl" 
k=2i-2 1=22-2 

At the boundary of the domain, those fine-grid residuals in the sum which 

are undefined (belonging to fine-grid points beyond the boundary) are just 

omitted from the average.  Projection schemes which assign a larger 

weighting factor to the four inner neighbors than to the twelve outer ones 

did not perform as well as the equal-weighting scheme. 

A further issue in the intergrid transfers not considered by Douglas is 

the projection of the coefficients and source terms in the difference 

equations.  Consider the following 2-dimensional elliptic boundary-value 

problem, defined on the rectangular domain D = [x . ,x   ]^[y . ,y   ]: f ' & mm max  •^min'-'max 

17 



^p3H) +i_(QiH) +|_(Ru) +l-(su) + Tu = f (22) 

in the interior, and 

au + b|^ = c (23) 
dn 

on the boundary (n is the coordinate normal to the boundary).  Subdividing 

the domain into N^xN2 cells with mesh spacings Ax and Ay and finite- 

differencing Eqs. (22) and (23), we obtain 

T f^i+l/2,j ^"i+l,j - ^i.j^ - Vl/2,J ^^.j - ^-l,j 
)]  + 

Ax^ 

Ay^ 
tQi,3 + l/2 (^.j+1 - "l,j^ - ^iJ-1/2 K.j - ^.J-1^^  -^ 

^  TR   ,   (u     + u  . ) - R. wo . (u. . + u. , .) 1  +      (24) 
2Ax ^ 1+1/2,j ^ i+l,j   i,j^   i-l/2,j   i,J   i-l,J 

W f^i,j+l/2 ^^.j+l ^ ^.j) - 'i.3-1/2 ^^.3 * ^,i-l^^  -^ 

T. . u. .  =  f. ., 

together with 

a. ,- . b 
1/2,j 1/2,j 

18 



and 

\ + U2,2 \+l/2,j 

(25b) 

''NI + 1/2,J 

at X = X .  and x  , respectively, and with corresponding expressions to 
nun     max 

Eqs. (25) at y = y .  and y 
^ ^   -^min     max 

The quantities with half-integer indices in Eqs. (24) and (25) are 

defined at the cell interfaces, and those with integer indices at the cell 

centers.  Each of the coarse-grid interfaces is coincident with two fine- 

grid interfaces (cf. Fig. 3).  The projections of the cell-interface 

coefficients to the coarse grid are therefore carried out by averaging the 

two values on the fine grid, e.g.. 

^i+l/2,j  ' 2 ^^2i+l/2,2j + ^2i+l/2,2j-l^ ^^^^^ 

and 

p2^      = J^ (P^        + P^ ) 
i-l/2,j    2 ^ 2i-l/2,2j + 2i-3/2,2j-r 

(26b) 

The projections of the cell-center coefficient T and source term f are done 

by averaging the values at the four surrounding fine-grid cell centers, 

e.g., 

T^^.  = f (T!;. , „. . + T^. , „. + T^. „. , + T^. _.).    (27) 
i,j    4  2i-l,2j-l   2i-l,2]   2i,2j-l   2i,2j 

19 



A more distributed projection of the source f (e.g. , the sixteen-neighbor 

average applied to the residuals) causes a loss of fine-scale information 

and degrades the accuracy of the solution obtained. 

The multigrid algorithm as described thus far is clearly applicable to 

problems in which the domain is uniformly gridded.  In many applications, 

however, nonuniform gridding in one or both dimensions is necessary in order 

to guarantee sufficient spatial resolution in some fraction of the domain 

without requiring a prohibitively large number of unknowns in the problem. 

A simple algebraic transformation is available which converts the given 

finite-difference equation on the nonuniform grid into a related equation 

on a uniform grid, and the latter can be solved by multigrid techniques. 

For problems in which the grid nonuniformities are mild, the resulting 

solution to the uniform-grid equation may be a satisfactory approximation to 

the solution to the original nonuniform-grid equation. 

The transformation to the uniform-grid problem is found from the 

equivalent of Eqs. (24) and (25) on the nonuniformly gridded domain D. 

Denote the x-direction cell-interface and cell-center locations by ^^^^2 

(i = 0,...,N^) and x^ (i = 0,...,N^+1), respectively, where x^/^ = ^min ^^^ 

X  , ,„ = x  ; the cell centers x_ and x., ,, thus lie beyond the boundary' 
N;i^ + l/2   max 0     Nj^+1 

of the domain.  Define the local cell-interface and cell-center separations 

and the average over the grid, respectively, by 

^ ^+1/2-1-1/2' ^^«^>        * 

^^i+1/2 -  ^i+1 - ^i' ^^^^^ 

f 
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and 

A^      H  (x   - X , ) / N,. (28c) 
max   min    '■ 

Similar expressions hold for the y-direction grid quantities.  With these 

^      definitions, Eq. (24) generalizes to 

1  ,^i+l/2..i ( _ s  _  Vl/2,j .    _      )i 

1  Qi,i+l/2 .      _      _ ^i,.i-l/2 (    _      )j  + 

b [^i±pl (u,,,,. . u,,.) - ^^  (u,,. . u,.^^.)l  , (29) 

3 

"i.j^,j  =  'i.r 

and Eqs. (25) to 

^l/2,j ^l/2,j 

^       and 
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Ni+l/2,j 
(u 

\+l/2,2 
+ U„  ,) + TZ  (u^ u..  J 

Ni+l.j   "N^J'   ^"^ +1/2   ^1+^'J    ^1'^ 

(30b) 

= c 
Ni+l/2,j* 

Ax     Ay. 
Now multiply Eq. (29) by the factors   and —^, and define the following: 

Ax     Ay 

* 

^i+l/2,j 

Ax   Av ^ 

~ ^    ^i+l/2,2 ^i.j+1/2 
1+1/2 ^ 

Ax.  Ay 

^^ ^^3+1/2 

Q,- i,j+l/2 

Ay. 
R. i+l/2,j  " ^  i+l/2,j 

S. 
Ax. 

S.    . 
i,J+l/2 -^      i,j+l/2 

T. .   =   zir _  T. . 
^'^ Ax    Ay       ^'^ 

. Ax.   Ay. 
f. .   H  ^ir^ f. . 
^'^ Ax    Ay       ^'^ 

Ax 
'1/2,j     -     Ax^/2     l/2,j 

Ax 
X+l/2,j Axj^ ^^/2    Ni+1/2.J 

a      =    a 

The result of these operations is to put Eqs. (29) and (30) into the form of 

—    — % 
Eqs. (24) and (25), with Ax and Ay replaced by Ax and Ay and with the 

coefficients replaced by their asterisked counterparts. f 
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A final note on implementation concerns Poisson equations on a 

uniformly gridded domain.  For this special case, P=Q=1 and R=S=T=0, the 

coefficients in the finite-difference equation, Eq. (24), are independent of 

the indices i and j.  Because of this, the core storage required to solve 

the problem is vastly reduced and the operation count for the solve is also 

decreased significantly.  These advantages have been exploited in a solver 

specifically designed to solve Poisson equations on a uniform grid.  When 

solutions to Poisson equations on a nonuniform grid are required, the 

transformations above can be carried out and a general elliptic equation 

solver used. 
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NUMERICAL TESTS 

The multigrid algorithm proposed by Douglas [1982] and illustrated 

in Fig. 1(d) has been vectorized and implemented as described in the 

preceding two sections, in a FORTRAN program for use on the Naval Research 

Laboratory's Texas Instruments Advanced Scientific Computer (ASC) [Texas 

Instruments Incorporated 1975].  The ASC is a 32-bit word, 2-pipe vector 

computer with one million words of high-speed central memory.  Each of the 

two pipes, which consist of one memory buffer unit and one arithmetic unit 

per pipe, can produce eight words of output data per 80 ns central processor 

clock cycle, under optimum conditions.  The memory control unit can access 

one eight-word octet of input data per 160 ns central memory clock cycle. 

At peak efficiency, the ASC is capable of retrieving 50 million operands per 

second and, thus, of generating up to 50 million results per second.  Since 

the two pipes are in principle able to execute as many as 200 million 

operations per second, for highly vectorized code the execution speed is 

limited by the memory bandwidth. A premium is therefore placed on the 

efficient retrieval and storage of data in optimizing ASC software. 

The limiting of the execution speed by the memory bandwidth influences 

the selection of the relaxation algorithm, as discussed earlier.  The red- 

black relaxation makes use of one-half of the eight words in each octet 

retrieved from memory, and as a result executes at roughly half of the speed 

of the Jacobi relaxation, which makes use of the entire octet.  All of the 

results presented here were obtained using the Jacobi relaxation. 

The direct solver for these tests uses a Crout lower-upper triangular 

r 
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decomposition of the matrix.  Parts of the solver are vectorized, and it 

takes advantage of the banded structure of the matrices arising from partial 

differential equations.  The solver was adapted from a routine written by 

Winsor [1976]. 

The first set of test results is for the boundary-value problem on the 

unit square. 

3 , xy 3u. ,3 , xy 3u, ,3/ \ , ^ / \ _l_/•2.2^ jr rn-w . ve -^ T—) + r—(e ^ -r-) + -z-iyn) + -^(xu) + (x^ + y'')u = f (31) 
3x    3x   3y    3y   dx      3y 

in the interior, and 

u = 0 (32) 

on the boundary.  The solution is chosen to be 

u(x,y)  = sin(2Trx)sin(Try), (33) 

and the source term f(x,y) is defined by substituting this solution into the 

left side of Eq. (31).  Some results are summarized in Table 1.  There, for 

three different grid resolutions (16x16, 32x32, and 64x64) and for L-level, 

C-cycle solves for several values of L and C, are tabulated the number of 

floating-point operations performed per fine-grid point, the solve time per 

point in us, and the maximum absolute error between the numerical solution 

and the exact solution (Eq. (33)) evaluated at the grid points.  Also 

included is the storage required by the solver for each resolution and each 

value of L, given as the number of fine-grid arrays used.  The results of 
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and 

W    = 35 + 405 =  440 

f 

direct solves on the finest grid (L=C=1) are tabulated for the two lower 

resolution cases (16x16 and 32x32), there being insufficient memory to carry 

out the direct solve for the highest resolution case (64x64).  For the first 

C-1 multigrid cycles, four Jacobi relaxation sweeps were done after each 

interpolation (m=4 in Fig. 1(d)); the error decreases only very slowly with 

additional sweeps, but increases quite rapidly with fewer sweeps. 

The core storage M and the operation count W for the multigrid solver ^ 

asymptote as L increases in Table 1.  At each level, five arrays of storage 

are needed for the five bands of coefficients in the matrices, and one each 

is needed for the source term and for the solution.  An additional array at 

each level is used to store the reciprocals of the matrix diagonal elements. 

This allows a (slow) divide to be replaced by a (fast) multiply in each 

relaxation iteration.  Two further fine-grid arrays are needed, one for the 

residual calculation and another as general-purpose work space.  The total 

storage required therefore asymptotes to 

M =  (1 +-^ + ...)-8 + 2 = 3*8+2 =  12.7. 

The asymptotic operation count per cell for the matrix generation is 35, and 

for the solve itself is 120 for the 2-cycle solve and 405 for the 3-cycle 

solve. The total operation counts therefore asymptote to 

W^ , = 35 + 120 =  155 
C=2 
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TABLE 1.  Elliptic test problem results obtained on (a) 16x16, (b) 32x32, and 
(c) 64x64 grids.  For each L-level, C-cycle solve (L=C=1 is direct 
solve), the operation count per cell, the solve time in ys per 
cell, and the maximum absolute error are tabulated.  For each L, 
the core storage required in number of fine-grid arrays is given. 
Insufficient memory was available to solve the 64x64 problem 
directly (*). 

Cycles 1 2 
Levels 

3 4 5 

(a) 
1 

2 

3 

617 
120 

2.9x10-5 

operations/cell 
ps/cell 
maximum error 

184 
60 

4.7x10-3 

139 
51 

6.7x10-3 

254 
95 

1.5x10-3 

Storage 47.1 17.7 14.1 

(b) 
1 

2233 
266 

8.3x10-5 

• 

2 
396 
70 

1.5x10-3 

161 
34 

3.0x10-3 

147 
31 

3.5xlO"3 

3 
307 
66 

2.6x10-"+ 

305 
77 

3.2x10-"+ 

Storage 78.6 21.0 13.8 13.5 

(c) 
1 

8538 
* 
* 

2 
1204 
141 

3.3x10-"+ 

241 
36 

6.9x10-"* 

156 
23 

9.2x10-'+ 

151 
22 

1.0x10"^ 

3 
494 
74 

5.6x10-5 

342 
56 

4.6xlO"5 

345 
66 

6.6x10-5 

Storage 142.3 28.6 14.2 13.0 13.1 
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# 

The tabulated values for the latter are significantly smaller, owing to the 

slow convergence of the operation count to its asymptotic limit as L 

increases. 

The advantages of the multigrid solve over the direct solve in core 

storage, operation count, and execution time are clearly evident for all 

three cases, particularly the two higher resolution problems.  Although P 

the 16x16 multigrid solves are substantially less accurate than the direct 

solve, the 3-cycle solves on the 32x32 grid are comparable in accuracy to 

the direct solve, and those on the 64x64 grid exceed the inferred accuracy 

of the direct solve. The accuracy of the multigrid solutions varies rather 

slowly with L, but improves markedly with an increase in C, at the price of 

an increase of roughly a factor of two in operation count and execution time 

for the examples shown.  The effect of decreasing vector length on the speed 

of execution of the algorithm is apparent in the 3-cycle solves for the 

32x32 and 64x64 problems.  For L = 3 and 4 and L = 4 and 5, respectively, 

the operation count is essentially identical, but the execution time is 

greater by over 15%, for the larger values of L compared to the smaller 

values.  For the 2-cycle solves, on the other hand, the execution time is 

slightly smaller for the larger values of L. These results suggest the 

simple rule of thumb that the coarsest grid used be approximately 8x8, for 

either 2- or 3-cycle solves, in order to roughly minimize the execution 

time.  Then, for example, a diffusion problem in 1000 unknowns can be 

accurately solved for 1000 timesteps at just over one minute of CPU time. 

The second set of test results, summarized in Table 2, is for the 

Poisson boundary-value problem 
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TABLE 2.  Poisson test problem results obtained on (a) 16x16, (b) 32x32, and 
(c) 64x64 grids.  For each L-level, C-cycle solve (L=C=1 is direct 
solve), the operation count per cell, the solve time in las per 
cell, and the maximum absolute error are tabulated.  For each L, 
the core storage required in number of fine-grid arrays is given. 
Insufficient memory was available to solve the 64x64 problem 
directly (*). 

Cycles 1 
Levels 

3 

(a) 595  operations/cell 
113  ps/cell 

2.9x10"^ maximum error 

147 99 
53 45 

4.7xl0"3 5.9xl0~3 

208 
95 

1.2xlO"3 

Storage 40.8 9.5 5.4 

(b) 2210 
262 

8.3x10-5 

357 
65 

1.5xl0"3 

117 
28 

2.8x10 -3 

102 
27 

3.2x10 -3 

250 
61 

2.3x10"'+ 

246 
77 

2.8x10 -1+ 

Storage 72.4 13.1 5.4 5.1 

(c) 

Storage 

8514 
* 
* 

3 

1164 
137 

.2x10"^+ 

194 
31 

6.5x10"'+ 

108 
18 

8.8x10"^+ 

103 
18 

1.0X10 

431 
69 

5.8x10-5 

273 
52 

3.4xl0"5 

274 
65 

4.3x10 

136.2 20.9 6.2 4.9 

-3 

-5 

4.9 
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and 

"C=2 = ''' 

^C=3 = '''' 

The savings come in the relaxation iterations and the residual calculations 

and arise from the symmetry of the matrices about the diagonal.  This 

reduction in the operation count is not, however, matched by a comparable 

f 

|i^4-f^ = f (34) 

on the unit square, again with the boundary condition 

u = 0 (35) 

and the solution 

u(x,y)  = sin(2iTx)sin(TTy). (36)       ^ 

As before, four Jacobi relaxation sweeps were performed after each 

interpolation in the first C-1 multigrid cycles. 

The core storage required by the Poisson solver is smaller by six 

arrays at each level - the five bands of coefficients in the matrices and 

the reciprocals of the diagonal elements - so that it asymptotes to 

M = "I'Z + 2 =  4.7. 

The operation count for the matrix generation is negligible, and the 

as3nnptotic operation count per cell for the solve is reduced to 

t 
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reduction in the execution time.  A breakdown of the timing by components 

shows that the relaxation iterations and residual calculations, although 

they require fewer operations, require about as much time to execute as 

for the elliptic solver.  This is due to a combination of less efficient 

retrieval and storage of data and of more effort expended on short vectors 

by these components of the Poisson solver.  The benefit of eliminating the 

storage of the bands of matrix coefficients is obtained at the cost of 

making these portions of the solver more cumbersome and slow.  Clearly a 

net gain is realized, however, primarily in the amount of core required, 

though secondarily also in the total execution time. 
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CONCLUSIONS 

The numerical tests summarized in the preceding section demonstrate 

conclusively the power of multigrid techniques in obtaining numerical 

solutions to elliptic boundary-value problems.  These methods may make 

practical the solution of problems which heretofore would have been 

considered prohibitively expensive or even impossible to attempt, 

particularly when extended to a larger number of spatial dimensions. 

It may also prove possible to implement multigrid techniques with a 

sufficient degree of parallelism to make them highly effective for 

use on systems of parallel processors.  Perhaps the major drawback 

of these methods is the large startup effort required.  The complexity 

of multigrid algorithms, with their intergrid transfers and recursive 

cycling, makes the development and debugging of a working program a 

time-consuming task.  The potential payoff is sufficiently great, however, 

to warrant the investment. 

i 
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