
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NRL Memorandum Report 5504

Sa. NAME OF PERFORMING ORGANIZATION

Naval Research Laboratory

6<. ADDRESS (0(y, State, and ZIP Code)

Washington, DC 20375-5000

6b OFFICE SYMBOL
(If applicable)

Code 4040

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8c, ADDRESS CG<y, State, and Z/PCode)

8b. OFFICE SYMBOL
(If applicable)

lb. RESTRICTIVE MARKINGS

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited.

5 MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

7b. ADDRESS (City, State, and ZIP Code)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

(See page ii)

PROJECT
NO.

TASK
NO.

WORK UNIT
ACCESSION NO.

' TITLE (Include Security Classification) TT , . ,. , ^ ,
Vectonzation and Implementation of an Efficient Multigrid Algorithm for the

Solution of Elliptic Partial Differential Equations

2. PERSONAL AUTHOR{S)
DeVore, C.R.
13a. TYPE OF REPORT
Interim

13b. TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

1984 December 31 39
16 SUPPLEMENTARY NOTATION This research was supported by the Office of Naval Research and the Naval
Research Laboratory.

COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Elliptic equations Multigrid algorithms
Numerical methods Vector computers

9 ABSTRACT {Continue on reverse if necessary and identify by block number)

Multilevel adaptive techniques are powerful methods for solving many types of problems in computational
physics. In his analysis of multilevel methods for application to elliptic boundary-value problems, Douglas
found a particularly efficient algorithm for their solution. I describe in this report a vectorized, finite-
difference implementation of his algorithm suitable for use in large-scale computations.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

IS UNCLASSIFIED/UNLIMITED D SAME AS RPT

22a. NAME OF RESPONSIBLE INDIVIDUAL
C. R. DeVore

n DTIC USERS

DDFORM 1473,84 MAR

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

83 APR edition may be used until exhausted

All other editions are obsolete.

22b. TELEPHONE (Include Area Code)

(202) 767-2891
22c. OFFICE SYMBOL

Code 4040

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

10. SOURCE OF FUNDING NUMBERS

PROGRAM ELEMENT NO. PROJECT NO.

6H53N
61153N

RR014-03-OF
RROll-09-43

TASK NO. WORK UNIT ACCESSION NO.

DN380-225
DN280-068

SECURITY CLASSIFICATION OF THIS PAGE

IIBRARY

NAVt^raSTOMMMESCHOOl
MONTEWY CM-tfORHlA 93943

NRL Memorandum Report 5504

Vectorization and Implementation of an Efficient
Multigrid Algorithm for the Solution of
Elliptic Partial Differential Equations

C. R. DEVORE

Laboratory for Computational Physics

December 31, 1984

This research was supported by the Office of Naval Research
and the Naval Research Laboratory.

NAVAL RESEARCH LABORATORY,
Washington, D.C.

Approved for public release; distribution unlimited.

/

CONTENTS

Introduction 1

The Multigrid Algorithm 3

Vectorization of the Algorithm 10

Implementation of the Algorithm 13

Numerical Tests 24

Conclusions 32

Acknowledgments 33

References 34

ui

V

VECTTORIZATION AND IMPLEMENTATION OF AN EFFICIENT
MULTIGRID ALGORITHM FOR THE SOLUTION OF
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

INTRODUCTION

Elliptic partial differential equations arise in a wide variety of

problems in computational physics and engineering. These applications

include, for example, the calculation of incompressible flows in

hydrodynamics, electromagnetic potentials in magnetohydrodynamics, and

molecular states in quantum chemistry. Elliptic equations also arise

from time-implicit formulations of diffusion problems, after discretization

of the time variable. For applications involving time-dependent physical

systems, the equations must be solved over the spatial domain at each

timestep. Over the duration of a typical simulation, this amounts to

solving thousands of equations in hundreds or thousands of unknowns.

Executing this imposing task in a practical fashion calls for the

development and use of accurate and highly efficient numerical techniques.

The importance of elliptic equations in applied mathematics has led to

extensive and varied efforts in this direction [cf. Schultz 1981].

During the last decade, much attention has been devoted to the

development of a new class of methods, multilevel adaptive techniques [cf.

Brandt 1977], for solving many types of numerical problems. The general

principles of multilevel techniques apply equally to finite-difference and

finite-element approaches to solving partial differential equations, as well

as to problems not associated with such equations, and can be summarized as

follows. As for all numerical methods, one begins by specifying a

discretization of the original (continuous) problem, and then seeks the

solution to this discretized problem in the appropriate finite-dimensional

Manuscript approved November 1, 1984.

(physical or function) space. The essence of the multigrid approach is to

establish a sequence of smaller, perhaps nested, auxiliary spaces, and to

use solutions obtained in these smaller spaces to approximate the desired

solution in the largest space. The solution in any space can be improved by

combining relaxation iterations in that space, which smooth the fine-scale

errors, with solving correction problems using the smaller spaces, which

reduce the coarse-scale errors. The smaller spaces have geometrically fewer

unknowns, and so require far less computational effort to yield a solution

than does the largest space. The final result is a substantial savings in

the work required to solve the problem.

Multigrid algorithms for elliptic boundary-value problems have been

proposed and analyzed by several authors [cf. Douglas 1984, and references

cited therein]. Douglas [1982] found a particularly efficient multigrid

algorithm for solving elliptic problems, one which in numerical tests

yielded solutions with accuracy comparable to that obtained by several

alternative algorithms, for a smaller amount of effort. His algorithm has

been implemented in finite-difference form in a manner suitable for use in

large-scale numerical simulations on a high-speed vector computer. In this

report I summarize the principles guiding its implementation, discuss the

modifications to the algorithm required by these principles, and present the

results of numerical tests of the method.

^

A

THE MULTIGRID ALGORITHM

Suppose we are given an elliptic equation to solve on the unit

square [0,1]>:[0,1] in the (x,y) plane. Lay a uniform NxN mesh on the unit

square, and denote the mesh spacing by h = 1/N. After finite-differencing

the differential equation and incorporating boundary conditions, the problem

is reduced to solving the matrix equation

A^ u^ = f^, - (1)

ii V* Vt

where A is the matrix of coefficients, u is the sought solution, and f is

the inhomogeneous term, defined on the discrete domain D . We might attempt

to solve Eq. (1) by a direct method such as sparse Gaussian elimination, or

by an iterative method such as Gauss-Seidel relaxation. For the direct.

approach, the operation count is O(N^) to obtain a solution for the N^

unknowns in Eq. (1), and thus rapidly becomes very large for large problems.

For the iterative approach, the operation count is just proportional to the

number of unknowns; owing to the slow relaxation of the coarse-scale errors

in the solution, however, many iterations must be done in order to obtain an

accurate result, and the operation count is again very large, because the

coefficient of N^ is large. Multigrid techniques take advantage of the

rapid reduction in effort expended by direct methods as the number of

unknowns is reduced, and of the rapid relaxation of fine-scale errors in the

solution by iterative methods, by utilizing a combination of the two.

A simple multigrid algorithm for solving this elliptic problem is the

following. Choose N to be even, and lay two uniform grids on the unit

N N
square: one NxN with mesh spacing h, the other -r-x-r- with mesh spacing 2h.

Vi 2h
On the fine grid D we have Eq. (1), while on the coarse grid D we have

, 2h 2h j-2h /AN
A u = f . i2)

We begin by solving Eq. (2) using a direct method. Since the number of

unknowns is smaller by a factor of 4, this task, requires a factor of 2^ = 8

less work than does the same task on D . We then interpolate the solution

U to Eq. (2) onto D ,

u^ = 4 u^^, O)

where I is an interpolation operator. The result U possesses fine-scale

errors due to the lack of fine-scale information in A and f , and thus

U , as well as any introduced by the interpolation process. We therefore

do a small number of relaxation iterations on U to smooth these fine-scale

errors, and obtain

U^ = R U^. (4)

where R is a relaxation operator. U is our first approximation u to /\

the solution to Eq. (1).
I'

■^(

V

We can improve the approximation to u by solving a correction problem.

Define the residual r and the correction v on D by the expressions

r^ = f^ - A^ U^ (5)

and

V = u - U , KO)

respectively, so that v satisties

A V = r . W;

Notice that Eq. (7) has the same form as Eq. (1). We now use a projection

h „2h
operator P to project r onto D ,

2h _,2h h f r/s r = P, r , (.o;
h

and solve directly the coarse-grid equivalent of Eq. (7),

2h 2h 2h ,q>.
A V = r , (.y;

to obtain V . We apply the interpolation operator I to the correction V ,

and add the result V to U . Smoothing the fine-scale errors by applying

the relaxation operator R, we obtain

u'"^^^ = R (U^ + V^), (10)

our second approximation to the desired solution on the fine grid.

This simple algorithm is a 2-level, 2-cycle algorithm for solving

elliptic boundary value problems. It can readily be extended to make use of

additional coarse grids with mesh spacings 4h, 8h, etc. (more levels can be

utilized) or to solve additional correction problems (more cycles can be ^

done), or both. Further options to be exercised in the implementation of a

multigrid algorithm include the selection of a direct solver and of a

relaxation technique, and the specification of interpolation and projection

schemes. The best choices for many of these options will in general depend

upon the characteristics of the problem to be solved (the properties of the

coefficients in the equation, the number of spatial dimensions, the number

of unknowns, the accuracy required in the solution) and the characteristics

of the computing machinery to be used (capabilities for vector or parallel

processing, relative costs of execution and core storage time).

Several multilevel algorithms for elliptic boundary value problems have

been suggested and analyzed by various authors, for both finite-element and

finite-difference discretizations. I show schematically in Fig. 1 a 4-

level, 2-cycle example of each of four algorithms. The first is due to

Federenko [1961], the second is due to Brandt [1977], the third is an

iterative extension by Brandt [1978] of a 2-level algorithm also due to

Federenko [1961], and the fourth is a hybrid of the latter two schemes

investigated by Douglas [1982]. The general N-cycle hybrid algorithm

A
consists of N-1 cycles of the second algorithm followed by a half-cycle of

the third. The first two algorithms are different in that in the first case i^

smoothing iterations are done after projection, while in the second they are

(a)

(b)

(c)

oSh ds ds ds ds ds ds ds ds
\c/ \b / \c/ \b / \G/ \b / \c/ \b

D^h m 0 m m 0 m m 0 m m 0
\c/ \b / \c/ \b

02h m 0 m m 0
\c/ \b

Dh m 0

D8h ds ds ds ds ds ds ds ds
\c/ \b / \c/ \b / \c/ \b / \c/ \b

D^^ m m 0 m m 0 m m 0 m m
\c/ \b / \c/ \b

D2^
m m 0 m m

\c/ \b
«h m m

Ij8h ds d s
Mj

\c / \b
D^h 1 m 1

\c / \b
o2h 1 m 1
»J

\c/ \b

^ 1 1

(d) D'^ ^^ ^° ^^ '^^ ^^
\c/ \b / \c/ \b / \c

,4h m m 0 m m 0 1
\c/ \b / \c

2h m m 0 1
\c/ \b

h m 1

ds = direct solve
m = m smoothing iterations
1 = one smoothing iteration
0 = no smoothing iterations
b = bilinear interpolation
c = cubic interpolation

FIGURE 1. Four multigrid algorithms for elliptic boundary value
problems, illustrated by 4-level, 2-cycle examples.

done after interpolation; they are alike in that they are both recursive,

i.e., they cycle at all levels save the lowest one. The third algorithm

allows smoothing after both projection and interpolation, and is not

recursive, cycling occurring only at the highest level. Douglas [1982,

1984] has shown that the recursive algorithms are optimal order algorithms,

i.e., the operation count for a solve to truncation error is proportional to

the number of unknowns, if the condition

,5
2 < C < 2" (11)

is satisfied, where C is the number of cycles and 6 is the number of space

dimensions in the problem. For the case C = 2 (e.g., a 1-dimensional

problem solved by a 2-cycle algorithm), the operation count for N unknowns

is O(NlogN). *

Douglas [1982] carried out extensive numerical experiments on these

algorithms, using sparse Gaussian elimination for the direct solves and

Gauss-Seidel relaxation for the smoothing iterations. He considered various

schemes for the interpolation of the solutions and corrections and for the

projection of the residuals. His results indicate that a combination of

high-order (cubic) interpolation of the solutions and low-order (bilinear)

interpolation of the corrections is optimal; high-order interpolation of the

corrections often degrades the accuracy of the resulting 'corrected'

solution, and additional smoothing iterations are necessary to compensate.

He found it advantageous to smooth the residuals on projection by using a

weighted average of the neighboring values on the finer grid. Both of these

f^

f

A

findings reflect the purpose of the correction problem, which is to improve

the accuracy in the coarse-scale features of the solution, leaving the fine-

scale features to the relaxation scheme. Douglas further found that the

hybrid algorithm yielded solutions with accuracy comparable to that obtained

by Federenko's [1961] and Brandt's [1977] algorithms, for a smaller amount

of work. By comparison, sparse Gaussian elimination on the finest grid

yielded the same accuracy at a substantial increase in computational

resources: a factor of 10 in operations and a factor of 4 in memory, for a

problem in 1000 unknowns. Gauss-Seidel relaxation to convergence on the

finest grid required an increase of a factor of 100 in operations over the

multigrid algorithms for that problem.

VECTORIZATION OF THE ALGORITHM

Efficient computational techniques make optimal use of computer . _

resources by minimizing some machine-dependent combination of execution and

core storage time. Given that a consideration of the tradeoffs between

execution and core storage for a particular technique establishes a minimum

memory requirement for its efficient use, the task which remains is to ^

minimize the execution time subject to this memory constraint. For a scalar

(sequential) processor, which can execute one instruction on one scalar or

pair of scalars at a time, this task is essentially identical to that of

minimizing the total number of arithmetic operations performed. For a

vector processor, which can execute a single instruction on all of the

elements of a vector or pair of vectors serially, the direct correspondence

between execution time and number of operations fails, owing to the marked

difference in speed of execution (an order of magnitude or greater) of

vector code vis-a-vis scalar code. This circumstance places a premium on

the use of vectorizable instructions, even at the expense of a substantial

increase in the total number of operations performed. Similar

considerations apply to an n-component parallel processor, which can execute

n different instructions on n independent vectors or pairs of vectors

simultaneously; a larger operation count can be borne by a more highly

parallel algorithm, at a net reduction in execution time.

Vectorization of several of the component operations of the multigrid r\

algorithms, specifically the generation of the matrices, the interpolation

of the solutions and corrections, and the calculation and projection of the

10

residuals, is straightforward. The direct solver is employed only on very

coarse grids, to solve problems with few unknowns. Its operation count is

therefore usually a negligible fraction of the total, and furthermore the

vectors on which it operates are generally too short for a significant gain

in speed by the processor, so that vectorization is not an overriding

consideration in its selection. The largest share of the arithmetic

operations executed by a multigrid algorithm is performed by the relaxation

method, primarily on the finer grids possessing many unknowns. The

advantages accruing to extensive vector processing thus figure prominently

in the selection of a smoothing technique. A discussion of these /

considerations for parallel processing applications has been given by Brandt

[1981],

A classical relaxation method eminently suited for use on a vector

processor is Jacobi relaxation. Given the set of simultaneous equations

where M^,'^ 0, and an estimate X , the iteration reads

<'' = t\ - ^i^\A^ I \k- ^13)

A more rapidly convergent method is Gauss-Seidel relaxation, in which the

updated values of X^ ., are employed on the right in Eq. (13), i.e..

^' ' ^"'^ " l^<^'^^^' ~ Ok"^^"^^ ' '^^' ^''^

11

The latter iteration, however, does not vectorize because the operands in

the calculation of X, depend on the results of the same instruction carried

out for X^^^.

A method which realizes an increase in the convergence rate by using

updated values of X, but which vectorizes completely, is red-black or

checkerboard relaxation. In this scheme, Eq. (13) is first applied to all

'red' (even k) points; then for all 'black' (odd k) points, calculate

even Z odd x.

A potential shortcoming of red-black relaxation is that the retrieval and

storage of the operands and the results is effectively reduced by about a

factor of two due to the on-off pattern of the iteration. If the machine

has a narrow memory bandwidth, the execution speed may be reduced

sufficiently below that of Jacobi relaxation to negate most of the gain in

the rate of convergence. This inefficiency can be circumvented by storing

all 'red' points contiguously in memory, and likewise with all 'black'

points, but at a substantial increase in complexity in other components of

the solver. The simplicity and the ease of implementation of the Jacobi

relaxation scheme may in many cases make it the superior method.

y

1/

12

IMPLEMENTATION OF THE ALGORITHM

In numerical hydrodynamics calculations using finite differences, it is •

advantageous after subdividing the domain of the calculation to define the

fluid variables at points interior to the subdomains (i.e., at the cell

centers), as shown in Fig. 2(a) for a 2-dimensional problem. Fluxes are

defined on the boundaries of the subdomains (i.e., at the cell interfaces)

which describe the transport of mass, momentum, and energy from each cell to

its neighbors. With the exception of the fluxes through the boundary of the

system, no net change in the total mass, momentum, and energy of the system

is effected, since a flux loss by one cell is balanced by a flux gain by its

neighbor. The conservation of mass, momentum, and energy required by the

laws of hydrodynamics is therefore achieved by the numerical solutions.

When applying multigrid techniques to solve elliptic boundary-value

problems, on the other hand, it is advantageous to define the dependent

variable on the cell interfaces, as shown in Fig. 2(b). The coarse-grid

points are then coincident with points on the finest grid, and this

coincidence simplifies the intergrid transfers (interpolations and

projections) required by the multigrid algorithm. Douglas [1982] used

such nested grids to obtain his numerical results.

Modifications to the intergrid transfers in Douglas' multigrid

algorithm have been made to accomodate the change from cell-interface to

cell-center locations for defining the dependent variable. Fig. 3 shows the

spatial relationships between nine coarse-grid points and sixteen fine-grid

points, and some of their associated cell interfaces. None of the coarse-

13

(a)

(b)

1 § 1 t 1 •

1 • 1 • 1 •

1 • 1 • 1 •

•-
I
I
I

I
I
•-

I
I
i

-•-
I
I
I
I

I
I

-•-

-•
I
I
I
1
I

-•
I
I
I
I

r

FIGURE 2. Subdivision of a 2-dimensional rectangular domain into 3^ = 9
subdomains. For hydrodynamic calculations, dependent variables
are defined most conveniently at points interior to the
subdomains, at cell centers (a). For multigrid solutions to
elliptic problems, dependent variables are defined most
conveniently at cell interfaces (b).

14

i 1 • •

• i • « •

1 «

■ 1 ! 1 1

•

11 i 1

1 ! 9 ! 1 •
1 21-1,2j 21,2J
! I 1 !

i

1 i

I

•

0

»

•

II 1 ' 1

II • II •
I 21-1,2j-1 21,2j-
II II

1

1

1 1

1 I

•

f

•

/

• 1 • • •

• 1 • •

FIGURE 3. Spatial relationships between coarse-grid points (•) and fine-
grid points (•), and between their associated cell interfaces.
The indices of the one coarse-grid point and the four fine-grid
points in the center of the figure are shown.

15

and fine-grid points are coincident. The fine-grid mesh spacings in the x-

and y-directions are denoted by Ax and Ay, respectively.

The interpolation formulae are easily derived. Define for a given pair

^0' yo ■

F^^ = F(XQ + oAx.yQ + BAy), (16)

for any function F(x,y). A Taylor series expansion yields

^1/2 1/2 " 16 ^00 + 16 ^22 "•" 32 *'^20 "*" ^02 " ^"20 ~ ^0-2^ ^^^^

to 0(Ax^, Ay^), and

Fl/2 1/2 = |FOO +i (^20 + F02) (18)

to 0(Ax2, Ay^). The quadratic interpolation of Eq. (17) is applied to the

solutions U, while the bilinear interpolation of Eq. (18) is applied to the

corrections V. Thus, for example, referring to Fig. 3, at the fine-grid

point (2i,2j) we have

yh ^ i5 2h ^l_u2h
^2i,2j 16 ^,j 16 1+1,j+1

(19)

+ 3_ 2h 2h _ 2h _ 2h
32 ^^i+l,j ^ i,j+l i-l,j i,j-r

and

yh = 1 v^l^ +1 (v^^ + V^^. ,). (20)
^2i,2j 2 \,2 ^ 4 ^ i+l,j i,j+r

r-

16

At the boundary of the domain, where the necessary coarse-grid points do not

exist, quadratic or bilinear extrapolation is used, as appropriate. The

cubic interpolation of the solutions employed by Douglas is rather unwieldy

for use here, since the interpolation must be performed at every fine-grid

point, in two dimensions. In his implementation, interpolation must be done

only at the new (non-coincident) fine-grid points, and then primarily only

in one dimension, x or y, since most of the new fine-grid points are

collinear with the coarse-grid points.

The residual projection is accomplished by taking an equally-weighted

average of the sixteen nearest fine-grid neighbors of each coarse-grid

point. Again referring to Fig. 3, the residual projection at (i,j) is

therefore given by

2i+l 2j+l ■ ■

r'\ = ^ I I rl. (21) ■i,j 16 ^ ^ kJl"
k=2i-2 1=22-2

At the boundary of the domain, those fine-grid residuals in the sum which

are undefined (belonging to fine-grid points beyond the boundary) are just

omitted from the average. Projection schemes which assign a larger

weighting factor to the four inner neighbors than to the twelve outer ones

did not perform as well as the equal-weighting scheme.

A further issue in the intergrid transfers not considered by Douglas is

the projection of the coefficients and source terms in the difference

equations. Consider the following 2-dimensional elliptic boundary-value

problem, defined on the rectangular domain D = [x . ,x]^[y . ,y]: f ' & mm max •^min'-'max

17

^p3H) +i_(QiH) +|_(Ru) +l-(su) + Tu = f (22)

in the interior, and

au + b|^ = c (23)
dn

on the boundary (n is the coordinate normal to the boundary). Subdividing

the domain into N^xN2 cells with mesh spacings Ax and Ay and finite-

differencing Eqs. (22) and (23), we obtain

T f^i+l/2,j ^"i+l,j - ^i.j^ - Vl/2,J ^^.j - ^-l,j
)] +

Ax^

Ay^
tQi,3 + l/2 (^.j+1 - "l,j^ - ^iJ-1/2 K.j - ^.J-1^^ -^

^ TR , (u + u .) - R. wo . (u. . + u. , .) 1 + (24)
2Ax ^ 1+1/2,j ^ i+l,j i,j^ i-l/2,j i,J i-l,J

W f^i,j+l/2 ^^.j+l ^ ^.j) - 'i.3-1/2 ^^.3 * ^,i-l^^ -^

T. . u. . = f. .,

together with

a. ,- . b
1/2,j 1/2,j

18

and

\ + U2,2 \+l/2,j

(25b)

''NI + 1/2,J

at X = X . and x , respectively, and with corresponding expressions to
nun max

Eqs. (25) at y = y . and y
^ ^ -^min max

The quantities with half-integer indices in Eqs. (24) and (25) are

defined at the cell interfaces, and those with integer indices at the cell

centers. Each of the coarse-grid interfaces is coincident with two fine-

grid interfaces (cf. Fig. 3). The projections of the cell-interface

coefficients to the coarse grid are therefore carried out by averaging the

two values on the fine grid, e.g..

^i+l/2,j ' 2 ^^2i+l/2,2j + ^2i+l/2,2j-l^ ^^^^^

and

p2^ = J^ (P^ + P^)
i-l/2,j 2 ^ 2i-l/2,2j + 2i-3/2,2j-r

(26b)

The projections of the cell-center coefficient T and source term f are done

by averaging the values at the four surrounding fine-grid cell centers,

e.g.,

T^^. = f (T!;. , „. . + T^. , „. + T^. „. , + T^. _.). (27)
i,j 4 2i-l,2j-l 2i-l,2] 2i,2j-l 2i,2j

19

A more distributed projection of the source f (e.g. , the sixteen-neighbor

average applied to the residuals) causes a loss of fine-scale information

and degrades the accuracy of the solution obtained.

The multigrid algorithm as described thus far is clearly applicable to

problems in which the domain is uniformly gridded. In many applications,

however, nonuniform gridding in one or both dimensions is necessary in order

to guarantee sufficient spatial resolution in some fraction of the domain

without requiring a prohibitively large number of unknowns in the problem.

A simple algebraic transformation is available which converts the given

finite-difference equation on the nonuniform grid into a related equation

on a uniform grid, and the latter can be solved by multigrid techniques.

For problems in which the grid nonuniformities are mild, the resulting

solution to the uniform-grid equation may be a satisfactory approximation to

the solution to the original nonuniform-grid equation.

The transformation to the uniform-grid problem is found from the

equivalent of Eqs. (24) and (25) on the nonuniformly gridded domain D.

Denote the x-direction cell-interface and cell-center locations by ^^^^2

(i = 0,...,N^) and x^ (i = 0,...,N^+1), respectively, where x^/^ = ^min ^^^

X , ,„ = x ; the cell centers x_ and x., ,, thus lie beyond the boundary'
N;i^ + l/2 max 0 Nj^+1

of the domain. Define the local cell-interface and cell-center separations

and the average over the grid, respectively, by

^ ^+1/2-1-1/2' ^^«^> *

^^i+1/2 - ^i+1 - ^i' ^^^^^

f

20

and

A^ H (x - X ,) / N,. (28c)
max min '■

Similar expressions hold for the y-direction grid quantities. With these

^ definitions, Eq. (24) generalizes to

1 ,^i+l/2..i (_ s _ Vl/2,j . _)i

1 Qi,i+l/2 . _ _ ^i,.i-l/2 (_)j +

b [^i±pl (u,,,,. . u,,.) - ^^ (u,,. . u,.^^.)l , (29)

3

"i.j^,j = 'i.r

and Eqs. (25) to

^l/2,j ^l/2,j

^ and

21

Ni+l/2,j
(u

\+l/2,2
+ U„ ,) + TZ (u^ u.. J

Ni+l.j "N^J' ^"^ +1/2 ^1+^'J ^1'^

(30b)

= c
Ni+l/2,j*

Ax Ay.
Now multiply Eq. (29) by the factors and —^, and define the following:

Ax Ay

*

^i+l/2,j

Ax Av ^

~ ^ ^i+l/2,2 ^i.j+1/2
1+1/2 ^

Ax. Ay

^^ ^^3+1/2

Q,- i,j+l/2

Ay.
R. i+l/2,j " ^ i+l/2,j

S.
Ax.

S. .
i,J+l/2 -^ i,j+l/2

T. . = zir _ T. .
^'^ Ax Ay ^'^

. Ax. Ay.
f. . H ^ir^ f. .
^'^ Ax Ay ^'^

Ax
'1/2,j - Ax^/2 l/2,j

Ax
X+l/2,j Axj^ ^^/2 Ni+1/2.J

a = a

The result of these operations is to put Eqs. (29) and (30) into the form of

— — %
Eqs. (24) and (25), with Ax and Ay replaced by Ax and Ay and with the

coefficients replaced by their asterisked counterparts. f

22

A final note on implementation concerns Poisson equations on a

uniformly gridded domain. For this special case, P=Q=1 and R=S=T=0, the

coefficients in the finite-difference equation, Eq. (24), are independent of

the indices i and j. Because of this, the core storage required to solve

the problem is vastly reduced and the operation count for the solve is also

decreased significantly. These advantages have been exploited in a solver

specifically designed to solve Poisson equations on a uniform grid. When

solutions to Poisson equations on a nonuniform grid are required, the

transformations above can be carried out and a general elliptic equation

solver used.

23

NUMERICAL TESTS

The multigrid algorithm proposed by Douglas [1982] and illustrated

in Fig. 1(d) has been vectorized and implemented as described in the

preceding two sections, in a FORTRAN program for use on the Naval Research

Laboratory's Texas Instruments Advanced Scientific Computer (ASC) [Texas

Instruments Incorporated 1975]. The ASC is a 32-bit word, 2-pipe vector

computer with one million words of high-speed central memory. Each of the

two pipes, which consist of one memory buffer unit and one arithmetic unit

per pipe, can produce eight words of output data per 80 ns central processor

clock cycle, under optimum conditions. The memory control unit can access

one eight-word octet of input data per 160 ns central memory clock cycle.

At peak efficiency, the ASC is capable of retrieving 50 million operands per

second and, thus, of generating up to 50 million results per second. Since

the two pipes are in principle able to execute as many as 200 million

operations per second, for highly vectorized code the execution speed is

limited by the memory bandwidth. A premium is therefore placed on the

efficient retrieval and storage of data in optimizing ASC software.

The limiting of the execution speed by the memory bandwidth influences

the selection of the relaxation algorithm, as discussed earlier. The red-

black relaxation makes use of one-half of the eight words in each octet

retrieved from memory, and as a result executes at roughly half of the speed

of the Jacobi relaxation, which makes use of the entire octet. All of the

results presented here were obtained using the Jacobi relaxation.

The direct solver for these tests uses a Crout lower-upper triangular

r

24

decomposition of the matrix. Parts of the solver are vectorized, and it

takes advantage of the banded structure of the matrices arising from partial

differential equations. The solver was adapted from a routine written by

Winsor [1976].

The first set of test results is for the boundary-value problem on the

unit square.

3 , xy 3u. ,3 , xy 3u, ,3/ \ , ^ / \ _l_/•2.2^ jr rn-w . ve -^ T—) + r—(e ^ -r-) + -z-iyn) + -^(xu) + (x^ + y'')u = f (31)
3x 3x 3y 3y dx 3y

in the interior, and

u = 0 (32)

on the boundary. The solution is chosen to be

u(x,y) = sin(2Trx)sin(Try), (33)

and the source term f(x,y) is defined by substituting this solution into the

left side of Eq. (31). Some results are summarized in Table 1. There, for

three different grid resolutions (16x16, 32x32, and 64x64) and for L-level,

C-cycle solves for several values of L and C, are tabulated the number of

floating-point operations performed per fine-grid point, the solve time per

point in us, and the maximum absolute error between the numerical solution

and the exact solution (Eq. (33)) evaluated at the grid points. Also

included is the storage required by the solver for each resolution and each

value of L, given as the number of fine-grid arrays used. The results of

2§

and

W = 35 + 405 = 440

f

direct solves on the finest grid (L=C=1) are tabulated for the two lower

resolution cases (16x16 and 32x32), there being insufficient memory to carry

out the direct solve for the highest resolution case (64x64). For the first

C-1 multigrid cycles, four Jacobi relaxation sweeps were done after each

interpolation (m=4 in Fig. 1(d)); the error decreases only very slowly with

additional sweeps, but increases quite rapidly with fewer sweeps.

The core storage M and the operation count W for the multigrid solver ^

asymptote as L increases in Table 1. At each level, five arrays of storage

are needed for the five bands of coefficients in the matrices, and one each

is needed for the source term and for the solution. An additional array at

each level is used to store the reciprocals of the matrix diagonal elements.

This allows a (slow) divide to be replaced by a (fast) multiply in each

relaxation iteration. Two further fine-grid arrays are needed, one for the

residual calculation and another as general-purpose work space. The total

storage required therefore asymptotes to

M = (1 +-^ + ...)-8 + 2 = 3*8+2 = 12.7.

The asymptotic operation count per cell for the matrix generation is 35, and

for the solve itself is 120 for the 2-cycle solve and 405 for the 3-cycle

solve. The total operation counts therefore asymptote to

W^ , = 35 + 120 = 155
C=2

26

TABLE 1. Elliptic test problem results obtained on (a) 16x16, (b) 32x32, and
(c) 64x64 grids. For each L-level, C-cycle solve (L=C=1 is direct
solve), the operation count per cell, the solve time in ys per
cell, and the maximum absolute error are tabulated. For each L,
the core storage required in number of fine-grid arrays is given.
Insufficient memory was available to solve the 64x64 problem
directly (*).

Cycles 1 2
Levels

3 4 5

(a)
1

2

3

617
120

2.9x10-5

operations/cell
ps/cell
maximum error

184
60

4.7x10-3

139
51

6.7x10-3

254
95

1.5x10-3

Storage 47.1 17.7 14.1

(b)
1

2233
266

8.3x10-5

•

2
396
70

1.5x10-3

161
34

3.0x10-3

147
31

3.5xlO"3

3
307
66

2.6x10-"+

305
77

3.2x10-"+

Storage 78.6 21.0 13.8 13.5

(c)
1

8538
*
*

2
1204
141

3.3x10-"+

241
36

6.9x10-"*

156
23

9.2x10-'+

151
22

1.0x10"^

3
494
74

5.6x10-5

342
56

4.6xlO"5

345
66

6.6x10-5

Storage 142.3 28.6 14.2 13.0 13.1

27

The tabulated values for the latter are significantly smaller, owing to the

slow convergence of the operation count to its asymptotic limit as L

increases.

The advantages of the multigrid solve over the direct solve in core

storage, operation count, and execution time are clearly evident for all

three cases, particularly the two higher resolution problems. Although P

the 16x16 multigrid solves are substantially less accurate than the direct

solve, the 3-cycle solves on the 32x32 grid are comparable in accuracy to

the direct solve, and those on the 64x64 grid exceed the inferred accuracy

of the direct solve. The accuracy of the multigrid solutions varies rather

slowly with L, but improves markedly with an increase in C, at the price of

an increase of roughly a factor of two in operation count and execution time

for the examples shown. The effect of decreasing vector length on the speed

of execution of the algorithm is apparent in the 3-cycle solves for the

32x32 and 64x64 problems. For L = 3 and 4 and L = 4 and 5, respectively,

the operation count is essentially identical, but the execution time is

greater by over 15%, for the larger values of L compared to the smaller

values. For the 2-cycle solves, on the other hand, the execution time is

slightly smaller for the larger values of L. These results suggest the

simple rule of thumb that the coarsest grid used be approximately 8x8, for

either 2- or 3-cycle solves, in order to roughly minimize the execution

time. Then, for example, a diffusion problem in 1000 unknowns can be

accurately solved for 1000 timesteps at just over one minute of CPU time.

The second set of test results, summarized in Table 2, is for the

Poisson boundary-value problem

28

TABLE 2. Poisson test problem results obtained on (a) 16x16, (b) 32x32, and
(c) 64x64 grids. For each L-level, C-cycle solve (L=C=1 is direct
solve), the operation count per cell, the solve time in las per
cell, and the maximum absolute error are tabulated. For each L,
the core storage required in number of fine-grid arrays is given.
Insufficient memory was available to solve the 64x64 problem
directly (*).

Cycles 1
Levels

3

(a) 595 operations/cell
113 ps/cell

2.9x10"^ maximum error

147 99
53 45

4.7xl0"3 5.9xl0~3

208
95

1.2xlO"3

Storage 40.8 9.5 5.4

(b) 2210
262

8.3x10-5

357
65

1.5xl0"3

117
28

2.8x10 -3

102
27

3.2x10 -3

250
61

2.3x10"'+

246
77

2.8x10 -1+

Storage 72.4 13.1 5.4 5.1

(c)

Storage

8514
*
*

3

1164
137

.2x10"^+

194
31

6.5x10"'+

108
18

8.8x10"^+

103
18

1.0X10

431
69

5.8x10-5

273
52

3.4xl0"5

274
65

4.3x10

136.2 20.9 6.2 4.9

-3

-5

4.9

29

and

"C=2 = '''

^C=3 = ''''

The savings come in the relaxation iterations and the residual calculations

and arise from the symmetry of the matrices about the diagonal. This

reduction in the operation count is not, however, matched by a comparable

f

|i^4-f^ = f (34)

on the unit square, again with the boundary condition

u = 0 (35)

and the solution

u(x,y) = sin(2iTx)sin(TTy). (36) ^

As before, four Jacobi relaxation sweeps were performed after each

interpolation in the first C-1 multigrid cycles.

The core storage required by the Poisson solver is smaller by six

arrays at each level - the five bands of coefficients in the matrices and

the reciprocals of the diagonal elements - so that it asymptotes to

M = "I'Z + 2 = 4.7.

The operation count for the matrix generation is negligible, and the

as3nnptotic operation count per cell for the solve is reduced to

t

30

reduction in the execution time. A breakdown of the timing by components

shows that the relaxation iterations and residual calculations, although

they require fewer operations, require about as much time to execute as

for the elliptic solver. This is due to a combination of less efficient

retrieval and storage of data and of more effort expended on short vectors

by these components of the Poisson solver. The benefit of eliminating the

storage of the bands of matrix coefficients is obtained at the cost of

making these portions of the solver more cumbersome and slow. Clearly a

net gain is realized, however, primarily in the amount of core required,

though secondarily also in the total execution time.

31

CONCLUSIONS

The numerical tests summarized in the preceding section demonstrate

conclusively the power of multigrid techniques in obtaining numerical

solutions to elliptic boundary-value problems. These methods may make

practical the solution of problems which heretofore would have been

considered prohibitively expensive or even impossible to attempt,

particularly when extended to a larger number of spatial dimensions.

It may also prove possible to implement multigrid techniques with a

sufficient degree of parallelism to make them highly effective for

use on systems of parallel processors. Perhaps the major drawback

of these methods is the large startup effort required. The complexity

of multigrid algorithms, with their intergrid transfers and recursive

cycling, makes the development and debugging of a working program a

time-consuming task. The potential payoff is sufficiently great, however,

to warrant the investment.

i

32

ACKNOWLEDGMENTS '

It is a pleasure to acknowledge the invaluable contributions to this

project of Craig C. Douglas, who provided a copy of his original computer

program and guidance in its use, of David E. Fyfe, whose experience in

numerical analysis and numerical linear algebra was frequently and freely

shared, and of Jay P. Boris, who suggested this endeavor in the beginning

and established the nonuniform grid generalization along the way. This

research was supported by the Office of Naval Research (DN380-225 61153N

RR014-03-0F) and by the Naval Research Laboratory (DN280-068 61153N RROll-

09-43).

33

REFERENCES

Brandt, A.: Math. Comput. 31 (1977) 333.

Brandt, A.: Lecture notes, ICASE Workshop on Multigrld Methods, ICASE, NASA

Langley Research Center, 1978.

Brandt, A.: Elliptic Problem Solvers (M. H. Schultz, ed.), Academic Press,

New York, 1981, p. 39.

Douglas, C. C: Yale University Technical Report No. 223, 1982.

Douglas, C. C: SIAM J. Numer. Anal. 21 (1984) 236.

Federenko, R.P.: Z. Vycisl. Mat, i. Mat. Fiz. 1 (1961) 922.

Schultz, M. H. (ed.): Elliptic Problem Solvers, Academic Press, New York,

1981.

Texas Instruments Incorporated: Description of the ASC System, Austin,

1975.

Winsor, N.: Scientifi program Library, Naval Research Laboratory Research

Computation Division, Washington, 1976.

1

34

i 151 ?

■< 11

o O
■n >
T3 n
T)
< >

CO c
(0

m 2
r m
fO w
m w

CO
o
o

u> >
5" I-

Is
o en
3 m - >
D 33

PS
CO CO

^ O
U1 >
O H
S o o aj

-<

H
X
m
2
> <
■<

-t
X

r o

O
CO
-4

>
o
>
Z

5 " O o
6) ;S ■" <" at ^
3

■o >

