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An approach to modelling and residual analysis of nonlinear
autoregressive time series in exponential variables is presented; the
approach is illustrated by <W; analysis of a long series of wind velocity
data which has first been detrended and then transformed into a stationary
series with an exponential marginal distribution. The stationary series is
modelled with a newly developed type of second order autoregressive process
with random coefficients, called the NEAR(2) models it has a second order
autoregressive correlation structure but is nonlinear because its
coefficients are random. The exponential distributional assumptions
involved in this model highlight a very broad four parameter structure
which combines five exponential random variables into a sixth exponential
random var able; other applications of this structure are briefly
consie.3red. Dependency in the NEAR( 2) process not accounted for by
standard autocorrelations is explored by developing a residual analysis for
tLae series having autoregressive correlation structure) this involves
defining linear uncorrelated residuals which are dependent, and then
assessing this higher order dependence by standard time series
computations. Tho9o application of this residual analysis to the wind
velocity data illustrites both the utility and difficulty of nonlinear time
series modelling.

- ;"'-v '-". ''', .'v2.2"'''< '::-- ;';,,-'.i.. ... .. .'-....- ,.*-'..:..i..."- .'-'.'..'..".-*.'..**..... % .% '.-":"..".. .. -. ..". 7.%.-'



-a-

1. nvmjIx{ia

There are several aspects of many observed univariate time series which

are not satisfactorily accounted for in standard time series analysiss they

include nonGaussian marginal distributions, dependence not accounted for by

second order moments (autocorrelations) and directionality in the time

series. Quite often a Gaussian distribution will be inappropriate because

the variable being modelled has a positive and highly skewed distribution,

e.g. wind speeds, the service times in a queue, or the daily flows of a

river. Many particular such distributions can be envisaged and time series

models have been constructed for them. Examples are Gamma distributions

(Gaver and Lewis, 1980; Lewis, 1981; McKenzie, 1982, Tawrance, 1982) and

mixed exponential distributions (Gaver and Lewis, 1980; Lawrance, 1980a;

Lawrance and Lewis, 1982).

However the simplest, most widely used and most analytically tractable

of these distribution models is the exponential distribution. Like

Gaussian random variables, exponentially distributed random variables enjoy

many special properties; also they can be mildly transformed quite easily

into distributions which are either more skewed or less skewed than the

exponential. The Weibull distribution is an example, being just a power

transformation of an exponentially distributed random variable. Thus the

approach here, following earlier work (Gaver and Lewis, 1980 Tawrance and

Lewis, 1,80, 1981) is to regard the exponential variables as canonical and

tc develop their use in time series modelling.

It should also be noted that time series of (marginally) uniformly

distributed random variables can be obtained by exponential transformations

of time series in exponentially distributed variables; such uniform

processes could then be used to generate time series with other desired

marginal distributions.

"C._-" ,L"-, - . -'"" ''-- -- '', -. ,"' ' " " '-"--.. .. ."'. ' : - -' ',,. .-.*"'. , -,,. . . . .-- _ -'' '-. '.' -"?. ".'.'-- "--- '?" ';..'? ,'-.'.'-;', -
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The work cited previously has concentrated for the most part on first

order, nonGaussian autoregressive models, both of the standard type

(constant coefficient, additive, linear combinations) and a random

coefficient type introduced by the authors. The extension of the models to

higher order autoregression is clearly necessary to attain flexibility in

modelling correlation and dependency structure of the processes, but these

extensions are in no way as immediate as in the standard linear Gaussian

case. A simple mixing device can be used (Jacobs and Lewis, 1983) but the

range of correlations attained is much narrower than the range attained in

the standard linear, second order autoregressive structure. A broader

extension, called the EAR(2) model, iqas obtained in the exponential case by L

Lawrance and Lewis (1980), but its innovation variable has a zero component

which gives runs in the process) this will often be hard to justify.

A major part of the present work consists of obtaining a very broad and

rich extension of the NEAR(l) model (Lawrance and Lewis, 1981) to a second

order autoregressive process; it includes the EAR(2) model but does not

generally have a zero component. This NEAR(2) model was proposed in

Lawrance (1980b), later reviewed in Raftery (1981), but the necessary

analysis of its innovation structure was not given. Here the innovation

random variable for the NEAR(2) process is proved to exist without

unnatural boundaries on its (four) parameter region; explicit construction

is given for the innovation random variable.

The richness of the four parameter UFAR(2) model, and the fact that an

infinite iumber of cases of the model with identical correlation structure

are available, forces consideration of higher order aspects of dependence.

The analysis of the higher order aspects of exponential time series is at a

fairly early stage and is as follows. First it will be shown that the

autocorrelations p(l), I - O,tl,*2,... for the NFAR(2) process satisfy the

Yule-Walker equations with constants al and a 2 which are functions of the

".--.--' .-.-. ''' . -' -""" , . -.. '* .- , . .'.'-*.""."%"'*,"""".. .* ... ."", , , ' "'""" , . " . . ." . •"
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four parameters of the model. This follows immediately from the fact that

Xn is a random ceofficient. linear additive combination of XnnlXnd2

the innovation random variable En. Secondly, it can be shown (Lewis and

Lawrance, 1984) that the residuals Xn - alfl_ 1 - a2Xn_2, which are the usual

residuals for second order constant coefici ent, linear additive

autoregressive processes are uncorreLated.

Thus, although the standard analysis of time series stops with

uncorrelated residuals, i.e. a flat spectrum for the residuals, such

residuals can also be used to good effect to investigate higher order

aspects of dependence in the NEAR(2) model. In fact, if the autoregression

is not of the standard type (constant coefficient, additive, linear

combinations) the (uncorrelated) residual will be dependent. One aspect of

this is that the squared residuals will have non-zero autocorrelations, and

another is that the crosscorrelations of residuals and squared residuals

will be non-zero; both sets of correlations are theoretically zero when a

standard second order autoregressive model is appropriate.

This residual analysis wil l be illustrated by some theoretical

calculations for the NF.AR(2) model and by a brief application to a long

series of detrended and transformed wind velocity data.

-7.-
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2. IaLTIM SZR1 MOIS

Our aim in this section is to give in outline the ideas leading to the

time series model of main concern in this paper, and called NEAR(2),

following the earlier terminology NEIR(1) in Lawrance and Lewis (1981).

The NFAR 2) model has four parameters, and incorporates and broadens the

earlier two parameter EAR(2) model (Lawrance and Lewis, 1980). The NEAR(2)

model will be exponential in marginal distribution, have second order

autoregressive Markov dependence, and have autocorrelations satisfying

second order difference equations of the familiar Yule-Walker type. In

addition it will have dependence beyond autocorrelation, and will not be

reversible in time. It is not linear in the standard sense, having random

coefficient, linear additive autoregressive structure, but neither is it

nonlinear in the standard sense of incorporating powers or products of

lagged variables. Also, it differs from the random coefficient models

considered by Nicholls and Quinn (1982) in that the marginal distribution

is specified. The view taken here is that the marginal distribution is the

easiest aspect of data to look at and should be the starting point for

modelling.

Writing (Xn) for the time series variables, and (En) for an i.i.d.

exponential innovation sequence of unit mean, the two parameter NEAR(l)

model, as previously defined, is given by

r' Jon-l w. p. a [En w. p. p
- + I,(2.1)

0 w.p. 1-a bE n  w.p. 1-p

wit'i b-(1-a)0 and p-(1-0)/[1-(1-a)1}. The parameter region is, in general,

0a,X3l, a-00l. The case 0-1, 04al is rather special, and has been called

the TFRR(l) model, and when a-1, 043<1, the earlier EAR(l) model is

recovered. Utcept for this KAR(l) case, the N (l) modeL does not aLLo-

zero tnnovations (Gayer and Leuts 1990) and so ts more stattottcaLL"

acceptable. The zero innovation in the FAR( 1) case implies that Xn-pXn_.

....
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and thus P can be determined exactly from runs down In the sample path of

the process.

in general the i.i.d. innovations in the NEAR(l) process are formed as

the probabilistic mixture of two exponentials, and are thus easily

simulated.

The NEAR(2) model is a direct generalization of (2.1) and takes the

form

[31Xn_ 1  w.p. a1
Xn = 132Xn-2 w.p. a2  + En (2.2)

0 w.p. 1-al-0 2

with parameter region a1 0,a 2;0,a 1+a2 (l,O,011 0 24l; (En) is an appropriately

chosen innovation sequence. Many special cases can arise when the above

restrictions include some of the equalities and, for the purposes of a

general development, it is best to regard the inequalities as strict. Given

that (Xn) is required to have an exponential marginal distribution, the

main question concerns whether there is a valid probability distribution

for 6n. The Theorem proved in Section 2.3 will show that this is the case,

and that the distribution, when the inequalities on al,a 2 and 31,32 in the

parameter region are strict, takes the form

[En w.p. 1-p2-p3

En = b2En w.p. P2 , (2.3)

Lb3En w.p. P3

a probabilistic mixture of three exponentials with parameters given in

Section 2.3. To establish this result a fairly detailed analysis of a

derived moment generating function is required. This is necessary since a

direct momant generating function solution of (2.2) for en does not

estaolish ;hat En has a proper distribution; all that is shown is that the

solution is a possibly-improper mixture of three exponentials.
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3. VALIDIY! OLF THE XR 2) MOML

in this section we prove the following

THEOREM. Let (En) be an i. i.d. sequence of unit mean exponential random

variables. Then if the four parameters ua 29011 132 satisfy al)'0,a 2 )O,

01+0 2<1,0<1 02 <1, the relationship

Y 0 '11Xnn-2 w-P. a2  }+ On, n-O,*l,*2,..., (3.1)

where

rEn V-P. 1-P2-P3
On VbEn WP. P2 ,(3.2)

V3n .p. P3

def ines a stationary sequence of (marginally) exponentially distributed

random variables with mean one. Here

P2 =((alp3 1 +a 2132 )b2 -(cxi+a 2 )3i3 2 )/((b2 -b 3 )(l-b2 )) '(3.3)

adP3 - ((u 1l+ 2 )13 1 2 - (a3l+ 2 2 )b 3 )/((b2 -b 3 )(-b 3 )) .(3.4)

0 < b3  - (B(Z-4r)IL/Z)/2 <b 2 - s+(s'-4r)L/2)/2 < 1 ,(3.5)

where
s (l-cxl)13 + (1-a 2 )0 2 ,(3.6)

ad r =(l- 1 -al 2 ) 1 02 . (3.7)

PROOF. For the NEAR(2) model specified by (3.1)-(3.7), let O(t) and *ie(t)

be the moment generating functions of the (Xn) and (en) sequences) then if

stationarity of the (Xn) series is assumed,

*X(t) -*e(t)(ul
4 OX 0 t) + i 24,X(13 2 t) + (1-Ol-Q 2 )). (3.8)

4 Assuming an exponential marginal distribution of unit mean for (Xn), then

* the independent distribution of (en) has moment generating function,

poEa32bly not proper, given by

(1+t)1(l-Cl-a2 )3l0 2 t2 + ((l-al)Ol + (l-CN2 )132 )t +i (3.9

It is convenient to establish right away that the quadratic term in the

denominator of (3.9) has real distinct and positive roots, b, and b2 ; this

eliminates any subsequent need to invert such a term as a whole. The

required condition for real distinct roots is that
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[( 1-o)Ol + ( l-aC2 )JI3z - 4(l-Q1 -C( 2 )01 3 2

be positive: this is so from its equality to the expression

[( -al )1 - (l-(x2)13212 + 4<ala2131 1 2

which is clearly positive; the positivity of the roots b, and b2 is obvious

[-" from (3.9) since their product and sum given in (3.11) and (3.12) below are

both positve.

With b, and b2 positive, a partial fraction expansion of (3.2) can be

written in the suggestive form

1 1 1 (.0
Oe(t) = (1-P2-P3) + P2 + P3 (3.10)

Comparisons between (3.9) and (3.10) then show that b2 ,b3 and P2,P3 may be

obtained in terms of 01,02 and al,a2 by solving the equations

b2 + b 3 = (1- 1 )3 1 + (I-[2)02, (3.11)

b2 b 3  (l-al-a2 )131 02 , (3.12)

(l-b 2 )P 2 + (l-b 3 )P 3 
= alft + x2 '32 , (3.13)

b3(l-b2 )P2 + b2(l-b3 )P3 = (cl+a2)1302 . (3.14)

A difficulty with this apparently straightforward solution is that the

inversion of (3.9) or (3.10) could lead to a function which is not a

probability density, or it could yield a probability density but not one

which is a probabilistic mixture of three exponentials. In fact, neither of

these possibilities is the case, as will be shown by establishing that P2

and P 3 are positive and subject to the condition p2 +P3<l, and hence can

represent probabilities.

- Explicit expressions for P2 and P3 can be obtained from (3.13) and

(3.31) and are given at (3.3) and (3.4). From now on it will be assumed, in

accordance with the theorem, that b2 is the larger of b2 and b3, these being

obtained by solving the quadratic pair (3.11) and (3.12). To establish that

p2+P3<1, we have, by adding (3.3) and (3.4),

,..p2+P3 . .. . .. . ...... .. . . ( 3.15S)
P2-.. ( 1-b 2 )(l-b3 )

Multiplying out (1-b2 )( 1-b3 ) in the denominator and using (3.1.1) and ( 3.12)

-o................................................ .. o. ... . ..
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gives, after some rearrangement,

-- - - -

( + l(1(1-/32) + a 2 32 (- 1 ) (3.16)

The algebraic expression here is clearly positive and less than one, from

which it follows that pl+P2<l.

The positivity of P2 and P 3 will now be proved by showing that the

numerators and denominators of (3.3) and (3.4) are positive. For the

denominators, this requires that Ob 2,b3 cl which will be verified by

showing that O<b 2b 3 ,l and 0<(l-b 2 )(l-b3 )<l. The first of these latter two

inequalities is obviotup from (3.12); for the second consider the

expressions

(1-b2 )(1-b3 ) - 1 - (b2+b3 ) + b 2 b 3 p

- (lJl~-J1)a22+ - (0 1 0 1 )(a 2 0 2 ) (3.17)

after using (3.11) and (3.12), and then

1 - (1-b2 )(1-b3 ) - b2 + b 3 - b 2b3

- (l-(Xl)01(I-02) + (l-CA2)32(l-3l) + 0102 (3.18)

The right hand sides of both (3.17) and (3.18) are obviously positive. This

concludes the proof that 0<b 2 ,b3cl and hence that the denominators of P2 and

P3 are positive.

For the numerators of P2 and P3 to be positive (3.3) and (3.4) indicate

that b = (cl+a 2 )3lJ02/(cxpl+a202 ) must satisfy the inequalities

b 3 < b < b2 . (3.19)

At this last stage, explicit expressions for b 2 and b 3 must be used, and

from (3.11) and (3.12) are given, after writing

s (1-0 1 )iI3 + (1-a 2 )132  and r (--a 2 )0 I 02
by (3.20)

b 2  (a + (ez-4r)±/a)/2 and b 3  (a - (sz-4r)1/z)/2 .

Then (3.19) is equivalent to

- (C-4r)L/z < •- 2b < (sZ- 4 r)L / z -

or s-4r (s-2b)z

or •b bA r 0 (3.21)

A • ..
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After some algebraic rearrangement the left hand side of (3.21) becomes

ala2 01 0 2 ( 01-02 )Z/( ax 10j u02 )Z (3.22)

which is again clearly strictly positive, as was to be proved.

This concludes the proof that p2 and P3 are both positive and subject to

P2+p3,l; hence 1-P2-P3, P2, and P 3 can all be regarded as probabilities.

Thus En has a proper probability distribution which can be generated as the

(1-p2-P3,P2,p3) mixture of three exponentials of means 1, b 2 and b 3

respectively; further, both b2 and b3 are less than unity and b2 , b3.

In special cases there are valid and simpler results for the

distribution of en. For instance, when 01-132-1, En has a simple exponential

distribution of mean (l-u1l- 2 ). When 01-13201 the innovation has a mixed

exponential distribution of the NEAR(l) form given in (2.1) with 0P-a l +* 2 .

When 32=1, p2+P3-1 and en is the mixture of two exponentials with means b2

and b3; this case is used in some of the calculations of Section 9.

zC. .-
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4. OMM UMS OF ( I 2) COXTnI;AL N =I M".

The NEAR(2) process was established by showing that (3.2) was a valid

innovation distribution for the relation (3.1) to give a process with I.

marginal exponential distributions. The distributional assumptions implied

by this result can also be taken out of the time series context in which

they were derived and viewed generally as a way to combine a pair of

(possibly dependent) unit exponential variables (L1 ,L2 ) with an independent

triple of possibly dependent, unit exponential variables (M 1 ,M2 ,M3 ) so as

to yield a further unit exponential variable. Specifically, with

(al,a,2 01 , 2 ) and (b2 ,b3 ,P2 ,p3 ) as previously related by (3.3) - (3.7), the

Theorem has established that

{ ILl w.p. al Ml w.p. 1-P2-P3
02L2 w.p. a2 + b2 2 W.P. P2  (4.1)
0 W.p. l-01-02  Ib3M3 w.P. P 3

has a unit exponential distribution.

First of all, the idea of "switching" will be illustrated; in the

NEAR(2) context, this suggests taking (Ml,M2 ,N3 ) as (Xn-l,Xn-2,Xn-3) and

(LlL 2 ) as (En,En). Then (4.1) gives the time series model

r Xn-I W.P. l-p2-P3  OlEn w.P. al
Xn - b2Xn_2 w.P. P2 + {02En wP 02 • (4.2)

Ib3Xn_ 3 w.p. P3 w.p. I-al-a 2

This is a third order autoregression, actually a case of the EAR(3) model

cited in Lawrance and Lewis (1980); note, however, that this third order •

autoregressive exponential process allows zero innovations. Another,

better behaved higher order exponential model - in fact a p-th order model -

is obtained by the following application of the result (4.1) in its original

form (3.1). Let the indices 1,2,...,p be partitioned into two non-empty

sets 11 and 12 of size t1 and t2 respectively. Then in the model

W.2"2:al'

Xn -_+ En n-O,tl,*2,..., (4.3)

{ w.p. 1- 1  . ....

lr_,. %_:h .' . \ . ;~ " " . . . ... . . . .. . . . . . . ." "" '" ' -. ... . , ." "**. • •
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lot 1i" 1I, ieIl; i -2, i"12) i Ui' a1 n i a2 .  Then if412

a1Q241, 0<131,0241, the distribution of En is given by the Theorem. Thus we

have a pth order exponential autoregressive process with four parameters.

However, while this may seem satisfying it is not clear that four parameters

would be sufficient to characterize the sample path behaviour of an

exponential process with very high order dependence.

Another use of (4.1) is to allow L1 and L2 to both be Xn. 1 , and so

obtain a four parameter first order model of the form

[OlXn_1 w.p. al [ En W.p. l-P2-P3
Xn 0 2Xn-1 w.P. a2  + jb2En w.p. P2 (4.4)

0 W.P. 1-2--02 tb3En w.P. P3

Four parameLers may seem excessive for a first order autoregressive process

but simulations show a wide range of behaviour in sample paths with

different choices of parameters. Equation (4.4) in turn suggests a first

order model allowing negative dependence. This is obtained by replacing

the variable Xnl in (4.4) which is multiplied by 32 by the antithetic

transformation of Xn I , hich is log(l-exp(-Xn.l)). Two parameter versions

of these two first order models could be obtained, for example, by taking

A third type of use of the construction is to give mixed autoregressive

moving average models; for this, (L1 ,L2 ) is (Xn-l,Xn_2) as in (3.1), but

(MI, 2 ,M3 ) are chosen to be (En,En+l,En+l) for a second order moving

average component, or as (En,En+l,En+2) for a third order moving average

component; these forward running indices of the innovation sequence are

necessary for the required independence in the construction.

%nother use of this construction is to obtain an explicit mreed ftrst

order autoregressive moving average exponential process, which could be

contrasted with the tmpltctt model given in Jacobs and Lewis (1977). Thus

in the basic structure (4.1) replace L1 by Xn I, L2 by En_1 and M1 ,M2 ,M3

each by En; although X,-1 and Enl are dependent, they are independent of En  -.-.

an required by the construction.
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out of the time series context, the construction suggests ways to

obtain multivariate exponential distributions, rather as in Lawrance and

Lewis (1983).

Further possibi lities are numerous, but it is not the intention here to -

exhaustively list them, or to derive the details of those cited. Analysis .

in the following sections wil deal with the basic NEAR(2) model.

2.

-o

* . . .

. . . . . . . . .
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5. 0K STEV'1MOR VR OF TMW MENA(2) PROCESS

In this section we show that the autocorrelations p(R)-corr(Xn,Xn_g),

EuO,*1,*2,... of the NEAR(2) process satisfy AR(2) Yule-Walker type

difference equations; thus the second order dependency of the process is

indistinguishable from that of the standard autoregressive model, AR(2).

To show this, it is convenient to write the equation (3.1) as a random

coefficient additive combination of Xn_ 1 , Xn_2 and En . Thus we have the

NEAR(2) process in its random coefficient, linear, additive form as

Xn - 3lKn'Xn_1 + J32Kn"Xn-2 + LnEn n-0,l,*2,..., (5.1)

where

I w.p. 1-P2-p3
Ln {b2 w.p. P2 , n-0,*l,*2,..., (5.2)

b 3 w.p. P3

. (1,0) W.p. a,
(Kn ,Kn) (0,1) w.p. Q2  ; nO,tl,2.... (5.3)

[(0,0) w.p. 1-al-0 2

the i.i.d. sequences (Ln) and (Kn ,Kn") are assumed to be mutually

independent and independent of the independent exponential sequence (En);

the En's are assumed to have unit mean, as then do the Xn'5 by

construction.

Now E(Kn )=aI and E(Kn )=a 2 , so that E( Ln)-l-3-- 2a 2 . Then

multiplying Xn in (5.1) by Xn_ | we have, for I

E(XnXn-A) = aOI E(XnIXn_-I) + U292E(Xn_2Xn-E) + E(Ln)E(En)E(Xn- | )

= alt3lE(Xn.lXn-A) + a2t32E(Xn-2Xn-_) + 1-0113-x21 2 ,
so that

E(XnXn- l UlIl(E(Xn-lXn.-. -l) + a202(E(Xn-2Xn- | ) - l)

and thus

p(1) - a 1 + a 2 P(l), P(2) - alp(1) + a2 , (5.4)

0 p(A) - alp( - 1 ) + a 2 P(A-2), 1-3,4,...,

where al-al1o and a2 -a2 32 . The equations (5.4) are the same as Yule-Walker

equations for the standard AR(2) process. The conditions for a solution to

exist, namely ai+a 2 <l, a1-a2 )-, a2 >-l are clearly satisfied when the

conditions on U1,02,01,02 given in the Theorem of Section 3 hold.

..... ' -"--V1
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Note from (5.4) the explicit results,

p(l) = al/(l-a2 ) and p(2) alp(l) + a2. (5.5)

and hence, since O<ala 2 <1, the restriction of the autocorrelations p(l) to

positive values. The possible region of (p(l),p(2)) values is bounded

below by p(2)=(p(l))z and otherwise bounded by p(l)O and p(2)-cl.

Broadening of the model to negative dependency may be achieved using S

antithetic ideas, or the bivariate scheme given in Gaver and Lewis (1980),

but is not pursued here.

Note too that the parameters in (5.4) enter only as products al=a 13 and

a2-a232 . Thus for small enough a, and a2, values of 01 and 02 greater than

unity could be allowed, and (5.4) would still have a stable solution.

However, the sequence En in the defining equation (3.2) may not exist; it P

has not been determined whether (3141,3241) is a necessary condition for

this existence.

Specifying allowable values of p(l) and p(2), as may be done in an

initial second order analysis of data, leaves two parameters to be

specified in the model, say a. and a2, which could produce very different

sample path behaviour in the time series. It is important to notice that -

this specification of p(l) and p(2) further constrains the range of

possible al and a 2 values. Recalling that p(l) and p(2) fix a1 =- 10l and a2

= a202, as well as that al+a 2 4l, it is easily shown that we must have

a, < a, and a2 < a2  (5.6)

which implies that al+a2 4Q1+ 24l. Thus al and a2 are forced to lie in a

triangular subregion of the triangular (al,a 2 ) region which is bounded

below by a2 , bounded on the left by al, and bounded above by the line

l+a2=1. These results are useful, and will be employed in an exploratory

analysis of the wind velocity data in Section 9.

S.. -. I . . . . . . . . . . . . ... - :.-
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6. AN AMULYSIS OF A 10MG SMIS OF TI i VZDCWr D

6.1 Discussion of the Data

Lewis and Hugus (1982) have given an analysis of a set of 43,800

3-hourly wind velocity readings taken by ship PAPA in the Gulf of Alaska

over a 15 year period. After suitable detrending to remove 1 year, 6 month,

12 hour and 6 hour cyclic trend components, a first order autoregressive

Gamma model (Lewis, 1981) was fitted to the data, the use of this model

being suggested by the shape of the (marginal) histogram of the data (Figure

6.1), the autocorrelation function (Table 6.1) and the shape of the log of

the normali.ed periodogram of the data (Figure 6.2). After detrending

there is still a slight 6-hour effect (p-21,900) because this cycle varies

in intensity over the 15 years; in what follows this will be ignored and the

data will be treated as stationary.

It is not the object here to give the above analysis in detail but

rather to give an alternative analysis of the data using NEAR models; this

involves a preliminary transformation of the data to an exponential

marginal distribution. This is suggested firstly by the fact that a eibull

distribution is commonly used by meteorologists for wind velocity data and

secondly by the fact that Weibull and Gamma distributions fit the ship PAPA

wind velocity data equally well (Lewis and Hugus, 1992); a power

transformation of the weibu]l then leads immediately to the desired

exponential.

This transformation is preferred to the more usual transformation to

norirtlity which, as we shall argue, is not appropriate in this case. The

data is in fact finely discretized, with zero values being inlcuded. After

a power transform to normality the zero values show up as a group of values

still at zero, whereas the non-zero values are shifted away from zero to

form the normal part of the data distribution. This zero value problem is

not critical with the power transform to exponentiality since this

,''." '-'. '-.' "-.''. _.* ' .'-.-'.'--.'-* . . .'-'.'.-.'.'. ' r . ','' .2-'. '. ".'.. ... ". " ." .. -... " .".". . . . " . "'***. ." .". ".. .'" ' ,'
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distribution gives rise to a high proportion of zero values.

It is possible, but extremely tedious, to smooth out the discretization

in the data. Even then, however, one can anticipate that after a

transformation to marginal normality the time series will be nonlinear;

there is no guarantee that such a transformation will produce linearity.

Thus we have preferred to transform for marginal exponentiality and attempt

to incorporate nonlinearity into the modelling.

The histogram of the transformed data Xn'-Xn2 .18 5 , is shown in Figure

6.3, where the power transformation to exponentiality has been determined

iteratively so that the coefficient of variation of the transformed data is

unity. This transformation does affect the correlation structure of the

data, as shown in Table 6.1; the table gives comparisons of data and model

autocorrelations both before and after the transformation.

i
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Table 6.1

Pit of Wind Speed Data Autocorrelations

Detrended Series Transformed Detrended Series

(Xn) (xna. Les }

Pi g Est.p(E) Ila [al pi- Est.p(s) AR(2) IaI

.6194 P1"-.8194 .0000 .0000 .7902 Pi"=.7902 .7902 .0000

.6714 P2 "-.6698 .0184 .0346 .6243 P2"-"6589 .6589 .0000

.5502 P3
" -.5635 .0133 .0391 .4933 P3 "'53 2 4 .5454 .0130

.4508 P4 "-.4698 .0190 .0541 .3898 P4 -.4439 .4519 .0090

.3694 P4 *
'' .376 4  .0070 .0431 .3080 P5 "-.3511 .3744 .0233

TabLe 6.1 The second coLumn shows the estimated autocorreLat ions for the -

detr ended sertesj these are close in vaLue to the pouers of P1"-0.8194 in

the first coLumn, indicating a good f t (CoLumn 3) to a modeL u th AR(l)

autocorreLat ton structure. After transformation, this AR(1) fit. t no

Longer vaLtd (coLumns 4 and 5) since the absoLute vaLues of the differences

(CoLumn 4) are now much Larger. A much better and adequate fit t obtatned

utt'i AR(2) autocorreLatton structure, as indicated by coLumns 6, 7 and 8.o" ."p.

"L.

... ... .
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Column 2 in Table 6.1 gives the estimated autocorrelations, pi" of

the detrended data; the standard error of each of these autocorrelation

estimates separately is given approximately by l/(N)1/2-lI/(43, 800).1/2

-0.005. The first column of Table 1 gives the fitted autocorrelations for a

model with AR(l)-type autocorrelat ions, just pi"I - (0.6194)1, for lags

1-1,2,...,5. The differences (Column 3) are all very small in practical S

importance, although some are perhaps statistically significant in view of

the large sample size.

Column 6 in Table 6.1 gives the estimated autocorrelations, pl", for S

the transformed data; the transformation consistently lowers the

autocorrelations. However, columns 5 and 7, which give Lhe Lilted AR(l) and

AR(2) correlation values, respectively, show that a model with the AR(2) S

correlation structure is definitely preferable. The fit is borne out by a

periodogram plot (not given), and the analysis will be continued on this

basis. _

Thus, a NEAR(2) model is a candidate for representing the transformed " - "

data, and if p(M) and p(2) are fixed at the estimated values of Pl - 0.7902

and P2 - 0.6589, then the corresponding al-l 1 1 and a2-a2J3 2 from (5.4) are, P

respectively, 0.7175 and 0.0920. There are still two degrees of freedom

left in fitting the model, represented by choice of parameters a1 and a2

greater than or equal to 0.7175 and 0.0920 respectively, with al+a2(l.

Figure 6.4 shows the cumulative periodogram of the usual AR(2) model

linear residuals, Rn-Xn'-aXn-.'-a 2Xn_2 , of the transformed data. This is

almost straight (ignoring the slight effect at period 6 hours). At this

point it might be thought that the usual second order autoregressive model ' -

is adequate. We shall however now develop an extended residual analysis for

higher order dependence which explores further fitting of the NEAR(2) model -.

to the transformed data.

|_

....... ~~~o -.- -- *.
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7. A ISIDCL AWLYSIS POR THE EFAR( 2) 19)DEL

7.1 General Results

It has already been remarked that the autocorrelations p(Q) are S

insufficient to describe the dependency structure of NAFR(2) models. A

natural next step might be to examine higher order joint moments and their -

associated spectra. The functions so obtained, such as the bispectrum,

(Tukey (1959)), are often found to be difficult to calculate and hard to

interpret. Rather than follow this course, a residual analysis for

nonlinear autoregressive models is proposed. The thrust of this analysis

is that the standard process of fitting and validating a linear

autoregressive model should be carried out beyond the customary final stage

at which uncorrelated residuals are obtained (as in the previous section).

The usual presumption is that the residuals are not only uncorrelated but

also independent. This need not be the case, as will be exemplified for the

wind velocity series. Also, uncorrelated but dependent residuals are

obtained for NEAR(2) processes. Thus residuals should be analysed for

further dependency. Any found is then evidence that a standard linear,

constant coefficient second order autoregressive model is deficient. With

normally distributed time series data this might suggest that Gaussian

nonlinear modelling should be explored. With data marginally distributed

in some other identifiable manner, the exploration of a selected type of

nonlinear model with specified marginal distribution and autocorrelation

function is suggested; it should then have some higher order dependency

properties of its autoregressive residuals in agreement with those of the

data. This is the course exemplified here. The proposed residual analysis

is further explored in Lawrance and Lewis (1984a).

In Section 9 higher order dependency properties of the uncorrelated

residuals from the wind velocity data are compared with those derived in

Section a for the NEAR(2) model. This stage can be informative from both
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exploratory and estimation considerations, and can be thought of as part of

the model-refinement process common to much statistical methodology.

It might be thought that the class of NEAR( 2) models could be subjected

to a residual analysis in the standard manner or using more general forms of

reniduals that have been studied by Cox and Snell (1968). However,

considering the NI'AR(2) model in its random coefficient form (5.1), the

independent innovation is now trivariate, consisting of (Kn, Kn', LnEn).

No way of estimating this trivariate distribution based on realized (Xn)

has been found, even assuming knowledge or estimation of the model

parameters. The linear autoregressive residuals are never-the-less

available, and given as in the previous section by

Rn-Xn-alXn-l-a2Xn-2 , al-alpI, a2-a2f2 , n - O,l,±2,... (7.1)

We now show that these residuals are uncorrelated for the NEAR(2) process.

7.2 The Residual Theorem

Theorem: The residuals (Rn,Rn+#), given by (7.1), are uncorrelated for

.....................

Proof: The autocovariances of the residuals (7.1) may, for Vol, 1ie

written,

Cov(Rn, Rn+I) COV(Xn, Rn+g)-alCov(Xnl, Rn+g)-a2Cov(Xn_2, Rn+I) (7.2)

= COy( Xn, Rn+ )-alCOv( Xn, Rn+g+l )-a2Cov( Xn , Rn+I+2),

since the (Xn) procoss and consequently the (Rn) process is stationary. The

covariances on the right hand side are all of the same type and given by

CoV(Xn, Rni+I) - Cov(Xn, (Xn+i - alXn+Il - a 2 Xn+1_2))

= (Var(X))(p() alp(9-l) - a2p(A-2)), 1-1,2,... (7.3)

An identical result also holds for I's less than zero. Hence by the Yule-

Walker equations (5.4), the expression in brackets is zero, and so

Corr(Rn, Rn+g) - 0, I-tl,t2,..., (7.4)

as was to be proved. That these residuals are uncorrelated is an immediate

consequence of the autocorrelations following Yule-Walker equations; thin

.................................... ,....,... ....................'",.'.....,".,"v.
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emphasizes that residuals of the form (7.1) will be uncorrelated for any

model whose autocorrelations satisfy Yule-Walker equations. Equivalently,

as was the vase for the transformed detrended wind velocity data (Figre

6.4), the cumulative periodogram of the residuals will plot linearly.

Dependency analysis of the uncorrelated residuals (Rne), n-1,2. ... could

begin with scatter plots of the low-lag adjacent values, any patterns or

concentrations are suggestive of dependency. Several further methods for

the detection of dependency could be proposed, but the only one pursued here

involves the squares of residuals; it is then applied in Section 9 to a

continued analysis of the wind velocity data.

N. o,
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S. CROBYARIAUC M YLYSIS OF (n) AND R) 2R = NU(2) 1mm.

After the satisfactory fit to data of an ordinary linear model, the

residuals, Rn, should be independent; this is conveniently investigated by I
seeking straight cumulative periodograms for the residuals and for the

squared residuals; for the wind velocity data, Pigure 9.1 shows that the

squared residuals have an obviously curved cumulative periodogram. Thus a

linear AR(2) model for this data is definitely not adequate. As a method

for probing model validity, the examination of squared residuals has

previously been employed by McLeod and Li (1983), following Granger and

Andersen (1979); these latter authors investigated bilinear modelling of

uncorrelated but dependent residuals from ARM models, with a view to

improved forecasting.

0
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very high compared to the upper .99 quantLLo of the statisttc which to
1 .619.
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Whilst autocorrelations of the squared residuals can be considered, for

the lJEAR(2) model this involves computation of 36 term, mostly distinct

types of 4th order moments. A more tractable suqgestion which involves only

third order moments, and which is thus the next step up after ordinary

autocorrelations, is to use the croescovartances of the (Rn) and (Rn)

sequences) apart from lag 0, zero values would be found for linear models.

We use crosecovariances rather than crosacorrelations of (Rn) and (Rn2)

because crosecorrelations need Var(Rnz ) which involves 4th order moments of

the Xn process.

The starting point for the calculation of Cov(Rnz , Rn-) is to note from

the definition of Rn at (7.1) that

E(RnzRn-1) - E(RnzXn-a)-alE(RnZXn..l)-a2E(RnzXn-1_2), -0,tl,t2.... (8.1)

whence there is the structural form,

Cov(Rn z , Rn-) - Cov(Rnz, Xn.g)-alCov(Rnz , Xn..l)-a2CoV(Rn
z , Xn-A-2).(8.2)

Calculation of the covariance terms in (8.2) requires the expanding out of

Rn2 , taking expectations and expression in terms of covariances. Thus

RnZXn-E = XnZXng + alzXn-lzXnt + a2zXn_2'Xn-.

- 2alXnXn-.lXn_ - 2a2XnXn_2Xn_|

+ 2ala2Xn_ lXn_2Xn_ , 1E0,l,*t2,... (8.3)

The conversion to covariance yields

COV(Rnz, Xn-I) = JI(g) + alZJl(Q-l) + a2
2J1 (9-2)

- 2alJ 2 (a) - 2a2 J3 (I) + 2ala 2J2 (-l), I=O,*l,t2,... (8.4)

where

JI(M) - Cov(Xn2, Xn-9); J2(1) COV(XnXn_1 , Xn-1);

J3(1) - COV(XnXn-2, Xn-|)" (9.5)

we thus see the types of third order joint moments for the (Xn ) process

which are involved in the Cov(Rnz, Rn-a) calculation; these are general

results.

For the NFAR(2) model each of these joint moments has to be obtained

using a di~ference equation. Considering for illustration Jl(I) for

-- .. * - . . - . . * . .
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posit.ive lags, square each side of the INAR(2) defining equation (2.2) and

multiply by Xn4g. After converting to the required covariances, the

recursion is found to be

JL(1) - aloIJI(-l) + a 2 02J(E-2) + 2(1-al-a 2 )p(1), 1-1,2,... (8.6)

This equation is given for illustrations there are similar equations for

J 2 (1) and J 3 (I), and various special cases. The complete algorithm for 0

computing Cov(Rn,Rn-#) for I1- for the IEAR(2) process is given in the

Appendix.

The other half of the crosecovariance function of (Rn) and (Rn) is

Cov(Rnz,Rn-S) for 1(1, or equivalently Cov(Rna, Rn+a) for Vol; we now show

that this is zero. The key result in establishing this fact is obtained by

first defining Gn-I as either Xn-ej, Xn-_Xn-egl, or Xn_|Xn-e-2 , for I1 and .

showing that Cov(Rn , Gn_,) for 1O'l are all zero.

First note that

Cov(Rn, Gn_#) - ( ((Xn-alXn-l-a2Xn- 2 )-E(Rn)(Gn- - E(Gn- )) ]

- E [( Xn-aXn_ 1-a2Xn-2 ) (Gn i-E( Gn _ |) ) ]. ( 8.7 ).

Now substitute for Xn from (5.1) to obtain

Cov(Rn, Gn-1) E[((OlKn -al)Xn-l + (02Kn"-a2)Xn-2 + LnEn)(Gn_-E(Gn-g)]. p
(9.8)

Since (K n ,Kn") are independent of (Xn-l,Xn_2) and LnEn is independent of

Gn_1 , the right hand side of (8.8) may be written

Cov( Rn, Gn - #) E( OlKn'-a 1 )Cov(Xn- 1 , Gn- )+ E( 02Kn"-a 2 )Cov(Xn_2, Gn- I ).

(6.9)

By the definition of (Kn',Kn") at (5.3), E(1OKn'-aj) and E(132Kn"-a2) are

both zero, and hence S

Cov(Rn, Gn-e) - 0, 1-1,2,... (6.10)

Finally, we note that

Cov(Rn', Rn+Il) - Cov(Rn, Rn-t 2 )

- Cov(R , Xn..12 ) + alzCov(Rn, Xn-1*-11) + a2 zCov(Rn, Xn-1-1) -

- alCov(Rn, Xn-t-Xn--l) - 2a2COV(Rn, Xnt ,.Xn.1-2)

4 -ala 2C v (R_ Xn", .'.l4.. 2), 1-1,2.... (6.11)
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By (9.10) all the covariances in (8.11) are zero, and the desJred result is

establ ished.

In a similar way it may be seen that Cov(Rnr,Rng) for IOl and all

positive integers r are also zero; this does not, however, imply that Rn and

Rn+j are independent. All joint moments would have to be zero but in

particular this is not the case for Cov(Rnz, Rn-1), 01, as results in the 0

Appendix indicate.

It should perhaps also be noted explicitly that in using the residuals

(Rn) that the coefficients a, and a2 will have been estimated; this may in

fact induce some correlation between Rnz and Rn+ | , but with long series of

data the effect should be very small.

%-

S

Si2°

I. -2.



-28-

9. U ANLYSIS AND NOrLLIN OF TO WI VZWCM DA2'

Dependence in the uncorrelated second order residuals of the

transformed detrended wind velocity data has already been demonstrated by

Figure 8.1. Further evidence of this is provided by the non-zero

crosacovariances of (Rn , Rn+1 2 ) given in Figure 9.1. The corresponding

theoretical croescovariances for the NEAR(2) model will next be presented,

having been computed using the algorithm described in Section 9 and the

Appendix.
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Crosscovcrionces lag

Figure 9.1. Crosscovartances between the second order restduafs, Rn, and
the squared second order residuals, Rn+gz, for the transformed detronded
wind vetocity data. Suamp&* sixe is N-43,800. Moere to a strong negative

* vaLue at Lag minus one and pronounced positive vatues at the first feow
positivye Lags.
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At this point, it will be recalled, the NDIKR(2) model has not been

fitted in terms of all 4 parameters; the residuals involve the model

parameters only through a, - *101 and a 2 - a202 and al,01.2,02 have not

been separately eatimated. In the pronant rather exploratory analysis the

estimation problem will be circumvented) the crosecovariances of (Rn,Rn+a)

will be given for four representative sets of parameter values in the

reduced allowable region, as constrained by (pao,a 2, a2,a+a12 ,l),

according to (5.6). For the transformed detrended wind velocity data,

a1 -0.7175 and a2=0.0920, and the four chosen sets of al,a2,01,02 together

with their associated (P2,P3) and (b2,b3 ) sets are given in Table 9.1.

Table 9.1

Parameters Sets for NEAR(2) Calculations

01 a2 01 02 P2 P3 b 2  b 3

A .72 .0920 .9965 1.0000 .0038 .9962 .9996 .1874

B .76 .0920 .9441 1.0000 .0585 .9415 .9940 .1406

C .77 .1400 .9318 0.6571 .0542 .8610 .7008 .0786

D .88 .0920 .8153 1.0000 .1744 .9256 .9826 .0232

In Figure 9.2 the crosscovariances of (Rn, Rn 11) for each of these four

cases are presented; the NEAR(2) process has been taken with mean of 1.31 so

as to correspond to the transformed detrended wind velocity data. First it

will be recalled that for the usual linear AR(2) process, these

crosecovariances would all be zero, apart from that one at lag zero which is

giving a non-standard measure of skewness of the residuals; Case D is

nei.rest to this situation, although the model cannot reduce to the linear

AR(2) model; it can reduce to the linear AR(l) model and case D is also

nearest to this situation.

Case C is nearest in qualitative behaviour to the crosecovariances of

the wind velocity data given in Figure 9.1, but as we have seen, cannot

exhibit the negative crosecovariance shown at laq minus one. This ts an

l°.
- .

* %
•~ % %'
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important deficiency of modelling by the NEAR(2) process although matters

would have been considerably worse for data with a double sided Cov(R*n,

Rn | ) function. The other cases (A and B) illustrate some of the diversity

of behaviour producible by the NEAR(2) modeli more investigation of these

apsects wiuld be valuable. Further analysis would require formal

estimation of all four parameters, or perhaps formal eatimation of (0 1 ,G2 )

after the fixing of a, and a 2 at their values determined by estimates of

p(l) and p(2).
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: '0,
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Ftgure 9.2. Crosscovartances, for the Nr'AR(2) modeL, between the second
order restduals, Rn , and second order restduals Rn+1., utth a 1 -0.7175 and
02-0.0920. The sets of purameter values (al,a2,j3 1j,P 2 ,P 2 , P 3 ,b 2 ,b 3 ) are
descrtbed tn TabLe 9.1; case C t s cLosest to that of the utnd ueoctty data
gtven tn Ftgure 9.1. Case D to nearest to the ,,near EAR(1) mode. The

other two cases tLLustrate more of the dtersty of behautour uhtch can be
shoun by thts NEAR(2) crosecovartance function. The tag zero covartance ts

a measure (not the usuat one) of skewness of the restduals.
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10. GIMKIOICS AND MLYSZB

The very broad four parameter NEAR(2) time series model having

exponential marginals and the correlation structure of a linear AR(2) model

has been established. A preliminary fit of the NPAWR( 2) model has been made

to a very long series of wind speed data, the data having been detrended and

transformed so as to have exponentially distributed marginals. A residual

analysis has been based on the crosucovariances between the residuals and

squared residuals, and its utility in probing higher order dependence in

the (Xn) process has been demonstrated; in particular it has highlighted a

strong difference in higher order crosecovariance of the data and the

NEAR(2) model at lag minus one.

A possible extension of the NFAR(2) model which retains the marginal

exponential distribution of the data is obtained by noting that the theorem

in Section 3 does not require independence of the random coefficient

sequences (Kn') and (Kn'". By allowing these to be, say, moving average

sequences, the higher order structure of the (Xn) process might be extended

to accomodate the negative-valued spike in Figure 9.1 at lag minus one.

This approach has been taken by McKenzie (1981) but it is not known how

tractable the resulting structure of the NEAR(2) model would be.

Finally, we remark that a likelihood conditional on the first two

values, X1 and X2 , can be written down for the process. However the

likelihood function is difficult to use because it becomes infinite at

parameter values on the border of the parameter space corresponding to an

EAR(!) model. These considerations suggest that a reduced three parameter

model is needed which avoids these singularities but still allows for a

higher order dependency in the model. Such a likelihood analysis would also

need model validation which could be based on the higher order residual

analysis presented here.

An extension of the residual analysis given here based on reversed

.
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residuals is possible (Lavyance and Levis, 1984b)) however, them were not

used because residual analysis has already turned up discrepancies between

I the data and the model which need further explanation.

mAlgorithm for Cmwutinq the Pon-Neative half of the 18ssiftal. Vs1ua

Squredl Croesoovariance Function for the NDW 2) Model

Iri~ut u1l,cz2 101 aJ32 ,L

0. al-alol; a 2 -a 2132 ,

p(0) =1; p(l) a1/(1-a 2 ), P(2) =alpgl) + a2

p(l) =alp( f-I) + a2 p(A-2), for E-2,3,...,L.

1. Jl(0) - 4; Jj(I) [4al(01pa 2032) + 2(1-a1 -a2)]/(l-a2zI3 2).

2a. Jj(E) -a 1J1(.E+1) + a2Jl(i+2) for 1--1,-2.

2b. J1(R) al3 1Jl(i-l) + a2D32J1(#-2) + 2(l-al-a2 )P(Qi) for 9-2,3,...,L.

a3. J2 (0) =Jl(l) -P(1) + 1; J2 (l) =Jl(-l) -P(l) + I.

4a. J2 (-1) alJ2 (O) + a2 J 2 (l).

4b. J 2 (1) =ajJl(9-I) + a 2 J 2 (i-1) + 2al + (l+p(l)]a 2

U -[l+p(l)] + [1 + p(I-l)](--a--a2 ) for 9-23,...,L.

5. J 3 (0) J.1 (2) -P(2) + 1; J3 (1) =J 2 (2)+P(1) p(-

J 3 (2) = Jj( -2) - P(2) + 1.

6. J 3 (1) - alJ 2 (I-1) + a 2 Jl(E-2) + [l+p(l)]l + 2a 2

+ (l+p(E-2)](l-aj-a 2 ) - [1+p(2)] for 9-34,5,...,L.

7. J(E) =Jl(I) + al'Jl(E-l) + a22J1 (I9-2) -2a 1LJ 2 (I)

-2a 2 J3(I) + 2ala 2J2 (fi-l) for Q0l..L

S. Cov(Rnz, Rn..) -J(E) -alJ(1+1) -a 2 J(1+2) for I-0,1,...,L.
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