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MODELLING AND RESIDUAL AMALYSIS OF NOMLINEAR AUTOREGRESSIVE TIME SERIES IN

by
A J Lawrance P AW levis
Department of Statistics Department of Operations Research
University of Birmingham Naval Postgraduate School
Birmingham, England Monterey, California, USA
/ ABSTRACT

2 An approach to modelling and residual analysis of nonlinear
autoregressive time series in exponential variables is presented; the
approach is illustrated by <a®> analysis of a long series of wind velocity
data which has first been detrended and then transformed into a stationary
series with an exponential marginal distribution. The stationary series is
modelled with a newly developed type of second order autoregressive process
with random coefficients, called the NEAR(2) model; it has a second order
autoregressive correlation structure but is nonlinear because its
coefficients are random. The exponential distributional assumptions
involved in this model highlight a very broad four parameter structure
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which combines five exponential random variables into a sixth exponential S
randomm variable; other applications of this structure are briefly ‘.:-:
consiaz2red. Dependency in the NEAR(2) process not accounted for by "
standard autocorrelations is explored by developing a residual analysis for By
tice series having autoregressive correlation structure; this involves 4
defining linear uncorrelated residuals which are dependent, and then "
assessing this higher order dependence by standard time series S
computations. -The» application of this residual analysis to the wind Z-:
velocity data illultf:ﬁo- both the utility and difficulty of nonlinear time .:}1
series modelling. *\7 ]
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1. INTRODUCTION

There are several aspects of many observed univariate time series which
are not satisfactorily accounted for in standard time series analysis: they
include nonGaussian marginal distributions, dependence not accounted for by
second order moments (autocorrelations) and directionality in the time
series. Quite often a Gaussian distribution will be inappropriate because
the variable being modelled has a positive and highly skewed distribution,
e.g. wind speeds, the service times in a queue, or the daily flows of a
river. Many particular such distributions can be envisaged and time series
models have been constructed for them. Examples are Gamma distributions
{(Gaver and lewis, 1980; lewis, 1981; McKenzie, 1982, Lawrance, 1982) and
mixed exponential distributions (Gaver and lewis, 1980; Lawrance, 1980a;
Lawrance and Tewis, 1982).

However the simplest, most widely used and most analytically tractable
of these distribution models is the exponential distribution. Like
Gaussian random variables, exponentially distributed random variables enjoy
many special properties; also they can be mildly trvansformed quite easily
into distributions which are either more skewed or less skewed than the
exponential. The Weibull distribution is an example, being just a power
transformation of an exponentially distributed random variable. Thus the
approach here, following earlier work (Gaver and Lewis, 1980; lLawrance and
lewis, 1©80, 1981) is to regard the exponential variables as canonical and
tc develop their use in time series modelling.

It should also be noted that time series of (marginally) uniformly
distributed random variables can be obtained by exponential transformations
of time series in exponentially distributed variables; such uniform

processes could then be used to generate time series with other desired

marginal distributions.
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The work cited previously has concentrated for the most part on first

order, nonGaussian autoregressive wmodels, both of the standard type

(constant coefficient, additive, linear combinations) and a random

coefficient type introduced by the authors. ‘The extension of the models to

- higher order autoregression is clearly necessary to attain flexibility in
modelling correlation and dependency structure of the processes, but these

extensions are in no way as immediate as in the standard linear Gaussian

case. A simple mixing device can be used (Jacobs and Lewis, 1983) but the

range of correlations attained is much narrower than the range attained in
the standard linear, second order autoregressive structure. A broader
J; extension, called the EAR(2) model, was obtained in the exponential case by
Lawrance and Lewis (1980), but its innovation variable has a zero component
which gives runs in the process; this will often be hard to justify.

A major part of the present work consists of obtaining a very broad and
rich extension of the NEAR(1l) model (Lawrance and lewis, 198l1) to a second

order autoregressive process; it includes the EAR(2) model but does not

generally have a zero component, This NEAR(2) model was proposed in

Lawrance (1980b), later reviewed in Raftery (1981), but the necessary Q.f‘
analysis of its innovation structure was not given. Here the innovation :fﬁd
random variable for the NEAR(2) process 1is proved to exist without
unnatural boundaries on its (four) parameter region; explicit construction
is given for the innovation random variable.

The richness of thé four parameter NFAR(2) model, and the fact that an tx"‘
infinite number of cases of the model with identical correlation structure
are available, forces consideration of higher order aspects of dependence.

The analysis of the higher order aspects of exponential time series is at a

]
fairly early stage and is as follows. First it will be shown that the é;i
autocorrelations p(t), ¢ = 0,tl1l,t2,,,, for the NEAR(2) process satisfy the :;§§

N
Yule-Walker equations with constants a; and a; which are functions of the _ :;
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four parameters of the model. This follows immediately from the fact that

Xn is a random ceofficient, linear additive combination of Xn-).Xp-2 and
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the innovation random variable «,. Secondly, it can be shown (Lewis and

&
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Lawrance, 1984) that the residuals X, - a;Xp-1 - aXp-2. which are the usual

har
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- residuals for second orxder constant coeficient, linear additive
autoregressive processes are uncorrelated.

Thus, although the standard analysis of time series stops with
uncorrelated residuals, i.e. a flat spectrum for the residuals, such
regiduals can also be used to good effect to investigate higher order

A:It_t aspects of dependence in the NEAR(2) model. 1In fact, if the autoregression
is not of the standard type (constant coefficient, additive, linear
combinations) the (uncorrelated) residual will be dependent. One aspect of
this is that the squared residuals will have non-zero autocorrelations, and
another is that the crosscorrelations of residuals and squared residuals
will be non-zero; both sets of correlations are theoretically zero when a
'_::: standard second order autoregressive model is appropriate.

This residual analysis will be illustrated by some theoretical
calculations for the NFAR(2) model and by a brief application to a long

":: series of detrended and transformed wind velocity data.
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2. EXPOMENTIAL TIME SERIES MODELS
Our aim in this section is to give in outline the ideas leading to the
. time series model of main concern in this paper, and called NEAR(2),

following the earlier terminology NEAR(1) in Lawrance and Lewis (1981).
. The NEAR(2) model has four parameters, and incorporates and broadens the
earlier two parameter EAR(2) model (Lawrance and Lewis, 1980). The NEAR(2)
model will be exponential in marginal distribution, have second order
i autoregressive Markov dependence, and have autocorrelations satisfying
second order difference equations of the familiar Yule-Walker type. In
t addition it will have dependence beyond autocorrelation, and will not be
reversible in time. It is not linear in the standard sense, having random
coefficient, linear additive autoregressive structure, but neither is it
nonlinear in the standard sense of incorporating powers or products of
lagged variables, Also, it differs from the random coefficient models
::: considered by Nicholls and Quinn (1982) in that the marginal distribution
is specified. The view taken here is that the marginal distribution is the
easiest aspect of data to look at and should be the starting point for
modelling.
o Writing (Xp) for the time series variables, and (E,} for an i.i.d.

exponential innovation sequence of unit wmean, the two parameter NEAR(1l)
model, as previously defined, is given by
[ﬂxn_l w.p. « Ehn WwW.P. P
Xn = + ’ (2.1)
(o] w.p. 1-a bEj w.p. 1-p

wit b=(1l-a)3 and p=~(1-B8)/(1-(1-a)B}. The parameter region is, in general,
O<ax, 881, a=pB¥1. The case PB=1, O<o«l is rather special, and has been called
the TFAR(1) model, and when a=l, 0€8<l, the earliexr EAR(1l) wmodel is

recovered., Except for this FAR(1l) case, the NEAR(1l) model does not allow

2ero innovations (Gaver and Lewls, (980) and so {is more statistically

acceptadble. The zero innovation in the EAR(1l) case implies that X,=AXp_, —
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and thus 8 can be determined exactly from runs down in the sample path of
the process.

In general the i.i.d. innovations in the NEAR(1l) process are formed as
the probabilistic mixture of two exponentials, and are thus easily

. simulated.

The NEAR(2) model is a direct generalization of (2.1) and takes the

form
BIXn-l w.p. al
Xn = {B2Xp-2 W.p. a2 + €p (2.2)
3] w.p. l-aj-ap

with parameter region «120,ax230,x1+a2%€1,0€8;,82€1; (€} is an appropriately

chosen innovation sequence. Many special cases can arise when the above

restrictions include some of the equalities and, for the purposes of a
general development, it is best to regard the inequalities as strict. Given
that (X} is required to have an exponential marginal distribution, the
main question concerns whether there is a valid probability distribution
for €,. The Theorem proved in Section 2.3 will show that this is the case,
and that the distributior, when the inequalities on aj,x; and B),B82 in the

parameter region are strict, takes the form

:- En w.p. 1-p2-P3

::': en = szn w.p. pz I} (2.3)
b3Ep w.p. P3

a probabilistic mixture of three exponentials with parameters given in

g Section 2.3. To establish this result a fairly detailed analysis of a

derived moment generating function is required. This is necessary since a

direct momant generating function solution of (2.2) for ¢, does not

- estavlish -hat e, has a proper distribution; all that is shown is that the

& solution is a possibly-improper mixture of three exponentials.
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3. VALIDITY OF THE NEAR(2) MODEL
n In this section we prove the following
THEOREM. Let (E,) be an i.i.d. sequence of unit mean exponential random

variables. Then if the four parameters ay,x3,83.B; satisfy «31>0,a2>0,

. ay+az¢l,0¢<B),B2<1, the relationship
g B1Xp-1 W.p. o
- Xn = {B2Xpn-2 W.p. oz + €p, n=0,%1,%t2,..., (3.1)
f 0 w.p. l-oy-ap
where I
En W.P. 1-P2-P3 _
€n = {b2Ep, Ww.P. P2 . (3.2) "3
b3E, Ww.p. p3

defines a stationary sequence of (marginally) exponentially distributed

random variables with mean one. Here

O B AR
X ".“’ .; 'J.J-.'.,"

P2 = {(a1B81+ax3082)b2 - (xy+a3)B8182)/{(b2-b3)(1-b2)} , (3.3) .
P3 = {(ay1+0a2)B1B82 - (x1B1+x282)b3}/((b2-b3)(1-b3)} ., (3.4) ____
0 < by = (8-(82-4r)t/2)/2 < by = (8+(82-4r)*/2)/2 < 1, (3.5) :
vhere
8 = (1l-01)8 + (1-a2)B2 , (3.6) -
and iy

r = (l-ay~a2)B182. (3.7) -~
PROOF. For the NEAR(2) model specified by (3.1)-(3.7), let ox(t) and o (t) :

be the moment generating functions of the (X,} and {¢,) sequences; then if

stationarity of the (X,) series is assumed, ...1

Ox(t) = de(t){mox(B1t) + azox(B2t) + (1-ay1-az)). (3.8) 5?53:
Assuning an exponential marginal distribution of unit mean for (X}, then 1
the independent distribution of (e,} has moment generating function, - :

pot 3ibly not proper, given by

(1+8)t )(1+B82t)

£) m czoimzszmommmes - . 3.9 I:

Pelt) = T13t)(17a1"a7)P1P2t2 + ((1-01)B1 + (1-az)Bz1t + 1] (3.9) ¥

It is convenient to establish right away that the quadratic term in the 1

S e

denominator of (3.9) has real distinct and positive roots, by and by, this e
~LN

]

eliminates any subsequent need to invert such a term as a whole. The

roquired condition for real distinct roots is that i."c'.’
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((1-ap)B) + (1-a2)B82]% - 4(l-ay-a2)B18;
be positive: this is so from its equality to the expression
((1-a3)B; - (1-a2)B2]% + 4x302B182

which is clearly positive; the positivity of the roots b; and b, is obvious N
from (3.9) since their product and sum given in (3.11) and (3.12) below are i
both positve.

With b; and b, positive, a partial fraction expansion of (3.2) can be
written in the suggestive form

be(t) = (1-P2-P3) 735 *+ P2 1$55E + p3 Tibst (3.10)

Comparisons between (3.9) and (3.10) then show that bj,b3 and pz,p3; may be

obtained in terms of B;,82 and «3,x3 by solving the equations

bz + b3 = (1~-a1)B + (1-a2)B2, (3.11) ‘

boby = (1~a3-02)B182. (3.12) S

(1-b)pz + (1-b3)P3 = 18] + &2B82, (3.13) ?
b3(1-by)py + ba(1-b3)p3 = (a&y+02)B182 . (3.14) :

A difficulty with this apparently straightforward solution is that the
inversion of (3.9) or (3.10) could lead to a function which is not a
probability density, or it could yield a probability density but not one -
which is a probabilistic mixture of three exponentials. 1In fact, neither of

these possibilities is the case, as will be shown by establishing that pj

and p3 are positive and subject to the condition py+p3<l, and hence can -
represent probabilities.

Fxplicit expressions for pp, and p3 can be obtained from (3.13) and
(3.1%) and are given at (3.3) and (3.4). From now on it will be assumed, in N

accordance with the theorem, that by is the larger of b; and b3, these being

obtained by solving the quadratic pair (3.11) and (3.12). To establish that
pP2+pP3¢<1l, we have, by adding (3.3) and (3.4), -

(x)B1+a2B82) —_(91+32)8382

p2tp3 = ==~ (1-by){1-b3) (3.15)

Multiplying out (1-bj)(1-b3) in the denominator and using (3.11) and (3.12)
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gives, after some rearrangement,

- N € 5 - 9.1 € -3 T
P2tP3 T B N(1-B2) + a3B1(1-B2) + azBa(1-B1) (3.16)

The algebhraic expression here is clearly positive and less than one, from
which it follows that pj+py«<l.

The positivity of p, and p3 will now be proved by showing that the
numerators and denominators of (3.3) and (3.4) avre positive. For the
denominators, this requires that O0O<by,b3¢<l which will be verified by
showing that O<byb3¢l and 0<(1-bz)(1-b3)<l. The first of these latter two
inequalities is obvious from (3.12); for the second consider the
expressions

(1-b3)(1-b3) = 1 - (by+b3z) + bybg
= (x38141-0] Y o2B2+1-B2) - (x18 )X a282) (3.17)
after using (3.11) and (3.12), and then
1 - (1-b3)(1-b3) = by + by - bybj
= (1-a1)B1(1-B2) + (1-x2)B2(1-By) + P82 . (3.18)
The right hand sides of both (3.17) and (3.18) are obviously positive. This
concludes the proof that O<bz,b3¢<l and hence that the denominators of p, and
Pp3 are positive.

For the numerators of p; and p3 to be positive (3.3) and (3.4) indicate

that b = (o1+a3)B182/(a181+x82 ) must satisfy the inequalities
b3 < b < by. (3.19)

At this last stage, explicit expressions for bz and b3 must be used, and

from (3.11) and (3.12) are given, after writing

= (1-03)81 + (1-032)8; and r = (1l-x1-x3)B1P2 .
by (3.20)
b, = {8 + (82-4r)*/2)/2 and b3 = (8 - (82-4r)*/2)s2
Then (3.19) is equivalent to
- (8%-4r)Y/2 ( 8 - 2b < (82-4x)%/2

or 82-4y > (8-2b)2

or

4 v
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After sowme algebraic rearrangement the left hand side of (3.21) becomes . ‘]
3 9
a1%28) B2( B1-B2 )2/ ( a1 B1+a282)? (3.22) K
which is again clearly strictly positive, as was to be proved.
This concludes the proof that p; and p3 are both positive and subject to -r,
p2+p3¢l; hence 1-px-p3, P2, and p3 can all be regarded as probabilities. ;:""
. ) Thus € has a proper probability distribution which can be generated as the
e
:i—_'f‘, (1-p2-P3.P2.P3) Wixture of three exponentials of mweans 1, bz and b3
. respectively; further, both by and by are less than unity and by # bj.

In special cases there are valid and simpler results for the

distribution of €,. For instance, when B;=B2=1, €n has a simple exponential

distribution of mean (1l-a;-az). When B)=B2#1 the innovation has a mixed

exponential distribution of the NEAR(1) form given in (2.1) with o=aj+axp.

When B2=1, pa+p3=l and €, is the mixture of two exponentials with means by

and by; this case is used in some of the calculations of Section 9.
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4, OTHER USES OF THE NEAR(2) EXPOMENTIAL CONSTRUCTION

The NEAR(2) process was established by showing that (3.2) was a valid
innovation distribution for the relation (3.1) to give a process with
marginal exponential distributions. The distrxibutional assumptions implied

by this result can also be taken out of the time series context in which

they were derived and viewed generally as a way to combine a pair of
(possibly dependent) unit exponential variables (Lj;.Lz) with an independent
triple of possibly dependent, unit exponential variables (M;,M3,M3;) so as
to vyield a further unit exponential variable. Specifically, with ;
(a1,a2,81,82) and (bz.b3.P2.P3) as previously related by (3.3) - (3.7), the ..'.'-:“

Theorem has established that

B1L1 w.p. o M}y WwW.p. 1-p2-Pj3
BaLz WwW.p. &2 + {baMy; w.p. P (4.1)
(o] w.p. l-aj-ap b3M3 w.p. P3

has a unit exponential distribution.
First of all, the idea of "switching” will be illustrated; in the
NEAR(2) context, this suggests taking (M;,Mz,M3) as (Xp-3.Xp-2.Xpn-3) and

(Ly,L2) as (E,,E,). Then (4.1) gives the time series model

byXn—2 W.P. P2 B2Ep W.p. ap . (4.2) -f?ﬁE
b3Xp-3 W.P. P3 0 w.p. l-aj-az

Xp-1 W.p. 1-p2-Pj3 81En Ww.p. )
xh = +
This is a third order autoregression, actually a case of the EAR(3) model
cited in Lawrance and Lewis (1980); note, however, that this third order ®

autoregressive exponential process allows zero innovations. Another,

better behaved higher order exponential model - in fact a p—th order model -

is ohtained by the following application of the result (4.1) in its original ..* e
form (3.1). let the indices 1,2,...,p be partitioned into two non-empty

sets I; and I, of size t; and t; respectively. Then in the model

B1'Xp-1 WwW.P. o !-_—'

Xn = oo iroo + Ep n=0,%1,%2,..., (4.3) 1'_:::::-:
Pp’ "n-p w.p. ap’ N

w.p. 1"01 .o .-dp' ...:\‘.:_
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let B3 =By, iely; By =Bz, ie€ly; iEIlai.-al and iEIza‘t =a3. Then if

ay+azcl, 0<B3,B2¢1, the distribution of Ep is given by the Theorem. Thus we
have a pth order exponential autoregressive process with four parameters.
However, while this may seem satisfying it is not clear that four parameters
would be sufficient to characterize the sample path behaviour of an

exponential process with very high order dependence.

Another use of (4.1) is to allow L; and L; to both be X,_.;, and so
obtain a four parameter first order model of the form
B1Xn-1 WwW.p. oy En w.p. 1-p2-P3
Xn = {B2Xp-1 WwW.pP. &3 + {b2E, W.pP. P2 . (4.4)
o w.p. l-ay-ap b3E, W.P. P3

Pour paramelers may seem excessive for a first order autoregressive process
but simulations show a wide range of behaviour in sample paths with
different choices of parameters. Equation (4.4) in turn suggests a first
order model allowing negative dependence. This is obtained by replacing
the variable X,.; in (4.4) which is multiplied by B, by the antithetic
transformation of X,.3, which is log(l-exp(-Xnh.1)}. Two parameter versions

of these two first order models could be obtained, for example, by taking

a;=az, Py=Ry.

A third type of use of the construction is to give mixed autoregressive

-

moving average models; for this, (L;,.Lp) i8 (Xp-3.Xp-2) as in (3.1), but

{M1,M2,M3) are chosen to be (Ep,En+1,En+i) for a second order moving
average component, or as (Ep.Epn+1.En+2) for a third order moving average
component; these forward running indices of the innovation sequence are
necegssary for the required independence in the construction.

snother use of this construction is to obtain an explicit mtired first
order autoregressive moving average exponential process, which could be
contrasted with the implicit model given in Jacobs and Lewis (1977). Thus
in the basic structure (4.1) replace L; by Xp-1, L2 by En-1 and M; ,Mz,M
each by E,; although Xp.j; and E,_; are dependent, they are independent of E,

as required by the construction.
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Oout of the time series context, the construction suggests ways to
obtain multivariate exponential Adistributions, rather as in Lawrance and
Lewis (1983).
Purther possibilities are numerous, but it is not the intention here to
exhaustively list them, or to derive the details of those cited. Analysis .

in the following sections will deal with the basic NEAR(2) model.
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S. AUTOCORRELATION STRUCTURE OF THE NEAR(2) PROCESS

In this section we show that the autocorrelations o t)=corr(Xp,Xn-g).
1=0,21,22,... of the NEAR(2) process satisfy AR(2) Yule-Walker type
difference equations; thus the second order dependency of the process is
indistinguishable from that of the standard autoregressive model, AR(2).
To show this, it is convenient to write the equation (3.1) as a random
coetficient additive combination of X,_j;, Xp-2 and E,. Thus we have the

NEAR(2) process in its random coefficient, linear, additive form as

Xn = B1Kn'Xn-1 + B2Kp"Xn-2 + LpEq n=0,%1,%2,..., (5.1)
where

[l w.p. 1-p2-P3

Lp = {bz w.p. p2 ' n=0,%1,%2,..., (5.2)
b3 w.p. p3
((1,0) w.p. a1

(Kn .Kp")} = {(0,1) w.p. a3 ; n=0,t1,%2, ... (5.3)

[(0,0) w.p. 1l-x3-ap

the i.i.d. sequences (L} and (K, .K,"} are assumed to be mutually
independent anq independent of the independent exponential sequence (Ep});
the E,'s are assumed to have unit mean, as then do the X,°'s by
construction.
Now E(Kn )=a; and E(Kp )=a2, 80 that E(Lp)=1-a38;-a282. Then
multiplying X, in (5.1) by X,p-g¢ we have, for £ 3 1,
E(XnXn-g) = 01B1E(Xn-1Xn-g) + 0282E(Xn-2Xn-g) + E(Lp)E(En)E(Xn-g)

= a1B1E(Xn-1Xn-g) + 92B82E(Xp-2Xn-g) + 1-a18)-x282,
so that

E(XnXp-2)-1 = 181 (E(Xp-1Xn-g)-1} + &282 (E(Xp-2Xn-g)-1)
and thus
p(l) = a3 + azp(1l), p(2) = a1p(1) + az, (5.4)
o p(R) = ajp(-1) + azp(2-2), 0=3,4,...,

where aj=c}18] and az=axy82. The equations (5.4) are the same as Yule-Walker
equations for the standard AR(2) process. The conditions for a solution to
exist, namely a)+ajz<l, aj-az»>-1l, aj»>-1 are cClearly satisfied when the

conditions on @;,a%3,8),82 given in the Theorem of Section 3 hold.
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Note from (5.4) the explicit results,

p(l) = ay/(1l-az) and p(2) = a)p(1l) + az. (5.5)
and hence, since Oc¢aj,az<l, the restriction of the autocorrelations p(t) to
positive values. The possible region of (p(l),p(2)) values is bounded
below by p(2)=(p(l))2 and otherwise bounded by p(1)»0 and p(2)«<l.
Broadening of the model to negative dependency may be achieved using
antithetic ideas, or the bivariate scheme given in Gaver and Lewis (1980),
but is not pursued here.

Note too that the parameters in (5.4) enter only as products aj=aiB8; and
az=azB2. Thus for small enough &3 and a3, values of B and B, greater than
unity could be allowed, and (5.4) would still have a stable solution.
However, the sequence ¢, in the defining equation (3.2) may not exist; it
has not been determined whether (pB;%1,82€1) is a necessary condition for
this existence.

specifying allowable values of p(l) and p(2), as may be done in an
initial second order analysis of data, 1leaves two parameters to be
specified in the model, say a; and a3, which could produce very different
sample path behaviour in the time series. It is important to notice that
this specification of p(1l) and p(2) further constrains the range of
possible a; and as; values. Recalling that p(1l) and p(2) fix a;=a18; and aj

= aB2, as well as that «oj;+ap€l, it is easily shown that we must have
a; < &1 and ap; < &3 (5.6)
which implies that aj+as<€a;+uz€l. Thus a3 and ap are forced to lie in a

triangular subregion of the triangular (aj.,a3) region which is bounded
beluw by az, bounded on the left by a;, and bounded above by the line

aj+az=1. These results are useful, and will be employed in an exploratory

analysis of the wind velocity data in Section 9.
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6. AN AMALYSIS OF A LONG SERIES OF WIND VELOCITY DATA

6.1 Discussion of the Data

Lewis and Hugus (1982) have given an analysis of a set of 43,800
3-hourly wind velocity readings taken by ship PAPA in the Gulf of Alaska
over a 15 year period. After suitable detrending to remove 1 year, 6 month,
12 hour and 6 hour cyclic trend components, a first order autoregressive
Gamma model (Lewis, 1981) was fitted to the data, the use of this model
being suggested by the shape of the (marginal) histogram of the data (Figure
6.1), the autocorrelation function (Table 6.1) and the shape of the log of
the normalized periodogram of the data (Figure 6.2). After detrending
there is still a slight 6-hour effect (p=21,900) because this cycle varies
in intensity over the 15 years; in what follows this will be ignored and the
data will be treated as stationary.

It 18 not the object here to give the above analysis in detail but
rather to give an alternative analysis of the data using NEAR models; this

:_' involves a preliminary transformation of the data to an exponential

marginal distribution. This is suggested firstly by the fact that a Weibull

distribution is commonly used by meteorologists for wind velocity data and

-.‘ -
D

K
. 'J

secondly by the fact that Weibull and Gamma distributions fit the ship PAPA

wind velocity data equally well (Lewis and Hugus, 1982); a power

transformation of the Weibull then leads immediately to the desired - 4
exponential.

This transformation is preferred to the more usual transformation to
norrility which, as we shall argue, is not appropriate in this case. The -

data is in fact finely diacretized, with zero values being inlcuded. After

S, R
P DRI
PRI IO WY Vot 5

a power transform to normality the zero values show up as a group of values

still at zero, whereas the non-zero values are shifted away from zero to --

. ., et
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form the normal part of the data distribution. This zero value problem is e

not critical with the power transform to exponentiality since this _._:j.
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distribution gives rise to a high proportion of zero values.

It is possible, but extremely tedious, to smooth out the discretization
I in the data. Even then, however, one can anticipate that after a
transformation to marginal normality the time series will be nonlinear;
there is no guarantee that such a transformation will produce linearity.
. - Thus we have preferred to transform for marginal exponentiality and attempt

to incorporate nonlinearity into the modelling.

The histogram of the transformed data X, =X,2°185, is ghown in Figure

: 6.3, where the power transformation to exponentiality has been determined
iteratively so that the coefficient of variation of the transformed data is
unity. This transformation does affect the correlation structure of the

lL data, as shown in Table 6.1; the table gives comparisons of data and model

autocorrelations both before and after the transformation.
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Table 6.1

Pit of wind Speed Data Autocorrelations

Detrended Series Transformed Detrended Series
{xn) (xnl +188 )
py"t Est.p(8) lal lal p1~!  Est.p(2) AR(2) lal
.8194 P, "=.8194 .0000 .0000 .7902 Py =,7902 .7902 .0000
.6714  P,"=.6898 .0184 .0346 .6243 P, =,6589 .6589 .0000
.5502 P3"=,5635 .0133 .0391 .4933 P; =,5324 .5454 .0130
.4508 Py =.4698 .0190 .0541 .3898 Py =.4439 .4519 0080
.3694 P4"=.3764 .0070 .0431 .3080 Pg'=.3511 .3744 .0233

Table 6.1 The second column shouws the estimated autocorrelations for the
detrended series; these are close in value to the pouwers of P;"=0.8194 tn
the first column, t(ndicating a good fit (Column 3) to a model uwith AR(1)
autocorrelation structure. After transformation, this AR(1) fit s no
longer valid (columns 4 and 5) since the absolute values of the differences
(Column 4) are now much larger. A much better and adequate fit is odtainea

wit" AR(2) autocorrelation structure, as indlcated by columns 6, 7 and 8.
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Column 2 in Table 6.1 gives the estimated autocorralations, pg" of
the detrended data; the standard error of each of these autocorrelation
estimates separately is given approximately by 1/(N)1/2=1/(43,800)1/2
=0.005. The first column of Table 1 gives the fitted autocorrelations for a
model with AR(1)-type autocorrelations, just p1"! = (0.8194)f, for lags
£=1,2,...,5. The differences (Coclumn 3) are all very small in practical
importance, although some are perhaps statistically significant in view of
the large sample size.

Column 6 in Table 6.1 gives the estimated autocorrelations, pjp~, for
the transformed data; the transformation consistently lowers the
autocorrelations. However, columns 5 and 7, which give Lhe Lilted AR(1l) and
AR(2) correlation values, respectively, show that a model with the AR(2)
correlation structure is definitely preferable. The fit is borne out by a
periodogram plot (not given), and the analysis will be continued on this
basis.

Thus, a NEAR(2) model is a candidate for representing the transformed
data, and if p(1l) and p(2) are fixed at the estimated values of p;~ = 0,7902
and pp” = 0.6589, then the corresponding aj=a18; and az=ayBy from (5.4) are,
respectively, 0.7175 and 0.0920. There are still two degrees of freedom
left in fitting the model, represented by choice of parameters o; and o
greater than or equal to 0.7175 and 0.0920 respectively, with «xj+ap€l.

Pigure 6.4 shows the cumulative periodogram of the usual AR(2) model
linear residuals, Rp=Xp'-a)X;-3'-aXp-2', of the transformed data. This is
almost straight (ignoring the slight effect at period 6 hours). At this
point it might be thought that the usual second order autoregressive model
is adeqguate. We shall however now develop an extended residual analysis for
higher order dependence which explores further fitting of the NEAR(2) model

to the transformed data.
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Figure 6.4. Cumulative periodogram of Llinear residuals Rp, where
Rp=Xp'-0.7175Xn.1"'-0.0920Xn.2°', for the detrended and transformed wind
velocity data. Since the cumulative periodogram is almost straight, the
indication ts that the restduals are uncorrelated. Note that there 1s still
the suggestion of a six hour effect, indicated by the final upward turn of
the graph.
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7. A RESIDUAL ANALYSIS POR THE NEAR(2) MODEL
7.1 General Results -

It has already been remarked that the autocorrelations p(t) are ;:A;

insufficient to describe the dependency structure of NFAR(2) models. A

natural next step might be to examine higher order joint moments and their

associated spectra. The functions so obtained, such as the bispectrum,
(Tukey (1959)), are often found to be difficult to calculate and hard to
interpret. Rather than follow this course, a residual analysis for
nonlinear autoregressive models is proposed. The thrust of this analysis | I
is that the standard process of fitting and validating a linear

autoregressive model should be carried out beyond the customary final stage

IR TN L

at which uncorrelated residuals are obtained (as in the previous section).

The usual presumption is that the residuals are not only uncorrelated but

also independent. This need not be the case, as will be exemplified for the '
wind velocity series. Also, uncorrelated but dependent residuals are C
obtained for NEAR(2) processes. Thus residuals should be analysed for
further dependency. Any found is then evidence that a standard linear,
constant coefficient second order autoregressive model is deficient. With r-:
normally distributed time series data this might suggest that Gaussian

nonlinear modelling should be explored. With data marginally distributed

in some other identifiable manner, the exploration of a selected type of !,

nonlinear model with specified marginal distribution and autocorrelation

function is suggested; it should then have some higher order dependency
propaerties of its autoregressive residuals in agreement with those of the '.
data. This is the course exemplified here. The proposed residual analysis

is further explored in Lawrance and Lewis (1984a).
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In Section 9 higher order dependency properties of the uncorrelated -
residuals from the wind velocity data are compared with those derived in f::;:.-:'f
e

Section 8 for the NEAR(2) model. This stage can be informative from both SO
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exploratory and estimation considerations, and can be thought of as part of
the model-refinement process common to much statistical methodology.

It might be thought that the class of NEAR(2) models could be subjected
to a residual analysis in the standard manner or using more general forms of
residuals that have been studied by Cox and Snell (1968). However,
considering the NEAR(2) model in its random coefficient form (S.1), the
independent innovation is now trivariate, consisting of (Kp, K,', LnEpn).
No way of estimating this trivariate distribution based on realized (X}
has been found, even assuming knowledge or estimation of the model
parameters. The linear autoregressive residuals are never-the-less
available, and given as in the previous section by

Rp=Xp-a1Xp-1-aXp-2, a1=a1P;, az=azfy, n = 0,%1,%2,... (7.1)
We now show that these residuals are uncorrelated for the NEAR(2) process.
7.2 The Residual Theorem

Theorem: The residuals (Rp,Rp+g), given by (7.l1), are uncorrelated for

f=21,22,.., .
Proof: The autocovariances of the residuals (7.1) may, for (31, Le
o written,
,E__ Cov(Rp, Rp4pg) = Cov(Xp, Rp+p)-21Cov(Xn-1, Rp+p)-a2Cov(Xp-2. Rn+g) (7.2)
= Cov(Xn, Rp+g)-a1Cov(Xp, Rp4p+1)-a2Cov(Xn, Rn+p+2).
§‘ since the (X;)} process and consequently the (Rp} Process is stationary. The ~ 4
= :
. covariances on the right hand side are all of the same type and given by
i Cov(Xn, Rust) = Cov(Xn, (Xn+t - a1Xn+a-1 - agXn+e-2)) 2
el = (Var(X)}(o(R) - ayp(R-1) - agp(t-2)), f=1,2,... (7.3) :

Tt

. An identical result also holds for 2's less than zero. Hence by the Yule-

- L]
s Y
PPV
‘aca’ela

e s

* ' Wwalker equations (5.4), the expression in brackets is zero, and so }_.;
corr(Rn, Rp+p) = O, =t1,t2,..., (7.4) =]
: as was to be proved. That these residuals are uncorrelated is an immediate "
. NN
_:Z consequence of the autocorrelations following Yule-Walker equations; this I:_?:
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emphasizes that residuals of the form (7.1) will be uncorrelated for any
model whose autocorrelations satisfy Yule-Walker equations. Equivalently,
as was the case for the transformed detrended wind velocity data (Figure
6.4), the cumulative periodogram of the residuals will plot linearly.
Dependency analysis of the uncorrelated residuals (R}, n=1,2,... could
begin with scatter plots of the low-lag adjacent values; any patterns or
concentrations are suggestive of dependency. Several further methods for
the detection of dependency could be proposed, but the only one pursued here
involves the squares of residuals; it is then applied in Section 9 to a

continued analysis of the wind velocity data.
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8. CROSSCOVARIANCE ANALYSIS OF (R,) AND (Rh%) FPOR THE NEAR(2) MODEL

After the satisfactory fit to data of an ordinary linear model, the
residuals, Ry, should be independent; this is conveniently investigated by
seeking straight cumulative periodograms for the residuals and for the
squared residuals; for the wind velocity data, PFigure 8.1 shows that the
squared residuals have an obviously curved cumulative periodogram. Thus a
linear AR(2) model for this data is definitely not adequate. As a method
for probing model validity, the examination of squared residuals has
previously been employed by MclLeod and Li (1983), following Granger and
Andersen (1978); these latter authors investigated bilinear modelling of
uncorrelated but dependent residuals from ARMA models, with a view to

improved forecasting.

0.4 06 o8 10

Cumperiodogram of residuals
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p-(p/N\ equa's cycles per 3 hours)

Figure 8.1. Cumulated periodogram values for the squared restiduals, Rp?,
of the transformed detrended wind veloclity data. The underlying spectrum
is clearly not flat; the Kolmogorov-Smirnov test statistic {s 6.14 wvhich is
very high compared to the upper .99 gquantile of the statistic which ts

1.618.
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wWhilst autocorrelations of the squared residuals can be considered, for
the NEAR(2) model this involves computation of 36 terms, mostly distinct
types of 4th order moments. A more tractable suggestion which involves only
third ovder moments, and which is thus the next step up after ordinary
autocorrelations, is to use the crosscovartances of the (Rp} and (Rp?}
sequences; apart from lag O, zero values would be found for linear models.
We use crosscovariances rather than crosscorrelations of (R,} and (Rp?}
because crosscorrelations need vVar(Rp?) which involves 4th order moments of
the X, process.

The starting point for the calculation of Cov(Rnp%, Rp-g) is to note from
the definition of R, at (7.1) that
E(Rp2Rp-g) = E(Rp®Xn-g)-a)E(Rp3Xn-g-1)-32E(Rp?Xp-g-2), 8=0,%1,%2,... (8.1)
whence there is the structural form,
CoV(Rp?, Rn-g) = Cov(Rp?, Xu-g)-a)Cov(Rp?*, Xp-g-1)-a2Cov(Rp?, Xn-g-2).(8.2)
Calculation of the covariance terms in (8.2) requires the expanding out of
an, taking expectations and expression in terms of covariances. Thus

Rp*Xp-g = Xp®Xn-g + a1%Xn-12Xn-¢ + 32*Xn-2%%n-1

— 2a1XpXp-1Xn-g - 2a2XnXn-2Xn-¢
+ 2ajaXn-1Xn-2Xn-1. 1=0,%1,%2,... (8.3)

The conversion to covariance yields
Cov(RpZ, Xp-g) = J1(2) + a12J3(2-1) + az2Jy(0-2)

- 2a1J2( ) - 2axJ3(R) + 2a3aJ2(2-1), =0,%t1,%2,... (8.4)
where

J1( ) = Cov(Xpn2, Xp-g); J2(0) = Cov(XpXpn-1. Xn-¢);
J3(2) = Cov(XnXn-2. Xn-2)-. (8.5)
We thus see the types of third order joint moments for the (X} process
which are involved in the Cov(Rp?, Ry-p) calculation; these are general
results.

Por the NEAR(2) model each of these joint moments has to be obtained

using a difference equation. Considering forx illustration J)(8) for
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positive lags, square each side of the NEAR(2) defining equation (2.2) and
multiply by Xp-g- After converting to the required covariances, the
recursion is found to be

J1(0) = a18101(8-1) + a38271(2-2) + 2(1-a3-az)o(R), t=1,2,... (8.6)
This equation is given for illustration: there are similar equations for
Ja(2) and J3(1), and various special cases. The cowplete algorithm for
computing Cov(Rp2,Rp-p) for #21 for the NEAR(2) process is given in the
Appendix.

The other half of the crosscovariance function of (Rp} and (Rp?} is
Cov(Rp2.Rp-g) for #€1, or equivalently Cov(Rn%, Rp4p) for 131; we now show
that this is zero. The key result in establishing this fact is obtained by
first defining Gp-g as either Xn_g%, Xp.gXp-g-1. O Xp_gXp-g-2., for 231 and
showing that Cov(Rp, Gp-g) for 231 are all zero.

First note that

Cov(Rp, Gn-g) = E(((Xn-21Xn-1-32%n-2)-E(Rn)}(Gn-¢~E(Gn-1)}]
= E[(Xp-a1Xn-1-22Xn~2} (Gn-1-E(Gn-¢)}]. (8.7)
Now substitute for X, from (5.1) to obtain

Cov(Rp, Gp-g) = E{{(B1Kn -a1)Xn-1 + (B2Kn -22)Xn-2 + LnEn}{Gn-¢-E(Gn-1}1.
(8.8)
Since (Kp'.Kp") are independent of (Xp.1,Xn-2) and LuEp is independent of

Gp-g. the right hand side of (8.8) may be written

Cov(Rp, Gp-g) = E(B1Kn'-21)CoV(Xn-1, Gn-g)+ E(B2Kp -a2)Cov(Xn-2. Gn-t)-
(8.9)
By the definition of (Kp',Kp") at (5.3), E(B1Kn -a1) and E(B2Kn -az) are

both zero, and hence
Cov(Rp, Gpn-g) = O, f=1,2,... (8.10)
Finally, we note that

Cov(Rp2, Rp4g) = Cov(Rp, Rp—p?)
= CoV(Rp, Xn-g2) + 812COV(Rp, Xn-g-12) + az2Cov(Rn, Xp-p-1*)
- 281Cov(Rn: Xn-gXn-g-1) ~ 282Cov(Rn, Xn-gXn-e-2)

+ 22382CoV( Ry, Xp-p-1Xn-2-2): t=1,2,... (9.11)
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By (8.10) all the covariances in (8.11) are zero, and the desired result is
established.

In a similar way it may be seen that Cov(R,Y,Rn4p) for 231 and all
positive integers r are also zero; this does not, however, imply that R, and
Rps4g are independent. All joint moments would have to be zero but in

) particular this is not the case for Cov(Rn2, Rn-gp), 121, as results in the
Appendix indicate.

It should perhaps also be noted explicitly that in using the residuals
{Ry) that the coefficients a; and ap; will have been estimated; this may in
fact induce some correlation between R,? and Rpig., but with long series of

data the effect should be very small.
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9. FURTHER ANALYSIS AND MODELLING OF THE WIND VELOCITY DATA

Dependence in the uncorrelated second order residuals of the
transformed detrended wind velocity data has already been demonstrated by
Pigure 8.1. Further evidence of this is provided by the non-gzero
crosscovariances of (Rp, Rp4p?) given in Pigure 9.1. The corresponding
theoretical crosscovariances for the NEAR(2) model will next be presented,

having been computed using the algorithm described in Section 8 and the

Appendix.
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At this point, it will be recalled, the NEAR(2) model has not been ;ﬁ
; fitted in terms of all 4 parameters; the residuals involve the wmodel
| parameters only through aj; = «;8) and a; = a8 and «3,0;.%32,82 have not
been separately estimated. In th: prosent rather exploratory analysis the

estimation problem will be circumvented; the crosscovariances of (Rp.Rnsp?)

Arasa g g 4 4 4

will be given for four representative sets of parameter values in the =
reduced allowable region, as constrained by (aj3»aj,cz>az,a3+azcl), .
according to (5.6). For the transformed detrended wind velocity data, T
a;=0.7175 and az=0.0920, and the four chosen sets of aj,a2,8;,B2 together

with their associated (p2.p3) and (by,b3) sets are given in Table 9.1.

Table 9.1
Parameters Sets for NEAR(2) Calculations : :
o o2 sy 82 P2 P3 b, by ;
A .72 .0920 . 9965 1.0000 .,0038 .9962 .9996 .1874 ]
B .76 .0920 . 9441 1.0000 .0585 .9415 .9940 .1406 :
C .77 .1400 .9318 0.6571 .0542 .8610 .7008 .0786 I;ZJI:
D .88 . 0920 .8153 1.0000 .1744 .8256 .9826 .0232 :::.:-
In Pigure 9.2 the crosscovariances of (R,, Rpsg?) for each of these four =~
cases are presented; the NEAR(2) process has been taken with mean of 1.31 so i':'
as to correspond to the transformed detrended wind velocity data. First it N
will be recalled that for the wusual 1linear AR(2) process, these - ;
crosscovariances would all be zero, apart from that one at lag zero which is 4
giving a non-standard measure of skewness of the residuals; Case D is
nearest to this situation, although the model cannot reduce to the linear —.j

AR(2) model; it can reduce to the linear AR(1l) model and case D is also

nearest to this situation.

Case C is nearest in qualitative behaviour to the crosscovariances of
the wind velocity data given in Figure 9.1, but as we have seen, cannot

exhibit the negative crosscovariance shown at lag minus one. This is an

b D
T T B T i L Rt A L N St R e T R I
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important deficiency of modelling by the NEAR(2) process although matters
would have been considerably worse for data with a double sided Cov(nnl,
ll Rn+p) function. The other cases (A and B) 1llustrate some of the diversity
.;: of behaviour producible by the NEAR(2) model; more investigation of these

apsects would be valuable. Further analysis would require formal

estimation of all four parameters, or perhaps formal estimation of (a;,a3)
after the fixing of aj; and a; at their values determined by estimates of

o(1) and p(2).
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b ag=0.0920. The sets of purameter values (aj,a3,P1,82.P2.P3.b2,b3) are 3
. described in Table 9.1; case C is closest to that of the wind veloctity data -
e gilven in Figure 9.1. Case D ls nearest to the linear EAR(1) model. The .
?}: other two cases Lllustrate more of the diversity of behaviour which can be s
A shouwn by this NEAR(2) crosscovariance function. The lag zero covartiance is :i:
4 -'.:f a measure (not the usual one) of skewness of the residuals. ]
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10. CONCLUOSIONS AND PURTHER AMALYSIS
The very broad four parameter NEAR(2) time series model having
l exponential marginals and the correlation structure of a linear AR(2) model
has been established. A preliminary fit of the NEAR(2) model has been made
" to a very long series of wind speed data, the data having been detrended and
I : transformed so as to have exponentially distributed marginals. A residual
analysis has been based on the crosscovariances betwren the residuals and

squared residuals, and its utility in probing higher order dependence in

the (X,} process has been demonstrated; in particular it has highlighted a
strong difference 1in higher order crosscovariance of the data and the
NEAR(2) model at lag minus one.
':«, A possible extension of the NFEAR(2) model which retains the marginal
: exponential distribution of the data is obtained by noting that the theorem
in Section 3 does not require independence of the random coefficient
i sequences (K,'} and (Kp"}. By allowing these to be, say, moving average
sequences, the higher order structure of the (X,} process might be extended

to accomodate the negative-valued spike in Figure 9.1 at lag minus one.

. This approach has been taken by McKenzie (1981) but it is not known how
tractable the resulting structure of the NEAR(2) model would be.

Finally, we remark that a likelihood conditional on the first two
¥ values, X; and X;, can be written down for the process. However the - 4
t:: likelihood function is difficult to use because it becomes infinite at j:'.:
parameter values on the border of the parameter space corresponding to an
EAR(”) model. These considerations suggest that a reduced three parameter —i
- model is needed which avoids these singularities but still allows for a "‘::i
higher order dependency in the model. Such a likelihood analysis would also
need wodel validation which could be based on the higher order residual =<1
- analysis presented here. S

An extension of the residual analysis given here based on reversed
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_': residuals is possible (Lawrance and Lewis, 19684b); however, these were not 1
j:-'. used because residual analysis has already turned up discrepancies between i
! the data and the model which need further explanation. .‘4
& Appendix 3
. . Algorithm for t the tive half of the (Residual, Residual '-T
& Squared) Crosscovariance Punction for the NEAR(2) Model 2
Input ay,a2,81.82.L :j'l
= 0. aj=x101; az=02082; '..i
':f_:_'f. p(0) = 1; p(1) = ay/(1-az); p(2) = a3p(1) + a
p(2) = ayp(e-1) + azp(8-2), for =2,3,...,L. :
b.. 1. J1(0) = 4; J3(1) = [4a1(Py+azfz) + 2(1-aj-az))/(1-az2py). -:
2a. Jy(0) = ajJy(0+1) + apJy(8+42) for i=-1,-2.
2b. Jy(R) = ayBIy(8-1) + azBJdy(8-2) + 2(1-aj-az)p(8) for £=2,3,...,L. ]
a 3. Ja(0) = J1(1) - p(1) + 1; Jp(l) = J1(~1) - p(1) + 1. :
4a. Jz(-1) = ajJy(0) + azJda(1l).

X 4b. Jp(f) = apJi(2-1) + azJda(0-1) + 2a; + [1l+p(1)]ay
-[14p(1)]) + [1 + p(2-1)](1l-a3-az) for 0=2,3,...,L. :
5. J3(0) = J1(2) - p(2) + 1; J3(1) = Ja(2)+p(1) - p(2); 1
J3(2) = 33(-2) - p(2) + 1. )
6. J3(R) = ajJa(2-1) + axJy(e-2) +1 {1+p(1)]ay + 2a3 -
+ [1+p(1-2))(1-ay-ap) -~ [14p(2)] for €=3,4,5,...,L. 1
7. J(R) = Jy(0) + a12T1(8-1) + ax2J3(0-2) - 2a;3( 1) ]
- 2aJ3(R) + 2ajazJ(2-1) for #=0,1,...,L. -i
8. Cov(Rp%, Rp-g) = J(0) - a;J(0+1) - azJd(t+2) for #=0,1,...,L. \1
8
2
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