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'/ ABSTRACT
The disturbance decoupling problem for linear control systems is to

- design a feedback control law in such a way that the disturbances do not
= influence these outputs which are to be regulated. In this note we present a
t very simple solution to this problem for a rather general class of retarded

functional differential equations with delays in the state variables. "‘
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A NOTE ON THE DISTURBANCE DECOUPLING PROBLEM
POR RETARDED SYSTEMS

Ruth P. Curtain® and Dietmar salnon“

1. INTRODUCTION

The disturbance decoupling problem (DDP) for finite dimensional systems is readily
solved by using concepts such as (A,B) -~ invariant subspaces (Wonham [(5]). 1In (1] Curtain
has shown that a similar approach is also successful for certain classes of infinite-
dimensional systems, namely those governed by partial differential equations. For retarded
functional differential equations (RPFDE) this approach is fraught with problems as
discussed by Curtain in (2] and in [4] by Pandolfi who analyses the situation in some
detail. He concludes that for retarded systems one needs an unbounded feedback control
lawv. Even allowing for unbounded feedback there is no guarantee that the required maximal
(A,B) - invariant subspace contained in ker D will exist. In view of these negative
results concerning the DDP for retarded systems we feel that a positive result, no matter
how simple, might help to shed some light on this important problem. Using a simple
straightforward approach we give sufficient conditions for the solution of the DNPP for a
general class of linear RPDE‘'s. This condition is genericsally satisfied if only those
systems are taken into consideration which satisfy a certain necessary condition for the
solvability of the DDP and for which the number of inputs is larger than the number of to
be regulated cutputs. The required feedback is indeed unbounded but easy to write down.

Pinally, we solve the DDP using output injection.

Rijksuniversiteit Groningen, Mathematisch Instituut, Postbus 600, 9700 AV Groningen, The
Wetherlands.
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2. DDP POR RETARDED SYSTEMS
Consider the following retarded system
.
(2.1) x(t) = Lx, + Byu(t) + Eqd(t)

(2.2) z(t) = Dgox(t)

where x(t) € B* is the state vector, x, : [-h,0] + K" is defined by x, (1) = x(t+r)
for ~h < v € 0, u(t) @€ R® 1is the control input, d(t) € ¥ is some disturbance, and
z(t) € R is the output to be regularted. We assume that L is a bounded linear

operator from g! = n! {=h,0;2") into W' which can be represented in the form

- 0
(2.3) L = A4(0) + (L A (T)a(r)ar

for é € n'. Of course, E, € l”'q. Bg € l““, Dy € lk'"- Por the state space we choose

M2 = B x 12[-h,0;®"] so that the initial condition for (2.1) is

(2.4) x(0) = 4%, x(¢t) =o' (1), -h <P <O ,

with 4 = (60,6‘) e M2, Then the integrated version

xe) = 4% + [0 A (r-t) - A (118 (nyae
(2.5) + [5 [Bjuts) + zja(s))as

+ f; (Ay + A (s-t)]x(s)ds

of (2.1), (2.4) admits a unique solution x(<) e C[0,T:R") for every initial state

Ae "2' every input u(°*) e 12(0,7;%*) and every disturbance d(°*) € t?(0, 7). Here we
have defined Ay(T) =0 for t¢ (-h,0]. 1f &' € R’ ana 4% = 4'(0), then the solution
x(*) of (2.5) is in fact in ' 10, T/R"] and satisfies (2.4) and (2.1) for almost every

t e (o0,T).
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The free motions of (2.5) are described by the solution semigroup 8(t) € L(llz) which
saps the initial state 4 € #2 into the corresponding state (x(t),x,) € M2 of the free
system (u(°*) 2 0, g{¢) 3 0) at time ¢t > 0 and is generated by the operator

A1 D(A) » #? defined by
M= s’ AY), p(n) = e en?lat en', 4% = ato)y .
(Delfour [3]). In general the state X(t) = (x(t),x,) € W2 of (2.5) is described by the
variation-of-constants formula
(2.6) x(t) = 8(t)4 + S s(t-0) (Bu(s) + vA(8))as

(Delfour (3]) where the operators B : N* + M2, 2 ¢ ¥ » M2 are defined by Bu = (Bgu,0),

B4 = (Byd,0) for u e f® and d e ¥i. This means that x(t) is a mild solution of the

evolution equation

a/8t x(t) = Ax(t) + Bu(t) + RA(Y)
(2.7)

s(t) = Dx(t) , ;(0) -6 .

Of course the output operator I):!!’Olh is given by M-DOOO for & e M2,

The disturbance decoupling problem is to design a feedback control of the form

(2.0) ut) = P, = Fgx(e) + 13 P (Dk(renIar

vith 7o e ™", (%) e £21-n,0:2™ ™) such that the output =(t) of the closed loop
system (2.1), (2.2), (2.8) is independent of the disturbance 4(t).

We now prove our main result.

THEOREM 1 o
Suppose that o .
(2.9) Dogo -0 , Do’o is onto 1;: %
and choose Gg € ™% guch that ._\1::".
\.\-...1
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(2.10) DoBoGo = I € KX .

Then_the DDP for system (2.1), (2.2) is solved by the feedback control law
(2.11) u(t) = -GonoLXt .

In fact, the output of the closed loop system (2.1), (2.2), (2.11), (2.4) is given by

(2.12) z(e) = nom° .

Proof. First note that the closed loop system (2.1), (2.11) is of the same type as (2.1)
and therefore gives rise to unique solutions x(*) in H‘(-h.Tth) corresponding to the
initial condition (2.4) with 6 € D(A). This solution satisfies xX(t) = Lx, - ByGoDoLx, +

Epd(t) for almost every t > 0. This implies that =z(°) e B'(0,7; ]  ana

2(t) = (I-DgByGq)IDgLx, + DoEgd(t) = 0

for almost every t > 0. Hence z(t) = z(0) = D°0° is independent of the disturbance
a(t) 1if ¢ € D(A). 1In general (2.12) follows from the fact that z(+*) e C[O,Tylﬁ]

depends continuously on the initial state ¢ € u2, 0

REMARK
The condition DgEg = 0 is necessary for the solvability of the DDP and the condition

DpBg being onto requires

(2.13) rank By > rank Dy = k

which means that the numher of to be reqgulated outputs is less than or equal to the number

of inputs. Furthermore, DgB; is onto if and only if Dy is onto and
(2.14) ker Dy + range By = ® .

This condition is generically satisfied if (2.13) holds.
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In {4] it has been shown that the DDP for (2.1), (2.2) is solvable if and only it

there exists a subspace V € M2 with the properties
(2.15) range E CV Cker D ,

(2.16) there exists a feedback law of the form (2.8)
with P e L(H',3®) such that whenever 4 e V
then the corresponding state ;(t) = (x(t),x,) € w2 of
the closed loop system (2.1), (2.8), (2.4) remains in

vV for all t > 0.

The second property may be referred to as semigroup feedback invariance and is equivalent
to saying that V is invariant under the feedback semigroup Sp(t) € L(Hz) which is

generated by the operator Ay 1 D(Ap) * w? given by

(2.17) IWENTARE R QP IR n2jeV e n', % = alon .

Theorem 1 shows that in our case the subspace V is given by

(2.18) vaisenpe’ =0t =kerp .

In view of the nice result for the infinite dimensional DDP in terms of a maximal
(A,B) - invariant subspace obtained in [1] it is interesting to reformulate our results in

terms of the abstract Cauchy problem (2.7) associated with (2.1), (2.2). In (1] a subspace

¢ v c ® is called (A,8) - invariant if

(2.19) AMVY A D(A)) cV + range B .

In general, this concept is weaker than semigroup feedback invariance. In our case the

subspace ker D is itself (A,B) - invariant provided that (2.14) is satisfied since then

@« o F - F VRV T VEEEEN

ker D ¢+ range B = 2. Therefore ker D is itself the maximal (A,B) - invariant subspace

contained in ker D and Theorem 1 shows in addition that ker D is semigroup feedback

invariant if (2.14) holds and if we allow for unbounded feedback.
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COROLLARY 2

If (2.14) holds then the subspace V = ker D < M2 is semigroup feedback invariant

with respect to the abstract Cauchy problem (2.7).

The following result has been established in (1] and (4].

LEMMA 3

1f there exists a maximal semigroup feedback invariant subspace v'(ker D) contained

in ker D, then the DDP for (2.7) is solvable if and only if

(2.20) range F ¢ v'(ker D) .

So another approach to obtain Theorem 1 would be to combine Corollary 2 and Lemma 3.
This complements the results in [1] on the DDP using bounded feedback.
Finally we would like to comment on another idea in [4], namely, to allow only

subspaces of the special form ‘
(2.21) vio) = fae 4% eq, a'(1) eQ, -h < T <o) .

Pandolfi gave another sufficient condition for the solvability of the DDP for (2.1), (2.2)
in terms of a semigroup feedback invariant subspace of the form (2.21). 1In our case
Theorem 1 shows that V(ker Dg) is the maximal semigroup feedback invariant subspace of

the form (2.21) contained in ker D.
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3. DDP BY OUTPUT INJECTION

Congider the retarded system

(3.1) x(t) = Ix, + Bod(t) + £(t) ,
(3.2) y(t) = cox(t) ,
(3.3) z(t) = Dox(t)

where 1, Eq, Dy are defined as in section 2 and Cg € P, Then the DDP by output

injection is to design a control law of the form

(3.4) £(e) = Xy, = Koy(t) + [ X (D)j(eerrar

with Xg e ¥"P ana x.(*) e £2(<h, 02" P] guch that the to be regulated output z(t) of
the closed loop system (3.1-4) is independent of the disturbance d(t). This is the dual

problem of the one discussed in section 2. Therefore we have the following dual result of

Theorem 1.
THEOREM 4
Suppose that
(3.5) DgBg = 0, CoEp is injective

and choose Hy @ P guch that
(3.6) HoCoBo =Ie quq .
Then_the DOP_for system (3.1-3) is solved by the following output injection control law

f(t) = '“o“o’t
(3.7)

- - - ° v
AEoHy(t) = (1 A (nE@Ey(ernIar .
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PROOF. The solution of (3.1), (3.2), (3.7) with initial state zero is in H‘[-h,TrlP] and
satisfies X(t) = L(I - EgHaCo)x, + Egd(t) for almost every ¢t 3 0. Introducing the

auxiliary variable w(t) = (I - EgHoCg)x(t) and taking into account (3.6) we obtain
wit) = (I = EqHoColLw,

Hence (3.5) shows that z(t) = Dgw(t) is independent of d(t). D

REMARK

The condition DgEy = 0 is necessary for the solvability of the DDP for system

{<+1-3) and the condition on CyEy being injective requires
(3.8) rank Cy > rank Ey = q

which means that the number of observable outputs is larger than or equal to the number of

disturbances. FPurthermore, CgEg is injective if and only if E; is injective and

(3.9) ker Cq n range £, = {0} .

This condition is generically satisfied in (3.8) holds.
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