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ABSTRACT

—;> This paper presents a robust Kalman filtering algorithm that is obtained
agsuming a scale contaminated normal distribution for the noise of the
measurement equation. The mixture of normals obtained as a posterior distri-
bution is approximated at each stage by a normal distribution with the same
mean and variance. The resulting algorithm is simple, has a straightforward
interpretation and seems to provide useful robust estimators in several
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statistical problems that are briefly reviewed.
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SIGNIFICANCE AND EXPLANATION
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! Real data sets almost always contain outlying (extreme) observations and

outliers are particularly damaging in on line control situations in which the

EAA MR Sy

' data is processed recursively. Thus, an extremely bad value can distort the

1

-.

whole mechanism of control and make the process very unstable.

..

taita s ‘e

In this paper, we offer a relatively simple model and obtain a procedure

?J

to deal with the above problem. To represent the appearance of bad observa-
tions, a scale contaminated normal distribution has been assumed for the

measurement error.

In fact, we have shown in this paper, how a Bayesian approach allows the
development of a simple recursive estimation algorithm that has the desired
property of “"filtering® bad (i.e., extreme) observations. Indeed, extreme
values are downweighted by their posterior probability of being spurious, and
the estimates of parameters are updated, recursively, accordingly.

o Finally, we apply our model to the case of exponential smoothing with
contaminated error, and show that the parameter estimates obtained from the
resulting algorithm are a weighted combination of certain 2" gmoothing

schemes. The application of the procedure to a broad range of statistical

estimation problems is briefly discussed.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ROBUST KALMAN FILTERING AND ITS APPLICATIONS

~ 0%
Irwin Guttman’ and Daniel Pena

1. Introduction and Summary

Kalman (1960) introduced a method of updating knowledge about the “"state® of process
parameters, say $, at time t, using a least squares procedure. This method, now known
as Kalman filtering, has wide applicability, from on-line process control in industry to
applications in economics. Kalman's results are reproducible using a Bayes approach with
normal theory, conditional on known values of variances and co-variances involved.

One aspect of the filtering process is that it is sensitive to extreme observations.
Indeed, one or more wild observations can make the Kalman filter unstable. This a well
recognized result in both the Statistical and Engineering literatures, and is discussed in
the use of a Xalman~type filtering scheme that takes into account the possibility of
spuriously generated observations giving rise to extreme observations. This filtering
scheme automatically examines the possibility that the current observation is spurious, and
if the evidence points to this, downweights that observation in the filter, and does the
opposite for seemingly "good” (i.e., non spurious) observations.

We develop this filter in Section 3, after reviewing the standard Kalman filter in
Section 2. Section 4 sketches a number of applications, and the use of our filter in these

areas. Pinally, Section 5 provides some discussion of our results.

Department of Statistics, University of Toronto, Toronto, Ontario MSS 1A1l.
*e
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to the United States-Spanish Joint Committee for Education and Cultural Affairs.
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2. The Standard Kalman Filter

The results due to Kalman (1960) may be derived and approached from the Bayesian point

of view. Suppose that we observe, at time t, a response vector Yypr SAY of order
(px1), and that this random response vector is such that

Xy " A8, ¢ £yt £, ugy(g.c) (2.1)
where A, is a (pxr) matrix of known coefficients, 'Qt is a (rx1) vector of unknown
process parameters, and C is a (pxp) positive definite matrix, assumed known. The
vector 91 is referred to as the current (i.e., at time t) state of the process para-
meters 0. As t varies, the states are also assumed to have a linear structure, vigz, for
given 'gt-l’ v,

91: - atgtq + €9, Eg ~ N (Q,V) (2.2)

~9

where Qt is a rxr known matrix, and V is a (rxr) positive definite matrix.
Finally, it is also assumed that we have prior information about gt-‘l' given Ay
Xeogree® * This assumption is sometimes referred to as the Inductive Hypothesis, and says {

that prior to observing b A and given Xy yeXpogecee o that the distribution of gt_‘,

given x'__ qreee has structure

0 4= M.o_q*E v ~ N(Q,V,_.) ) (2.3)
Zeet T Moo T 89 v %o Vet

where V,_, is a (rxr) positive definite matrix. We shall see below that y, _, is a

function of the y's.

Now using the above assumptions, we may repidly deduce that the prior for gt' given
) S is
N, ( _qtV o q) (2.4)
(R Beie-1"tet-1
where
Besem1 = O Mooy
(2.4a)

- J .
Veree1 =V 8V 8

(The subscript “"t:t-1" refers to the fact that we are at time t and have observed
1:-1" The quick and easy way to see (2.4) - (2.4a), is as follows: We have, for given
LY
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8. =8_8@ + € (2.5)
~t t ~t=-1 9-1:
from (2.2). But §,_, is itself random, so that using (2.3) in (2.5), we have
8, =0 |p._. +g ] +¢
St Teter TR T %8
(2.6)
= Q _y * 8 £ + & .
tRe-1 Y Ve ko T R
Bacause of the nomality assumptions, and assuming independence of gt_1, gt’ we have that:
Given xt_‘,
~ L ]
[ ugt(nt Beoqe BV, 8L + V), (2.7

as claimed in (2.4) - (2.4a). It is convenient to write the result (2.4) or (2.7) as
g't = Beseet + Leie-1 ¢ Lere-1 ” “(Q'Vtzt-1) ¢ (2.8)
We may now also deduce, using assumptions (2.1), (2.2) and (2.3), with the result
(2.4), the predictive distribution of the yet unobserved Yoo given Xe_¢° For from
(2.1), we have
X = Aegt + £y (2.9)

where £~ N(Q,C), and from (2.8), given y _,, we have that

X - At(‘p't:t-i M 'st:t-‘l) + 'Ey
(2.10)

B R T T T Tt IR
which implies, for given Y that
X ~ N Bepogr AVppeaite * O (2.1
We let the predictive variance of (2.11) be denoted by M., that is,
Mg = C + AVp. o qAd (2.11a)
Now the results (2.7) and (2.11) give the distributions of gt and e before observing
Xy namely p(ﬁtlxt_1) and P‘¥t|¥t-1" respectively. Now when we obgerve Y., we are
in the position to deduce the posterior for gt' given Xy for are in the position of
having (2.1) as the sampling distribution of Xy given gt' and (2.4) as the prior for

8.

of (2.3) for the next stage, to be discussed below. Now using Bayes' Theorem with (2.1)

(given Yooq etc). We remark that once this posterior is obtained, it plays the role

and (2.4) as the necessary ingredients yields: Given b A

3=
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2 ~Nlpe ¢ V! (2.12)
where
-1 ‘
- ’ -
Beie ™ Eppeer ¥ Vere-1Pele (e = Ap Begemq! (2.12a)
and
v‘1 - .C" + v" (2 ‘2b) .
bt = AMC A * Veie-d .
so that, as is easily verified,
-1
Vere ® Vese-1 = Vert-1AeMy AcVe et (2.12¢c)

where, we recall that M, is given at (2.11a).

The derivation of these results is given in Appendix 1. Notice the updating pattern
from ) Y the prior mean, to M, .. contained in (2.12a). Indeed, (2.12a) implies
that the current information Et:t about the process parameters gt, given Xor is the
prior information of gt given Leoq’ Et:t—1 plus an updating term, obtained by
“filtering” the deviation of X, from its predictive expectation - see (2.11) - by use of
the matrix

KP, = Vy,e-iA'Mg' - (2.13)
Indeed the matrix KP, of (2.13) is referred to as the Kalman Gain matrix, and we note
that an alternative form -~ see Appendix I - is

KF, = v, A
Note too the update of V... contained in (2.12b) - for example, we update V;:t_1, the

precision of the prior of @ given ¥y, _,., by adding the precision A&C"At of the

~t'
regression process parameter gt of (2.1) to obtain v::t, etc. To enter the next stage,
we replace (2.3) with (2.12) by setting Me,e ™ Mg and V, .. = Ve, and make the obvious
modifications in (2.1) and (2.2), and repeat the process.

To start the Kalman filter, prior conditions for the state vector § must be made,
say i, for its expectation, and the matrix Vj for its variance -~ covariance structure.
Once declared, the estimate for g‘. the state of nature for the process that yields Xy
is
2110 = %1 %o " Kyy0 (2.14) ¢

and its varjiance - covariance matrix is

-l
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V1*0 - 91V001' +V . (2.14a)

The forecast of the new observation X4 (see (2.11)) is

Xy = Ay, (2.15)

with variance - covariance (see (2.11) - (2.11a))
My = C + AgVy oAy . (2.15a) ;
When X, is actually observed, we update as follows - the expected state of nature goes
from By,0 'O UM4,qr where
Eypr = Bygo * Vaoha "My Gy = Agky,o) (2.1€)

and the affiliated variance - covariance is updated to V4, ., where

=1 o o= -1 - - a1 -1
Vist = Viga * A'CT Ay = (Vo 0 = Vo oh ™M AV . (2.16a)
As indicated befoe, we now set
Ky = By,y and Vy = V4, (2.17)
and inquire about gz, prior and posterior to seeing 2% etc. . We have
Xp= A, 8,¢ £y £y ~ N(Q,C) , (2.18)
with
8- 8, 8, *+ £4r £9 ~ N (QV) (2.18a)
while
g1 i TR 521 ' 521 ~ N(Q,Vy) . (2.18b)

The last two statements may be combined so that we have, given Xy
~ L]
22 N(n2 Bqe 92v102 + V)

or (2.18¢c)
9 ~ Wy, o Yy -
The distribution (2.18) is now used with (2.18c) to find the posterior of 22' given Xy
which is
22 ~ “(!232 ’ szz) (2.19)
where ¥y, is given by (2.12a) with t = 2 and V,,, is determined by (2.12b), etc. ,
and the loop continues in the same way for t = 3,4,.. . This is pictoralized in Figure

2.1 for the general case of having reach state t ~ 1 and observed Yeoqr etc. .

~5e
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Figure 2.1
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There are several comments to be made about the foregoing Kalman filter. Essentially,

the whole process is a least squares procedure, as the reader will not doubt have known or
guessed. Least squares estimates are well known to be non-robust to outlying observations
(see Andrews et al (1972)), and in the Kalman filter case this could make the whole
procedure unstable, with devastating consequences in some situations, such as line-process
control of mass produced items. Then too, when p 2 3, it is well known that least
squares estimators are not admissible (see Stein (1956)).

Finally, the assumption (2.1) that implies that gy‘s come from the same distribution
is much too strong in practice. Much evidence exists that shows that sets of data almost
always contain a small proportion of observations that have been spuriously generated
(i.e., not in the manner intended) giving rise to extreme or outlying observations (see the
general discussion in the paper by Box and Tiao (1968) and Guttman (1973)). For these
reasons, we replace the assumption (2.1) by a more realistic sampling model, and
investigate what form the ensuing "Kalman filtering"™ process will take in the following

section.

-?-




3. A Robust Algorithm

3.1. A Different Sampling Model.

As indicated in the previous section, the oft-made assumption (2.1) is highly suspect,
and skepticism about this assumption often points to the question of the possible effect of
outliers on procedures developed using (2.1) in general, and for us, in particular on
Kalman Filtering. Outliers are feared mainly due to the fact that they may have been
generated spuriously, thus biasing results. This is a well recognized concern in the
engineering literature, and for example, the papers of Alspach and Sorenson (1971),
Masreliez (1975), Masreliez and Martin (1977) and Tsai and Kurz (1983) use a different
approach then ours to meet this problem. Of course, the problem of how to deal with
outliers in other situations and the general problem of “robustness® of various procedures
is the focus of much of the current Statistical literature - see the references cited in
Section 2, for example.

Because of the above general concern, it is desired to establish procedures that are
robust to outliers in that they accomodate the appearance of abberant observations
appropriately - roughly speaking, giving small weight to observations that seem spuriously
generated, and large weight to seemingly "good" observations.

A spuriousness that gives rise to outliers often means that the error distributions
involved have tails heavier than those of the normal distribution, we will generalize below
the method of accomodating outliers used by Box and Tiao (1968), and replace the assumption
(2.1) by the so-called Scaled~Contaminated Model (SCM). This model was introduced into
statistical practice by Jeffreys (1961) and has been used by Box and Tiao (1968) to

robustify estimation in the standard linear model, by Abraham and Box (1979) to accomodate

__Q outliers in time series, etc. Indeed, Cheng and Box (1980), have shown that the SCM model
I~'.-u

b represents a sensible modeling in many situations where spuriousness is feared.

b= The SCM model, simply stated is that

p." -

b

& e "B St gy

:. vwhere (3.1)
.-

f'- Ey ~ a,N(Q,C‘) + azn(g,cz) .

>

b
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In (3.1), we assume that the known constants ay, a, are such that a, = 1-01, and that
a, €(0,.15), as is common in most applications. Further, we also assume C, and C,; are
known, and such that by any measure, C, is larger than Cy. For example, it could be

that (for 0; a known scalar),

2 2.2 2
Cy = GyI ’ C2 =k dyI, k® >1 . (3.2)

The prescription (3.1) says that with small probability a is generated spuriously

2° X¢
from N(At 3@' Cz), etc. .

In addition to the assumption (3.1), we also, in this section, make the assumptions
(2.2) and (2.3) of the previous section, and inquire into the question of how the 3
assumptions (3.1), (2.2) and (2.3) affect the updating procedure discussed in the
introductory section. For convenience we list the assumptions used in this section at the

point:

(i) See (3.1) - (3.2)

(i1) 8 =9 8 _,+g + Eg~NQW (3.3)
(114) 8 4 = Ry * 52:-1 ‘ 52:—1 ~ N(Q.,V,_,), for given y _, .

The assumptions (ii) and (iii) of course, give rise to the result (2.4), namely that

8.+ given y _, has distribution (the prior of §,) (2.4), viz
No By iea1Vese-1) (3.4)
8, Brst-1" et
where
Bt:t" = nt ut-" vt:t-1 =V + Qf_vg-1nt. . (3.4a)

We can now determine the predictive distribution h('lxt_'), say, of y., given

¥y.q+ Formally, this is defined as
hig, |xe.q) = Jg £lg 18.0P(8, 1x, 298, (3.5)
~t
and here, f is dictated by (3.1), while p is obtained from (2.4). The result of doing

the integration (3.5), as proved in Appendix II, is as follows:

hig, lxe ) ~ a,uxt(nt BereatMe, 1) * uzuxt(at Beie-1Me,2) (3.6)

with

-9-




T R

"t,i - Ci + Atvt‘t_1hi ] is= 1'2 . (3.6.’
We note that
2
n(xtlxtq) = AL Meoeaqr V(xtlx;.ﬂ AV e-1Ae t #1 acy - (3.6b)
We note that we may write
Vg, lg, o) =om, o tap o . (3.6¢)

3.2. The resulting recursive algorithm.

The results (3.4) and (3.6) are statements that can be made before seeing X,- Onmce
%, is observed, we are in the position of being able to find the (posterior) distribtuion

of § given y . For the prior of gt, we have the distribution specified by (3.4),

t’
while the (sampling) distribution of gt is given by (3.1). The result of using Bayes'

Theorem with these ingredients, as proved in Appendix II, is that the posterior of gt,

given X, is such that

2
: (1) (1)
PO |y )~ } a N, ( e VO (3.7)
“ele’ T L0 Te,at e tit
wherxe
(1 +V A (g - a ) (3.7a)
Bese ™ Beoeer ¥ VesearPeM, 1'% 7 A Eppean .
(1) _ ! 11 =1
vt:t (vtst-i M Atci At)
(3.7b)
=V -v abtav
tit=1 tit=1"t t,i 't tit=1
and where
. = O, (X Ay By oqoMy )
t,i (3.7c)

2
j-)h ayfiyy Ay By eoqM,3)

with f denoting the density of the Normal multivariate distribution, so that, in general
£(y|n.m) = (21)"’/2IH|'1/20xp -%(x-n)'n'1(x-g) . (3.74)

The reader will not doubt recognize that the denominator of (3.7c) is, on using (3.7d), the

predictive density h of Xpr given Xy stated in (3.6). Indeed, using (3.7d) in

(3.7¢) yields

«10=
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o, My 41 % R _— -1 -1
A=t E:'tri;'zl) exply (X = Ay Rege-q My g = My 2) (G Ay Beyeny )]
v (3.7e)
“t,2 - 1 - at'1 .
From (3.7) we easily find (see Appendix II for proofs)
E(8 |y.) = +v A, ' va ) 1y - )
Selle T Beieer T Vese-1Re %, M, 0 T %, 2M e, 2 W T A Reead
= R (3.8)
1
V& INe) * Vit " Vere- BV eie-1 = Vese
where
B =a M.1 +a u" -a .0 (u" - H-1 ) - A )
e " %, e T %M, 2 T %, 1%, 2 M, 1 T P20 W T A By e
(308.)

. -1 _ -
(X = Mg RBpyeaq)' M 3~ M ) -

= (1-a are the posterior probabilities that X has

and a t,1)

t,2
come from the intended source (i.e., N(At gt,c1)) and the spurjious source (i.e.,

The guantities at'1

N(At gt,cz)), respectively. The posterior expectation is made up of two parts (c.f. with

(2.12a));: the prior expectation Ee.e-1 of ©

+ given (see (3.4)) and a deviation
~t Leaq

of xc from its (marginal) predictive expectation At ) R (see (3.6Db)), but this time
the filtering (gain) matrix is the weighted sum of two Kalman gain matrices, where the
weights are the estimates at i just commented on. Put another way, the gain matrix

L}

involves the weighted sum of the predictive precisions that would be involved if sampling

was from either N(At ,C,) or N(At 2] ,Cz). with weights that are the probabilities

L 2
that X, was so sampled. For more introspection about the updated variance - covariance
i),
ot

v,

t:t+ Wwe first invite the reader to inspect the updated V 8, and to acquaint

(
t
themselves with the details of how these are used by reading the proof of (3.8a) in
Appendix II.

We remark that to continue this procedure, we now use the following scheme

Set By = Moo (see (3.8)) and Ve = vi‘t (see (3.8a)) . (3.9)

-11-
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Let P8, lxy) = Ny, V) . (3.10)
We may now enter the next stage - we replace (iii) of (3.3) with:

Given ., Qt =N, * £gt ~ N(@,v,) (3.11)
and making the obvious modifications in (3.1) and (ii) of (3.3) -~ t is replaced by (t+1)
- we repeat the above process.

As in the previous section, to start this Kalman Filter, we must state prior
conditions for the state vector §, say Ko for its expectation, and the matrix Vg for
its variance - covariance structure. Once these are declared, then using (3.4) we have
that the estimate for Q‘ before seeing y, is

240 " %1 o " Eyy0 (3.12)

and the associated variance - covariance matrix is

Voo =V VA . (3.12a)
The forecast of the new observation y, is (ses (1.5b))
Ly = Ay Beyo = A%y Ko (3.13)
with associated variance - covariance matrix (see (3.6b))
2
%1 8,Cy + AgVy, oAy (3.13a)

(c.f. with (2.15a)).
When X4 is actually observed, we update as follows - the expected state of nature
goes from j, ., to U, 4, where (see (3.8))
- . -1 -1 -

Byor ™ B0 * VaeoPi 9%, 11,1 ¥ %, 2M1, 21 (X = Ay By, (3.14)

where the matrices My,4 are defined in (3.6a), and where the @, ; are given by
’
{3.7¢c). The associated variance - covariance is (see (3.8a))
Vii1 = V10 = V1:0A{B1AYs,0 (3.14a)

where

-1 -1

+
By " %, M,0 T %,2M,2

(3.14b)
. -1 - . . vt L
Oy, 1%0,2M,0 T M2 Wy T A R0 g T R By g? My, My )

As mentioned in this section, we now set
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| P M‘=1 and Vi = V41 (3.15)

and take, for the distribution of 21, given Xy p(21|x1) given by

P(.?,,|x1) =208, lgv,) (3.16)
that is, 8, ~ N(4,iV,), given y,. This may be combined with (ii) of (3.3) for t = 2
to yield
P(8,1xq) = £(8,10,,40V2,¢) (3.17)
where
Ma,1 ™8 By « Vg, =V +RvVEA . (3.17a)
Now the distribution of Xy given gz. is of course specified by (3.1), that is
PlY,[8,10,,C510,,0,) = a £y, A, 8,1C,) + a f(y,|A, 8,iC,)) (3.18) |
and (3.18) may be combined with (3.17) to produce the posterior of 22, given Y, which
is |
2 )
P(&,lxy) = &1 “z,if‘22|1‘.g;ov;tz’ (3.19)
vhere u'!) ana v!!) are founa from (3.7a) - (3.7b). The probability a, , is of

232 232

course (see (3.7¢c))

2,1

o - flglRs by, e oMy o)
2,17 72 (3.20)
jzt o202y Ay up,q0,,4)

and a2 = 1-02 1 and the loop continues in this way for t = 3,4,... etc. This is
. ’

pictoralized in Figure 3.1 for the general case.
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4. Scope of the New Filter
The previous section develops a filter which may be used in many various situations.
To illustrate this, we discuss several instances where the new filter of Section 3 may be

applied.

4.1. Bayesian Forecasting

One of the most well known applications of the Kalman filter in Statistics is to that
of Bayesian forecasting, as developed by Harrison and Stevens (1976). These authors used
the standard formulation developed in the engineering literature for the linear control
problem that we have presented in our Section 2, calling it the dynamic linear model. They
showed that most statistical models can be considered under this general framework, which
thus allows an unified approach, namely, by using the Kalman filter for recursive
estimation of the parameters. Harrison and Stevens (1976) then applied these ideas to
Bayesian forecasting.

As our robust filtering includes the standard algorithm as a particular case, the
robust version of the algorithm we have developed can be applied to any of the forecasting

. .models discussed by these authors.

To illustrate the behavior of the algorithm we shall discuss its applications to one
of the most widely used model for forecasting, the so-called Steady Model. This model is a
particular case of the general formulation with A, = 1, Qt = 1 and with y, a scalar.
Then, By p-1 ™ Uguq and Vi,e_q =V + V,_yo The updating equations for the standard

recursive estimation of this model are

M
be = Ve * (@m0 < Ve (4.1
cvw )

= W
t - oW

v . (4.%a)

After some iteration the system will reach a stable state in which Ve ® Veoq = a. Calling

0= c[c+v+a]-1, we see that (4.1) can be written as

B =0 U, *+ (1-0)y, (4.2)
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and applying it recursively and assuming Vo = 0, we obtain

t=1
= ] ol -ty . - (4.3)
i=1

wWe have, then, from (4.3) the result that the steady model is equivalent to the IMA (1,1)

t

model, which is equivalent to exponential smoothing.
To apply the robust Kalman filtering algorithm we have developed, we assumed

2.2
c -dz,cz-kd) then

1
a, a
e, 1 e, 2

-1l * 33 ltyy = veey

: +
ofever o KTaSevev

)

+
u = “t-l + (V v

and assuming as before a stable state with V¢ = V._, = a, then calling

01 = az(v2 + v+ a)" and 0 - (k [ )(l:za2 + v +oa) 1, we have

Up = (ay 48y * @, 28, 2

This expression shows that Ve is obtained as a weighted combination of Mooy and

+ [(1-8,)a + (1-8,)a,
17,1

Yr+ @8 in the standard case, but now the weights are changing in every iteration and

depend on the probabilities a 1 and “:.z' Setting Ot - u"O‘ + aaez, we can write

t,
By = Ou_y * (1-8,)y, (4.4)
and now the expression of u, as a function of the observations is
n (1-0 )
by ), —u——- yt_i( n °:-j) . (4.5)

To interpret this equation let us denote by v(r:i,j,k,..h) the probability that r
observations came from the "spurious®™ or "bad” population at times i, j, k,..h, where

there are r symbols i, j,..,h. Then

w(rji,j,k,esh) = n a a, ,a coe (4.6)
( & e, 1)912%52%2° * %2

tei,J,ee0h
and let us call vt(rti.j.k.--h) the smoothing associated with this combination of
observations (see (4.3)). This smoothing is the result of assuming

e = Ogu g * (1-0 )y, e.m

for observations y,, t = 1,... n but ¢t ¢ i,3,k,..h, and

e = Ok

for t = i,j,k,..h. Then, it is straightforward to show that

+ (1-02)yt (4.7a)
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ut = 2v(rvi,j,..h);(r)1,j,..h) (4.8)
where hers the summation is over all the 2% possible combinations of observations chosen
from yq,-+-,¥y- The main advantage of our algorithm (4.5) is that the 2t exponential
smoothing factors are the result of the recursive relationship (4.4) and are not computed

separately but globally and here in a very direct way.

4.2. Rcbust Linear Regression

As mentioned previously, Box and Tiao (1968) assumed a scale contaminated normal
distribution for the noise of a regression model and used Bayesian estimation methods to
obtain a "robust" estimation procedure that downweights suspicious observations in the
linear model. Additionally, Chen and Box (1979) showed that, given appropriate values to
the parameters of the noise distributions, the Box-Tiao weights can reproduce functions for
downweighting residuals using M-estimators that have been proposed on empirical grounds by
Andrews et al (1972). Although this approach provides a general way to deal with outliers
in the linear model, the camputations needed are cumbersome, because the posterior
distribution of the parameter vector is a weighted average of 2" posterior distributions.
Box and Tiao (1968) suggested that one need compute only the first few leading terms, but
with a large set of data the computations are still heavy, and there are no clear rules
about how many terms we would need to obtain a proper approximation. Little (1983) has
explored the relationship between the Bayesian weights and some influence measures proposed
for the linear model and has used this relationship to suggest an algorithm to determine
which of the weights that matter, and their subsequent computation. Here again, however,
the computations are still heavy.

We will show in this section how we can compute the posterior mean in a simple way
using the robust algorithm we have suggested.

The regression can be written as a state space model as
- ’
Y = By Be * €,
(4.9)
Et -ét.j =8

where y, is now scalar in the observation equation and the regression parameter vector is

-{7=-
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constant over time. Assuming that the noise € t has a scale contaminated normal

distribution

€, ~ (1-a)N(0,02) + aN(0,k%0%) , k%> 1 , (4.10)

2

for fixed values of a, k° and 02, we then have a particular case of our previous

formilation. 1In practice, however, neither of these three parameters are known. Although

we can assume a and x2 known and make a sensitivity study afterwards (see Box and Tiao

(1968)), the problem of estimating 02 remains. There are two possible solutions.

2

The first is to compute a robust estimator of ¢~ and use this value in the

computations. The second is to iterate in the estimation of the robust value until
convergence. Starting with a preliminary robust estimate of 02, say 0?” obtained from

the residuals of the least square fit that leads to the estimate § we compute an

(1’

P -

estimate B (2) using the robust Kalman filtering algorithm with the value df" for the
variance. Then, we compute the new residusls and a new robust estimator ;?2 ) for the
variance. Using this estimator a new application of the algorithm is made which provides a
new estimator 3 (3 and, consequently, a new set of residuals. From them a new robust

variance estimator 02 ie built and the process is repeated until convergence.

(3)

In this particular case, writing vt = 02\'!‘, and B, = o2 -“. the computations

needed are:

Big = OV 43 Veog &) = (Y +hy)) (4.11)
B = 02 4y (4.12)
2t (1) ’ .
» y -x' B 1.2 -1
S R e (e (@
’
™ %) e M2t
a a
M " . t,1 v, 2
Bie) ™ Bremt) * Yemr BT * 70, (4.14)
"1t 2t
®e) = Ve T B Bren (4.15)
Ve = Veor 7 Vet B By B Ve (4.16)

where B, = b, 1is given by

-18-
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t,1 2,t 1 1,2 t
bt =t o ut,1at,2(." - .._) (.,L_)) . (4.17) |
"1 P2 e "2t %e) ‘

A simple alternative for a robust estimator of scale is the median absolute deviation
from the sample median ;, given by

MAD = nedian{|yt -yl .
t

This estimator is known to be more efficient for the contaminated normal distribution than
the sample variance, but is biased. A robust unbiased estimator of o? has been provided
by Tukey et al (1977) and is given by

-
o®
r

1

= (.64) mdian{el} (4.18)

i

where the e; are the residuals from the least squares fit. The final covariance matrix

for the parameters will be Vt = Oi Gta where Vt is computed using (4.16).

Equation (4.14) shows that the estimate E(t) is a linear combination of estimators

that would have been obtained assuming that €_ is distributed as N(O,oz) and

t
N(O,kzcz), respectively, with weights that are the posterior probabilities a, 1'-, dis-
’

cussed before. As for the variance, instead of the least squares expression:

=1 . o1 =1

V£ (V't_1 + X, 5:’ (4.19)
where v;‘ = X'X, now equation (4.11) imposes an adaptive formulation:

vla (6-1 +ax x')-1 (4.20)

t t-1 Vvt

where a, = b,/(1 - h(;)b,) depends on the posterior probabilities of the observation

being an outlier. For instance, it is straightforward to see that if @ .= 1, a, =1,
[

.

=1, a, = k"2,

L. e
l.}‘? L]

and if a

t,2

T v
o

This algorithm provides a useful computational device to estimate f§ when the set of

data is large. However, when the sample is small there are two problems that make this

i o

approximation a crude one. First, the distribution for g at each state is not normal,

but a t-distribution when 02 is unknown. Second, with a small set of data the ordering

of the observations can influence the results. These two problems are not important for a

large data set because (1) the t-distribution, when the number of degrees of freedom is

large, is very well approximated by the normal and (2) the order of the observations will

-19-

[ e

S
I B8 JOV S Y




not affect much as long as the number of observations is large and stable state has been

reached.
The above is, in contrast with the standard Kalman Filter in which 02 is not needed,
while here the variances m;, are required to compute the posterior probabilities that an

observation has been spuriously generated, and for the variance of the estimation itself.

4.3. Autoregressive Time Series Estimation

Assuming in the previous case that x{ = (Yt-1"'°'yt-p)' the model reduces to the
state space estimation of an autoregressive process. Abraham and Box (1979) have studied
inference in this type of model when there is a small probability that “bad” obgervations
occur. The exact Bayesian solution is again difficult to compute because it involves, as
in the regression case, the computation of 2" distributions.

Although in this case the previous approach can be used to obtain a robust estimate of
the parameters when all the data has been collected, the algorithm can also be used as a
robust procedure for on-line estimation when the observations are received sequentially.

In this latter case however, a way to compute an estimate of 02 given the observed data
is needed because at every instant t only observations y4,...,¥;, will be available.

To solution we suggest is to start with a robust estimate of the variance, and update
this estimation when the new residual Y - ;t is computed. The algorithm will be defined

by the same equations but now (4.13) and (4.17) are:

/i ¥ -x! Et 2 -1
a 1t 1 t ~t -1 1 1
Ce = I_1 + (ﬁ) .—-exp-z-{( - ) (;—--;‘—)J (4.21)
"t t 1t M2t
o a e 2
b, = :15 + 735 - u1tu2t(7l— - :1—)2(—4310 14.22)
m m m m [+
with 1t 2t 1t 2t t
®(e) = Ye T Pea¥eoq TreT Bep¥eop (4.23)
o, = Heiian{e(t)}/-@' . (4.24)
=20~
®
3
b .
-
b .
®
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4.4. Multivariate estimation

In the previous examples the observed vector Y, was a scalar but the algorithm is
also very simple when X, is a vector. As an example, we will revise only the multi-

variate regression model. The standard formulation is

X " He B v &,

(4.25}
By " By = B
with
5; 2. eoe 2' E1t
ﬂt bd . gt = . (4.26)
[] . ] .
0' « . . X Ekt

where 5{ is the 1 x p vector of explanatory variables and Eit is the p x 1 vector
of parameters linked to component y;, of X, The noise £¢ is assumed to have a mixed
distribution and we can impose different structures depending on the particular problem on

hand. For instance if

12°°° 0‘k

c, = (4.27)
g sesn
%k

the presence of a multivariate outlier can be modelled assuming that they come from a

distribution with covariance matrix

C. = : ' k2,>1 . (4.28)

02
k)% xx

which implies that the components of an outlier are unrelated. This is referred to as

N PR A

external structure for spurious observations. Another example is C, = h2C1, n > 1, so

that the components of outlying observations are related in the same way as observations

T vy

; from the good or intended source, but variances of outlying components are larger. This 1is
:- referred to as internal multivariate structure for spurious observations.

.

-

'.‘

b -21=-
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5. Conclusions

Real data sets almost always contain outlying (extreme) observations, and outliers are
particularly damaging in on line control situations in which the data is processed
recursively. Thus, an extremely bad value can distort the whole mechanism of control and
make the process very unstable. In Industrial practice, for instance, all types of ad hoc
procedures have been developed to cope with this situation (see Mah and Tamhane (1982) and
Crowe et al (1983)), but a general methodology is needed.

In this paper, we offer a relatively simple model and obtain a procedure to deal with
the above problem. To represent the appearance of bad observations, a scale contaminated
normal distribution has been assumed for the measurement error. We have chosen this model
because other authors have demonstrated that its use provides sensible solutions to other
statistical problems, for example, in linear model estimation.

In fact, we have shown in this paper, how a Bayesian approach allows the development
of a simple recursive estimation algorithm that has the desired property of “"filtering" bad
(i.e., extreme) observations. Indeed, extreme values are downweighted by their posterior
probability of being spurious, and the estimates of the parameters are updated,
recursively, accordingly.

Finally, we apply our model to the case of exponential smoothing with contaminated
error, and show that the parameter estimates obtained from the resulting algorithm are a
weighted combination of certain 2" smoothing schemes. The application of this procedure

to a broad range of statistical estimation problems is briefly discussed.
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Appendix I

As mentioned in Section 2, we wish, in the Appendix, to prove the results (2.12). Ve

are

have that the prior for Qt is Ngt(ut:c-l'vt:t-!)' where Etst-I and vt:t-i

defined at (2.4a), and from (2.1), we have that the density of X, is Nxt(ht Qt,c).

Hence, the posterior of §

8. given A is such that

1 -1
Plrel®) = exp = 3 18 = Reeor)' Vereo1 (e~ Ryyed!
(AI.1)

v o -
+ Iy, - A 81" C Iy, - A 8,0} -

Now the expression in the braces of the exponent in AI.1 is easily seen to be

-1 =1 - age gy v ot (1)
B WVeipo P A AL, 2 Ve oy Kpypq T AL C Y]+ comst. (A1.2)

which in turn, on completing the square, has the form

1
- + .
‘e e vt:t b ] const

(8, = Ve, BV, (M . const. (2! (AI.3)

where const(j) are functions of Ace Cr Ve,pat and Yo all of which are assumed

known. Also, we have written V!

tat for the matrix of the quadratic form in (AI.2) and

(AI.3), that is
-1 -1

= [ ]
Vert ™ Vesemt Y2 €A (A1.4)
and we have, clearly, that Qt is given by
-1 L |
By ® Voot Bpsemr YA G X - (AI.4a)
Hence, p(xt|§t) is such that
-1 - vyt -
Pl 18,) = exp - 38 -V, o B )" Vi, (8 = Vp, B (AI.S)
which is to say, that a posteriori, Qt ~ “(tht'vtzt)' vwhere
Eese ™ Vese Be (A1.6)

and V.., is such that its inverse is as defined in (Al.4). It remains to show that Vet
is given by (2.12c) and that (AXI.6) may be rewritten as in (2.12a). For the latter, we

have, from (AI.6), on using (AI.4a), that

. -1 . =1
Beoe ™ VereWese-1 Bere-r T2 € 4] (AL.7)
or
. -1 . =1 I
Beoe ™ Vere!Weoemt Y A0 C ARy ooy * BC (0 = Ap By oy (AI.7a)
and using (AI.4) we have
-24-
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-1 -1
Beoe ™ VereVese Brpemr T 20 C (X = Ap By (AI.7b)

so that
= '] ‘1 -
Beiv = Bpieen * vt:t At-_ ¢ (xt A, Et:t“’ . (AI.7¢c)
To show the equivalence of (AI.7c) with (2.12a), we must show that
- - -1
Ve:eheC Vese- 1AM (A1.8)

where M, 1is as defined at (2.11a). But

-1
Vere ® Vere Vere-1 Vere-n (AL.9)
and again using (AI.4), we have
-1 -1
Vere = Vese Ve e = AL C 0 AdVi ey (Al.9a)
or
-1
Vert ™ Vese-1 = Veoe AL C T Ap Vigeay (AI.9b)
which is to say
-1
Vere * Vese A C 0 Ap Vere-q ™ Vere-tr - (Al.9¢)
Post multiplying by A{ on both sides of (AI.9c), we may write
-1 -1
Vere AL C C * Ve,p AL C ApVesea1Af = Ve,gpaiit (Al.9d)
. or
-1
L] 1] L]
vt:t At c (Cc+ Atvtzt-1lt) = vt:t-1 At (AI.%e)
and from (2.11a)
-1 _ -1
Vet AL C vtst-1 Ay My ’ (Ar.91)
and (Al.8), and hence (2.12a), is now demonstrated.
N Finally, we wish to derive the result (2.12c). We have from (2.12b) that
5 -1 -1 v o
9 Vest ™ Vese-1 T * Vi eog AL C© AL (AI.10)
l"
. Hence
¢ v o1 -1
- Ve, = *HV AT ATV (AI.10a)
{, and using a well known identity for inverses of matrices of he form I + EF, viz
3 (1+EF)~Y = 1 - E(1+FE)"F (AI.11)
h-
Li with E identified as V,,..q AL C' and F as A,, we find
- - v o1 U N
[; Vest T 0= Ve e AL O+ AV G MCTTTARY, (Ar.12)
»
b, so that
b
b
| ~25-
4
-
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or, on using the definiton of M, given in (2.11a),

‘. +
At (c Atv

-1
- [ ]
Vere ™ Vere=1 = Vese-1 A e MVeieen

which indeed is the result (2.12¢c).

(AX.12a)

(AI.13)
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Appendix II
This appendix is devoted to the derivation of results (3.6), (3.7) and (3.8).
We have from (3.5), with £ given by (3.1) and p given by (2.3), that the

predictive distribution of A given x:_,, is such that

2
higy |Ye.q) = 121 a, !ﬁt £Og 10y B sC P08 Ry et Ve em1)98, (AI1.1)
where the density f is defined in (3.7d). But the integral operation is clearly
equivalent to the argument used in (2.10) with C; replacing C so that from (2.10) -

(2.11) we have

hig,lg,.,) = Z a (g A, By, emq oM e, 1) (AII.2)
where “t,l is as defined in (3.6a) - see (2.1%a), and the result (3.6) is now proved.
To derive the results (3.7), we note that (3.4) gives the prior for 2:' while the
digtribution specified by (3.1) dictates the likelihood of Xyo given 21:' Hence the

posterior of ,gt,

given X, is such that
P lx) = )_ a (g, (A, 80C (0, Ny ey Veseay) -+ (AL1.3)
In common to the work of Appendix I, the summand of (AII.3) requires the "completion of a
square® operation to form a quadratic form in 94;' However, since the “"constants" left
over in this operation depend on "i"™, they cannot be absorbed by the constant of
proportionality. Now for the ith term, we have in the exponent, apart from the - 5,
l - .

(2 - A (zr. A )+ (8 = Ry yeoy! t:t-1 Qe = Rese-t) (AIX.4)

and from the work in Appendix I, we see that (AII.4) may be written as

YD P o) =1 ) (4) -
B ~Vere B Ve B Ve B 1Y% S X
(AIl.S)
-1 TS LRNTINTY
*Re-1 Vest-1 Bese=1 T Bt Veae B
where
(1) _ gyt -1 =1
vc:t {vt:t-1 + At': ci At}
(AIL.6)
-1
= Vert-1 " Vese-12e M, 1AVttt
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and "t.l = Cy * AVe,p-1Al (c.f. with (AI.4) and (AI.13)), and where
b(:I.)

- -1
Voree1 Reager * AL Cy X, (AI1.7)

(c.f. with (AI.4a)).

Now the last three terms in (AIX.5) may be written as

-1 (1) -1 -y (1)
xle, -c ‘e r.:t‘éci e * Bt Weree1 ™ Vesee1VereVese-1)
(AI1.8)
-1 (1)
T2 G A Ve vtst~1 Eepe-1
and it is straightforward to show that (AI1.8) may be written as
-1 -1
XM, 1 e * Bliem1PeMe,ihe Besem1 = 20M, e By (A11.9)
which is of course,
-1
Ay Bepean?' M, 10 = Ap Rejeny) -
Hence p(8 |y ) of (AII.3) is such that
@ e < § o lcc 2 v Bexp - g, - )
PiZeiX, & ay1¢y Vesem1l 0% = FlX, = Ay Beopog
(AL1.10)
-1 _a (1), 0y (d) =1 (1)
Me,ille = B Bepeoq) X000 =3 (8 = M )'Veie 18 = Beyy)
(9] (1) (1)
where we have written Ht:t txc Q +» and using the work in Appendix I, we find
(1) (1) .
Ht:t 2t:t- v&:t‘é 1 (xt At Ht:t-l) (AIZ.11)
or
1) +v ) (AII.1%a)
Eeie ™ Eepemt ¥ VegeaiAe® t, 1 = A Keeny) - a

Using the definition of the multivariate normal density given in (3.7d), we now easily find

that

-1, -1 1
0 2 ey i |vt:t-‘l|/2
P2 lx,) = x Lo (e 2 ®) 1% - AL AR Y
e, tit (AL1.12)

i) (1)
x 208, kg e Ve, )
and it is easy to see that the determinants involved are such that the indicated products

and ratios involved is 1. Finally, integrating with respect to gt yields
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)- ag £y, A, Bere-1Me,) = hg, |y, o)

i=1

so that using this in (AII.12) we now have

2
. (1) (1)
p(e,lx,) 131 %, T Ibe e Vere

with a as advertised in (3.7¢c).

t,1

Now using (AlI.14), we can calculate moments. We have

2 (1) (i)
B, ly,) = 121 9.4 J 8 €8 Ik eV, )%,

2 (1)

- a
; i=1 t,l Ettt
b

and using (AIl.11a), which is the result (3.7a), we have
which may be expressed as in (3.8), or as above in (AII.15).
identity

: vig, lx,) = B, 81ly,) - [B(Q Ix )1 (B(Q, |g,)1"

Now from (AII.14), we have

4

.. 2

. -y (1) Sy,
.- E(ﬂtﬁélx.,_) &1“ (S, °'|1‘,‘._ tVese!
g

5 I TS I TS I TI L
4 &y Tt e * R Reye !
[

t Now Véiz is given in (AII.6) so that we have

3

3

S

"l“_nh‘-:‘-‘u' *\‘ ‘-‘.- s 'ﬁ{
BOSEAR SR TR e

2
-1
B9, lx,) = Ryyeeq * g S, 1 ese=1eMe, 1 (e = Pe Kegeat)

To find the variance - covariance, we first determine BE(§ Qélxt) and then use the

" -."'N“.- \ OV '\ \" .\ ‘.'_':. AR ‘W \\‘ :‘_h‘ o nJ:_‘.
R )

(AIX.13)

(AII.14)

(AII.15)

{AIl.16)

(AIX.17)

(AI1I.18)




2
- -1
’ - .
B8, &y, = Vg - L %, 1 est-1eMe, 12 eVes et

i=1
(AL11.19)
2
(1) (1) 1
* 12- %1 Beie Bese 0

Substituting (AII.16) in (AX1.19), and doing soms straightforward but tedious algebra, and

remembering that "t,z - 1-at'1, we find

vig, lx,) = B8, 8lx,)
il UL %, 1V ere-13M, 1(xt Aby.paq)} (AI1.20)

1

-1
*Wpiear YT 0 Ve o iAM (2 A By eoq))

takes the form advertised in (3.8a).
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