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ABSTRACT

: This paper presents a robust Kalman filtering algorithm that is obtained

assuming a scale contaminated normal distribution for the noise of the

measurement equation. The mixture of normals obtained as a posterior distri-

bution is approximated at each stage by a normal distribution with the same

mean and variance. The resulting algorithm is simple, has a straightforward

interpretation and seems to provide useful robust estimators in several

statistical problems that are briefly reviewed. -5
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SIGNIFICANCE AND EXPLANATION
5-

Real data sets almost always contain outlying (extreme) observations and

outliers are particularly damaging in on line control situations in which the

data is processed recursively. Thus, an extremely bad value can distort the

whole mechanism of control and make the process very unstable.

In this paper, we offer' relatively simple model and obtain a procedure

to deal with the above problem. To represent the appearance of bad observa-

tions, a scale contaminated normal distribution has been assumed for the

measurement error.

In fact, we have shown in this paper, how a Bayesian approach allows the

development of a simple recursive estimation algorithm that has the desired

property of "filtering* bad (i.e., extreme) observations. Indeed, extreme

values are downweighted by their posterior probability of being spurious, and

the estimates of parameters are updated, recursively, accordingly.

Finally, we apply our model to the case of exponential smoothing with

contaminated error, and show that the parameter estimates obtained from the

resulting algorithm are a weighted combination of certain 2n smoothing

schemes. The application of the procedure to a broad range of statistical

estimation problems is briefly discussed.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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ROBUST KALMAN FZLTZKRING AND ITS APPLICATIONS

Irwin Guttman and Daniel Pea

1. Introduction and Summary

Kalman (1960) introduced a method of updating knowledge about the *stateu of process

parameters, say P, at time t, using a least squares procedure. This method, now known

as Kalman filtering, has wide applicability, from on-line process control in industry to

applications in economics. Kalman's results are reproducible using a Bayes approach with

normal theory, conditional on known values of variances and co-variances involved.

*' .One aspect of the filtering process is that it is sensitive to extreme observations.

Indeed, one or more wild observations can make the Kalman filter unstable. This a well

recognized result in both the Statistical and 3ngineering literatures, and is discussed in

the use of a Kalman-type filtering scheme that takes into account the possibility of

spuriously generated observations giving rise to extreme observations. This filtering

scheme automatically examines the possibility that the current observation is spurious, and

if the evidence points to this, downweights that observation in the filter, and does the

opposite for seemingly "good" (i.e., non spurious) observations.

We develop this filter in Section 3, after reviewing the standard Kalman filter in

Section 2. Section 4 sketches a number of applications, and the use of our filter in these

areas. Finally, Section 5 provides some discussion of our results.

Department of Statistics, University of Toronto, Toronto, Ontario M58 AI.

ETSII, Universidad Politicnica de Madrid, Spain.

Sponsored by the United States Army under Contract No. DAUG29-80-C-0041. The first author
acknowledges support from the NSZRC of Canada under Grant No. A8743 and the second author
to the United States-Spanish Joint Committee for Education and Cultural Affairs.
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2. The Standard Kalman Filter

The results due to Kalman (1960) may be derived and approached from the Bayesian point

of view. Suppose that we observe, at time t, a response vector yt, say of order

(pxl), and that this random response vector is such that

l- A 0 + Ey ly - N (9,60 (2.1)

. where At is a (pxr) matrix of known coefficients, P is a (rx1) vector of unknown

process parameters, and C is a (pxp) positive definite matrix, assumed known. The

vector I is referred to as the current (i.e., at time t) state of the process pare-

meters 0. As t varies, the states are also assumed to have a linear structure, viz, for

given _-10 V,

- . *4_ + , + e ~ (v) (2.2)
-t t-t-1 0,41

where at is a rxr known matrix, and V is a (rxr) positive definite matrix.qt

Finally, it is also assumed that we have prior information about 9-1, given Xt.1,

..t........This assumption is sometime referred to as the Inductive Hypothesis, and says

that prior to observing Xt, and given Yt-,,t-2. ... , that the distribution of t

given .- '""" has structure

ft" - 6 .I - 1(gV(2.3)

where Vt1  is a (rxr) positive definite matrix. We shall see below that i- is a

function of the y's.

Now using the above assumptions, we may repidly deduce that the prior for Or, given

Xt-1" N ( :~lt~t~ I(2.4)

where
t gt- I at At-t1

(2.4a)
V V -v+ v atVt- 1  t•t1

(The subscript "t:t-1" refers to the fact that we are at time t and have observed

X-t1 ) The quick and easy way to see (2.4) - (2.4a), is as follows We have, for given

-2-
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St -t- I+ (2.5)

from (2.2). But - is itself random, so that using (2.3) in (2.5), we have

• -atLt-, + to I + C
(2.6)

t-t I- + 't Et-1 + 
F-t

*. Because of the nomality assumptions, and assuming independence of ZtIl e, we have that:

Given t- I

0 t N 0t(a t Xt-1, a t Vt-1 Ot 
+ 

V) ,(2.7)

as claimed in (2.4) - (2.4a). It is convenient to write the result (2.4) or (2.7) as

8 tt- t- t tt-1 + (Vtt-) " (2.8)

we may now also deduce, using assumptions (2.1), (2.2) and (2.3), with the result

4 (2.4), the predictive distribution of the yet unobserved Xt, given Xt_I For from

(2.1), we have

X- Atft + ,~ (2.9)

where C N(O,C), and from (2.8). given we have that
_Xt  -At(Mt~t_ t + tt,t_l )  

+ l

(2.10)
.At Yt:t-1 + At £tzt-1 + C

which implies, for given Xt-lr that

Xt N(At ~tt-l, AtVtt-A + C) • (2.11)

We let the predictive variance of (2.11) be denoted by Mt, that is,

Mt - C + tttl . (2.11a)

Now the results (2.7) and (2.11) give the distributions of I and _t before observing

Xt , namely p(ptlXt_,) and p(Xylt_,). respectively. Now when we observe yt , we are

in the position to deduce the posterior for 0, given Zt, for are in the position of

having (2.1) as the sampling distribution of t given 0 , and (2.4) as the prior for

8, (given yt_, etc). We remark that once this posterior is obtained, it plays the role

of (2.3) for the next stage, to be discussed below. Now using Bayes' Theorem with (2.1)

and (2.4) as the necessary ingredients yields: Given ,

-3-
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It N( t~ t  •Vt~t) (2.12)

where

Xt.t= tt-1 Vt:tIA'Mt
1 
tlt - At Yt:t-I

)  (2.12a)

and

Vtt = AtCIAt + Vtt- 1  (2.12b)

so that, as is easily verified,

, Vt~t - Vtzt_ 1 - Vt~t-Iljltv'Atttl (2.12c)

where, we recall that Kt is given at (2.11a).

The derivation of these results is given in Appendix I. Notice the updating pattern

from Mktt.i the prior mean, to 4:At contained in (2.12a). Indeed, (2.12a) implies

that the current information Y tt about the process parameters I, given yt, is the

prior ~ ~ -inorato of6 ien v. plus an updating term, obtained by

O filtering* the deviation of Xt from its predictive expectation - see (2.11) - by use of

the matrix

"t - vt-t-1A'Kt (2.13)

Indeed the matrix KFt of (2.13) is referred to as the Kalman Gain matrix, and we note

that an alternative form - see Appendix I - is

K t - VtstA'C
- 1

Note too the update of Vt 2t  contained in (2,12b) - for example, we update Vt h

precision of the prior of 6, given yt_l, by adding the precision A4C 1ht of the

regression process parameter t of (2.1) to obtain V' 1 t etc. To enter the next stage,tit,

we replace (2.3) with (2.12) by setting t = )it and Vt t - Vt. and make the obvious

modifications in (2.1) and (2.2), and repeat the process.

4 To start the Kalman filter, prior conditions for the state vector I must be made,

say 160 for its expectation, and the matrix V0  for its variance - covariance structure.

- Once declared, the estimate for el the state of nature for the process that yields

is4 *S

It0 I Y-0 " )!Io (2.14)

and its variance - covariance matrix is

-4-
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VI:O a IV0al + V . (2.14s)

The forecast of the new observation y, (see (2.11)) is
A

X1 - A 11AI: 0  
(2.15)

with variance - covariance (see (2.11) - (2.11a))

M- C + AVl: 0 A1 ' . (2.15a)

When y, is actually observed, we update as follows - the expected state of nature goes

from )41:0 to 2,:,, where

X1O " J1 :0 + V1:0 1A'M 1 (x - Ajx1:0 ) (2.16)

and the affiliated variance - covariance is updated to V1 :, where

V- 1  - 1 + A - - V 1 A l 1 0V-1 (2.16a)
1:1 " lo A''A 1  (V13 0  1:01'M

1

As indicated befoe, we now set

- 1 and V 1 - VN 11  (2.17)

and inquire about t2' prior and posterior to seeing X2 etc.. We have

2 =A 2 !2 + , £y N(OC) , (2.18)

with

82 " 02 11 + eCO' e - "(9'V) , (2.18a)

while

11 " M1 + ti ' - N(oVl) . (2.lb)

The last two statements may be combined so that we have, given 1

e2 ~ N(02 Y1' Y10 + V)

or (2.18c)

2 "(42:1 ' V2:1)

The distribution (2.18) is now used with (2.18c) to find the posterior of 82, given X2'

4 which is

2 "(P 2 .2  ' V 2 . 2 ) (2.19)

where Y2:2 is given by (2.12a) with t - 2 and V2 :2  is determined by (2.12b), etc.

and the loop continues in the same way for t - 3,4,.. . This is pictoralized in Figure

2.1 for the general case of having reach state t - 1 and observed _t_l , etc.

-- 5
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Figure 2.1

Initial conditions 0 I

Estimation of next stage:

:t:t-1 ,t t-1

I|

JVt~t_ 1 - V + 't Vt_ 1 9

1 •Prediction of new observation

-"X , " t X t t- 1
Mt - C + &tVt.t_,At't

t =~ observation of X

Updating of the parameters
'" -tMt~t., 1  1 (-

VJt ttl + V A'M 1 &Vt tt

Vt: t-t~ 1At@K4 ltt: t- 1

. yen

:END

-6-
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There are several comments to be made about the foregoing Kalman filter. Essentially,

the whole process is a least squares procedure, as the reader will not doubt have known or

guessed. Least squares estimates are well known to be non-robust to outlying observations

(see Andrews et al (1972)), and in the Kalman filter case this could make the whole

procedure unstable, with devastating consequences in some situations, such as line-process

control of mass produced items. Then too. when p > 3, it is well known that least

squares estimators are not admissible (see Stein (1956)).

Finally, the assumption (2.1) that implies that £'s come from the same distribution

is much too strong in practice. Much evidence exists that shows that sets of data almost

always contain a small proportion of observations that have been spuriously generated

(i.e., not in the manner intended) giving rise to extreme or outlying observations (see the

general discussion in the paper by Box and Tiao (1968) and Guttman (1973)). For these

reasons, we replace the assumption (2.1) by a more realistic sampling model, and

investigate what form the ensuing "Kalman filtering" process will take in the following

section.

4

-7-
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3. A Robust Algorithm

3.1. A Different Sampling Model.

As indicated in the previous section, the oft-made assumption (2.1) is highly suspect,

and skepticism about this assumption often points to the question of the possible effect of

outliers on procedures developed using (2.1) in general, and for us, in particular on

Kalman Filtering. Outliers are feared mainly due to the fact that they may have been

generated spuriously, thus biasing results. This is a well recognized concern in the

engineering literature, and for example, the papers of Alspach and Sorenson (1971),

Masreliez (1975), Maereliez and Martin (1977) and Tsai and Kurz (1983) use a different

approach then ours to meet this problem. Of course, the problem of how to deal with

outliers in other situations and the general problem of "robustness" of various procedures

is the focus of much of the current Statistical literature - see the references cited in

*Section 2, for example.

Because of the above general concern, it is desired to establish procedures that are

'- robust to outliers in that they accomodate the appearance of abberant observations

appropriately - roughly speaking, giving small weight to observations that seem spuriously

generated, and large weight to seemingly "good" observations.

A spuriousness that gives rise to outliers often means that the error distributions

involved have tails heavier than those of the normal distribution, we will generalize below

the method of accomodating outliers used by Box and Tiao (1968), and replace the assumption

(2.1) by the so-called Scaled-Contaminated Model (SCH). This model was introduced into

statistical practice by Jeffreys (1961) and has been used by Box and Tiao (1968) to

robustify estimation in the standard linear model, by Abraham and Box (1979) to accomodate

outliers in time series, etc. Indeed, Cheng and Box (1980), have shown that the SCM model

represents a sensible modeling in many situations where spuriousness is feared.

The SCM model, simply stated is that

Xt , At 2.t X

where (3.1)

.y a IN(2,C 1 ) + a 2 NQ(,C 2 )

-8-
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In (3.1), we assume that the known constants al, a2  are such that a 2 - 1-a, and that

a2 E(O,.15), as is common in most applications. Further, we also assume C1  and C2  are

known, and such that by any measure, C2  is larger than C1. For example, it could be

that (for 02 a known scalar),
y

C1 - 1:I , C2 - k
2a2 1, k2 > 1 (3.2)

y 2 y

The prescription (3.1) says that with mall probability a2, xt is generated spuriously

from N(At 0, C2 ), etc.

In addition to the assumption (3.1), we also,, in this section, make the assumptions

(2.2) and (2.3) of the previous section, and inquire into the question of how the 3

assumptions (3.1), (2.2) and (2.3) affect the updating procedure discussed in the

introductory section. For convenience we list the assumptions used in this section at the

point:

i) See (3.1) - (3.2)

(ii) 6 -a e + ' £Ne(,v) (3.3)

-t t -t-1 -01-0 ') 33

(iii) !t-1 - * 4 t1 Ea ~t-1 N(o,Vt1), for given yt_1

The assumptions (ii) and (iii) of course, give rise to the result (2.4), namely that

e , given yt_1 has distribution (the prior of P) (2.4), viz

~~N :t V:t ( 3.4 )

where

=t:t-1 "t P-t-11 Vt:t 1 - V + ott lato (3.4a)

We can now determine the predictive distribution h(,.Jt_1 ), say, of xy given

Xt_-" Formally, this is defined as

h(XtlXt_ 1 ) - iO f(XtIlt)p(etjzt_l)dt (3.5)

and here, f is dictated by (3.1), while p is obtained from (2.4). The result of doing

the integration (3.5), as proved in Appendix II, is as follows:

h(Xtlt - aINx (At Mt:t.1,Mt,i) + a 2 N (At ttilMt, 2 ) (3.6)

with

-9-
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Ht,i - Ci + AtVtt.J 1 4 1 i 1,2 * (3.6a)

We note that
2

E(Xt-yt1.) A At Ut~t_-, V(etIyt-1) " AtVtt_.ItA + I a .C (3.6b)

We note that we may write

V(lt-t 1 )  * I~t, I + U2Rt, 2  ( 3.6c)

3.2. The resulting recursive algorithm.

The results (3.4) and (3.6) are statements that can be made before seeing Vt. once

t is observed, we are in the position of being able to find the (posterior) dietribtuon

of 0t, given Xt. For the prior of wt we have the distribution specified by (3.4),

while the (sampling) distribution of S is given by (3.1). The result of using Baye'

Theorem with these ingredients, as proved in Appendix I, is that the posterior of Or.

given yt is such that

2 (i)
PO tIxt a tiN0X' ~ 37

where

't _ tt-1 + Vtt- Mj i(Zt-At _tt-) (3.7a)

- 1 -1 -1V(i)tt" (v t-1 + AteC At)

(3.7b)

V ~- V tt AtMt AtVt~

and where

a . flXtjAt ) t(,t3 .i)

ti 2 (3.7c),. )_" u:)f~t(l. At )jt.t-j,Nt,:j)

with f denoting the density of the Normal multivariate distribution, so that, in general

f(XIZ,) - (2w)P/Il, /2 exp -112-4)'"(1-Ji) (3.7d)

The reader will not doubt recognize that the denominator of (3.7c) is, on using (307d), the

predictive density h of , given y_,, stated in (3.6). Indeed, using (3.7d) in

(3.7) yields

.. . .. • . • , . • o . o. . 0 -. . . . . . . o., . . .• -, ,•



4~~0 --. ,1 '/2 --- 1- -

"t, 1  T K- ) exp{ - At Ct 1  t2 )  
7 -At )t (t-3

I t,2(3.7e)

a t,2 at,

From (3.7) we easily find (see Appendix II for proofs)

E(om1 -1 -1 find At yor
=tlxt) " kt't-I + Vt't-il at Imto +.- M t.2

" t:t (3.8)

i") Vt-t_ - Vtt. 1 AtBtAV tt 1 - Vt t

where

-1 -1 -1 -- t t,1 t,1 +  ct,2 t 2 " t, let,2 ( t I -" #) t At X t 1 3. a
.- (3 .8a)

The quantities at,1  and 't,2 " (1"at,i) are the posterior probabilities that yt has

come from the intended source (i.e., N(At 8te) and the spurious source (i.e..

N( t 6,C2)), respectively. The posterior expectation is made up of two parts (c.f. with

(2. 12a)): the prior expectation "t:t-1 of I, given Xt_1(see ( 3.4)) and a deviation

of yt from its (marginal) predictive expectation At jtst-1 (see (3.6b)), but this time

the filtering (gain) matrix is the weighted uam of two Kalman gain matrices, where the

weights are the estimatee ati Just commented on. Put another way, the gain matrix

involves the weighted sum of the predictive precisions that would be involved if sampling

was from either N(At ItCc1 or NCAt wiC2 ), with weights that are the probabilities

that Xt was so sampled. For more introspection about the updated variance - covariance

Vtst, we first invite the reader to inspect the updated v t', t  and to acquaint

themselves with the details of how these are used by reading the proof of (3.8a) in

Appendix II.

We remark that to continue this procedure, we now use the following scheme

Set kt N tt (see (3.8)) and Vt Vt t  (see (3.8a)) (3.9)

0. 7-11-
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% Let p(eOtl t ) N(tV t) (3.10)

We may nov enter the next stage - we replace (iii) of (3.3) with:

Given Xt, P - Le ~ N(Q,Vt) (3.11)
%-t

and making the obvious modifications in (3.1) and (ii) of (3.3) - t is replaced by (t+I)

- we repeat the above process.

As in the previous section, to start this Kalman Filter, we must state prior

a. conditions for the state vector 1. say J for its expectation, and the matrix V0  for

its variance - covariance structure. once these are declared, then using (3.4) we have

that the estimate for 9,, before seeing 2, is

; It o I J"i ' o (3.12)

and the associated variance - covariance matrix is

Vi:o - V + a 1 V0 2 1 ' • (3.12a)

*The forecast of the new observation XI is (see (1.5b))

" A1 (l:O - A101 JO (3.13)

with associated variance - covariance matrix (see (3.6b))

2
S) a c + A (3-13a)

(c.f. with (2.lSa)).

When i, is actully observed, we update as follows - the expected state of nature

goes from to where (see (3.6))

MI:I- 
"

I:o +V 1  (t 1 I + "2 N;F2 ( 1  - A1  ) (3.14)

where the matrices Mi., are defined in (3.6a), and where the al are given by

(3.7c). The associated variance - covariance is (see (3.8a))

V1 3 1 - Vlt 0 - Vl 0APDIAlVIS0  (3.14a)

where

:! B -a1l~-,1 + -N1

°I + H 1,2 1,2

3(3.14b)

-1 -1-a 1 a 2 (N- 1 - N1
1

2 )X A 1 ! - A1 1 0 )'(NI - K 1 2 )
1,1' 1,2 1,1 1,2 1~:0) 1 Jl0

1

As mentioned in this section, we now set

-12-
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l and V1  V1,1  (3.15)

and take, for the distribution of 8, given x1 p(Q 1 1x1 ) given by

p(e1xj) - f(e11YM1 IV) (3.16)

that is, ~ N(QIV,), given y* This may be combined with (ii) of (3.3) for t - 2

to yield

p(-21XI) - f(,2162 ,1,V 2 ,1 ) (3.17)

where

(3. 17a)
i ~P2:1 " 2 kl V211 V + 02Vlg .(.1a

Now the distribution of X2' given £2' is of course specified by (3.1), that is

P(z 2 1£2iClC 2 ,a1 1 a2 ) - O1 f(X21A2 e2 'Cl) + a2 f(X 21A 2 12'C2 ) (3.18)

and (3.18) may be combined with (3.17) to produce the posterior of £2' given 2 hich

is

"i) M) (3.19)

PQ212 *2 ,if(1 2I 2: 2 :)i-1

where p(i) and V are found from (3.7a) - (3.7b). The probability a is of2:2 2:2 2,1

course (see (3.7c))

a2,1 A2(3.20)
/, '.oifl21 2 )42:1,"2,1

)

and a 2,2 - 1-I2,1' and the loop continues in this way for t - 3,4,... etc. This is

pictoralized in Figure 3.1 for the general case.

-13-
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Figure 3.1
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4. Scope of the New Filter

The previous section develops a filter which may be used in many various situations.

To illustrate this, we discuss several instances where the new filter of Sec*ion 3 may be

applied.

PR

4.1. Bayesian Forecasting

One of the most well known applications of the Kalman filter in Statistics is to that

of Bayesian forecasting, as developed by Harrison and Stevens (1976). Thee authors used

the standard formulation developed in the engineering literature for the linear control

problem that we have presented in our Section 2, calling it the dynamic linear model. They

showed that most statistical models can be considered under this general framework, which

L thus allows an unified approach, namely, by using the Kalman filter for recursive

estimation of the parameters. Harrison and Stevens (1976) then applied these ideas to

ayesian forecasting.

An our robust filtering includes the standard algorithm as a particular case, the

robust version of the algorithm we have developed can be applied to any of the forecasting

models discussed by these authors.

To illustrate the behavior of the algorithm we shall discuss its applications to one

of the most widely used model for forecasting, the so-called Steady Model. This model is a

particular case of the general formulation with At - 1, at . I end with yt a scalar.

Then, t:t-1 = Vt-1 and Vt:t.1 - V + Vt 1. The updating equations for the standard

recursive estimation of this model are

lt " 'It-I + cev+ )(Yt A t- (4.1)

c~v~vt--1C(V+V t

Vt - C(V+Vt.1 (4.1a)

C+V+V t-1
After some iteration the system will reach a stable state in which Vt = - . Calling

V. -1
6 = C[c+v+]

"
, we see that (4.1) can be written as

t Pt.1 + (1-)y t  (4.2)

A.-5
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-

and applying it recursively and assuming P0 - 0. we obtain
t-1

Ut - ( (1-6)Y • 4.3)

We have, then, from (4.3) the result that the steady model is equivalent to the DA (1,1)

model, which is equivalent to exponential smoothing.

To apply the robust Kalman filtering algorithm we have developed, we assumed

2 2 2C 1, " a ,c 2 - k 02; then

Ut - Pt-i + (V + V 1 t,1 2 0t2 +ly t - Mt'1

_ +V+Vt ' k2+VVt- 1

and assuming as before a stable state with Vt - Vt. - a, then calling

61 . 0 (v 2 + v + a)- and 0 = (k o )k 2a + v + a)-1, we have

"4t . [t,11 + at,282 )pt-I [1-011ut,1 + (1"2)at,2]yt

This expression shows that it is obtained as a weighted combination of M and

Yt" as in the standard cas, but now the weights are changing in every iteration and

depend on the probabilities *t'l and at'2 . letting St 2tl* + at.2*2# we can write

lit " 0 tPt-1 
+ 

(11"Ot)Yt (4.4)

and now the expression of Pt as a function of the observations is
n 11-0r ) it- 0- 

(ti~4.5)
l- t -o t -

To interpret this equation let us denote by w(roi,i,k,..h) the probability that r

observations came from the wspuriousm or *bada population at times i. J, k,..h, where

there are r symbols i, j,..,h. Then

91

w(rii,,k,..h) - ( II at,1)ai2aJ2'k2.. .%2 (4.6)
to I

t iiJ, .h

a and let us call ;t (rii,jk,..h) the smoothing associated with this combination of

observations (see (4.3)). This smoothing is the result of assuming

Pt - elMt-1 + (1-(1)yt 14.7)

for observations yte t - 1,... n but t 0 i,j~k,..h, and

Pt - 2 Mt-1 + (1- 2 )yt (4.7a)

for t = i,Jk,..h. Then, It is straightforward to show that

" -16-
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ot - Ew(rsi,j,..hl;(rli,j,..h) (4.8)

where here the summation is over all the 2t possible combinations of observations chosen

from Yl,'''.Yt" The main advantage of our algorithm (4.5) is that the 2
t exponential

smoothing factors are the result of the recursive relationship (4.4) and are not computed

separately but globally and here in a very direct way.

4.2. Robust Linear Regression

As mentioned previously, Box and Tiso (1968) assumed a scale contaminated normal

distribution for the noise of a regression model and used Bayesian estimation methods to

obtain a mrobust" estimation procedure that downweights suspicious observations in the

linear model. Additionally, Chen and Box (1979) showed that, given appropriate values to

the parameters of the noise distributions, the Box-Tiao weights can reproduce functions for

dowweighting residuals using -estimatore that have been proposed on empirical grounds by

Andrews et al (1972). Although this approach provides a general way to deal with outliers

in the linear model, the computations needed are cumbersome, because the posterior

distribution of the parameter vector is a weighted average of 2n posterior distributions.

Box and Tieo (1968) suggested that one need compute only the first few leading terms, but

with a large set of data the computations are still heavy, and there are no clear rules

about how many terms we would need to obtain a proper approximation. Little (1983) has

explored the relationship between the Bayesian weights and some influence measures proposed

for the linear model end has used this relationship to suggest an algorithm to determine

which of the weights that matter, and their subsequent computation. Here again, however,

the computations are still heavy.

We will show in this section how we can compute the posterior mean in a simple way

using the robust algorithm we have suggested.

The regression can be written as a state space model as

-|t(4.9)

A- At, A

where yt is now scalar in the observation equation and the regression parameter vector is

-17-
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constant over time. Assuming that the noise C t  has a scale contaminated normal

distribution

et - (1-a)N(O0 2 ) + aNl(0,k 202 ) 2 > 1 ( (4.10)

for fixed values of a, k2  and a2 , we then have a particular case of our previous

formulation. In practice, however, neither of these three parameters are known. Although

we can assume a and k2  known and make a sensitivity study afterwards (see Box and Tiao

(1968)), the problem of estimating a2 remains. There are two possible solutions.

The first is to compute a robust estimator of ;2 and use this value in the

computations. The second is to iterate in the estimation of the robust value until
2*2

convergence. Starting with a preliminary robust estimate of 02, say ;(1) obtained from

the residuals of the least square fit that leads to the estimate 1 we compute an

'2
estimate B(2) using the robust Kalman filtering algorithm with the value o(1) for the

(2)2
variance. Then, we compute the new residuals and a new robust estimator 2) for the

variance. Using this estimator a new application of the algorithm is made which provides a

new estimator (3) and, consequently, a new set of residuals. From them a new robust

variance estimator () is built and the process is repeated until convergence.(3)

In this particular case, writing Vt - 02Vto and t it the computations

needed are:

'~Bit " (I + X, Vt_ 1 Let) -(I + h(,)) 1.1

m2 t . (k2 + hl) , (4.12)

.I.-

,.at, - 1 1 * exp . y( 1  2° t (4.131
t 2

+ ~ - 2 +.L) (4.14)

It n2t

_ et) V 1 4t b x 1tV (4.16)t t " t- - t-, t t t -1 4
where Bt  bt  is given by

-18-
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b - .I 2 (t) ,

ht .' a,_! , t,2(----*"L l -- (4.17)

I It I2t aIt '2t '(t)

A simple alternative for a robust estimator of scale is the median absolute deviation

from the sample median y, given by

mAD -median(lyt - ; }1
t

This estimator is known to be more efficient for the contaminated normal distribution than>2
the sample variance, but is biased. A robust unbiased estimator of a2 has been provided

by Tukey et al (1977) and is given by

0 r (.64) median~e (4.18)

i

where the ei are the residuals from the least squares fit. The final covariance matrix

for the parameters will be Vt , ;2 Vt' where Vt is computed using (4.16).

Equation (4.14) shows that the estimate i(t) is a linear combination of estimators

that would have been obtained assuming that Et is distributed as N(0, 2 ) and

N(0,k 202 ), respectively, with weights that are the posterior probabilities at,i', d-

cussed before. As for the variance, instead of the least squares expression:

(V *x xA (4.19)

where = XIX, now equation (4.11) imposes an adaptive formulation:

t *- -1 (4.20)

where at - bt/(1 - h(i)bt) depends on the posterior probabilities of the observation

being an outlier. For instance, it is straightforward to see that if a, 1, t - 1,

and if a 1, at  -2
t,2 a-

This algorithm provides a useful computational device to estimate j when the set of

data is large. However, when the sample is small there are two problems that make this

approximation a crude one. First, the distribution for A at each state is not normal,

but a t-distribution when 02 is unknown. Second. with a small set of data the ordering

of the observations can influence the results. These two problems are not important for a

large data set because (1) the t-distribution, when the number of degrees of freedom is

large, is very well approximated by the normal and (2) the order of the observations will

-19-
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not affect much as long as the number of observations is large and stable state has been

reached.

The above is, in contrast with the standard Kalman Filter in which 02 is not needed,

while here the variances mit are required to compute the posterior probabilities that an

observation has been spuriously generated, and for the variance of the estimation itself.

4.3. Autoregressive Time Series Estimation

Assuming in the previous case that 34 (yt-1, .. ,Yt-P), the model reduces to the

state space estimation of an autoregressive process. Abraham and Box (1979) have studied

inference in this type of model when there is a small probability that "bad" observations

occur. The exact Bayesian solution is again difficult to compute because it involves, as

in the regression case, the computation of 2n  distributions.

Although in this case the previous approach can be used to obtain a robust estimate of

the parameters when all the data has been collected, the algorithm can also be used as a

robust procedure for on-line estimation when the observations are received sequentially.

In this latter case however, a way to compute an estimate of a 2  given the observed data

is needed because at every instant t only observations y,....,yt, will be available.

To solution we suggest is to start with a robust estimate of the variance, and update

this estimation when the new residual yt - Yt is computed. The algorithm will be defined

by the same equations but now (4.13) and (4.17) are:

It , yt-Zt A_, 2 , 1, -
a = [i + ((4.21)) ecp""  - -- "

m2t at mit M2t

It a2t 4 )2 ()2bt . It C92t(., (4.22)
M m m M awith it 2t it 2t t

e(t) = Yt tlyt-1 tpyt-p (4.23)

at  1Mediane(t)} /.64 • (4.24)
t
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4.4. Multivariate estimation

In the previous examples the observed vector x was a scalar but the algorithm is

also very simple when t is a vector. As an example, we will revise only the multi-

variate regression model. The standard formulation is

I "t At + t
(4.25)

At- It-, A

with

- - ) - (4.26)0' . .n . :x

where x' is the I x p vector of explanatory variables and Ait is the p x 1 vector
-t

of parameters linked to component Yit of yt. The noise Et is assumed to have a mixed

distribution and we can impose different structures depending on the particular problem on

hand. For instance if

C [ (4.27)

the presence of a multivariate outlier can be modelled assuming that they come from a

distribution with covariance matrix

22

C2 k1] k. > 1 (4.28)

which implies that the components of an outlier are unrelated. This is referred to as

-' external structure for spurious observations. Another example is C2 - h2C1 , h
2 > 1, so

that the components of outlying observations are related in the same way as observations

from the good or intended source, but variances of outlying components are larger. This is4

referred to as internal multivariate structure for spurious observations.

-21-
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5 Conclusions

Real data sets almost always contain outlying (extreme) observations, and outliers are

particularly damaging in on line control situations in which the data is processed

recursively. Thus, an extremely bad value can distort the whole mechanism of control and

make the process very unstable. In Industrial practice, for instance, all types of ad hoc

procedures have been developed to cope with this situation (see Mah and Tamhane (1982) and

Crowe et al (1983)), but a general methodology is needed.

In this paper, we offer a relatively simple model and obtain a procedure to deal with

the above problem. To represent the appearance of bad observations, a scale contaminated

normal distribution has been assumed for the measurement error. We have chosen this model

because other authors have demonstrated that its use provides sensible solutions to other

statistical problems, for example, in linear model estimation.

*In fact, we have shown in this paper, how a Bayesian approach allows the development

of a simple recursive estimation algorithm that has the desired property of "filteringn bad

(i.e., extreme) observations. Indeed, extreme values are downweighted by their posterior

probability of being spurious, and the estimates of the parameters are updated,

recursively, accordingly.

Finally, we apply our model to the case of exponential smoothing with contaminated

error, and show that the parameter estimates obtained from the resulting algorithm are a

weighted combination of certain 2 n smoothing schemes. The application of this procedure

to a broad range of statistical estimation problems is briefly discussed.
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Appendix I

As mentioned in Section 2, we wish, in the Appendix, to prove the results (2.12). We

have that the prior for it is NO (kt.t_iVtst_,), where kt-1 and Vt t_ 1 are
-t

defined at (2.4a), and from (2.1), we have that the density of 4 is N (At tt 'C).

Hence, the posterior of 0 , given , is such that

p( lo)e exp - t - " -t- ]  t't-1 " Y-t~t-1

(Ai.1)

+ [Xt - At It ] C 1 t - At !t j

Now the expression in the braces of the exponent in AI.1 is easily seen to be

lV - 1 -4 + A'C 1 At]et - 28[Vt:lt 1 y:t-1 + At C- 1 t] + cont. (1)(AI.2)t- t - ic --t2

which in turn, on completing the square, has the form

(8 - V b' VIt (8 - Vt:t bt] + const.(1) - const.(2) (AX.3)
't tat~t t t t -

where const( J ) are functions of At, C, Vt:t_1 and t, all of which are assumed
known. Also, we have written V "  for the matrix of the quadratic form in (AI.2) and

t-t

(AI.3), that is
t
"  - V-

1
_ + A t l'.4

V1 -:t CA'1 At (AI.4)
tat tat-1 It t

and we have, clearly, that b is given by~t = -1 - t I Ia.a

b tt-1 tt + A@C . (AI.4a)

Hence, p(JleQt) is such that

p(Xtle exp - -110 - Vt~t 4]' VIt(: - Vt.t t ] (AI.5)

which is to say, that a posteriori, 0 t - NQ t:tVt:t), where

' ~P-t :t 
=  

t :t t( I 6

and Vt. t  is such that its inverse is as defined in (AI.4). It remains to show that Vt t

is given by (2.12c) and that (AI.6) may be rewritten as in (2.12a). For the latter, we

have, from (AI.6), on using (AI.4a), that

-1 +A' C 1

or

4tt = Vtat[(Vt"t
1  + At C't)Jtt +IC

1  
- At ytit

1 ) ]  
(AI.7a)

and using (AI.4) we have

-24-
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4 tatt tat Y-tat-I + At' C I(x At MA1~ 1 ] (X.ka

so that

t:t I Et't-1 + Vt:t A C 1  t tatll (AI.7c)

To show the equivalence of (AI.7c) with (2.12a), we must show that

Vt.tAC " 
- VtatlAiMt"1  (AI.8)

where Mt is as defined at (2.11a). But

Vt:t - Vt~t Vtt-I Vtt-I (AI.9)

and again using (AI.4), we have

Vt:t  tt[Vtat - At At]Vt:t_I  (AI.9a)

or

Vtat Vttt-I - Vt:t q C " At Vt:tI (AI.9b)

which is to say

Vt:t + Vtat Aj C 1 At Vt:t_1 - Vtt_1i (Al.9c)

Post multiplying by At on both sides of (AI.9c), we may write

Vt:t A4 C-C + Vtat At C- Att:tIAt - VtatIAj (AI.9d)

or

vt..t t C-'C AtVt.tlA") Vt t_A ' (AI.9e)

and from (2.11a)

Vtat A4 C- Vt:t. 1  VI;1 (AI.9f)

and (AI.8), and hence (2.12a), is now demonstrated.

Finally, we wish to derive the result (2.12c). We have from (2.12b) that
-V1  

1 A A
1

tat tt[I + Vt~t-l C At  (AI.10)

Hence

- Vt t - (I + Vt:t_ 1 A' C
" At]-IVt:t I  (AI.10a)

and using a well known identity for inverses of matrices of he form I + EF, viz

(I+EF)
I 

- I - 3(I+FE)' F (AI.11)

with E identified as Vt:tI q C
"I 

and F as At$ we find

V (tt { Vt 1t_ At C'I[I + AtVtt_A' tVtt 1  (AI.12)

so that
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-t~ (I V~~ tit C It ,~At~ ~ 'A~Vt, (Al. 12a)

or, on using the dot initon of mt given in (2.11a),

*1at- -Vt A' K-1A (AI.13)Vttt- Vtt-I it t t t t-I

which indeed is the result (2.12c).
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Appendix 11

This appendix is devoted to the derivation of results (3.6), (3.7) and (3.6).

we have from (3.5), with f given by (3.1) and p given by (2.3), that the

predictive distribution of Xt, given *t1 is such that
1bo2

h(Xtlyt_) - I. Gi f f(ytjAt~ 2t,Ci)f(~tIAtt..,Vttij)dtt (AI.1)

where the density f is defined in (3.7). out the integral operation is clearly

equivalent to the argument used in (2.10) with Ci replacing C so that from (2.10) -

(2.11) we have

2

h1 1 . t) " t-1 -i Ie fl ytlAt ,cf(l,vttlt lAII.2)

where ti is as defined in (3.6a) - see (2.11a), and the result (3.6) is now proved.

To derive the results (3.7), we note that (3.4) gives the prior for Ato while the

distribution specified by (3.1) dictates the likelihood of zt, given O. Hence* the

posterior of h given yt in such that

2

hlzjt l ) I " i f aiflt tlY"t ,t.1" ts-) (AII.3)
i-I

In common to the work of Appendix 1, the summand of (All.31 requires the *completion of a

square operation to form a quadratic form in 3.) However, since the constantw left

over in this operation depend on i , they cannot be absorbed by the constant of

proportionality. Now for the ith term, we have in the exponent, apart from the

i 2

and from the work in Appendix 1, we see that (AIIo4) may be written as
-i (1 -1 M M -

[0 -t~ vi ) M11vi -M

't tt-1 t - - tt t

where

- _1+ At' C( At)-XZ.6)

-.. vt, -tvt,t-,
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4

and , Ci + AtVt:t-lAL (c.f. with (A1.4) and (AI.13)), and where

i ) - 1 1 ' 
1R t~t-1 j ,t-1 Ai ci 1 X (k z.7)

(c.f. with (AX.4a)).

Now the last three terms in (A1I.5) may be written as

• - C i ' A t V t~ t~ C i 1] L t + t: t 1 t - "t

• (All .8)
- 24 Ci1 At + V "1

tat t:t-1 4t:t-1

and it in straightforward to show that (AXZ.8) may be written as

4nti Xt + 4.tit-ltiiAt At:tl - 24kNtiAt Mt~t-1 (AZI.9)

which in of course,

-(t - At 4.t-1)' Mt i( - At Mt:tt ) "

Hence p(etI ) of (AIZ.3) is such that

I2

P(Otxt -I2 IC-11I/2 IV;.t' 1 2exP -!X - At j~~~)
42

(0 (i)Vi -1c~lV to i-/J.!.

Mt i(Xt - At Ytt-1 ) x exp - l t t "t tt

whr weL haewite= VMi (i), usn
where we have written t t i and using the work in Appendix 1, we find

t - (V ,.( 1  - - At yt~ = t~t1 + Vjt~t (Xt"t t:t_, )  (Z.1

or

Ii) I + A'N - At •t)

Using the definition of the multivariate normal density given in (3.7d), we now easily find

that

IC-

2 1C 1112 V t-1 '

2 ~ ~ ~ ~ ~ ~ ~ V .ti) ) x i1iti'2 I-11'/2 f(Xtltt tt-l'Mt'i )

x f~te (£ .)l '

and it is easy to see that the determinants involved are such that the indicated products

and ratios involved is 1. Finally, integrating with respect to Ot yield
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2

m-e

% m i r(IAt  t.t, mt,i) - h(xl _1 ) (AII.13)

so that using this in (AII.12) we now have

2 )
P~etlxt) I at' f, (e-t~m t, ttt (AII.14)

with at,i as advertised in (3.7c).

Now using (AII.14), we can calculate moments. We have

2 2( ) (j)

( I. M M,~tlxt ) " I I ati I e~t f(eOt A4l:t,vt~t)Aet

(AII.15)
2

and using (A II.1a), which is the result (3.7a), we have

2

_(1) - * ttAt-1 + V tAttl " t:t-1 (AII.16)

which may be expressed as in (3.8), or as above in (AII.15).

To find the variance - covariance, we first determine 1( tt and then use the

identity

VClejO ) = ist J tI t ) - "(!t0ti)o] ['(et gtIx) (AiI.17)

Now from (AI1.14), we have

e I t) - .at, It 4 i) _ (t)
(AII.18)

2 (i) + (i) U)']
- t t:t t:t tat J

Now V(£ ) is given in (AII.6) so that we have
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(AI19)
+2 Mi Mi I

* Substituting (AII.16) in (AII.19), And doing som straightforicard but tedious algebra, and

-. remmbering that at2 -al we-in

2. V f i n d' ( t to '

- +t- t' at s - (AII.20)

(Ytt+IAMtjti(Z - Itlat At)) t,)

X{J~+Za ~t~ti t ti -AtM 2 1)
* takes the forn advertised in (3.8a).
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