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ABSTRACT

/ This paper presents a nontechnical review of current research efforts in

the mathematical theory of viscoelastic materials. Recent results concerning

* the existence, uniqueness and regularity of solutions for initial value .

. problems as well as for steady flow problems are discussed and a number of

open problems are pointed out. ,.
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SIGNIFICANCE A~ND EXPLANATION

This paper is based on a lecture presented at the Symposium on

Viscoelasticity and Rheology, Madison, October 1984. The lecture was aimed at

explaining to a general audience some of the mathematical problems associated

with model equations for viscoelastic materials and giving an impression of

the current state of efforts in this field. Questions of existence,

uniqueness and regularity of solutions to initial value problem, and to steady

flow problem. are discussed and some open problems, which the author considers

to be of particular interest, are pointed out.
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ITIS G1RA&I
DTIC TABI
Unanr,3urncer Cc

t Spe~cial

The responsibility for the wording and views expressed in this descriptive
sumary lies with NRC, and not with the author of this report.
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RECENT DEVELOPMENTS AND OPEN PROBLEMS IN THE
MATHEMATICAL THEORY OF VISCOELASTICITY

Michael Renardy

1. EXISTENCE RESULTS FOR INITIAL VALUE PROBLEMS -

The existence of solutions for systems of ordinary

differential equations

a - f(u), u(O) -u 0 , (1.1)-

can be established by using the iteration

a n+l f(un), un+l(0) = U0 , (1.2)

which can be shown to converge for small enough t > 0. For

partial differential equations such as

Ut * u)x, u(t = 0,x) = u0 (x) , (1.3)

the iteration (1.2) cannot be used. This is because at each

step of the iteration we would be taking two x-derivatives

and, if data are sufficiently oscillatory, these

x-derivatives will grow larger and larger. An iteration

that can be used is the following

un+ 1 = (un)u n+ l un+l (t 0"x) u W (1.4)" x" xx 0 t" ~)=U() 14 "'"

This example illustrates a general strategy used for so-

called "quasilinear" equations. In such equations the

highest derivatives occur only linearly, and nonlinearities

contain only lower-order derivatives. One then puts an n +

1 on the highest derivatives (the "principal terms" in the

equation) and an n on lower order derivatives. Two things

must then be proved: first that the linear problems to be ..- ,

solved at each step are well-posed and secondly, that the

iteration converges.

-. .'% 9

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. This material is based upon work supported
in part by the National Science Foundation under Grants No.
MCS-8210950 and MCS-8215064.

. . . .% , , ,,. %. *' ,- , . 5 A, , ,.V . .., -", . . ... ". .- ,.,. - . ,•, ,, . .., . . ,.



In order to apply these ideas to problems in visco-

elasticity, we have to know that the equations can be
'written in some quasilinear form and we have to know what

the principal terms are. In the following, we illustrate

this for a class of one-dimensional model equations, whose

structure is typical of problems arising in viscoelasticity.

Let us consider equations of the form

Utt = f(Ux,uxt) x + gUx) x

t
+ f m(t - T)h(u (t),Ux(T))xdl (1.5)

with appropriately smooth boundary and initial data. For

!" > 0, the term of highest differential order on the right

hand side is the one involving uxxt. If the derivative

of f with respect to the second argument is positive,

(1.5) can be regarded as a parabolic equation and the

iteration to be used is

un+l u n )un+l f(un ,un nutt D2f x' xt' xxt + Dflx' xtl xx ''::

t . "-.',

+ g(u ) x +J Im(t - r)h(un(t),u( )) xd. (1.6)

Under appropriate smoothness assumptions it can be shown ft

that such a scheme is well-defined and converges. This is
accomplished by adapting a result due to Sobolevskii (361

for equations without integral terms. At each step of the

iteration, we have to solve a linear parabolic equation with

time-dependent coefficients. In Sobolevskii's approach, .

this equation is regarded as a perturbation of the problem

with time-independent coefficients, evaluated at the initial

time t = 0, and a convergent iteration based on the

variation of constants formula can be formulated. Finally,

it is proved that the mapping un * un+l given by (1.6) is

a contraction in an appropriate Banach space.

.. ,tft. -..
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One-dimensional model problems of parabolic type are
discussed e.g. in 111], [29]. In [30), the same ideas are

extended to three-dimensional flows of incompressible fluids

under both displacement and traction boundary conditions.

If - 0, m, g and h are smooth, and m, g' and

Dlh are positive, then (1.5) can be regarded as a

hyperbolic equation. The appropriate iteration method is

t
u u + J m(t - T)D h(U (T))u t)

+ D2hlun(t),u:(r))Ux x (T)dr ( 1.7)

It looks surprising at first that we can put an n on the

Ux()-term, since this term appears to be of the same

differential order as the uxx(t)-term. However, when we
differentiate the equation with respect to t, then uxx(t)

becomes Uxx t , but u (T) remains uxx (T). This

explains, on a heuristic level, why this term can be
regarded as being of lower order.

At each step of the iteration, one now has to solve a

linear hyperbolic equation with time-dependent coefficients.

Existence of solutions for such problems can be shown e.g.
by the implicit Euler scheme. Again, a contraction argument

is used to show convergence of the iteration. This argument

consists essentially of two steps: First, it is shown that

the iterates remain bounded in a certain norm (e.g. that all

third derivatives of un  have bounds independent of n).

Then one uses this fact to show that the iterates converge

in a weaker norm (i.e. one proves that second, rather than

third, derivaties of un converge). An abstract

formulation of these ideas is given in the work of Kato

[171, [191, [201.

Applications to problems in viscoelasticity are due to

Mac Camy [23], Staffans [37], Dafermos and Nohel [5), [6],

Hrusa [131, Kim [211, Heard [12] and the author [31], 1321.

Three-dimensional problems with incompressibility have been

4 % .%-
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studied [211, [321, but only for the pure Cauchy problem

posea on all of space, not for initial-boundary value

problems.

There is some interest in relaxing the assumption that 0
m is smooth. The first term on the right hand side of

(1.5) can be thought of as arising from setting m equal to

the derivative of the 6-function. It is only reasonable to

think that m may also have weaker singularities as O

t - T 0. If m is unbounded at 0, the iteration (1.7)

will not work. Instead, one will have to put n + 1 on the

u (T)-term as well. This means that the "quasilinearized_
problems to be solved at each iteration are now history

dependent. (In both the parabolic and hyperbolic cases the

linear problems involved no history dependence at all, i.e.

history dependence was basically treated as a perturbation.)

In a recent paper [15J, W. Hrusa and the author show that

such an iteration converges for the special problem

t
utt - *(Ux) x - J m(t - T)*(Ux(T))xdr , (1.8)

-U

where #', #' and *'- 4' J m(T)dT are positive, m is
0

positive and monotone decreasing and has an integrable

singularity at 0. The method used is based on

approximating the singular kernel by smooth kernels and

showing that it is possible to pass to the limit.

Thus far, we have talked about existence results of
local type. This means that we have initial data given at a

certain time, and we prove that solutions exist on some time

interval thereafter, which may be short. For large times,

smooth solutions may not exist as we shall see in the next

section. However, there are results on existence of smooth

solutions for all times if one considers smooth and small

* data perturuing a stabile state of rest. Dafermos ana Nohel

(5i, [6) have established such a result for the problem

-4'-..
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t
U tt = *(Ux) x - J m(t - )*(U xTl))xdT + f(x,t) , (1.9)

" posed on a finite interval with boundary conditions of Le
Dirichlet or Neumann type. The proof is based on energy
estimates which guarantee that small solutions will remain :."

small for all times.

Hrusa (131 has generalized this method to a large class

of one-dimensional problems. Hrusa and Nohel [141 study the

Cauchy problem on all of space for (1.9). This problem is

more difficult than the initial-boundary value problem,

because an estimate on x-derivatives of a function no longer

implies an estimate on the function itself. This makes the

required energy estimates far more complicated. In three

dimensions, Kim [21] has shown a global existence result on

all of space for a covariant quasilinear model fluid. It is

to be expected that Kim's proof can be generalized to K-BKZ

fluids.

2. PROPAGATION AND DEVELOPMENT OF SINGULARITIES

While parabolic equations, like the heat equation,

instantly smooth out discontinuous initial data, hyperbolic

equations like the wave equation will propagate

discontinuities and, if nonlinearities are introduced,

discontinuities can develop from initially smooth data. As

we shall see, the intermediate nature of model equations for

viscoelastic materials leads to interesting possibilities.

One-dimensional linear wave propagation in a visco-

0 elastic material is described by the equation

t
utt =buuxx + luxxt + f m(t - slUxx (t) -u (s))ds . (2.1)

Here b and U are non-negative constants and m is a
non-negative, non-increasing function on [0,-) such that

m is integrable at - and tm(t) is integrable at 0.

For the following, we are interested only in the case

ti. 3A 0.

-5-
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In recent joint work with W. Hrusa (161, we study (2.1)

for x 6 R with the following initial data

u= 0, t < 0

u(x,t =0) a sgn x ,(2.2)

2-. ut(xt = 0) = a sgn x

The problem (2.1), (2.2) can easily be solved by Laplace

transforms. We are interested in the regularity of the

solution and the location of singularities. It is easy to

see that these are determined by the asymptotic behavior at

infinity of the Laplace transform of u, which is related

to the transform of m.

If m is a smooth function, then, for A + a,

Re A ; 0, the transform has the asymptotic behavior
-(A) m(0) +. .(2.3)

7:

In this case, it is well known [1] that the singularity

propagates with the wave speed b + m(0) and decays

exponentially with a factor exp(-m(O)t/2(b + m(0))). In

addition, we show in 116] that, except in a very special

case, there is a discontinuity in Uxx across x = 0. Away

from the lines x = ±t/b + (0), x = 0, the solution is

smooth.

The presence of a singularity in m alters the

asymptotic behavior of m(k). Of particular physical

interest are kernels m which are smooth away from 0, but

become infinite at 0. Such a possibility has been

suggested by certain molecular theories (71, (341, [391 and

by experiments [221.

As is expected from the formula for the wave speed

above, there remains a finite wave speed as long as m is

integrable. However, the exponential decay factor becomes

zero if m(0) is infinite, and we can no longer expect

C "-'.-.
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9.

propagation of a discontinuity. In fact, Hannsgen and

Wheeler U101 show that, for any singular kernel, there must

be some kind of "smoothing"; that is, the solution at any

positive time will lie in a more restricted function space

than the space admitted for the initial data. How much

smoothing there is, depends, not surprisingly, on the nature

of the singularity in m. In [16], [28], the following

examples are discussed:

1. m t) -- t , > 1

n=l
This kernel behaves like t as t 0, and is

integrable if a > 1. The solution is C( across the wave

and analytic behind the wave, i.e. for 0 < x < t /b + m(0)
(the latter is in fact true for any completely monotone

kernel). If a 4 1, m is not integrable. The wave speed

is infinite, and the solution is analytic everywhere in

t > 0, x * 0.

2. m(t) = exp(-ent)
n- 1

This kernel behaves like 11n ti as t + 0. The
number of derivatives of the solution which exist across the

wave is increasing proportional with time.
-v

3. m(t) = J exp(-e t)dv
0

This behaves like Inlin ti as t + 0. If regularity
is measured by the number of existing derivatives, the gain

of regularity in the solution is infinitesimal. However,

the initial discontinuity disappears and u is continuous

across the wave.
we believe that continuity across the wave should hold

under very mild assumptions on m (provided of course

that m is singular), but we have not been able to prove a

general result. It would be enough to show that the total

variation remains finite..4.

As this discussion shows, singular kernels lead to

completely new qualitative features of wave propagation.

The coexistence of finite speed and smoothing may be of

-7- \
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interest in modeling phenomena in other fields of physics,

such as heat flow. It would be extremely interesting to
know how singular kernels affect the solutions of nonlinear

problems, but no results exist so far. In the following, I 0
shall review some results for nonlinear problems with smooth

-a'--

kernels. .'

Coleman and Gurtin (3], partly in joint work with

Herrera [2] have studied the evolution of acceleration .•

waves. They find that, if an acceleration wave propagates

into a medium at rest, then its amplitude satisfies a

Riccati equation of the form

a Ya+ a2 . (2.4)

Here, in our notation from above, y m(O) , and A
2(b + m(O))

* is a second constant related to nonlinear properties of the

* material. From (2.4) it is clear that a will decay

exponentially if its initial value is small, but will blow

up in finite time if its initial value is large and has the

right sign.

This result shows that weak singularities can grow in
amplitude and lead to stronger singularities. This, and

known results on hyperbolic conservation laws, have

motivated the search tor results establishing the

development of singularities from smooth data. For certain

specific model equations, such results were obtained by

blemrod [35], Gripenberg [81, Hattori [9], Malek-Madani and

Nohel [241 and Malek-Madani, NOhel and John [25]. We do not __

present these proofs here, but the following, somewhat

sketchy argument will illustrate some of the main ideas. . . -*

Let us consider, the model problem studied by Malek-Madani

and Nohel [24] 9

t
ut + *(u) x - J m(t - s)*(u(s))xds = 0 . (2.5)

0

Here * and $ are strictly monotone functions:

-8- 7'..-.
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*,'> 0 If we set

t
z =-Jm(t -s)*(u(s))ds

then

t
- JMO#u m'(t -s)4i(u(s))ds .(2.7) -

If t is small and u is bounded, then the integral in

(2.7) is small. We can then regard (2.5) as a perturbation

of the problem

ut+*()~ +~=O,(2.8)

zt = -m(O)*(u)

and we expect that the solution of (2.5) will develop a

discontinuity in u if the solution to (2.8) develops such

a discontinuity sufficiently fast, (and in fact, it is not

difficult to include the integral as a perturbation in the

following argument). In (2.8), we introduce Riemann

invariants r # (u) + z, s =z, and we define the

characteristic derivative d = + *'(u) .We then

obtain

dr--mO(u

(2.9)
as=-

7E m(OMu

We differentiate with respect to x, and use the fact that

f(u) =r - s, to obtain

d r =-*u)(r -s~ )r -m(O) "~'u) (r s
dt *'Tr(u) 7--

(2.10)

=x -m(0) 40(u)- (r~ s,~
+11(u) x

if we now let p = sup ir.I, and a sup Isxj, then,
x x .

under appropriate hypotheses on *,*and the initial data

(2.10) leads to differential inequalities of the form

-9-
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(d )+P a2 - pao - y(p + a)
(2.11)

(d 6(p + a)

It is not hard to show that we can take data such that 0 

tends to m in a short time.

The analogy with hyperbolic conservation laws and the

numerical evidence [26] suggest that this blow-up of smooth

solutions means the development of shocks (i.e. weak .O

solution with discontinuous u for (2.5) or solutions with

discontinuous u and ut for second order equations). No

such result has been proved. Existence theorems for

solutions with initial data of small total variation were O

established by Dafermos and Hsiao, but their work is still

unpublished.

3. STEADY FLOWS OF VISCOELASTIC FLUIDS

Existence results for steady flows of viscoelastic

liquids are lacking, even for slow flows perturbing rest.

Formally, such slow flows have been analyzed by perturbation

methods. Let the stress be given by a smooth functional of

the history of the relative Cauchy strain

t
T = F -t.(s) . (3.1)

We assume Ct(s) is a smooth function of s, expandable in

a Taylor series about s =t:

n t)i n+l
C = i + (st) Ai(t) + O(Is tnl) ""(.2(s ) = = - • ( 3 .2 ) [[ -[

i=l

The Rivlin-Ericksen tensors &i satisfy the following

recursion relation in a steady flow

Ai+I (u.V)A i + AiVu + (Vu) T"
- =- - (3.3)

A u + (Vu)

We can therefore regard (3.2) as an expansion of

_ t(s) in increasing powers of a small and smooth velocity

field u. Suppose, e.g., that we want to solve the

.% _10

.% .%, -

-10-
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equations of motion

p(gV)u - div - Vp + cf

div u = 0 , (3.4)

.- _ ...o

in a bounded domain 9, where c is a small parameter.

Under appropriate concitions on the functional F (see

Coleman and Noll (41), we can formally expand u in powers

of e and equate coefficients of the same powers of c in

the equations. This leads to an infinite sequence of

inhomogeneous Stokes problems from which an approximate

Osolution" can be determined to any order in e.

It has not been proved that such a formal expansion

converges or that it yields an asymptotic approximation to a

solution of the full equation. Because of the presence of

the term (u.V) Ai  in (3.3), the expansion of Ct(s )

involves derivatives of u of arbitrary order. It is

therefore clear that we can expect convergence of the

expansion only if we require a high degree of smoothness for

the data of the problem. It is possible that, under

appropriate assumptions, convergence could be shown in

certain spaces of analytic functions. An effort in this

direction was made by Niggemann [27]. He studies one-

dimensional model problems of the form

u" + a uu . u (3.5)N-1 jl,....J = :31p 'JN " "
N1N~

his analysis requires certain assumptions on the

coefficients for which no physical motivation

has been given.

An alternative approach to the problem is the use of

iterative schemes, by which it may be possible to prove

existence of solutions without recourse to small parameter

expansions. The asymptotic validity of such expansions can

then be establihsed a posteriori, by estimating derivatives

-II- '-.-'.:
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of the solution with respect to e. In recent work by the

author (33], existence of solutions to (3.4) is proved in

this way, provided that u0  is tangential to an, and .

is determined by a differential constitutive law of Maxwell
or Jeffreys type, with an arbitrary number of relaxation

modes. For simplicity, we hall here consider only the
special case of the upper-convected Maxwell model

(u*V)T - (Vu)! - T(Vu)T + AT = nXA(Vu + (Vu)T) (3.6)

By taking the divergence of this equation, we obtain

(u.V)div - (Vu)div T + A div T T a 2u + nXhu , (3.7) .

2 _ _

where T a 2 stands for T ax ajk We substitute
j,k .k

div T = p(uoV)u + Vp - f from (3.4) (we set e = 1),

introduce the notation q = (u.V)p + Ap, and solve the 0

equations by the following iteration scheme.

U0 =0, p0 =q 0, T0 =( (3.8)
Tn . 2nl Xun+l n un un+l qn+l .

T n 32n+l + XAun p( V)(u V)u n1 Vq n

n + (Vun)TVppn - (un * + n -

-[V- V,.),f (Vun)f Af
(3.9)

-p(Vun (un.V)un + Ap(un*V)un

div un+l = , n+l 0 , fff qn+l= 0

n+l n+l n+l n+l(u+.V)p + Ap ~ =q (3.10)
n+l n+l n+ n+l n+lvun+lT -.---.

(U *V)T (VUn )T T~(~
(3.11)

E xs+l = nA(Vun+l + (Vun+l)T)

Equation (3.9) is basically a perturbation of the Stokes

problem, while (3.10) and (3.11) are hyperbolic problems

which can be solved by the method of characteristics. The .. '. f.

proof for convergence of (3.8)-(3.11) is similar to

existence proofs for initial value problems for quasilinear
*o t-..

- -12- %q.° %
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hyperbolic Systems. First bounds for all iterates in a
sufficiently strong norm are obtained, and then these bounds

are used to obtain a contraction estimate in a weaker

norm. Iterations similar to (3.8)-(3.11) have been used in

numerical calculations (see e.g. [401).

The following questions remain open:

1. Can similar results be obtained for integral type

constitutive models?

2. What happens if u is not tangential to an? In

this case we expect from the analysis of characteristics

(181 that extra boundary conditions need to be imposed at

inflow boundaries. What are the right conditions to impose

and what compatibility conditions are required to avoid

singularities of the solution where an inflow boundary joins

with other parts of the boundary?

3. Formal expansions for small parameters require no

extra boundary conditions at inflow. How are solutions

approximated by these expansions distinguished from others?

4. Can one say anything about steady flows when f

and goare not small? in this case it is possible that a

change of type occurs in the equations governing steady flow

[181. However, attempts to compute steady flows have
encountered difficulties even in situations, such as

creeping flows of an upper convected Maxwell model, where

there should be no change of type. Although the existence

of steady flows in the Newtonian case is well-known [381,

-~ even at high Reynolds number, we have no reason to believe

that steady flows of viscoelastic fluids should always L.
exist. It is possible that the numerical difficulties

result from non-existence.
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