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Inequalities for the M/G/» Queue and Related Shot Noise Processes

By

Fred Huffer
Florida State University

1. Introduction and Main Results.

This report deals with shot noise processes X(t) which are formed
by the superposition of pulses having random durations. The parameter t
will be either a point on the line or on the circle which are denoted by
L and C respectively. The simplest such process is the M/G/» queue

which is formally defined by

o
s 1-§w EUBRCR

where {Ti:dm< i <=} are the ordered arrival times of a Poisson process
having rate A, {Zi:dw< i <w} are nonnegative random variables with finite
expectation which are independent and identically distributed according to
the distribution F, and I[a,b] denotes the indicator function of the
closed interval [a,b]. Thus X(t) is the number of busy servers at time
t in an M/G/» system where customers arrive at rate A and service times
have the distribution F. X 1s a stationary process with EX(t) = A(EZO)
for all t. We use the notation X ~ L(A,F) to refer to the process X
determined by A and F.

We now define an analogous process X on a circle having circumference
P. Let {Zizl <ic< n} be independent random variables satisfying

<P for all 1. F will denote the distribution of Z,. Place
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n arcs with lengths Zl,Zz,... ,Zn uniformly and independently on the
circle. For any point t on the circle, let X(t) be the number of
these arcs which cover t. It is more convenient notationally to think

of X as a periodic step function (with period P) defined by

-y WP Ty
v 3 > " . .
. «

n
X =
i=1

PPp——

J
[Ti’Ti+Zi]

——

where {T,:1 < i < n} are independent random variables distributed uni-

formly on the interval [0,P) and J is a periodic indicator function

(a,b]
« defined when 0 < b-a < P by

P S GRS oo

Tla,b) ~ k,zm Iiatip, bkp]

We use the notation X "V CP(FI’FZ""’Fn) to refer to the process X on
the circle (or the equivalent periodic process on the line) which is

P determined by the distributions Fl,FZ,...,Fn.

] We shall present results which indicate how the processes L(A,F) and

CP(FI’FZ"“’Fn) change as the distributions F or F, are altered to

i
b
".’ increase their variability. The precise notion of "increasing variability"
]
. we shall use is contained in the following definition.
-
- Definition: Suppose Y and Z are random variables with E|Yl < @
b
‘. and E|Z| < @ having distributions F and G respectively. If
.
{ E$(Y) < E4(Z) for all convex functions ¢: R =R, then we say that
F4 G or equivalently Y= Z.
Note that Y= Z implies EY = EZ and Var Y < Var Z.
r . 1
. 2 4
L.
4




The variability ordering -} is well known and has been extensively

used to derive inequalities in queueing theory. See Whitt [14] for an
example of this use and Stoyan [11,12] for a survey of some of the litera-
ture. Rolski [6] and Stoyan [12] are good sources on partial orderings of
probability distributions. Ross [7] gives an elementary treatment of
variability orderings.

Our results concern random variables which may be written as func-
tionals H(X) of the process X. We assume that H(f) 1is defined for
all f 1in some class of functions F. The relevant classes of functions
are now given. Let G be the set of upper semicontinuous step functions
which take on only nonnegative integer values, have no jumps of magnitude
greater than one, and have only finitely many jumps in any bounded interval.

P
the set of periodic step functions (with period P) which can be written

Clearly P{XeG} = 1 for any of the processes X v L(A,F). Let Gn be
’

in the form

i and bi'

The principal conditions we shall impose on the functionals are the

for some values of a

following.
Definitions:
If H(fvg) + H(f Ag) > H(f) + H(g) whenever f,g,fvg,fAg all belong

to F, we say that H is L-superadditive. If both H and -H are

L-superadditive, we say that H 1is L-additive.

-
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A function h with k arguments is said to be L-superadditive if

h(xvy) + h(xAy) > h(x) + h(y) for all x and y in Rk. This condi-

tion was introduced by Lorentz [2]. L-superadditive functions have
been used to obtain inequalities in a variety of settings. See Marshall

and Olkin [3] for a survey of some of these uses.

Here are some other conditions we shall use. All functions below belong
to the relevant domain F. H is bounded if there exists a constant b such
that |H(f)] <b for all \f. H is increasing if H(f) < H(g) whenever
f <g. H 1is local if there exists a bounded interval [c,d] such that
H(f) = H(g) whenever f£f(t) = g(t) for all t in [c,d].

We now state some special cases of our main results. Consider the

following situatioms.

* x % * *

(1.1) Let X~ L(AF) and X ~»L(A ,F) with A=) and FI F .
Suppose H 1is a local functional defined for all f in G. Assume that
H is bounded, or alternatively, assume that H is increasing with both

E|HX)| < » and E[HEX")]| < .

'\ac *'\'c * % *
(1.2) Let X~ Cp(F,Fy,...,F) and X p(F1sFpseeosF ) with

*
F,= F, for all i. Assume that H is bounded on Gn

i i ,P°

(1.3) Theorem: The statements (a) and (b) given below hold true for
both situations (1.1) and (1.2);
*
(a) If H 1is L-superadditive, then EH(X) < EH(X ) .

*
(b) If H 1is increasing and L-additive, then H(X) ) H(X ).
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2. Examples.

Let X and X* be as in (1.1). To obtain consequences of Theorem
(1.3) we need to exhibit local functionals H which are L-superadditive
or increasing and L-additive,

(2.1) Example: Suppose h is a k-dimensional L-superadditive
function, h(xvy) + h(xAy) > h(x) + h(y) for all x,y ¢ Rk. When h

has continuous partial derivatives Bzh(x)/Bxiax the condition of

j’
L-superadditivity is equivalent to the requirement that Bzh(x)/axiaxj.z 0

for all x and all i # j. Let Eiotoyseeesty

the functional H by H(f) = h(f(tl),f(tz),...,f(tk)). H is easily seen

be fixed times. Define

to be local and L-superadditive. If h(xl,xz,...,xk) is bounded (or

increasing) when x, > 0 for all i, then H will be bounded (or

i
x
increasing) and thus EH(X) < EH(X ). A simple special case is h(x,y) =xy
which gives EX(s)X(t) f.EX*(s)X*(t) for all s and t. Since
*
EX(s) = EX*(t) for all s and t, this says that X is "more correlated"

than X.

(2.2) Example: Let A be a bounded set and Y be any function satisfying

y(t) = 0 when t ¢ A. Define

1 if £(t) > ¥(t) for all t,
H(f) =

0 otherwise .

H 1is clearly bounded and local and it is L-superadditive because
H(f Ag) = H(f) AH(g), H(fv g) > H(f)v H(g) and H(f) AH(g) + H(f)v H(g) =

H(f) + H(g). Therefore EH(X) = Prob{X>¥} < Prob{X >¥} = EH(X).




Suppose now that Y satisfies Y(t) = =« for t ¢ A and define

1 if £(t) < ¥(t) for all t,
H(f) =

0 otherwise .

Again, H is bounded, local and L-superadditive so that (l.3a) yields
*
Prob{X < ¥} < Prob{x < ¥}.

By considering functions Y of the form

¢ for teA
¥(t) =
d for t A

whered = 0 or < and applying the above facts we obtain the stochastic

orderings
*
sup{X(t):teA} > ¢ Sup{X (t):teA}, and
*
inf{X(t):tea} < st 1nf{X (t):teal}.
Here > means ""stochastically greater than'".

st

(2.3) Example: Let T be any measure on the strip [a,b] X [0,®).

. Use (t,x) to denote a point in [a,b] ¥ [0,®). For any measurable

o function f define the set D, = {(t,x):£(t) > x}. Now define H by

[

. H(f) = TT(Df). Since va g = DfUDg and Dng = Dang we have

. = = =

H(fvg) + H(fEAg) ﬂ(DflJDg) + ﬂ(DfrWDS) W(Df) + W(Dg) H(f) + H(g).
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Thus H 1is increasing, local and L-additive. If T is chosen so that
EH(X) < = and EH(X') < », then (1.3b) gives H(X)3 H(X').

As special cases of this class of increasing L-additive functionals
we give the following. In each case it is easy to describe the measure T

which yields the functional H.

(a) Choose any values tl,tz,...,tk and yl,yz,...,yk and define
H by
k

H(f) = )

I .
i1 {f(ti) 3,yi}

(b) Choose T >0 and let ¥ be any measurable function. A continu-

ous version of (a) is

T

(c) We may similarly define

T
H(f) = J (f(t)-‘{’(t))_,_dt:
0

where (Z)+ denotes the positive part, (Z)+ = max(Z,0).
(2.4) Example: We now present a functional H which is not increasing
*
but still yields H(X)3 H(X ). This functional does satisfy a weaker condi-

tion given in section (4). We shall describe the functional H in terms of

the M/G/®» queue. Choose an integer k and a duration L. Let H(X) be
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the number of customers who arrive during the interval [0,L] and find at
least k customers already being served. Using the notation in section

(1) we may write

H(X) =

>
Y I .
jote (02T, SLX(T.) > ktl}

This functional depends explicitly on the values of the arrival times Ti
and cannot comfortably be regarded as a functional of just the sample path
X. Alternatively, we can take H(X) to be the number of customers who

arrive during [O,L] and find at most k customers already being served.

*
This definition also yields H(X) 3 H(X ).

(2.5) Example: Now take X and X* to be the periodic processes of
(1.2). All of the previous examples may be restated in terms of these
periodic processes. We then obtain various inequalities concerning coverage
problems on the circle. For example, let Hk(X) be the indicator of the
event that every point on the circumference is covered at least k times,
Hk(x) = I{X(t) > k for all t}' Hk is bounded and L-superadditive (as in
example (2.2)) so that Eﬂk(x).ﬁ Eﬁk(x*). Taking k = 1 yields an inequality
which implies the truth of a conjecture made by Siegel [8] concerning
coverage probabilities. (In our notation Siegel's conjecture was that

% * * *
EHl(X) < EHl(X ) when Fl = F2 =,,, = Fn and F, = F, =cce = Fn with Fl

1 2
* *
and Fl obeying a condition somewhat stronger than Fl-% Fl.)
Siegel [8,9] also considered the distribution of the total length of
the uncovered portion of the circumference. A more general quantity is the

total length of that part of the circumference covered at most k times,

denoted by Vk. More formally,

.. B R . . . e
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Vk(X) = fP dt. As in example (2.3b), it is easily shown that

0 Hx(e) <k}

-Vk is bounded, increasing and L-additive and thus Vk(x)-% Vk(X*).
Siegel and Holst [10] give results concerning the distribution of

the number of uncovered gaps on the circumference which we shall denote by

G. Using the notation of section 1 we may write

n

G(X) = }

I .
JL Txap=1}

As in example (2.4), the functional -G does not quite satisfy the condi-
tions in (1.3b) but does satisfy the weaker conditions given in section 4
so that G(X) 3 G(X').

The results in this example concerning the functionals Hk and Vk
were first given by the present author in [1]. The methods and results

of [1l] are similar to but less general than those of this paper.
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3. Corollaries.

Theorem (1.3) sometimes allows us to compare the processes X and X*
when the arrival rates differ, X\ # A*. Using this we can prove a result
concerning the behavior of X when the time axis is rescaled.

Notation: Let Sy denote the distribution which places all of its

mass at vy, Gy(x) =0 for x <y and Gy(x) =1 for x >y.

(3.1) Corollary: Suppose that X ~ L(A,F) and X* ~ L(X*,F*) and
there exists a constant B such that 0 < B <1, A" = B\ and
F= (1-8)50+8F*. Let A be the countable set of arrival times of a
Poisson process with arbitrary rate a. Let H be a functional satisfying
the conditions in (1.1) and assume also that for any f € G, H(f) = H(f+IA)
almost surely. Under these conditions (1.3a) and (1.3b) hold true.

In this corollary, X* is composed of pulses which tend to be longer
than the pulses in X but which arrive at a slower rate. These differences
are balanced so that we still have EX(t) = EX*(t).

Proof of (3.1): Let X# v L(X#,F#) with A# = X and F#

Since F=S3 F#, Theorem (1.3) applies directly to X and X#. Now note that

*
(1-8)60+BF .

* *
H(X ) and H(X#) have the same distribution because X may be obtained

from X# by eliminating those pulses in X# which have zero duration.

More precisely, X# has the same distribution as X*+IA where A 1is the
set of arrival times of an independent Poisson process with rate of arrivals
equal to (1-8)A. By our assumption on H we know that H(X*) and H(X#)
have the same distribution and this completes the proof.

The simplest application of (3.1) is to the case where F = 63y and
F* = 6y. The verification that Gey-% (1-8)60+B<Sy when 0 <8 <1 is

10
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immediate. This example may be generalized. Let FoPf denote the distri-
bution defined by (F o B)(x) = F(Bx). We now show that F (1-8)60+B(Fo 2))
when 0 < B < 1. Let R be a random variable taking on the values 0

and 1 with probabilities 1-B and 8 respectively. Let V have the
distribution F and be independent of R. Define W = RV/B. The distri-
bution of W is (1-8)60+B(Fo B). Since E(W|V) =V, Jensen's inequality
for conditional expectations gives E¢(V) < E4(W) for all convex functions
¢ and thus V-3 W as desired. This justifies the application of (3.1)
when X v L(O,F) and X & LA,FY) with A" = BA, F'(x) = F(Bx) for all

x and 0 < B < 1.

(3.2) Corollary: Let X~ L(A\,F) and H be a bounded and local
functional which also obeys the condition in (3.1). For B8 > 0 define
XoB by (XoB)(t) = X(Bt) for all ¢t.

(a) If H is L-superadditive, then EH(XoR) is a decreasing function
of B for B >0.

(b) If H 1is increasing and L-additive, then H(Xo0oB) 3 H(XoYy) when-

ever B > y>0.

Proof of (3.2): Assume first that B # 0. Toverify (3.2a) it suffices
to show that EH(XoB8) > EH(X) when B < 1. Similarly, to verify (3.2b) it
suffices to show that H(X) 2 H(XoB) for B < 1. But these follow from
(3.1) and the previous discussion because Xo R ~ L(BA, FoB). The case
B = 0 is handled by taking limits. Since H is local and X(t) is
constant in some neighborhood of t = 0 almost surely, H(XoRB) - H(X0O0)
almost surely as B + 0. Thus, for example, E¢(H(XoB)) * E¢(H(X00)) for

any convex ¢ as B + 0.

11




The condition in (3.2) that H be bounded is just a convenient way

to ensure that all expectations are finite. This assumption can easily be

weakened.

For an application of (3.2a) we go back to example (2.1). Choose any

constants al,az,...,ak and define

1l if x, > a

i for all i,

i
h(xl’XZ""’xk) =

0 otherwise .

h is an L-superadditive function on 'Rk. By (3.2a), Eh(X(Btl),X(Btz),...,

X(Btk)) = Prob{X(Bti)<3 a; for all i} is decreasing in B for any values
of tl,tz,...,tk.
For an application of (3.2b) we go back to example (2.3). Choose a

constant ¢ > 0 and define

1
=%

8
B Jo Tix(e) > cpdt -

(3.2b) implies that Y -BYY when 8 > v.

8

12
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4. Proofs of the Main Results.

In section 1 we stated a theorem concerning processes formed by the
superposition of rectangular pulses. Now we shall consider pulses of a
somewhat more general shape; the pulses will increase monotonically to
unit amplitude, remain at unit amplitude for a random duration, and
then decrease monotonically back to zero. The pulses form a parametric
family of functions denoted {ge:e > d} where the parameter 6 indicates
the total duration of a pulse and d 1is the duration of the briefest
pulse in the family. The complete definition is given below.

Choose b >0 and c¢ > 0. Let & be any increasing function on
[0,b] with £(0) >0 and £&(b) = 1. Let Y be any decreasing function

on [O,c] with ¢(0) =1 and Y(c) > 0. For 6 > b+c define

E(t) for 0<t<b,

1 for b <t < B~c ,
8g(t) =<
Y(t-6+c) for O-c <t <9,

0 otherwise .
In this parametric family the minimum duration is d = b+ec.
The family {gezelz d} has two properties we shall need. First note
that
(4.1) ge(t) =0 unless 0 <t <86,

The second and more important property is

13
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{4.2) Bosrct+s - Bore V (S€g6+6) and

Here we have used Se to represent a shift operator; (sz)(t) =f(t-€)
for all functions f and all t.

We now define a shot noise process on the line (L) as in section 1.
Let {Ti:-m < i < ©} be the ordered arrival times of a Poisson process
having rate A. Let {Zi:—m < i < »} be independent with the distribution

F and satisfy onb{zi >d} =1 and EZ, < », Define XV L(A,F) by

i
X(t) = g, (¢-T.) .
ig-w Zy i

Next we define the analogous periodic process with period P which
is equivalent to a process on a circle with circumference P, For
d <8 <P define the periodic pulse gé by

[+ ]

ga(t) = [ go(e-kp) .
k==
Let 21’22""’Zn be independent random variables with distributions

Fy»Fys...,F  and satisfying Prob{di <Z, <P} =1 for all i. Let

i
Tl’TZ""’Tn be independent random variables distributed uniformly on

the interval [O0,P). Define X ~ CP(Fl’FZ""’Fn) by

n
X(¢) = ) g! (t-T,) .
j=1 23 1

14
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We shall first prove a theorem concerning CP(Fl,FZ,...,Fn).
From this we obtain a corresponding result for L(A,F). The results
stated in section 1 will follow as corollaries.

Reusing the notation of section 1, we take Gn,P to be the
class of all functions f which can be written in the form

n

f = 2 s, g}
1=1 1 9y

for some values of t and Bi with d _<_6:L <P for 1<1i<n.

In the discussion below, H will always be a functional defined on
some class of functions which includes Gn P
’

Lemma: If H is L-superadditive, then

\ '
(4.3) H(f+S':ge +e +6) + H(f+st+€86)

] 1
> H(f+stge+€) + H(f+st+€ge+6)

for all f ¢ Gn-l,P’

8+e+S < P.

Proof of Lemma: Using (4.1) and (4.2) we obtain

' = o '
8g4cts ™ Bpre ¥ (ScBpag) and
segé = gé+e A (Ssgé+6)

for all 6 >d, € >0, § > 0 satisfying 6+e+§ < P.

15
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Applying St and adding f to both sides of these equations leads to

] - ?
£S5 8g4cas = (F¥5.8g4c) vV (£4S . 8o.s)

and

= L
£+ (£45.80, ) N (£45

1 4
t+c89 e+8048) °

Now L-superadditivity yields (4.3).

(4.4) Theorem:

* * %* * %*
N,
Let X " CP(FI,FZ,...,Fn) and X CP(Fl,FZ,...,Fn) with Fi-< Fy

for all i. If H satisfies (4.3) and H(f) > 0 for all f ¢ Gn ps

then EH(X) < EH(X®).

Proof of Theorem: The condition H > 0 ensures that EH(X) and
*
EH(X') are well defined. It suffices to prove (4.4) in the special case

* *
where F = F, for 1<1i<n-1 and Fn-§ F . The general result is

then obtained by repeated applications of this special case. Assuming

*
F = F, for 1 < i <n-1 allows us to define X and x* on the same

probability space as follows

T 8 %

X = WS, g! and X = WS
T 82
nn n Zn

here W=2"1s o' z ~F forall i and Z NF
wher i=1 Tigzi’ 175 n "~ ‘n

16
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Let A be the o-field generated by Tl'zl’TZ’ZZ'""Tn—l’zn-l'
Conditional on A, we may regard W as a fixed (nonrandom) function.
The next lemma shows that E(H(X)|A).§ E(H(X*)lA). Taking unconditional
expectations completes the proof. (Note: If either EH(X) or EH(X*)
is infinite, the same basic argument works. However, instead of the
convenient notation of conditional expectation, we must now write the
expectations as multiple integrals and then use Fubini's theorem.)

(4.5) Lemma: Choose any f £ G Suppose that H> 0 on

n-1,P°
Gn P and that H satisfies (4.,3). For d < 8 < P define
P
$(0) = J H(f+S_gl)dt .
t>0
0
Let Yl and Y2 be random variables taking values in [d,P). If

Yl'ﬂ Y2, then E¢(Y1)‘i EQ(YZ).

Proof of Lemma: Integrating with respect to t in (4.3) and

using the periodicity of gé yields

¢ (B+e+d) + 0(6) > d(6+e) + B(6+4)

for al1 6 >d, € >0, § >0 satisfying O6+e+S < P, This says that ¢

is convex in the interval [d,P). If ¢ can be extended to be a convex
function on the entire real line, then Y1 < Y2 implies E¢(Y1) < E¢(Y2).
Even when ¢ cannot be so extended, we still have E¢(Y1) < E¢(Y2). For

this argument and further details see section 7.

17
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Theorem (4.4) implies the truth of (1.3a) in situation (1.2). To

obtain a result which implies (1.3b) we need the following lemmas.

Lemma: If H 1is increasing and L-additive, then

(4.6) HOE+S g0, o) + H(E+S _ gl)

L
t+c20

= )
H(f+che+€) + H(f+St+€gé+6),

1] 1]
H(f+Stge) < H(f+Stge+€), and

H(f+S

) < H(f+S )

L L]
t+c80 t80+¢

for all f € Gn— all t and all 6 >d, € >0, § >0 satisfying

1,p’
f+c+8 < P,

This lemma is trivial and we state it only because there are functionals
which satisfy (4.6) but are not both increasing and L-additive. The

functional -G of (2.5) is such a functional.

Proof of Lemma: The lemma follows from noting that gé < gé+€,
' ' -
S:8¢ < Boye and both H and -H satisfy (4.3).
(4.7) Lemma: Let ¢ be any convex functionm. ¢O0H will denote the
composition of ¢ and H; (¢0H)(f) = ¢(H(f)).
(a) If H 1is increasing and L-additive, then ¢oH 1is L-superadditive.

(b) If H satisfies (4.6), then ¢oH satisfies (4.3).

18
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Proof of Lemma: To prove (a) we must show that (¢oH)(f vg)+

(¢oH) (f A g) > (¢oH) (f)+(¢oH)(g). Let w = H(f), x = H(g), y = H(fr. g)
and z = H(fv g). By the assumptions on H we have y < wnx,
z>wVx and y+z = wix. Thus by convexity ¢(y)+p(z) > ¢ (w)+d(x)

as desired. The proof of (b) is similar.

(4.8) Corollary: Let X and X* be as in (4.4). If H is

*
bounded on Gn and satisfies (4.6), then H(X)< H(X ).

sP

Proof of Corollary: Let ¢ be any convex function. ¢oH 1is
bounded on Gn p S° that without loss of generality we may assume that
L]

(boH)(f) > 0 for all f € Gn ¢oH satisfies (4.3) by the preceding
]

pe
lemma. Now theorem (4.4) applies to yield E¢(H(X)) §_E¢(H(X*)) thus
completing the proof.

To obtain results for L(A,F) we first extend (4.4) and (4.8) to
allow for a random number of pulses. Let M be a Poisson random variable

with mean AP. Let Tl’TZ’TB"" be a sequence of independent random

variables uniformly distributed on {O,P). Let Z.,Z,,Z

1229439 be 1.i.d.

according to F and satisfy P{d < Z, < P} = 1. The random variables

i
M, {Ti} and {Zi} are jointly independent. Define

]
X = S. g .
=1 Ty 24

To refer to this periodic process we use the notation X n Cp(k,F).

* *
(4.9) Corollary: Let X ~ CP(A,F) and X ~ CP(A*,F ) with

* *
A=) and F<{ F . H 1is a functional defined on some domain which

19
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consists of a single function which

sP

is identically zero.
*
(a) If H>0 and H is L-superadditive, then EH(X) < EH(X ).

(b) If H 1is bounded, increasing and L-additive, then

HX) < HK).

Remark: In (a) we may replace L-superadditivity by a condition like
(4.3). In (b) we may replace the conditions increasing and L-additive

by a condition like (4.6). The details are omitted.

Proof of Corollary: Conditional on the event {M=n}, the process

CP(X,F) has the same distribution as CP(FI'F Fn) with F, = F for

grees i
all i. Thus we may condition on the value of M and use (4.4) and (4.8)
to obtain (a) and (b) respectively.

Let F be the collection of all functions f which can be written

in the form

k
£(t) = ) g, (t-1,)
g=1 93 1

where 0 < k < ® and 61‘3 d for all i. When k =0, f is identi-
cally zero. When k = ®, we must also require that £f(t) < ® for all
t and that no bounded set contains Ty for infinitely many values of

i. For X ~ L(A,F), it is clear that Prob{XeF} = 1.

We now state the basic result for L()\,F).

(4.10) Theorem: Let X~ L(A,F) and X ~ LO™,F") with A = A"

*
and F<F . Let H be a local functional with domain F. Assume that

20




* *
F and F have bounded support, F(B) =F (B) =1 for some B < «,

Under these conditions statements (a) and (b) of (4.9) are true. We

also have:

() If H(E) >0 and H(E4S,gg, o) + H(E+S,, gg)

> H(f+Stge+€) + H(f+St+€ge+6)

*
for all feF, all t and all 6 >d, € >0, § >0, then EH(X) < EH(X ).

(d) If H is bounded and H(f+stg6+e+6) + H(f+st+€86)

= H(f+S ) + H(f+S

t80+¢ t+sge+6) ’

H(f+Stge).i H(f+Stge+€) and

H(E+S , 8g) < H(f+S )

t4e t8e+¢

forall feF, all tandall 9>d, >0 and § > 0, then H(X) < H(X).

The slightly weaker conditions in (¢) and (d) are necessary to handle

examples like (2.4).

Proof of Theorem: Since H is local, we may assume without loss of
generality that H(f) depends only on the values f(t) for t belonging
to the interval [0,L]. Choose a value of P such that P > L+B. Let
Y CP(A,F) and Y o CP(X*,F*). The periodic pulse Stgé is made up
of translated copies of 8¢ which are separated by intervals of length
at least L when 6 < B. Thus at most one of these copies can "intersect"
the interval ([0,L]. 1In the definition of CP(A,F) we used a Poisson

number of uniform random variables. Equivalently, we could have used the

21
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arrival times of a Poisson process with rate A on the interval [0,P).
These remarks make it clear that X and Y can be defined on the same
probability space in such a way that X(t) = Y(t) for 0 <t <L. To
do this we take

=]

Y(e) = ] gy (=TI
i

i==00

-B < T, < P-B}

where Zi and T are the same random variables used in defining X.

i
Thus H(X) and H(Y) have the same distribution. Now the result follows
by applying (4.9). Statements (c) and (d) follow from the remark after
(4.9). The details are omitted.

Many of the conditions in (4.10) can be weakened. First, we can
eliminate the requirement that F and F* have bounded support. To

do this we need the following lemma which will be proved in Section 7.

We shall also weaken the requirement in (4.9b) that H be bounded.

Definitions: Given the random variables V and {Vn:lli n < o}
we say that Vn 2>V if Prob{Vnsv for all sufficiently large n} = 1.

The symbol 4 1is used to indicate that a sequence is increasing.

(4.11) Lemma: Let V and W be nonnegative random variables with
EV <® and EW <, If V< W, there exist sequences {Vn} and {wn}
of bounded nonnegative random variables satisfying an, wn+, Vn ® V,

W = W and V_< W_ for all n.
n n n
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Using lemma (4.11l) we obtain the next fact.

*
(4.12) Lemma: Let X and X be as in (4.10) except that now
*
F and F are no longer required to have bounded support. Let H be
any local functional. There exist sequences of processes {Xn} and

*
{Xn} with the properties given below.
(@) X~ LOLE), X~ LOS, P * g
a 0 SF ) X . n) and Fn-e Fn or all n.
*
(b) For all n, the distributions Fn and Fn have bounded support.
%
(¢) X+ and X *.
n n

(d) Choose any bounded interval [a,b] and define An to be the
event that X (t) = X(t) for all te[a,b]. Then Prob{An
occurs for all sufficiently large n} = 1. A similar property

* *
holds for Xn and X .

(e) H(X ) = H(X) and n(x;) = HX).

Proof of Lemma: Let Z_ and Z: be random variables with distribu-
tions F and F* respectively. Since Zw'i Z: there are sequences
{Zn} and {Zz} with the properties given in (4.11). Let F and F;
denote the distributions of Zn and Z; respectively so that Fn'< Fz
for all n. We now construct the sequence {Xn}' The argument for {X:}
is the same. Construct independent copies of the sequence

dist.

{z :1 <n <=} indexed by the letter i; {2, :1 <n<w} = {z :1<nz=}

i,n

for -= < i < ®, Let {Ti:-m < i < ®»} be as in the definition of

L(A,F). For 1 <n < ®and all t define

23
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©
X (€) = ig_m gzi,n(t-Ti)

and take X =X . Clearly X ™~ L(A,F) and Xn v L(X,Fn) so that (a)

is true. Properties (b) and (c¢) follow immediately from the properties

of {Zn} given in (4.11). Because EZ_ < «, the number of pulses in

X, which "intersect" the interval ([a,b] is almost surely finite.

(It is easily shown that the number of values of i for which

[Ti,Ti+Zi »] intersects [a,b] has a Poisson distribution with mean

K(b—a+EZw).) Combining this observation with the fact that Zi n ﬁ>Zi -
] 9’
for all i shows that (d) is true. Finally, (e) is an immediate

consequence of (d).

We can now give a more widely applicable result for L(A,F).

*
(4.13) Theorem: Let X ~ L(A,F) and X* N L(A*,F ) with A = X*

*
and F<F . Let H be a local functional with domain F.

(a) If H>0, H is L-superadditive and H satisfies either

*
condition (i) or (ii) below, them EH(X) < EH(X ).
(i) H 1is increasing.

(ii) There exists an increasing functional Q such that

[ H(E) < Q(f) for all feF, EQ(X) < » and EQ(X ) <.

¢ (b) If H 1is increasing and L-additive, E|H(X)| < ~ and

* *
E|H(X )| < @, then H(X) 3 H(X ).

3
§
[ Remark: Results (a) and (b) above can be modified in the manner of

statements (c¢) and (d) in (4.10). 1
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Proof of (a): Let {Xn} and {Xn} be the sequences in (4.12).
*
Using (4.10) we have EH(Xn).ﬁ EH(xn) for all n and by (4.12e) we
* * *
have H(Xn) = H(X) and H(Xn) 2> H(X ). To obtain EH(X) < EH(X )
* *
we need only show that EH(X) = lim EH(Xn) and EH(X ) = lim EH(Xn).
nre % n-®
If condition (i) holds, then H(Xn)+ and H(Xn)+, so that the monotone
convergence theorem completes the proof. If condition (ii) holds, then

H(X ) < QX ) < Q(X) and H(X.) < Q(X0) < Q(X™) for all n, so the

result follows from the dominated convergence theorem.

Proof of (b): First note that H 1is bounded below. H is local
and there is positive probability that no pulses "intersect" the interval
which affects H. Thus E]H(X)[ < o implies [H(g)l < © where 9 denote:
the function which is identically zero. This shows that H 1is bounded
below by H(g).

Let ¢ be any increasing convex function. Clearly ¢oH is increasing
and bounded below and by Lemma (4.7) it is also L-superadditive. Thus we may
apply the result of part (a) to conclude E¢(H(X)) §_E¢(H(X*)). Taking
¢(x) = x yields EH(X) < EH(X').

Now take ¢ to be any convex function and let u = H(Q). Since
the graph of ¢ has a supporting line at the point (u,$(u)), we can
write ¢ as ¢(x) = ¢(u) +a(x-u) + y(x) where a is a constant and Y 1is
a function which is convex and increases on the interval [u,®). From
above, we know that EY(H(X)) < EY(H(X*)). Therefore, to prove that
EQ(H(X)) < EQ(H(X')) 1t suffices to show that EH(X) = EH(X').

For all b > 0 define ¢b by ¢b(x) = -(xAb). ¢, 1is convex and

bounded below. Therefore ¢bOH is bounded below and L-superadditive

25
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(using lemma (4.7)). This allows us to use (4.10) to conclude
* *
E¢, (H(X )) < E¢, (H(X )) for all n where {Xn} and {Xn} are as
*
in (4.12). Equivalently E(H(Xn)n b) Z.E(H(Xn)A b). Letting b + =
and n + ® gives EH(X) Z_EH(X*) and completes the proof,
The results in (4.13) contain those of (1.3) for situation (1.1)

as special cases.

26
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5. Various Extensions.

We can use (4.13) to obtain results for many functionals H which
are not local. To do this we need a sequence {Hn} of local functionals
which satisfy the conditions in (a) or (b) and converge to H in a
sufficiently strong sense. Two examples of this are now given. The
details are omitted.

Our first example generalizes (2.2). Let Y be an arbitrary function.

For 1 <n <> define H by

1 if f£(t) < ¢(t) for all te€(-n,n),
Hn(f) =

0 otherwise .

H _(f) = lim Hn(f) for all f. For n < » the functionals Hn satisfy
the condg::ons of part (a) so that EHn(X).i EHn(X*). Letting n >
yields P{X < y}< P{X*‘i ¥}. To avoid the triviality 0 < 0 we must
demand that ¥(t) + » sufficiently fast as t + * =,

The second example resembles those of (2.3). Let & be any non-
negative function satisfying f_: E(t)dt < ». Let Uy be any increasing
nonnegative function which satisfies EY(X(t)) <=, For 1l <n<®
define Hn by

-0

3 n
g H () = j E(OW(E(E))dt .
p

' H (f) = lim H (f) for all f. For n<e the functionals H_  satisfy
n->eo
*
the conditions of part (b) so that Hn(x)'< Hn(x ). Letting n + = yields

27
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H_(X) <% Hm(X*). We briefly justify this last step. Clearly EH_(X) < =,
For n < ® ywe have EHn(X) = EHn(X*) so that monotone convergence
yields EH_(X) = EHw(Xk). Therefore, as in the proof of (b), to verify
H (X) 3 Hm(x*) it suffices to show that E¢(H_(X)) < E¢(Hm(x*)) for
all increasing convex functions ¢. Since E¢(Hn(x))'§ E¢(Hn(x*)) for
all n < =, this follows by monotone convergence.

Various conditions concerning the pulses may be relaxed without
changing the character of the results in (4.13). We have so far
considered only pulses which satisfy (4.1); the pulses are zero outside
of a bounded interval. Using (4.13) and taking limits, we can deal with
pulses satisfying the weaker condition

{G)
J gg(t)dt < = for all o .
-0

This integral must be finite to ensure that P{X(t) < ® for all t} = 1.
We now sketch some of the development. Let £ be an increasing

function on (-»,0] satisfying fgmlg(t)|dt <o and §(0) = 1i. Let

) be a decreasing function on [0,®) satisfying f: |W(t)|dt < » and

$(0) = 1. For 1l <n<eand 6 >0 let

g(t) for -n<t <0,
1 for 0 <t<B®,
T(e) = P
8o ¥(t-8) for <t<ntd,
0 otherwise .
and define
28
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x™t) = ] g (¢-T))
fmemo 24 1

with Zi and Ti as in the definition of L(A,F). Clearly X7 () +Xm(t)

almost surely as n * ®, In any bounded interval this convergence will
be uniform (almost surely). For n < =, the processes X" satisfy the
requirements of (4.13). If H 1is sufficiently regular so that

EH(X ) = lim EH(X®) or more strongly E¢(H(X )) = lim E6(H(X™)) for

n’® n>e .
all convex ¢, then the results of (4.13) will extend to H(X ). For

example, if H 1is an increasing local functional satisfying

H(Xm) = lim H(Xn) almost surely, then all of the results in (4.13)

n-m

extend by just using the monotone convergence theorem.

In sections 1 and 4 the amplitude of the pulses was arbitrarily
chosen to be one. The results proved in section 4 also hold when the
amplitude and shape of the pulses are allowed to vary randomly. Let
{ge’a: ® >d(a),0€A} be a parametric family of pulses with the parameter

o taking values in a set A. Assume that for any fixed value a, €A,

0

the family {ge :0 >d(a,)} satisfies (4.1) and (4.2).
Qg 0
For example, suppose {géi):elz di} for 1 <1i <k are k different
parametric families each satisfying (4.1) and (4.2). Take A = {1,2,...,k}

(@)

and define 8g o = gea and d(@) = d,2 for o € A. For another example,
b4

o

let {g4:0 > d} satisfy (4.1) and (4.2) and define 89 o = O8gs

A = {a:0>0} and d(a) = d. In this example, the parameter @ determines
the amplitude of the pulse and © determines the duration.

With periodic pulses {gé g 4@ <8< P,acA} defined by
]

@

89,4 (t) = ) 89 o (t=1P) ,

pE T )
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we may define a periodic process

n
X(t) = § g o (e-T))
=1 2409y 1

where Tl’TZ”"’Tn are i.i.d. uniform on [0,P) and (Zl,wl),
(zz,wz),...,(zn,wn) are indpendent random vectors. The probability
measure of (zi,wi) is denoted My and we assume that

Prob{d(wi) <2 <P,W €A} =1 for all i. The notation

i
Xn Cp(ul,uz,...,un) is used to refer to this process. The analog

i

of (4.4) for this process is now given.

* * * %*
(5.1) Theorem: Let X ~ Cp(ul,uz,...,un) and X "V Cp(ul,uz,...,un).

* % *
Assume for all 1 that (zi,wi) N ui and (zi,wi) ~ “1 satisfy

diSt- %* * *
W, = W, and E(¢(Zi)lwi=a)iE(¢(Zi)|Wi=a) for all o €A and

i
all convex functions ¢. If H >0 and H 1is L-superadditive, then
%
EH(X) < EH(X ).

The proof is basically the same as that of (4.4). Assume that

Uy =Yy for 1 < i < n-1. Without loss of generality, we can then

* * *
2 take T, = Tys Wi =W, and Zi = Zi for 1 <1i < n-1l. Since

* *
F. Wn dESt' Wn we can also assume wn = Wn. Now lemma (4.5) shows that

the theorem holds conditionally given the values of Tl’TZ""’T

n-1’

Z1sZgseeenly_1aWaWysee oW .

f. We could parallel the development of section 4 and prove a more

{ general version of (4.13) based on (5.1). Instead, we shall just state

1 a special case. Let Ti, Zi and {89=9.2 d} be as in the definition of
@

p

r

1

.-
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'c . L(A,F). Let {Yj:-co < j < ®} be nonnegative random variables which are

i.i.d. according to a distribution G. Define the process X~ L(A,F,G)

by

o0

X(¢) = ¥ Y., (¢-T,) .
{m—s0 i Zi i
Thus X 1is a superposition of pulses having both random amplitudes and

durations.

* * * % *
(5.2) Theorem: Let X~L(A,F,G) and X ~L(A ,F ,G ) with A = X |
* *
G=G and F<S F. If H is local, nonnegative and L-superadditive,
*
then EH(X) < EH(X ).

The proof is omitted.
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6. Weaker Results for More General Pulse Shapes.

Weaker conclusions may be obtained under weaker assumptions on the
form and duration of the pulses. Let {ge:e 3_d} be a family of pulses

which satisfies (4.1) and the condition given below.

Bo+cts 2 Bove ¥ (ScBoss) 2nd

(6.1)
S8y 2 8guc A (Sege+6) for all

6>d, €>0, 6§>0.

This condition is the same as (4.2) except that "=" has been replaced by
ll>" .

Two examples of parametric families of pulses which satisfy (6.1)
with d=0 will now be given. Let Yy be any increasing function on

[0,2) with Y(0) > 0. For our first example, for all 6 > 0 define

fy(e-t) for 0 <t <9,
ge(t) =
0 otherwise .

The second example is a family of symmetric pulses defined for 6 > 0

by

P(t) for 0 <t <8/2
gg(t) = Qu(b-t) for 6/2 <t <8,

0 otherwise .

The verification of (6.1) is easy for both examples.

32

relmn e . o aa "t tn R SO P, P ORI U PSR NI D iy 1, "Wy S0 ST TN RIS T SLAELY LY I, G Uy Ry S



We also use a weaker version of the variability ordering defined
as follows. Let Y and Z have distributions F and G respectively.
Assume EY > - and EZ > -», If E¢(Y) < E$(Z) for all functions
¢ : R R which are increasing and convex, then we say that F<+ G
or equivalently Y= +4Z. This version of the variability ordering is
frequently used. See the references given in section 1.

Using the family {ge:B > d} satisfying (4.1) and (6.1), we define
the process X v L(A,F) as in section 4. With only minor changes in

the proof we can obtain the following modification of theorem 4.10.

(6.2) Theorem: Let X ~ L(A,F) and X* n L(A*,F*) with A = X*
and F'f‘fF*. Suppose that H 1is a local functional defined on a
sufficiently large class of functions. Assume that F and F* have
bounded support, F(B) = F*(B) = 1 for some B <®, If H is nonnegative,
increasing and L-superadditive, then H(X)'ﬁ-fH(X*) which further implies
that EH(X) < EH(X).

Proof: Let {gé: d < 6<P} be periodic pulses with period P
defined as in section 4. Property (4.3) holds as stated because replacing
(4.2) by the weaker condition (6.1) is compensated for by imposing the
additional condition that H be increasing. The proof of (4.4) proceeds
as before except that the crucial lemma 4.5 must be slightly modified as

follows.

(6.3) Lemma: Let H satisfy the conditions in (6.2). For d < 8 < P

and any function f define
P
$(6) = J H(f+S gl)dt .
0 t>0
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Let Yl and Y2 be random variables taking values in [d,P). If

Y1-§ Y then E®(Y;) < E&(Y,).

2)
To prove this lemma just show that ¢ 1is increasing and convex on
[(d,P) by following the pattern of (4.5).
We have now shown that when X and X* are periodic érocesses
like those in (4.4), EH(X) < EH(X*) for all H satisfying the conditions

of (6.2). By the next lemma, this implies H(X) ﬁ‘fH(X*).

(6.4) Lemma: If ¢ is increasing and convex and the functional H
is increasing and L-superadditive, then the composition ¢ 0 H 1is
increasing and L-superadditive.

This property is given by Topkis in [13]. The proof is similar
to lemma 4.7.

Transforming the result for the periodic processes into theorem 6.2
is accomplished by the same arguments which took us from (4.4) to (4.9)

and then to (4.10).
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7. Notes on the Variability Ordering.

The next three lemmas are needed to complete the proof of lemma 4.5.

Let ¢: J -~ [0,»] where J is any convex subset of the real numbers.
We assume that ¢(w) + ¢(2) > ¢(x) + ¢(y) whenever w,x,y,zcJ,
w<x<y<z and wtz = x+ty. Let D denote the effective domain of &,

D = {x:%(x) < =} ,

(7.1) Lemma: The set D 1is convex and ¢ is a convex function on
Proof: If D 1is empty or consists of a single point, the lemma is
trivial. Suppose ¢(3) < o, d(b) < ® and a<x<b. Then

¢(a) + ¢(b) > &(x) + @(atb-x) > ¢(x) since & > 0. Thus ¢ 1is bounded
above by ¢(a) + ¢(b) on the interval [a,b]. The function ¢ is
midconvex; ®&(w) + ¢(2) > 20 ((wt+z)/2) forall w,zeJ. A result due to
Jensen (see section 72 of Roberts and Varberg (4]) shows that a mid-
convex function bounded above on [a,b] is convex on [a,b]. This

completes the proof since a and b are arbitrary members of D.

(7.2) Lemma: Suppose that X< Y. If Prob{Y > c} =1, then
Prob{X > ¢} =1 and Prob{X=c} < Prob{¥=c}. If Prob{Y <d} =1,

then Prob{X < d} = 1 and Prob{X=d} < Prob{Y=d}.

Proof: (2), will denote the positive part of z, (z)+=max(z,0).

+
Define f(x) = (x-d),. f 1is convex and finite on the entire real line
so that Ef(X) < Ef(Y). Prob{Y < d} = 1 implies Ef(Y) = 0 so that
Ef(X) = 0 and Prob{X < d} = 1. Now define f (x) = n(x-d+1/n) . For

x < d we have |fn(x)| <1 for all n and
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]'1 if x =d,

lim fn(x) =

n->o

10 if x < d.

fn is convex and finite so that Efn(x) f_Efn(Y) for all n. Assuming

Prob{Y‘i d} = 1 and using the bounded convergence theorem yields

ProbiX=d} < Prob{Y=d}. The proof of the other statement is similar.
A convex function § is called proper if yY(x) <  for at least

one x and Y(x) > -=» for all x.

(7.3) Lemma: Let { by any proper convex function. If X < Y,

then EYP(X) < EY(Y).

Proof: We assume first that ¢ 1is closed. This means that
{x:¥(x) < a} 1is a closed set for all o. Define w*(y) = s:p{xy-w(x)}
and w**(x) = sup{xy-w*(y)}. w* is a proper closed convex function and
w** = U (see seZtion 12 of Rockafellar [5]). Choose Yo Such that
w*(yo) < », Define wn(x) = sup{xy-w*(y):yo-n <y« yo+n}. It is
easily seen that wn is convex for all n. The following argument
shows that wn(x) <o for all n and x. Choose Xq such that
w(xo) < », (Clearly w*(Y),Z xoy-lp(xo) for all y. Thus
v (x) < sup{y(x-xo)+\p(x0):yo-n<y<y0+n} < plx—xol + U(xy) where
p= max(lyo-nl,lyo+n[). Therefore Ewn(x) j_Ewn(Y) for all n. Since
w** = | we have wn(x)’TW(x) as n +*® for all x. Also note that
wn(x) Z.xyo—w*(yo) for all x and n. Thus wn(x) and wn(Y) are
bounded below by random variables having finite means and we may apply

the monotone convergence theorem to conclude Ey(X) < EVU(Y).
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Now let ¢ be any proper convex function. Let B be the effective

§ domain of ¥, B = {x:y(x) <»}. There exists a proper closed convex
function f{ which agrees with { except perhaps on the boundary of
r. B (denoted 9B). More precisely, Y(x) = £(x) for x¢ 3B and
Y(x) > £(x) for x€9B (see section 7 of Rockafellar [5]). Our
conclusion now follows from lemma 7.2 and the previous paragraph.

e For example, suppose B = [c,d]. If Prob{c <Y <d} <1, then
‘r EY(Y) = » and therefore EY(X) < EY(Y) as desired. Now assume
Prob{c < Y < d} = 1. Lemma 7.2 implies Prob{c < X <d} =1,
» Prob{X=c} < Prob{Y=c} and Prob{X=d} < Prob{Y=d}. Let a = y(c)-f(c)

and B = Y(d)-f(d). We can write

:‘a' ' EY(X) = Ef(X) +0 ProbiX=c} + B ProbiX=d}
- and similarly for EY(Y). Since o >0, 8>0 and Ef(X) < Ef(Y),
L
[., we immediately conclude EY(X) < Ey(Y).
<4

Extending the definition of ¢ by taking ®(x) =« for x ¢ J

y
; makes @ into a proper convex function. Thus X< Y implies

A ES(X) < E®(Y) and the proof of (4.5) is complete.

([

- . We now give a proof of lemma 4.11. The following facts will be
o

L needed.

o (7.4) Let V and W be nonnegative random variables with EV < =

and EW < = having distributions F and G respectively.

[ (a) EV = EW if and only if J (G(x) -F(x))dx =0 .
p . o
t
L."»f (b) If EV = EW, then V< W 1if and only if J (G(x)-F(x))dx > 0
- 0
E::—: for all t.
. 37
®




Fact (a) is elementary. Fact (b) is a minor variant of results in
sections 1.3 and 1.4 of Stoyan [12] or section 8.5 of Ross [7].

Proof of (4.11): Suppose V< W with V and W as in (7.4).
Define a = sup{x:F(x) < 1} and B = sup{x:G(x) < 1}. F< G implies
@ < B8 by lemma 7.2. Note that E(VAt) is continuous and strictly
increasing in t for t <a and E(WAt) is continuous and strictly
increasing in t for t < B. Since ¢(x) = xAt is a concave
function, E(Vat) > E(Wat) for all t. If B <®, then o <™
and the lemma is trivial, just take Vn =V and Wn =W for all n.
So assume B = =, o may be finite or infinite. The proof proceeds
in two cases.

First case, assume Prob{V=a}=0. Choose a nonnegative sequence
{fa } satisfying o + a and o < a for all n. Define V_=V Aq

0 n n n n
for all n. Clearly Vn‘t‘ and Vn 2> V. Since EW Aan) < E(V /\an)
< EV = EW, there exists a unique Bn such that Bn > O;n and
E(WAB8 ) =EV . Define W = W~nB for all n. Since EV_ 4 EV, we

n n n n n
have B + © and thus W_+ and W = W, Let F_ and G_ be the
n n n n n

distributions of Vn and Wn respectively. Define

v, (e) = fg (Gn(x)-Fn(x))dx. v,(e) >0 for t <a because

Gn(x) -Fn(x) = G(x)-F(x) for x < . wn(t) is decreasing when

a, St < B because F (x) =1 for x> a . Finally, b () =0 for
t > Bn because EV‘_1 = EWn. Thus wn(t) >0 for all t so that

Fo < G, by (7.4b).

Second case, assume a < ® and Probi{V=a} > 0. E(WAQ) < EV so

there exist ¢ and d such that c¢c <a <d and EWVAc) = E(Wad).

38




Ty YTwyvvy
K y
-4

P
vy
PN

As in the first case we have (VAc)=3 (WAd). Let U be a random

variable which is uniformly distributed on the interval (0,1) and

independent of V and W. Define

VAc if U<« .

o=

vV if U> =,

=N

Clearly Vn+ and Vn 2 V. Since E(WAd) < }EIVn < EV = EW, there
i A = =

exists Bn >d such that E(W Bn) EVn. Define Wn WA Bn.

EV_ + EV implies Bn + » go that wn+ and Wn = W. Now we use

VW, (Vac)< (Wad) and (7.4) to show this construction gives

Vn-3 wn as desired. Let Vn’ wn, VAc, WAd have distributions

denoted by Fn, Gn’ F(c), G(d) respectively. Note that

n

F = % F(c) + (1 - ;ll-)F. The ordering <€ is preserved by mixtures so

1 1 t
that F_<3 =G + (1 - ;)G. Again define wn(t) = fo (Gn(x)—Fn(x))dx.

n (d)
; 1 -1 - -

Since = G(d)(x) + (1 n)G(x) G(x) Gn(x) for x < d, wn(t) >0
for t <d. Y (t) 1is decreasing when d < t < 8 because d >a

and Fn(x) =1 for x > a. lbn(t) =0 for t > Bn because EVn = Ewn.

Thus wn(t) >0 for all t and the proof is complete.
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8. An Attempt to Use Shot Noise in Models for Neuron Firing.

This report deals with a shot noise process X(t) which is formed
by the superposition of random pulses (or shot effects) which arrive at
random times according to a Poisson process. One area in which shot
noise processes arise is in the construction of models in the neural
sciences. This is because the cell membrane potential in neurons is
formed by the superposition of distinct contributions (pulses) arising
from the many hundreds (or thousands) of synapses which impinge on each
neuron. A contribution from an excitatory (inhibitory) synapse is
represented by a pulse having a positive (negative) amplitude. In the
simplest models the neuron fires (produces an action potential) whenever
the membrane potential at the axon hillock exceeds a certain threshold
value (except for complications introduced by the presence of absolute
and relative refractory periods).

For a brief description of the functioning of neurons and a catalog

of mathematical models which have been developed to explain the spike
trains of single neurons, see Sampath and Srinivasan [B]. Many of the
models contained therein share some of the features of shot noise (for
F example, see model 7.6 on page 100). We note also that Bevan, Kullberg
- and Rice [A] have used a shot noise process with rectangular pulses to
f model the acetylcholine induced membrane noise which occurs at the neuro-
: muscular junction.
[

This report was initially motivated by a desire to prove results
. concerning the spike trains of single neurons. In particular, let U(X)

y denote the number of upcrossings of the threshold value made by the shot
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noise process X during the time period (0,T). In a simple model of
neuron firing, U(X) will be the random number of spikes produced
during a period of length T. In more complicated models, the number

of spikes can be written as a more complicated functional of the process
X. However, I was unable to obtain strong results for these functionals.
The functional U does not satisfy the conditions for applying Theorem
(1.3). Attempts were made to weaken these conditions. The conditions
used in statements (c) and (d) of Theorem (4.10) are weaker than those
in (1.3)., The functional U satisfies the conditionms in (c) but the
conclusion EU(X) f_EU(X*) is quite weak since in fact EU(X) = EU(X*).
The conclusion of (d) is stronger, but U fails to satisfy all the

conditions in (d).
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