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This work describes a programming oystem that facil itatesr the manastement of
data objects that live across multiple invocatiotlii of programs thaw read and
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p.rogra mra needing to save data objects permanently do so either (1) by
writing an ad hoc set of procedures that convert their data from sore internal
representation to some external ..epresentation (and back) , or (2) by inter-
facing their programs with an existing database system. We discuss the
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17'problems encountered by a programmer adopting either of these strategies, and
we describe our system whose design is an attempt to strike a balance between
the flexibility of the ad hoc approach and the rigidity of the approach that
employs a database.

A key goal of our work is the design and imprlementation of a system that makes
the manipulation of permanent objects nearly as easy and flexible as the mani-
pulation of "transient" objects - i.e. the memory resident data structures
that programmers are accustomed to dealing with. We wish to hide the details
associated with the fact that permanent objects must have their permanent home
in a disk file system. • •

Our system is written in T, a dialect of Scheme, which is in turn a dialect of
Lisp and runs on the Apollo workstation. The systea preovides tools to make it
relatively easy to write T programs that manipulate these permanent objects.

A secondary goal of our work is to support distributed computing by allowing
multiple processors to have access to permanent objects. While the system
does not address all the issues associated with distributed computing, we
believe that the mechanisms provided can bp effectively used in the course of
solving certain problems in a distributed way.
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Chapter I.

Introduction

Programmera. are often confronted with the problem of writing programs that need to manipulate
(create, acces, moddy, delete) permanent objects (d"t structures). By 'ptrmanent o~bjects" we
zw-A2 objects that live longer than one iavoý:aton of a program. These oiujecta must be stored in
the computer's file system.

Ceneraly the capabilities of file systems and the tools for manipulating file systems are primitive.
File systems present only the aimplest of data types. (e~g. ane-dimensional array of characters). More
compl=x data structre can be built on top uf thene simple data types, but the implementation
time is SignihicznL As a result, a programmer is not inclined to thikl that he in dealing with a
permanent object when he really is. He sinply views his programs as reading a file, constructing
*ome transient dWat structure in main memory, reading or modifying those dat&a str-wntures, and
posgibly rewriting the file that was read as the first Aep. T7he p-3grammer is not -icouraged to-
view the disk file merely as a data structure in another guime Often the format of the output of the
pnogrwn is desigmed to be useful for human rear- is of that output in spite of the fact that the only
piasoa who is likely to read it is the proVgrmew hiisl while debugging his ptogranvL

In this thesis we wIll be concerned with the iarues of creating, modifying and saministering per-
mnanent objects in T 144,46!, a dialect of Scheme !S2J, whic is In turn a dialect of Lisp (391. The
goal of owr work 6 to blur the distinction between permanent and noei-permanent objects; iLe. to
make the writing of progrmum that nuuniptilate permantst objects nearly as easy uthe 'Writing of
program' that manIpulate non-permanent objects. We will describe the design and implementation
of a programming systemn that allows perrmancut objects to be accessed using primitives that are
"analous to the primitiveo used to sceem non-permanent objects. The *ystern wewill describe has
been built and used for non-tidvial applications.

The work described in this thesis differs from previous work in permanent objects in that it supports
a potentially very large set of objects of beth small anZ large sime, and it allws these objects to be
naxesed by different uasers and application programs.

1.1 An example

Consider a user's edctrowc mail box. Within a p-ogram that manipulatas a maid box there is a mail
boy data tructure Lhat might consift of a linked list of snail umeage objects. Eaoch mail message
might consist of: a string containing the text of the mesage some boolean UPag indicating, for
example, whether the mnmage has been read by the user, a pointer into thi tixt of the message
where the inessage headers begin; and a pointer into the text of the mensage where the message
body begins.

The mail box is of interest to at least two propams: a mall uswo interface program that lets z uses

:- "
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T'2.& and rnod2;' the cootents of bis mail] box; rnd a mzu'd -dril e-y pthatt adds :iew, incoming
Laai to ý ~ bc%. ± 'zer ' m ay be iaioked mn. tipli, tiw~a to mmnipulate the manil box.
7e=Ll 'Z ~ie~~ of ýLe prosran1s tl-" W it.

A tm J r 0.mrtey ten by a pro?ýr&=nmer (e.g. W in 02' jlZ], a mal ii er interface

w,, a oe not v--cvta~ rn.l box asr' a~ obZ L3e LLLS:e. the ai
1 m a -- ý 1 *,-,' z, *,t -

.i~ f~' ~.L~ ' _on~ thei CcV%,ZiC23 -.f tLe MX'Id sy tt e 'n; Uma

-t ly ec ' of &-:c;r b.z ~e Z-ýZzwtzrd not to k- >ex hat't he kXt of a
i;]i1L- or ',C L~zybe pm-.-. ýý b a -. = . cf .f.Sa itepedasa

iiin byluez of the io-e ww Cs 0c rol.'e up into indiviiual
Q po-'rlr c .1xz objýcL %.o hold th-e md lln!Lz t~he meme-s togtetlc to

f n flthe nL-tmi ~'b~ ox~ dz iozc'..ur- as au~xrib d a ctve. l the first Ua;e of each mo~mzge
C ,-1- Uý a atr of one &zd r~erO iz2*tý-:"!Ag thbe ve~ktl= of ti~e wŽarinus ie=4e lap. This oring

will o4 be p-.rr-d inio boole~an vaJue3 and ztom-d in the appropriate alkts in the mcs~age dWAt

-r Ltencr p-c rn ~~um the nm-tIl bcax ob', ct in re to ior c;e to . Wen
ýr :,L 3I-L r--Wi,,n !"L,-t a o ha n-.c a OfC n,

ox. 1, 13 P U.,ce~I~ aý-i30 t r rýV t-1z tht matil L=x dztz rtzucttuze aad writing its content~s in
L e ~~~-n~t ct~4y &iL pm ,nI-mms tli~t mr.anipullmzte the =--1 box L3he.

~ ~ ~ ~2-~thisthect of '""P L' on T irtartU? and
ti" L' on p~:tý,prx toizmnain-tian, *:zy as tlhe r~j f the r-cioJ bch Lnz, z. Our

il IQo~~-Az t:I2," herLh toolz, CZA prunzd ý _ of =cnaethlnq like a
KI nxx a p ~~tc~ t-.nd that z4 a y'i~t, pro~rmzs that mznipulzte Uae ob;Jet can be
it- to Wi-t' z&Mtl more e,.c.ent 'in ez.zln

- se eat kIcAt two ~ltiont~cAl approwla-as for dealiing with petmaznmt oblecta. For studyihg
bo~thc-ý zppmr rzis, it WiJ be convetient to think of ttý ob`ýcts Ba havi.A #to svp? wtaliofl

i-erz and imcral. e int~±nmxI rep r-.3etation is .he format of the data str'actusrt when it .reridee
;I`''-i r. mnoq; the tx1,rz r~rpr~es otrtion Ls the forynma of the data r-octuire when it reaides in

-t! (~g cilý .Lh in a con Yjon t r file zyrteern)

T' "-,- roc conrýiL-tz of writnDT an ad boe rset of subroutines that convrert fmmu tbt iale'rnz.1
r~~ ,mnto th-e e:,ern.al rzrent-:tion and set of rmutlne* that do the r~evre con-Amston.

-1i e i2 n iý,naiy better ths~n tht one taLen to rolve the =Ji box pr~Mc= aubce.

T>~i;co appms~ch is to inttrf-x* tlle applcation pr.ý,rtrn that needi3 to Ume WnirX.cI 4.
: with an. *'& datbaýe Vyn~'t Wz ue L.ý term ~aa eote in a W3

W,ýV to iM~n a set of pr~rsor subhroutines that bwe. been d--ipnpd to store and retrievre
d..a& !ý,M a f~ile vy-attm.

In t~m! sWIireth irlMrral 4rtto simple (e.g a chaxatetzr strinj :;r a vecter of inte-
nsthe temptation is great for a p-crammer to ute the ad hoe solution. He says: 'I don't

Want to get involved with the com-plinxity of auth-and-such ditabase sysltemru.n just write m~y
rtrin-s/numb~erz/et.e. out to a s*,mple text Oile.* Unfortunately, "h~ seductive reasoning resuta in-
a pm ",zarn that is not only not as fzai% as it rni~ht be (due to the repm-nenta~ion converimioril but
on~e thýat is alzzo hawd to nmodify and har-d to exý-nd. Having in leinented one ad hlýc solution, thic

p~'~neris unlillely to want, to lrmpliom nt another one (or mnod~ify tho ein one) in order to
accorwdal.te Ince.,aaed functionality. As a retmult, the functionality doem not We impleiiesited.

VV!. ro- the argurrentta in favor of usinj tan existing datahrnse mrna,7atr? A cleaw advantage is that
rnuch of the progrnmi-erW work is already done for him by the dvAthane manager. The programume?
need not bes concerned wilh the detail of thbe file system. Most sophiaticated cdatabasme systerns noTer
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some degree ot reliability in the face of hardware failure. Database mauagels take care of storage
alloca~tion.

Unfortunately, interfacing to a database uanager may introduce some problems. The pro gram
interface to the database managor forws an 'embedded language.' That is, Lhe set o~f cslls by
which the applicai~on prugram accesses data malntained 'by the databoas manage is a language of
its own. This lsaguage is buit on top of the language in which the ca"l to the datahase manager
are written, As a result, the pregrammer is no loniger programming using solely the primitives of
the base programming language. In fact, the primitives of the base programming language may
not even be applicahie to the application's data, which now resides in the world of the data-base
manager.

Thus, taking the database approach to solving the permanent object problem obliges the program-
mer to work in two Lmiguages: the bane language and the database embedded laixguage. Often this
complexity is great enough to dissuade the programmer of a medium~-uize application from using
the database manager.

Creating and using emibedded systems is not always bad. In most large programming projets one
ends up constructing and using some sort of embedded language. Some languagts support such
embedding better than others (e.g. Lisp systerrAs generall1y have a powerful macro facility). Even
in languages that do not allow modification to their syntax, the subroutines that the programmer
defines for use by hL~meelf, but especially for use by other program.mers working on. thb- same project,
define the semantics of a language. When & pi-ogmraning project Adopts a set of conventions and
bikterfaces that makt up the specification of an embedded languame &hc comprehensibility oi the
overall project increases; functionality can be expressed in ter=s of the embedded language insnes4
of in terms of the base language.

There is a key difference bAtween embed dings such as the ones that go on all the time. and the
embedding of a large da4abase system In the former case, the programmers in the pro~et design
the embedded system themselves, to their own specifications. In the latter case., the embedded-
language is typically not under the control of the project that uses the daiabase. As a result,
the programmrer may be forced to use an embedded language that is not at all appropriate to his
&pplkati6n.

A significant limitation of both the ad hoc and the database approach to storing permanent data
is that thety are unable to deal with pointers By 'pointer' we mean the traditional programming-
language construct thatý a*low indirect refarence to data. Siace poiukrs are convenient tools for
the programmer, it is urdeLable that they should be unavailable when storing permanent objects.

The limitations of the traditional approaches outlined above become. clear when dealing with even
simple data structures. For expampie, Lisp has a primitive procedure called rnksp that applies a
procedure to a linked list of objects. Lists are easy to c-eate and msa', and other procedures provide
a clean and convenient mechanism for acceasing the data in the list- Use of lists in Lisp programs
is pervasive; use of lists in external representations is unusual.

If the linked list is maintainad w~thin bhe database manager, two problems can arise. The first
problem is that the database manager rnig-ht not expart references u3 the middle of a linked list.
That is, the database mana~ec might export referenow to Individual data items, but not to data
structures that it views as being internal to the database system. As a result, tacier is no refere:K*
that can be p~uued sa the procedural argument to map.

A second problem that can arise is that even If the application can obtiai a reference, the list that
La constructed sand maintained by the databas manage might not be manipulatable by map (and
th~e elements of the list by the prock-dural argument to map) because of dixrerences between the
representation maintaiaxed by the database manager and the representation expected by thc Lisp
Rystemn. The cost of this representation conversion is unacceptably high. In the permanent object
system we built, representation conversion is not necessary.

The goal of the work described in this tbesis is to develop a sy.-Um for managing permanent object
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L'..t i3 wo~rt ý,c,.rzJ tCi the &'d ..oc n-eLLocs bat cumboenoan th'aa C..e "tolstat

A c7~~sy•o ýU ii of h~ ~r- ow a r~;nfor r p ýtL -r; qz-t ob*'n':a

r<~i~np '.ta cf maU' t=.iu a m n L.~ ptOCý2.Old a E) ýa t p,2 Cd

loc-A nt%-Vork. ?-C.-y =:2 ý L.i~ c~zc,-r'd wihthe p:rb,%r of b'~~eto 1;&e
Radvant-':m.e oi he nr---ly zvx.i1~ble z.mzd] pnc&-ýc.3 (e.g. the Motorola ~CZIO) COnfigw-red in a netWOrk
in ororto m~ake zplicniotns rumvnSe or more rel~ahiy. Much of this recearch has addremed
cotcurency probleT~n: if there rte stbl proceez. nmnning on mnultiple procuzors accesing the
szxn, dvaa (or repitzn1-d cop-.i of Uedat-i), how do you coor &iate thcir setivity t in~u the

nt iyof tbh! dzta?

on'e cz.z~': the 1 .. ,-i in cc-rDfŽ1 cn1zret ac;~ to &,"..%, it i3 1Czst ne;ayto
cci.>r t~epr~c 'ein cimrly icz•=nj the Utiaa. The iza 'e of rn-d.'~z h da". v~~2 to the

rl -t]" ' 1 "c--G 1D P=n 6 &che.-e, bu t not to the level of detj~l neco,=ary to ill urmi'n te
the -',-rd that~z. sxiiue in ?, real implen-entation.

T."Io z1 ; h d !;Libut-Ad comp7,uting is not the inuin t-pk- of our wcr!k, -we o~ied our rmzzent
' s -ý~M d hluilt our ~t~inin a way that does not pi'eJ~d.e t-be lt.ter introducticn

C'; "zihj Cc.-d Mc7 c~ontrol rnrc-hanisrnu. Our current in tinhzs rather cotrmm-
gr:5 -d cocunt-acy1 ccntrol. However, ev~en th~is level of control is ~Alfr d' tribut-ed &p.ppFcztlons
wb.cre concurrency is low - iAe. w~here coafficting request~s for access to da!a occur inmirqetly. For
examrple, the z.ppiicationsi in our miall ,rj~tem example. - the mail tu-m interf&ace and tre. Mai delivere

Z-r W~ezs;nzl~ of knicticas that zmi ;'ht be diz-tribnted a~mong a number of proceoa~m in this ccOe
t~e de-_a of corc,-r-on.-y 13 '--w, and :odrnple concurrency control tazz'luns (e~g. waitin,-
"for a Mie to become unalockmed) are suwdcent to solve the Ploblem.

A p--,--It 0134ýCt rmy~teim ha many potentimJl app~cations in adlition to the mli yntern exarn!le
Z~jvýn above. WVe Eat some ap')h(.ations that dtal with perm~iexn dat.z, da.7czrie exkt ing impk~nmen-
t~ationi., and d, i-be how a gezeral permanent object system could be uaed in an impkmemenation.

9Compiler auxiliary file&.

T'"e T compiler produces a auippoi't fita that conitains all the macro amd const-ant 6efinitiotis in the
molule bting compiled. The rupport file caz be referer-ced in other files 3o that when those files
ar, compiled, the informstion from the rupnort file can be used to produce mnore effcient code.
Pr-.nzty in T, support files rnre text Eilba cotlSI~; printed T expt-on&. The compiler must
re,.d and paree the entire rupport fIle when it is referenced from the f-le being compil.d. Uamin3 a
permanent object Aystem, the data structures describing the macro e~nd c stants. de "Initions could
be permanent objects and accesaed more quickly. We could take this path further and meplace iourvs

text files themselves with permanes~t objects dew-ribing the program source.
* Text formatter datababe.

* ~The-Scribe document preparatico system 147] uaft a set of database files d&crbing outptit devices,
* ~~document formats, and bibliographies. These files contain text strix~g Scribe comands. When a

reference is made to a particular device, dr~cunent form, or bibliogrphy from a docum~ent bung
formatted, Scribe must linearly scan one or more of the document text files. This scan can be
very expensive, especially in the case of large bibliographies. Using a permanent object system, the
database ceoldt be represented as a set of permanent objects and accessed morm effic:i.ýaily.
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9 Registry of users.

SThe Unix 1131 system for registering users is a text file containing oue line for each uscr. Each
line contains (among other things) a user ID, pasword, and full name. Any applications tLat need
the infornAtica must read and parse the text file. Mechanisms to control concurrtut a=s to the
registry would be useful but are non-existent, hence expcein the system to da" corruption. The
file has a rigid format and the prsence of programs that nly on tje format makes it difficult to
extend the registry to held new kinds of information about users.• L.e rigidity is pmrtially a result
of the ad hoe way the data is stored and accessed. Using a permanent object system, each user
could be represented as a permanent object and the entire registry ss a permanent cclUection of
those objectL The objects could be designed to allow both extensbility of information about users
and concurrmcy down to the individual user level

0 On-line help Systems.

The on-line help system used on the DECSYSTEM-20 at the Yal Department of Computer Science
consists of a text file (called the iid.z file) that contains a list of indices (words) and help file names.
Users query the system using an index and the system responds by offering to dsplay the contents
of the help files associated with that index. Whenever the index file is modified (by a help system
administrator), a binary file must be produced (by running a special program that cnnveru the
index text file text to an index binary file). The format of the text file is designed to simplify the
adiiinistramtor's job. The format of the binary file is designed to make the help system programs run
efficiently. Using a permanent object system, there would be no need to have two representations
(text and binary) of the index file. The index could be a permanent object that could be accessed
both by the help system programs in response to user' queries and by help system admnitrtors
to change the contents of the index.

All of these applicatons involve permanent, structured data that must be changed !a a controlled
way. Many existing inplementadors of such applications use inefficient techniques (such ss those
that require unnecessary parsing and formatting oi data) or ungeneral "mechanisms designed for
a single application. An efficient, general, and simple object management system will improve the
performance of such applications and encourage programmers to write more such useful applications.

1.5 Outline of the rest of the thesis

The formu of this thesis is a system we caln OMA a system for managing permanent objects. We
designed and implemented a running version of 0ML We also designed and implemented two sample
applications systems that run using the facilities provided by OM.

Chapter 2 cover the problems associated with building a system Lhat meeta the goals described
above. Chapter 3 discusses the implementation of OI). Chapter 4 discusses how programnmers write
application programs using OM; in this chapter we also describe the 2ample application prmgripa
we built. Chapter 5 summariaes OM and discusses how well it solves the problems raised in chapter
2.



. In thhs c•-pter, r#e out,`=: s on ci 0ae probl1n• f--ced by a syý,tm t•hat mintaiLs pernrnyent
- cb;-ctS. Cur b 1O Ce!,, icr the ccrnputizg envircn•rnm t in whkh pzrmanent objects anr msintaned

"is trsdhional: we •mzme a C1U with a fut ma'in mernory of am•tn]d :"i, and a larger, slower disk
icinemory. Dat~a i tnre baiý =nd I'-rth b-etwieen Jdic nd =in mt=n-ry in relatively la'eunits
(com!p0r--3 W the Um 1 t irt3 the CPU n denl wiLh) and at Za Me Zly `1ow rate (compared to
the rate at which te CPU caxn accm mu.in memory).

2.1 Per .anent data

Many of the problems that xrise from wantint to pjr•e objeeu rerult from the fact that since
objects can be manipulated only within main memory and since main memory can not hold all the
"pe"nanent objecta, there needs to be a controted, reliable mehanism for moving data in and out of
main menmory. The ecxperknce "nned in detimng virtual memory and database systews is relevant
.. " to the und-tandzg Lad the olvin; of theme problems. A permanent object system of the rt

we've outnrd nma use nicuqs from both virtunl memory syrx.rA andd d.tab-- systems. Virtual
rr.,-nory sv ,eu= povi~ie a mo&el vf Ltw to refer to objects that are *not really there'. Daiabnae
y r Ier examples of how to deal with the permanince issueL

- We will dilcuze the following topics in permanent data-

* Integrity and atomicity

9 Abstraction

"* Storage control

* Sharing and concurrency

"* Security

* Reliability

* Performnc

In our discussion of these problems, we will be giving each problem only a short characterization.
"The orientation will be very practical since we are interested in how they relate to the system we
have actually built. In designing this system we have tried to be practical so that the the system
could be actually buill. Later, we will discium how our system addresses these problems.
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2.1.1 Integrity and atomicity

By ktaqrif we mean the functionality that insures that the permanently preserved data is not
corrupted. What anr the major potential sources for such corruption?

The most obvious source of corruption La a machine crash. (In addition to actual machine crashes,
abnormal termination of individual processer or failure of pieces of bhrdware (e.g. d1sk or network
communicaon hardware) can cause problin similar to a crash.) Some- of the pemanent data
may hyve been in the main memory of the crashed machine. If the main memory copy of the dat
contained changes that were not yet reflected in th6 copy of the data maintained in stable storage,
then applications that use the data could be in trouble.

For example, suppose some Ilage data structure is being modified when a crash occurs and also
suppose that only part of the modifed structure has been rewritten to stable storag before the
crash. Assume that parts of the data structure contain related information - e.g. a string of
characters and an integer indicating the length of the string. Suppose the part of the data strut'ure
containing tht integer length got written to stable storage but the part containing the characters of
the string did not. Then an application program that acces that string might accers too few or
too many characters. (In the latter ca*e it would presumably see 'garbage'.)

Anothe7 source of corruption is program error. 12 the course of application program debugging
(or War when some unforeeen bug arises in production use of the application) the application
might present some logically inconsistent pieces of data for permanent storage. The problen here
is in defining what "logically conxistent" means. If the permanent data storae system is to reject
certain pieces of input then the consistency rules must be specifed and be part of the system.
Unfortunately, the specification of the t consistency rules may be non-trivial (a-d a task in
which the programmer may be unwilling to engage). In addition, if the data storap system is to
be relatvely simple, modular, and efficient, it may not be easy for it to maintain the set of rules for
a large set of applications

The traditional appro"ch to maintaining integrity of permanent data is to use techniques which
guarante the st'micit of a set of changes to da Atomicity is a property that implies that if
any of a set of changes are mad. (ie. made to the permanent copy of the dats in stable strage),
they all are made. If for some reason thesystem fas in the middle of a set of changes, the
system guarantees that it appears that none of the changes hae been made. There are various
Implementation techniques that can be employed to asure atomicity wbhe requested. As will
become apparent later. these techniques Are not easily applicsble to the system we design. T6i is a
ILnitation of our current system, but since our goal is to gain experience with a real permanent object
maintainance system, we are willing to tolerate the potential for Iow of intelrity for experimental
purposes.

2.1.2 Abstraction

It should be the goal of any data storage system to provide some level of abstraction. For our
purposes, an abstraction is a mechanism that does two things:

"* It tran*Aat logical references to data into physical refernces to the data itself.

"* It hides details of the representation of the data (e.g. how many bits ane alloc to what)
from the programmer.

By logical reference, we mean the name of a field in a structure or a key into a table mapping logical
references into physical references. &Physical reference is a relative term. What we really mean is
"lesn logical reference'. That is, in a sys& m that presents layers of abstraciioii, only the bottom
layer can be considered to be addressed by physical references (e.g. physical main memory addrse
or d1sk block address). Each software layer above the bottom layer vse references that a•e logical
with respect to references used in the layer below. If layer A is below layer B, a major function
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of Lher A is to t -late lay-er B' to ae m~te nces into htyr A'sna llt giao (i.e. mome phy•uca•.)

For e iarzp, at oze 47er, a m •erozce t1 Lai nu revz entzd as a stn3;
r l r .odoto a 1,,' -,t ISt • Lr-r• aboint t•e

A xy'Z=m wh' ta ie r n d w t i; n.n. it L1 ir oAb

r 1.-.! ýn itzo ýCav n". p~ Lýtci k ~ t""e &Ben.

'aOY11.i PrI4ý or t-~ f--aofre'!e-= n the tr-=&taion =-flnan ism1

crit an in any dbe sbr-ge rnitwhn; our a raches will be de~.aahcd L-zer.

Another role of ahnoztioh er to hide the mad irIknentation of a dwat structue in
"one pa.rt of a syern fru n anotf r part of tLe sz.Irne zostm. 74a t' wrporke of tl3 sort of abstrard ion
is to 0(13ý>Cltuly) alklow~n to the mrep entatIon or I: niiinto be wr"de withozt having
to tzour the ernlue •y.rynt ior pte cts r'uere a Pr-.ii,= byr h ý 'L d by e Tn,!cyln % -.m p-.ae
tha oI rs 'then d•t'•uy dy-n it;euoure wEo:I. , by t3 ve 4 ,L .. n a'io of Oae i.tm• e t.e with
wc2! he isz ' pc.- to hwitk, he is zht aentiteed to em ,ne.y.

lsor "peznipec, is a ncrncy t e of a _ r -eee ncetov to io pa'z.; t Steua •e Lied lists; this mod-~ ae
Te: liorrz z rcontains many se.z, but it o s not 'n-zJe Aion tr-n e s ctua ly Ests. If the

.,cnt of the rollent zivw.yn ueoa the sebroutine prided by t*e et wso4que, the Cent is unn2lected
if tmaInet Mval•. is 2. " •g to reprzent sets "on bit Vectors. 1i, hooevnar, be CLeo-t do" rely on tte
LcZt that ez~ts are =~te lnk red Lat.,, he violates the set abst.raction and hence when the
i _nl±c.ation of typat a lybraction very thqe clyi.t

A ayiten that maintains daa permanently must deal with t.e "ne of controlling the allocation
of stortae o cctpi on by the dag& The system must be Wae to allocate blocks of stcrage of varying
sizes and it must be able to know when atorae. occupied by dofa hes become €ort' - available for
allocdtioa to anoth)r piece of data.

The litersture ;y full of n erniqtocs for allocting store yte. (Xuths world [en IMra stoandard rference
for Oheýe thchniques.) Suche tecedniqus requine thpt da b • xplidety freed by the appn heion
that owns the data ociupying the sto . An alternealveo echne:ie is goation peoiedtim Ga• nge
collection is a prosem s that se naotas the space of objects into garbn e and non-eerbaglt. An object
ist orbage if there is no way to obtgin a reference to the obAtct; odnrerwise the oreeece is non-vrbage.
The literature contains many descript~ions of garbage collection techniques. (Cchen's survey 1151
contains an excellent summary of these techniques)

T'he main advantýr:es of using a storage control policy that relies on garbage collection are:

* Allocation c=n typically bet done very quickly.

* Thcre is no dinglin reference problem.

In a garbage collection based storage system, storage can be allocated out of a monolithic heap
(i.t. a storage pool with no internal structure). The state of the storage pool consists of an index
(called a Acap po~wifr) into the heap. The allocation procedure consist~s simply of advancing the
heap pointer by the number of storage wiits requegted by the caller and then returning the old heap
pointer tob the caller. Such a procedure can be implemented in a few machine instructions and hence
can be open-coded, avoiding the cost of a procedure call to the allocation procedure. r

In stor-age systems tOat ame not based on garbage collection and hence rely on the explicit freeing of
storage, the dangling reference problenm can arise. A dangling reference is a reference froin one data
structure to another wherem the reference is to a piece of storage that has been previously explicitly
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freed. This is a problem since the freed storage may be reallocated to some new data structure and
the dangling reference would then refer to something other than It is supposed to. In a garbage
collection based system, since there is no explict free operation, there is so way for a reference to be
dangling. The garbage collection procedure is defined in such a way that a&y reference to a object
ensures thAt the data object will not be freed.

However, theme is & serious drawback to depending on garbage collection. While it at first appears;
that allocation is cheap, to be fair one has to the factor in the cost of the grbage collection. Such
a factoring produces a more accurate coat of the allocation operation. Also, in traditional garboge
collectors, while the garbage collector is running, no other part of the program can run. It garba~ge
collection takes a long time and it occurs frequently enooah, this time cAn beintolerable- However,
recent work in incremntal and paralle garbage tolkcting strategies lesse some of the pain garbage
collection causes 111,18.1,26,271.

2.1.4 Sharing and concurrency

By the ability to share objects we mean that nothing about an object restricts it to being usned by
one use, or one application program., or one procm&

When we say a set of processes run concurrently, we nksan that all the processs are active and
runnable over somne period of time. By concurrent seem to objece.s we mean accens to objet~s by
concurrent processes. We will use the term cotscsrwexc to mean the meAsure of concurrent access to
objects. The degree of concurrency is determined by how many procsse are competing foras
to a set of objects over how long a period of time, We say there is a high degree oi concurrency if
a large number of proceses want access to a similar set of objects over a short period of time. We
say there is a low degree of concurrency if a sall number of processes want acces to a similar set
of objects ower a long period of titne.

A system tha; supports sharing need not neccesarily support a high degre of coneurrmeny. Enabling
concurrency do"e require that the problems of sharing have been solved&

Lot us first consider the problems related to sharing per se. The main problem her is that all
information about an object must be accessible from a reference to the object. No informnation
about the object can be encoded in procedures that are known only to some user or application
program. Also, the format of references to objects (section 2.2 discusses the issu of reference format
in detai) must not rely on a particular user's or application's context.

For concurrent sharing, let us first consider multiple processe sharing a siagle main miemory. We
assume for reasons of correctness and efficiency that the system should allow Just one copy of a
particular object in main memtory no matter how many proin art sharing that objeci. The lm-
plemventation of sharing depends on the lower level memory architecture of the underlying operating
systemn. On operating systemns that do not support virtual memnory, the implementation is easy:
translate identical reerences from different procceses to the same object into the samoe address in
physical memory where the object has been read.

Operating systems with virtual memory support come in two varieties (1) ones in which all proce&%es
run in the samie virtual address space (which is larger than the amnount of physical xmemry on the
umacine); (2) ones in which each process runs in its own separate virtual address space- In case (1)
the implementation *( sharing is the same as in a&system without virtual memory.

In order to be able to imprlement the sharing of objects in case (2), the system must support
primitives that allow the manipulation of the proa page map. That *s It must be possible to
arrange the page map of two procceses so that references, to somie set of virtual addresses in one
proess produce the same values as references to a possibly different set of addresses in another
process. Given these primitives, the system can arrage that there is one copy of the object in main
memory and that all references to it from all procceses point to the single copy of the object.

Given the ability to manage procceem state and main memory as described ahove, concurrent read
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acnea to ob3.ccts prewat mo partdc-wlz prmblegn. Tike -erl probknzz of zhxxi; zar-is whta either
(1) oue or moeW- to ~ b'v: W aot ju- rw the &IL4; or r,)nu idzple rc~
Wý5hlzg to rt.'ýJ or mrrodiy the dl.at do notiazxz~e arf,=rni =,-In taeory. 'The p kmrhe by c=e
(1) 1z r~.aialy one of ftnqatit-& T-pr,. A r-V~ by c=, a (:.) iz In *4dditi4on cae cf

&L-1 srocni-z that has a to tLcz.: be to
with a ref.-I to tLe ob>]azt. F1,r ý..e se:Jrt "-f -pPC24ioas, "2. lzi!& hn L-e pro~zh is
&=, tabie. For txwjn'a, "pptý --a"d i ctaaý of an izt.egrI thaw,~.. to ',e nzm td
wýem a psrtlkular e~tmt oczr-~ im azy one of a nurxýDer of proccewe& If the mc~hine has n atomic,

inzcnet~nenoy n t~rcioa, t'.a-n tld ixoký n-tation wil -work Ene.

In gtýnerai' howe-ver, il zhre to be v ý-tilers coexizilŽ'S with other winters or theme mru~t be
ay chvuza~o i o-!:. to ~an co- oaz of dý a atcuri r.or ar

c~:-'=p~e cf how lzxlý ;A lto to poznco"n,3cr the IX i cln.-Ac update
probU~~~z: LS~e n& a !L-t oi 2 >~ reprt.e~n m a 11ýt ozf cn and

inodL~~~~~~yin ~~ ~ t Ch ~Ly.~ T~ I-.~h-o n~~ formula (!:ay to &r.-.out for Ln.2ztioa);
&un~ L'O that At tb± saz~e tizme a=Cttn roc L; r~d~y a z:::'le erpkyV"'s 3alby to UX-C4mt

fra r--.Le brt.2vne tL',e Perpmot-ed Tsh~n~I-e V;Vo prcnt:= m" .i ',711 IM thC f..1I -wins
way: SUPPOo2e b~oth proce:ý('i. cinS by any syn oo~rai:on Tim)ftCh the
-waiary iieid for %!he tmpicyte bcling promou-.. Tý-e zLnt proee computtes thie ne-g &ann' and stores
i3 bad. into the Tp-eron obý--cot; the ý,ccad procees ne-arly siaultaneowly coriut-es the rlaie sad
..tores that new salary bachc. Instz-d of t..ez ompc~eding up with ý.a iasmaz~e in *Iniary due to
both inflation and promotion, he p!ýn only one izcreram (I.Toring this *>rt of iuteractjon, there is tLhe
L-zu.e of which inarease computation .Lon~ld ble dooe first, but th -ýt is not a symch'ronisation concern).

One obviot!s 'way to dtsi with t~ls strt ff concumr~ncy problzm is to runt'e -I! rvqp.tsn fo-. modi-
catioaa go through a sin,;IsPro- $ ~cn.;led a wwsi~or) which is tll, on!,- one that can &:taaily
modify the object. This sort of stinLzA two problernz. Firnt., it linits coancourrency - aal mo~fii-
cation requests aft forced to line up and be executed aexiallIy. This problem c=n be ameliorated by
having multiple mo.ii~er proca-wes ewch of which is responteib'e for a dijitset of obj'Ccta Unltu
you have one process per ob-ct,' concarrency may as.2 be lianited. Amother problem is that the cast
of znodl~czaions goes up t ndu;it it z-,-! mmch mcrr tppnive to cro~iy than read data.
Scrne d a'z,..e syst~ew-s axt conttruct.d 'in Ci*,i l.Ior and in f~ct both -h-,te and rezda go thmu-ih
an intermeflizte process. Sin 'a we are d i a syirum that is suppo&:d to m.-he aco=nin% &ad
modifyiz~g permanent objects as similar as poaI~le to accessirg &nd mo&,iying transient objets, we
consider it unacceptable to have such an intermediate prorz=~

AD alternative tr-it~ional tachniqt,*! for &talng with concurreacy is to use locks (such as at=.a
pbores). (Theme are many languaýr -constructs in existence and praposee for dealing with synchro-
niz~ation, but tht-- 0I ultimate,17 rely on locks.) A lock controls what wt cf procewsa hav.- what
kind of concurrent aczetes to a pitce of data. 11e lock can be specified to allow rnul~iple readers
and no w.-iters, or one rveade/wriiter and no other readers, or mulliple readeys and writcrs (the
unconstrained case above). Since there is both timeA and -paL-- oz'.hezd to each lock, a sinm'le lcock
rmay control more than one piece of datz. In order to reduce the overhead. The lock~xg ps~aularity
saysýw smiallaaset ofobjecta nedto be locked in realtnorderto lock just oneobject. A

ayuftemn with small granularity i~s one with the potentWa for high roncurrency - since ihe number of
ol~jcct. chi with one lock is low, the chances that other proces*es can~ work on other, unlocked

* ~~data is high. Conversely, la&re granularity can potertialy limnit concurrency. Thus, lock graniol.Arty
is traded off against pot~ential c-oncurrency. Ir

Now let u~s consider the issue of concurrent sha~ring when the multiple proctases do not share a

'Howitt 1251 ptopeems. uch a syvamr, bu& it is no clear how pe,ttlca ItI
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commen main memory. Note that in the case of shared man memory, the thing that enabled
sharing to be implemented easily is that the same procemor uslag a singi meory can implement a
memory refrenc relatively edkcmtly. While on virtual memory systems the cot of Implementing a
memory reerence is somewhat higher than on non-virtual /mory srstems, the cost is still tolerably
low. Trying to extend the &virtuality* of memory Lo non-shared physical memory is not likely to
ruhlt in acceptable performance. That is, one can imagin- making the memory reference opertion
work oa a network of computers each with its own private memory. However, real impimentationa
of systems with such a facility have never been entirey wccQsduL At bent, the programmer has
been forced to be aware the some memory rdertescm (i.e. ones to local nmmory) are cheap, and
othem (i.e. one to another computer's memory) we consideshly more expensive. 2

For the practical purposes of building an implementation on conventional machines, we chose to
disallow concurrent shaing from multiple procm using dijoint main memorie. This is a limi-
tation, but not one that is impomible to live with because oae can often divide a problem so that
the procems that need to access data concurrently can oha main memory with each other. Also,
even when processe must run in disjoint memorie, it is often possible to partition a data structure

so that parts that have no intaer-dependencies can be manipalated in separate memorie.

2.1.5 Security

For many applications it is important that a permanent dat storage systen provide security mech-
anisms. That is, it should rrovide a way of allowing some m to have one kind of access and other
users to have another kind of access. Them are two simu to be addresed in this area: (1) What
is the granularity of the specification of the claw of umes? (2) What is the granularity of the data
to which a single security specification applies?

The issmue of the granularity of the specification of the clam of usea basially comae down to this:
how many bits of specification do you want to allocate to identifying userr? Ideally the spetification
should allow different aocess to be specified for each distinguishable smer. If there are a lot of users,
this will require a lot of bits. If this specificatiou has to be daplicwAt for each object to be protected,
then this form of specification is unacceptable If bowever rultlple objecs Ihat are to be protected
identically can share the same protection specification, we arwe m likely to worry about the length of
the specification. Tbe space of possible protections is lare but in practice the number of differet
protectiom used is relatively small compared with the total msmber of objects being protected. The
situation is further helped if users can be characterised as being mmnber, of a claas (say, systems
prog-amnwa) rather than individuals. Then the protection app]able to an entire das of uwers
can be expressed simply by referring to the clam instead of to each individual usr.

Intertwined with the imue of how protection is specified is the issue of how small a set of objects can
be protected by a single specification. Even if we use a scheme in which different objects can share
the same specification, we still need a way to express which specification we want. If we us, say, a
32 bit integer to identify which specification we want, it is unlikely that we would want to protect
sets of objects as small as or approaching 32 bits it length since if we did, the storage overhead of
the specification would be as large or nearly v. large -s the data itself. For practical purposes, it is
usually acceptable to allow the size of the set of data to be protected to be relative..! large.

2.1.6 Reliabfilty

Reliability is a measure of how long a system runs without failur Researchers In the field have
mae many suggestions about how programming project can produce more reliab•e systems. It is
not clear what the practical implications of this research an however. For ou* purposes, we will
have to rely on our intuitions about reliability. For Instance, we know that a system that spreads
one set of logically related objects over multiple disk drivos is prone to reliability problems - as

SC.uP [641 is M exampie * a s wttth " Prpty.
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"w i hat is the form of the refoinenoe?

"* What in the c~c½adco-n of cci (i.e. the procedure that obtains a piece of
zLn object given the obit-ct'sg.

"o How m=- y layers of refremncz does the syzt.ei pnovide?

"* How does the un~arlying hardware affect dae rcoie cf rdtince?
is Vat i t pro&-zaN-ir&s and the inserts vic-4 of the refernace?

T'he 2rnt tlhing to note is that an object reference is ult!mat.-ly a string of bits. In this eection we
will diwcuss the issues aasociated with choosing the format of that string and the mecthaniumn for
d'erefereneing given th~e bit string.

"".".1 A frt " t

Peinanent objects' permanent home is on stable storau . - a daLk for instance. A natural first
approach to the problem of choosing the reference form is to sy that an object reference is simpl-
the di'ak address at which the object begins. Suppose a disk xd.aress is simply an intcg€r otfset that
indcates how far from the be:.nning of the dhLk the object being referenced is. Dereferendng then
simply conz•its. of re.dinl the appropria" number of byt" from the d'ak into main memory where
the object can be manipulated by the CPU. Let us refer to this as the pure addre" strastey.

'What am the problerns with the pure addrd s approach? One problem is that since it is reasonable
to &,.iume that objects will tend to be l~rgtr than the interval between disk addresses, if our object
rtfreoces ame d*Zk a&dr•ves, then we are wwtirg bits. This is because ven when the d!A is

full of objects thee will be dik addremm that don't correspond to the staiting poeition of sonr
object. Logically, these unused addreses represent bit patterns that could in principle be ised as
object references. We are not proposing that this wchene be modified to use those addresses, only
that their existence implies that we are not getting full rmileage out of the bits we have allocated
to the tak of making up refermoes. Th.s., if we hbave an N bit references, we are typically going to
be able to make somewhat lwo that 2T' object references. Ideally, we would like to be able to get
exactly 2 N referencs

Another problem with the pure address approac is that it makes it difficult to move objects around.
Objects might move around for several reasons: (1) garbage collection, (2) storage compaction
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(without garbae collection), and (3) 'logical reasons'. By logical reasons we mean reasons that
are not real requirements of the system. For example, suppoe the system consists of many diar
attached to many computers. Extend the notion of disk addresz so that the disks are arranged in
some order and each disk is assigned a subrange of .he entire disk addrme space. An example of a
logical change is a user's request to move his set of objcts to a disk that is attached to his computer
instead of one attached to another computer. 71 v use the disk addres scheme, then moving an
object requires that a2l references in other objects to the object bting moved must be updated to
refer to the new address. In general, this is equivalent to garbage collection - the entire object space
may have to be swept to find ah the references.

A refinement on the pure %ddress approach that solves the above problems is to have a table that
maps references onto disk addmases. The refeence asigned to an object is a key into the mapping
table, The pr- lem of unused bit patterns goes away because the refe•ence can be any one of the
bit patterns p.idble; the table is responsible for translating all valid bit patterns (i.e. patterns that
have been assigned by the mapping mechanism) into disk addresses. The problem of m-wing objects
also goes away. An object's moving is transpart to the holder of a reference because the only
change that needs to be made is to the mapping table slot where the actual disk addres appears
Let us call this the mapped addres, approach.

Let's look at this mapping mechanism in mort detail. The obvious implementation is to have a
vector whoee length is the total number of objects (and by extension, references) we with to allow.
Dereferencing then simply consists of indexing into the vector at the position indicat*d by the
reference and returning the disk address found at that slot. This vector must be placed at some
known place on this disk. While simple, this approach obliges us to m.uintain a potentially large
table many of whose slots may be unused if all the possible references are not .being use.? at any

"yen time. Each dereference requires that we read the disk potentially twice: once to read the disk
address from the vector and once to read the data located at that disk address.

We want dereferencing to be fast - derefere•cing is in the inner Iop of all processing of permanent
data. Slowing down dereferencing slows down everything. The mapping mechanism must be fast.
As an optimization we can keep a copy of the mapping data structure in masin memory. This saves
us one of the disk accesss. Unfortunately, having the table in main memory nukes us feel even
worse about the table's size.

We could use a more sophisticated mapping mechanism like hash tables. One decides how big to
make a hash table based on the expected number of keys (i.e. references) one needs to map into
values (i.e. disk addremes). Thus, we can reduce the size of the table. However, the cost o" looking
something up in a hash table is considerably greater than the direct lookup that is done in a vector.

Any kind of mapping scheme that requires large parts of the mapping data structure to reside in
main memory has two major problems. The first problem is one of reliability. We are kerping a data
structure that is critical to maintaining tLie convistency of the complete system in volatiLe storage;
If the system crashes, we're in big trouble. To reduce the potential for disaster, we can periodically
copy the mapping data structure back to disk. Nevertheless, the risk remains.

A second problem with keeping the mapping data structure in main memory has to do with con-
currency. Multiple processors that do not share a common main memory do not have equal access
to the mapping data structure. It is likely that any mechanism that tries to simulate equal access
will have serious performance problems; one processor will run quidkly while the others run slowly.

2.2.2 Dividing the world

The cause of both the storage overhead and concurrency problems noted above is ultimately that
the mapping mechanism is flat and unpartltioned. It we could break it up into 'smaller pieces then
(1) the amount of mapping data structure that needed to be resident at any time would be reduced,
and (2) multiple procmors could run concurrently as long as they stayed in separate areas of the
map.
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Fi~ire 2.1: Mi;tipie table napped =a.dreas dP•v.efre~ring

The t ditisnal approach for breaking up a mapping mechanmn is to dividt the reference bit string
into multiple prs. is & technique tit is ofte.n a-pEed Lu vinal memory systems. Each
su~atring of biu Ls a key ivt a table. Ali bnt te lA, - ate keys into tabf"' thu nmp bit
stin-:s 2nto tAb.le id,,ML-eM The l]At table rnzps a key into a dL ad&,•. TL% li-mt table is at
,orwe *wel known' location. Let us call th:. sbcme the miltipid taiUe mp~psJ sidmas approach.

Demferencing in this scheme consists of brealing up the reference iato the separate bit strinp. and
then starting with the well known table, looking up each subw-ing in successive tables (the location.
of epach table is the result of the previouo lookup) until the last substring is used. The lust subetring,
instead of beinT an index into L. tatLe of table identi-ers, is an index into a table of dik addresmes.
At any given tin-w, only one of the tablts has to be in main memory. In practice, references are
broken up into juzt tw-o or th.-ee p•iecs&.

A problem with the multiple table anproh is that even if all the tables happen to already be in
main rxrntory, we have to male as many memory references as there are tables in the coure of
just ome full dereference opera4ton. la virtual memory systems, this problem is partly helped by
introducing s=c•ti• hardwaze that stores the lat few reference. that wav derfrencd along with
the identifier of the final table used for each referrnce. Any future reference whose upper subetrings
match an entry In the special hardw-rs table can skip the process of looking through all the tables
and simply use the result saved in the special hardware table. This proceas is sometimes called
trunsltion lookaide (or trandation caeAing).

Let us now consider the issue of st,'rae allocation in our simple disk a.dred based object system.
How is the disk space managed so that allocation is fast? It w- want to rely on garbage collection
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to reclaim frs space, we can use the allocation mechanism described earlier - simply have a heap
pointer that indicates the boundary between used and unused disk space. Unfortunately, now
we have introduced a bottleneck antlogous to the one introduced by our first simple mapping
mechaniss. The problem now is allocation instead of dereferencing and the bottleneck is the heap
pointer (or in general whatever data structures are asociated with the allocation process) instead
of the mapping table. All requests for storage have to go through the allocation data structure.

Just a we broke up the mapping mechanism, we will now break up the allocation mechanism. The
straightforward way to do this is to divide the entire storage pool into pieces and associate separate
allocation data structures with each piece. Let us call a piece of the entire storage pool a Aep. In
fact, it will tu: n out to be convenient if we break up the storage pool along the same lines as the
broken up mapping mechanism. Thai is, the last table in the set of mapping tables will contain
disk a:dreses tha are in just one of ",he areas of the disk (i.e. storage pool).

An advantage of the heap approach is that now instead of storing fall, presumbly long, disk addresses
in the table, we can store just the offsets from the beginning of the heap on the disk; one entry
in the table contains the base add.ms (a full disk address) of the heap covered by the table. In
addition to being small, another advantage of offsets is that they are position independent. That is,
if necessary, we can move a heap (say to another disk) without having to change anything except the
base address. Another advantage that we will go into detail on later is tl6a if a few more changes
are made to the strategy, it will be possible to do partial garbage collections, i.e. garbage collection
of a heap rather than the entire stornge pool. This means that one of the oneroas aspects of garbage
collections - the long time to do garbage collection - can be sormfewhat ameliorated.

2.2.3 Dividing the world is not free

Note that as a result of the divisions in the reference and allocation structures, we have introduced
the problem that there will be some set of references that will not be used. How does this happen?
Without loss of generality, assume that the reference is divided into just two parts. The first part
is conceptually a reference to a heap; the second part is a reference to a particular object within
the heap. The maximum number of objects in a heap is fixed by the size of the second part of the
reference. We expect that toe assignment of objects to heaps will not be random with respect to
the meaning of the objects - that for reasors that will be elaborated on later, programs awid users
will place logically related objects in the same heap.

Assuming this model of the use of heaps, it is possibe that some heaps will contain more objects
than others. As a result, there will be heaps for which the second part of the reference is larger
than it needs to be. Unfortunately, in our reference scheme, the sizes of the parts of the reference
are fixed. (Through the use of clever encoding techniques it is possible to have a reference scheme
in which the size of the pieces of the reference can vary 'by need'; we consider such techniques too
expensive for our purposes.) Thus, each lightly populated heap will result in a number of referencen
that are not used (and am not logically usable). Clearly, we need to pick the size of the pieces oi the
reference to minimize this problem. But in doing the division, since we are using direct lGokup and
not hashing, we are obliged to pick sizes of the parts of the reference tiat allows for the maximum
- not expected - number of objects per heap. Since we can assume that most heaps will not be
completely full, we will have unused references. This is the price we pay for introducing partitioning.

2.2.4 Reusability of references

While we didn't explicitly state it, in both the pure address and the mapped address approach, we
have asumed that references can be reused. That is, if an object is deleted (i.E. discovered to be
unreferenced after garbage collection), we cý-n reuse the reference to refer to some newly created
object. In the pure address strategy, this simply means that we c•an put some new object in a place
where some old object lived and that the distk address of that place (the reference to the old object)
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r~e Type3 andi '..od'

Bly cod-- we mean the pror-n ng langu-azae proc-edures that I.~the abheorccLicns d1acumed
in vection 2.1.2. It muzt 1:-t pensible to Xtt Li-uta reference to an obpict to the code that. inplemznert
abstractions on the ob~tct. We call the chan-cterinict of an object that determaines what code should
be used to imoplemnent aloetrmitions on the obj:ct. the objet's tyyt.

In a&tu&a-Ihio',al vrovnrmn-rnin 1i-anzr"e Like PascalJ, it is not nteesary for the repreeentation of an
objeýct to contain atn indicaton of Ote type of the object. Th" i because all variables have types and
an object is the value of a variahi-e or the mJne of somne field off an ar7regrawe whorle typ~e i3 known.
In T [he14. &11 L-rps), ve&hido not have types. Thus, the typ~e or an object rmuzc be explicitly

aaoitdwithI the obhcta it 1-'f. Yeobiioua Mechanizr-s for doing t'i '1 is to aL]xLýctt weie zspace in
thie Object to hold a type idn Oir ptin-izations of this achcmTv. will be discussed in section, 3.2.1.

Given that type INa ame kept In objec-ts, we need £ mechanism that takes a type ID and returns
a procedure that takes aome operation that is to b-e performned on an object and im-plements the
op-eration cn the objet.:1 This procedure is Ch, handler mentioned in section 3.1. lIcEt';,, code in our

wriof Permanent objects would be a permanent object itaelf. Thus the result of the mechlanism
Just doscnibed could simply be a rdferrncu to a handler object. In fact, if code can be rzpresented
as a pe-rmaýne-n! object, the typ-e ID could simply be a reference to the handler obj*ct.
Onet reuson for wanting tLhe t" >- ID Wo be something other than are erence toacoebjtisht

we can assumne that there will probably be more objets than types of objects. As a result, the
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number of bits needed to hold a reference i4 larger than the number of bits needed to hold a type.
Since every object will have a type ID embedded in it, we wnuld like to minimize the size of the
"type MD. Another reason for having a la)er of indirection betwee type IDS and C.Ode objects is that
it permits a level of abstraction. Types can be thought of independ-nt from their implemertations.
Implementations can be changed without having to modify all the obje:ts that contain the Cype ID.

If we introduce a layer of indirection between type IDs and code, we must keep a global table that
maps type [Ds onto code objects. in order to avoid making this table a bottleneck in the system,
each proceem would presumably keep a locri cache of the map. (Note: tivs solution works on!y as
long as the handler c,,responding to a given type ID never changes.)

Another issue about types and code that needs to be addressed is how to deal with type redefinition.
Suppose we create a type, create some objects of that type, and then want. to modify the behavior
of objects of that type (i.e. how those objects respond to operations). Do we *ant to modify the
behavior of eisting objects of that type, or only objects created after the type is modified? Also,
what if the type definition wants a different number of slots asiged to objects of that type? There
ar cases when one wants old objects to &ee' the new type definition - for instance when one is
fixing a bug in some method. There are c&vs when one wants them not to see the new deinition. Ln
this case, one might be inclined to call the change an introduction of a new type, not a redeenition
of an existing type. But this would be hiding the relationship between objects of the old type and
object.s of the new type. Suppose a bug is fixed in a nke,.hod - one would want tht bug fixed in both
the old and the new handler (type definition).

2.4 Previous Work

Many other researLhers have worked on systems that tried to solve some of the problems discussed
in this chapter. We will briefly discuss some of that work.

2.4.1 Capability systems

The tet.n epapbihit system [201 is usually applied to a system that is specially designed to keep
track of reierences to objects. Levy's masters thesis [351 contains an excellent summary of the-"-
systems. In capability systems., acces to data is controlled by the fact that a prccess can refer only
to objects for which it has capabilities. A eapbdily is essentially a high-level machine addreas. The
only way to obtain a field of an object is with a machine instruction (or kernel call on machines
that do not have capability.based hardva.e) that takes a capability and an offset into the obect.
Unlike other systems it is not possible for unprivileged process to create capabilities from other
data types. Part of creating a process is the a.signing an initial set of capabilities to the process.
The process can then paw those capabilities onto processes that it invokes.

2.4.2 Hydra

The Hydra operating system for the C.mmp multiprocesor 154,161 has been an irfluential model for
researchers interested in capability systeryr. -'he underlying hadwcwre (wh~ch consists of PDP-I 's)

is not capability-oriented. However, Hydra supports capability-baeed references to objects. This
functionality is supp!ied by machine inst.ructions that trap to the kernel which then authenticates
the reference and does the requested operation.

2.4.3 IBM System 38

While they have long bad an attraction to researchers capability systenms have not become common
in the real -vorld. The IBM System 38 is one of the ftrw commercial systems based on the capability
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model. The System 38 hardware is capability-oriented. In spite of the fact that is has n obect-
orienAed model - the system presents a o-ne4eve object sLont which eliminates thbe distinction between
objects in main memory and objcts stored on the diak - the Syr.em 38 does not provide anvthi-ig
"other th&n a tiwdiiioial pror¶, - ing envi-oim'ent (CODOL and R•G-n).

Intel's iAPX 432 mtcropro-tcnor and wzociateu opemtlin m,%em, iMAX 42 [12,41] is a ec.-nt
commercial entry into the worid of czpability •ysters. The .32 system is aL-o object-oriented, but
unlike the System 33, the 432 makes apparent to the prognrmer the ditinction between active
and p•s.saive objects. Pzrcive )bjects we referred to using 80 bit UMs)s. Active objects ar referred
to using 24 bit 432 acce 6ecriptors.

The 432 is not in widespread use and the status of the iMAX project is unclear.

The recc.nt trenr in computer architecture dmn n htas been toward machines with a considerably
simpler model [43]. The ýrrnw•-e that supports capabiity syt,:,a is edxenzive. As a result, it i3
hard to debug and hard to optimize.

2.4.5 S naflal'i

Srnalltalk [31,22] is a lanruzge, operating system, and pro-rarmming environment. The only =uc-

cessful Smalhlulk implemen•tions have been on microcodcd personal workstationm 3

Sma&Iltalk is the canonical ob t-orkinted environment. The Smnilatalk language introduced many
of the concepts and much of the terminology of object-oriented programming.

2.4.0 Z• cn

The Eden project [32,2,!,4] is a project attempting to build a distributed computing environment
around object-oriented principles. Eden objects ae relatively expensive and heavy-weight and hence
are used to represent a collection of data. In Eden, objects are ace entities. When an operation
is applied to an object, a proces corresponding to the object (not to the invoker of th'i object) is
activated to run the oboct's method for the operation. Pari. of the Eden project is the devlopment
of a programming langua, EPL, bIied on Concurrent Euclid. The purpose of EPL is to allow
Eden objects to be coded conveniently. Usaing EPL, active Eden objects can have multiple th.rads
of control. ...

Originally, the Eden project expected to run on the Intel 432 microprocessor. However, the present

"3 Eden prototype is running on multiple VAXes connected via a local Ethernet.

2.4.7 Object-oriented machines

Them have been several propoeals from MIT for 'object-oriented machines'. The machines bear a
resemblance to capability machines in that the hurdware is specifically designed for keeping track
of reference. None of the proposed machines have been built.

Bishop [14] describes ORSLA, a system with a very large liaem, paged addres space. All processes
run within the same addrems space. Ob~ect references am virtual addreses, not UlDs. The addrss
size is proposed to be somewhere between 40 and 50 bits (the minimal addressable unit is a 64 bit
word). As an optimization, a reference contains some object size and type information tn addition

071m T i nt kmple• e•tataion cl SmaItalk ou the SMI SUN 68000-band workstatio 1171 appareny approselm the

peomance of the better tnicrocoded knpknmentatla; It i w4 cear if this iuptemeatatioa will succeed in making
Smaltaik mome widly used for irwV appilcatiome.
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Bishop's main idea is a scheme for partitioning the addres space into areas and allowring ar"as to be
" garbage collected independently. The arc, scheme depends on irter-area references going through

intC-erea links so that the garbage collector can determine the root set for the collection of a single
area. The proposed hardware would make inw-area links transparent to the programmer.
Lunicwski 138] describes AESOP, an object based perzonal computer. ALOP incorporates some of

y the ideas of ORSLA. In addition, Luniewaki investigated some of the programming language issues
involved with working on the proposed architecture. He adopted the CLU language model [36].

Snyder 1491 describes another object-oriented yysam band on CLU. His thesis discusses tome of
the lower level hardware isues associated with such a system. Also, Snyder proposed the use of
refmrence counts instead of garbage collection to allow storage to be reclaimed.

2.4.8 APL

The APL workspace [21] is one of the earliest examples of a mechanism that supports permanent
structured objects. Early APLs provided only a mechanism for copyi•g objects from one user's
workspace into another. Modern APL systems provide mechanis Lsr also sharing values among
workspaces..

2.4.9 POMS

The Pensistont Object Management System (POMS) 17,3,9,10,421 is a project that has extended
ALGOL to deal with p nt objects. The underlying permanent sorage me hanism is the

Chunk Management System (CMS). CMS provides a database-like interface for POMW. On first
reference to a permanent object POMS requests the image of the object from CMS; POMS deals
with a cop of the object and the changes made by the program using POMS is not made permanent
until the program commits the changes which point the image of the object is copied back into
CMS.

2.5 The SmaUtalk - Hydra spectrum

In looking at the various systems th#t have adopted the object-oriented model, one can see a range
"of concerns to be addressed. Smalitalk and Hydra are at opposite ends of several spectra:

Smallk Hydra
7.object sis •am&; IWuI

number of objects Taw -e yery large
cost of dereference small 7T

language integration good b
objects shamable? no

2.5.1 Object size

All object-wriented systems are desigred to support well a particular range of object ses. Ideally,
"a systenn should support a range of sizes from just a few bytes to thousands 'and millions of bytes.
In practice, it is difficult to rupport such a range. One finds that a system discourages the use of
small objects by introducing a fairly large storage overhead per object. For instance, if the system
Imposes a 16 byte overhead per object, it is unlikely that progranuners will create many objects of
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16 byt4A or lass - programmers will tend to combine several logiczlly related smAll objects into one
larger oblcct to znimize tbe oyeread. This obscuning of logcal objects reduces the usefulness of
the system. In fact, if the per-object' penalty is large enough, one tends to Yiew objects the same
way one views file in a traditional operating sy3ten.

Smalltltzl is oriented toward dealing with znsall oblc,- - every place of data in Smzllta.l is an
"object; the SmAlItalk implementors' exeriencle has shown that aver o t size is ouly about 20
byt, [12-. The per-ob,,;ct overhiad is 8 byt4s (4 byt• in the obj.ect and 4 byt"t In the obýjct table).
Ile larzest obct is 1=IK bytes (large, but probably not lizge enough for all applicazion).
Hydra is oriented toward dealing with somewhat lzrger objects than Smaltll'k. The per-objtct
overhead for an active object is 56 byt; the per-object overhead for a paive object Is 32 bytes.
Almes jI] points out that these overhe"ds can in principle be reduced to 32 and 16 bytes respectively.

2.5.2 Number of objects

Another design aspect of object-oriented syst,-m i t7e numb-er of obiects that can exist at the sane
tir.e. TrAditional Smalal~k imple.,entatloas use 113 bit object mfrtncts and hence can tupport Z -
objects. The reason this number isn't 6.4K is becaufe Sm,7ltalk in•pementations typically encodle
"int•-•gr in the range -21".. + 21' - 1 in the object reference itself; one of the bits in the mrfeýe
is taken to mean "I am a small integer, not a real reference'.

Some more recent Sin.al•talk implementations have used 32 bit references [121, but it is not clear
that they are designed so that they can actually nwport 232 objects. LOOM [28,S1] is an experi-
"mental system for extending the Small"ak object spaee by introducin3 a aecond&Ty obýect nvmory;
the Snallitalk interpreter automaktictally moves objects between primary and secondary memory.
References to objects in secondary memory are 32 bits long.

As opposed to Smalltalk, Hydra was deaigned to support a lare usr community that would work
on C.mmp. As a result, Hydra was dtsigned to support a larSer number of ob'ects than Sina]]tak.
Hydra uses a 64 bit object reference which is composed of a 60 bit field which contains the value of
a I microsecond clock at the time of the object's coeation, and a 4 bit procomr ID. The incrased
per-object storage overhead of Hydra as compared to Srnaltalk is in part due to the larger reZerence

2.5.3 Sharing of objects

Another area in which Hydra comes out ahead of Snalltalk is in the area of sharing. Again, since
Hydra was designed to be a muld-user environment, it needed to support the sharing of objects
among user In Smafltalk, each user works in his own object space and there is no (attractive)
mechanism for sharin; SmalItalk objects among diiierent Snuiltalk users.

2.5.4 Cost of dereferencing

In Smalltalk, all objects are entered in an sbject tsis (OT). A reference to a Smalltalk object is
an index into the OT. The OT entry for an object contains the memcry address of the object,
a referene count, and other miscellaneous informstion. Obtaining a field of an object requires a
memory reference to the OT in addition to the memory reference to obtain the field itself. The
size of the OT is fixed and the entire OT must be in main memory. For Smallt~alks with 16 bit
i"e.ferencs, each entry in the OT is 32 hits long. Thus the total size of the OT is 123K bytes.

"In Hydra, an object can be either passive or active. An object is activated autornatically when
S, a field of the object is request. Hydra use UIDMs as object references and hashing as part of the

dereference mechanism. A data structure called the sctiew GST keeps track of all active objects
(Le. objects in main memory). A data structure called the p.i.ve GST keeps track of all passive

C"fo
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objects (i.e. objects on disk). Obtaining a field of an object requires a hashed lookup in the active
GST; If the object is found there then the main memory address of the object is extracted from
the active GST entry and used to pick of the field of the object. If the object is not in the active
CST, the object is activated (which requires reference to the passive GST) and then the procedure
proceeds as it does for an active object. This process of obtaining a piece of a Hydra object is
handled by operating system code and is initiated by a user process by executirg a kernel call - a
special nuchine instruction that is trapped by the Hydra operating system.

Eydra's reference meduias is clewiy more expensive than Smalltalk's. The ternel call in Hydra
can be used to copy out large pieces of an object into a proces's local memory; evidentally this
feature is u**d to minimize the number of kernel calls necemary to obtain an object's state. The
expense of dereferencing ercourages programmers to make larg. objects whoe contents can be
retrieved with one kernel call.

2.5.5 Language Integration

From our point of view, the most mrious deficiency of Hydra is the evident lack of an environment for
programmer's to design and build systems based on object-oriented principles. From the descriptions
of Hydra, it is not at all clear how one actually programs on it. Smaflta&, on the other hand, is
the ultimate in object-oriented programming environments. The language and the environment are
complete integrated. Tools are provided for inspecting the object space.

2.5.6 Summary

The point of our Smalhtalk/Hydra comparison is not to show that one or the other is better.
Rzther, the point is to show how two systems which are both "object-oriented' can turn out so
differendy as a result of different goals. Smalltalk's implementors were interested in making a singhle-
user progranming environment to exploit the concepts of object-oriented programming. Hydra's
implementors were interested in making a multi-ius, reliable, multi-processor operating system
based on object-oriented principles.

In our system we have tried to find a mid-point in the spectrum of possibilities that chracterize the
differences between Hydra and Smalltalk. It would be fair to say however, that we started at the
Smalilalk end of the spectrum and tried to generalize to a system that has some of the properties of
Hydra. The Eden project is an example of a project that started at the Hydra end of the spectrum
and attempteci to support the programming ease and efficiency of Smalitalk.

2.6 Message passing instead of object moving

An essentially different line of research that is concerned with sharing of data concerns the support
for message pa'sing4 in a programming system. This research has proposed the introduction of
programming language primitives that send data to and receive data from other proesses. In
the systems discussed above, dat is manipulated .imply by dereferencing a pointer to the data.
Multiple processes can accen the data; there is no explicit moving of data among the processes
wanting to access the data. This sort of access to data seea= natural and does not require oovel
programming language constructs. However, accs to the data is unconvsined - synchronization
is not part of the model. The message pawing approach can be viewed as an. attempt to allow the
synchronization of processes's accem to data.

'N.B. In Sraltalk an otebr an quags with simala Soals, t ecs Is often • sed to mean something like *generic
procedum calr but this Is a te amns we ted %ram.
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Ensions to CLU have been proposed to allow m-emaae pmiag. 123,24,501. More recently, the
Arua project [371 has introducted the notion of guevdin as the repository for shared 'atta commu-
nication with guamdians is implemented via the lowtr-level mse•p psing meancism.

a.7 am aoi o+a *

TLe fr-,nwork in whi3ch we have desizted and built our xyetem for in'aining permazcmt obacta
Lzzu"ks the following amumptions:

"* The system runs on conventional han,!,ar.

"* The system runs within a conventional operating system.

"* Application programs that use the system are written in an extended conventional language.

All our assumptione, but especially then- three, result from our dembre to buld a system in which
we could experincnt with p rolrammin in a permzne.nt object system. RequirLng thatv we build
hz.rc•are or operzting system software or d~iin a new prcrarnmirng language would have increwv.d
the scope of the project beyond our ability. Given the alternatives of a iesa thzn ideal sysum
with which we could acually experiment or a perfect system that would at bet be only p.r•ti•ily
implemented, we chfee the les than ideal system. In addition, from a purely expe-inent.O point
of view, we wialed to demonstrute that the imp ezentation of tlite concepts does not ab.olutely
require sophisticated new languages, hardware, or oper-ating system software.

* The entire space of objects can be naturrdly divided into xsbosb ' (headp) of object.

That we aaume that the space of objet can be naturally divided means that theme will be some
set of applications for which our system will not be useful. For instance, if the objet.t space conuizts
of a 'arge highly connected graph of objet.cts of the same type, there may be no naturnl way to divide
that space. Note however, that if the undividable zpace is small enoi•'• so that the applicmon's
objecta can fit within the ulaest possible heap, the application can ute our system.

* The system does not provide complete transparency for the application programmer.

A system that provides complete transparency does not require thit the programmer know the
pattern of inter-heap references, or what kinds of objtcts reside in wh. he~pa, or in what heap the
next ob.cct should be alloca••d. In our rsstem, the programmr do" haye to Vnow thele thm: .
We hope that experience with taing a system like ours can help in designing a prwctical system in
which complete transparency i possible.

* The system does mot provide high reliability in the face of hardware or somnunications failure.

This assumption is related in part to the first two assumptiorts. Given that we were unwi~ling to
build hardware or operating systems, it is di"Icult to improve th_" reliability of our system beyond
the level provided by conventional hardware and software. The grow reliability of our system is
as good as the conventional system on which it is built. This level ir good enough for people who
use the convwntional system, so it is reasonable to believe that it will suaice at least for our initial
implementation. In the long term, higher reliability is probably required since in a system of the
sort we built, the lose of a very small amount of data can potentially lead to dissaterous rmwltL.

* The system does not provide mechanisms for a high degree of concurrency.

We are interested in supporting the sharing of objects by multiple processes. Secondarily, we are
interested in allowing as much concurrency as is poosible using convertional tachni4utt (locking,
busy waiting). We believe that our system supports the solution to problems that have a low degree
of concurrency. The system does not support concurrency among processes running in separate
physical memories.
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1 Thsysem supporta only fairly coare protectiom

If a system is to provide acce to permanent objects that is nearly as fast .• a ccei to transient
objects, it semes that it must rely on special hardware to allow protection diran to the level of
individual objects.
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Implementation

In this chapter we will disc• s the dwin and implementation of OM, our ,ystem for supporting
m=na~nent cbj*ts. VWe will be concentrating on the lowest levws of the sy "em.

3.1 The object model

The model of data that we w•l use in this thesis is typically czaled object.t-riexaL This model has
been popularized by Smnafltalk. Since the term has dilerent meanings to different people, we will
brie•ly describe what it meians to us.

The entities in object-oriented sysym we (not surpriningly) object&. An object 6 a piece -f cotir.i-
ous stor.-e. Atomic object. have pre-dtiled storge layout. .on-atz.omic objects te div,&A into
equal-6iad a*lot, e&6 slot contains a rmference to some object. Integers and strings are example" of
atomic objects. A vector is an example of a non-atomic object.

An important concept in the object-oriented view is the notion of refertzce. Objects do not contain
objects, they contain references to objects. Thus, two different ob,"cts can refer to the sum object.
Two references are said to be dealictl if thzey refer to the e same cbject. Two ob€ts are said
to be "ivoliat if there is no way to tell them apart. That is, any procedure applied to one cb-ct
yici d the same result as the same procedure applied to the othe object. Two references can be
nor-identical yet refer to equivalent objects.

Objects can be mutable or not. An object is mutable if the storage occu•zied by the object can be
modified. Interers are immutable objects. Strings and vectors can be mutable. A mutation to a&
object is sometimne cased a side-.ffect.

Computation occurs by invoking operstio" on objects. (An operation is the same as - Sm•stailk
message.) When an operawion is invoked we say the object remsond to the operation by executing
some code. We call the cod, that implements the respoase a meh*od. We call a collection of
methods a •ad!,r. The type of an object is defined by its handler. This is an operational view of
types. Operations are g-neric; Le. they can be applied to any object. However, an object does not
necessary handle every operation. An error occurs if an operation is applied to an object that does
not handle that operation. The ertire process from operation invocation to method execu:ion is
called operation diupatc.

The object model just described is essentially that of T. Much of the terminology " "use is T's.
One reason for using this model is that it is T's mode] and 4,ur system will be running within T
and used by programmer's fawiliar with T's model. Another reason we use this model is that it is
simple - objects can be accessed in a uniform way.

24
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3.2 The Environment

The environment in which we implemented OM consists of the T programming language and the
Apollo DOMAIN computing environment. When we began the project, we were fully aware of the
fact that by trying to work within an existing environment, we would have to compromise on what
functionality we would be able to support. OM does not provide the complete transparmncy and
ease of use that many unbuilt syr-.na have proposed.

A clear advantage of working with existing tools is that we were able to more quickly address the
issuew _j which we were interested: What is it like to program a lage system where all data is
stored as permanent objects? Can such a system be made efcient? Another advantage in not
being language designers is that our md product is not a system that is unfamiliar to a ready user
community - a community already familiar with T is moee likely to use a language that is much
like T than they are a totally new language- Finally, it is unproven that a permanent object system
actually requires a special purpose language, hardware, or operating system. We wanted to see how
sophisticated a system could be built within a relatively traditional environment.

3.2.1 The T programming language

T is a dialect of Scheme, which in turn is a dialect of Lisp. Scheme differs from Lisp mainly ir. the
fact that variables are consistently lexically scoped. In this respect, Scheme is more like traditional
Algol-like languages than are traditional Lisp implementaions. The latter rupport dynamic scoping;
i.e. the value of a variable is determined by the contents of the control stack, not the lexical position
of the variable.

Scheme supports procedures as 'first-clam objects'. T7a *, procedurse ae legitimate objects
(like strings, vectors, and pair. that can be bound to variable and pasd as argumants to other
procedures. Procedure objects am crae by the IAXSDA special form2 . Procedure objects are also
known as d/osisv because when a LAOU form is exacuted, it returns a procedure objec' that is
ciosed over the lexical environment of the LUSU form. That is, when the procedure object is called
and the body of the procedure is executed, references to variables that are free with respect to the
LAMBDA form but that are in the lexical scope of the LAMMA form yield the values the variables had
at the time the proce"Irl object a," Created.

T is essentially a practical realization of Scheme. Before T, there wem no practicai Scheme imple-
mentations in widespread use.

Like many Lisps, T runs in an interactive environment. This environment contains a T interpreter
that allows the debugging and incremental redefinition of procedures. The T compiler takes source
files and produces object modules that can be loaded into the T interactive environment for execu-
tion.

T, like all Lispa, is a language of reference. That is, the vamlues of variables are reierences to objects,
not objects per se. Different variables can refer to the same object. Objects can contain references
to other objects. Procedures return references to objects. In general, objects are allocated in heap
storage. T uses a copying garb 4e collector to reclaim storage occupied by objects that are no longer
reachable.

T references are 32 bits long. The low 3 bits of the reference are used as a type code. The type
code is used to determine the type of the object being refrred to. For instance, if the type code
is 5, then the object at the address specified by the reference is an adjacent pair of references - an
8 byte T pair. The high 29 bits of the reierence is a virtual address in quads (8 byte chunks), not
bytes. Figure 3.1 shows the format of a T reference. Note that a quad address left justified in a 32

'Liss traditiosaw -e as caLed a *palr in T.

2SIIUd~w lis bthe Iraditiomal Lisp term for rfatax In the languaep tha in used to denote something other thant a
call on a procedure.
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3 2 1 0
1098765432 1098765432109174 43210

IVi.rtual adress (quSAS) IT TI'

TT- T trzý* c"4a
1 4. .... b t+

Figure 3.1: T re!f=-,ce format

bit word is a byte addr6e (i.e. if the low 3 bits of a reference are masked to zerm, a valid machine
addreri results).

Lqt us briefy exwnine how this sort of type code w.heme wo9!s. In T, chooiinj a granulmrity of
8, the lcw three bita of the mcIne addre- of an object ame always zero. Hieme in a T rcflrnmce
these three bit c.n be u;ed to stom the type code; this requires that bWfore- us. a T rtfereuce as
a mzachiLe address, the low three bits must be cleared. If the type code of a refemence is known (or
c be assumed), then tLe dearn of the type code can typicaly be done iA the same instruction
th. fetches a field of the object: the diplac-ment Ued of the instruction is sinmy decremonted to
account for the inrememi that the type code will cause. In T, aw in most Liaps, the machine code
produced for primitive pocedares such as CAI assunes that its argument is a pair and hence it can
assu"•e the type code is a part"culr value.

Given fixed word and type code field sizes, the total number of unique references is also fixed. As the
minimum object size is decmased, the total number of usable references decreases (assming some
objects are largM than the minimum object size). Thus, in effect, as the granultity decreases, the
tot4l number of objects that can exist at a time decreses. As the minumurm object size is increaed,
if there are a number of objects that are logically smaller than the minimum object size, the total
amount of wasted space increases.

T uses a granularity of 8 because Lisps traditionally make heavy use of object& that contain exactly
two references.

Simce T needs to support more than 8 types of objects, one of the 8 possible type codes is uftd to
nvta 'the t7yp of the object is encoded in the first cell (4 byte quantity) of the object'. This type
code is called the ezie•d type code. The fint cell of an extend-type object is called the object's

CMuiZale poistcr. Objects represented in this way are called esteads.

In principle, all type information could be etcoded in templates and no type code in the reference
would be needed. However, there are two reasons for type codes. First, they allow certain objects to
be represented without the extra storage of a template pointer; e.g. without type codes in references,
eon, cells would have to be S cell. long instead of 2. The second reason for putting the type code in
the reference is to speed up the proct-ss of determining whether a eference is to an object of one of
the frequently used typem. For example, giYven a reference to an object, one can determine whether
the object is a pair simply by looking at the reference - the contents of the object itself need not be
examined.

T supports the style of object-oriented programming described in retion 3.1. Recall that the first
"step in operation dispatch is to get from a reference to an object to the handler asociated with the
object. The way this is implemented in T is as follows (we make some minor simplificatlocs): if
the reference's type code is not -etend, then the handler is obtained from a fixed vector of handler
procederes; the vector is indexed by type code. If th.e reference's type code is extend, then object's
template pointer !s taken to be the reference to the object's handler procedure. Once the handler

OBy gruaulawty w, msan the walk" uak a•' ofoc• L •o - LI bow maWI obj/ew cam be.
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is obtained, T calls it, passing the operation being invoked as an argument; the haudler returns the
method associated with the operation. T then calls the method.

T application programmers afe not aware of the machinery of operation dis h described above.
The OBJ•CT special form allows programmers to allocate objects and specify how the objects are
to respond to operations. Handlers are part of the T implementation and are not visible to pro-
gra.mxers. Operation invocations are syntactcally identical to procedure calls. In T source code,
procedure calls are expressed as a list whose head is an expression that yields a procedure object
and whose tail is a list of arguments to the procedure. The only difference between this and the
syntax of operation invocation is that the head must yAd an operation object. The first argument
to the invocation is the object to which the operation is applied. Operations are defiled using
DEFINE-OPERATION which ha. a syntax similar to DEFINE, the procedure definition special form.
The body (code) of the DEFIE-OPE&ATION is called the defcuit metkod - the code that is to be
executed in case the operation is applied to an object that does not handle the operation. If the
body is empty, then when the operation is applied to an object that does not handle the operation,
an error is signalled.

As an space optimization, certain objects are not represented in heap storage. These objects are said
to be represented immediatdy. Immediate objects are represented within a reference. References
with certain type codes are taken to be immediate objects. For example, if a reference has type code
0, then the high 29 bits of the reference are taken to be an integerin the rane -2 2s..+22- 1; T calls
such integers Fizi=nu. Immediate representations are important because one wants to minimize
the allocation of heap storage that will become garbage quickly. For instance, if Fxnuns were not
represented immediate.y, then the + procedure would have to allocate space in the heap to hold its
result. If this result was not saved, but only passed to another procedure, as in (* 2 (+ 3 4)),
then the result of + becomes garbage, resulting in the heap's filling up quickly.

3.2.2 The Apollo DOMAIN computing environment

The computing environment in which we developed OH is the Apollo DOMAIN 15,6,33,341. DO-
MAIN is an integrated environment of high performance personal nodes4 attached by a high speed
(12M bit/sec) local ring network. The present Apollo hardware uses a Motorola MC68000 or
MC68010 microprocessor [40). The 68000 instruction set is traditional and memory is byte ad-
dressed. A node typically has from about 1M to 2M bytes of private main memory; it is not
possible to share main memory among multiple nodes. Each user node has a high rztolution bitrnap
display; Apollo makes server nodes that do not have displays but which can be accresed from other
nodes on the ring. The DOMAIN software supports multiple processs on a single node; each pro-
ces runs in its own virtual address space. We discuss below those feature of the DOMAIN system
that are relevant to our work (we make some minor simplifications for ease of presentation).

The DOMAIN virtual memory architecture presents a virtual address space that is in principle 224

(16M) bytes long; part of that space is reserved by the operating system and the amount available
to user code is about 8M bytes (it is expected that later Apollo hardware will support s larger
virtual addres space as true 32 bit microprocessors become available).

The process virtual addres space is divided into 1K byte pages. For a page to be usable it must be
mapped to a disk file. By page's being 'mapped' we mean that it corresponds to a page in a disk
file. A memory reference by a machine instruction to a virtual address in the mapped page yields
a piece of the disk file page. Depositing a value into a L,,tual address modifies the contents of the
file. The pager is responsible for optimizing updates of main and disk memories.

Parts of the address space are made usable by issuing a map system call. The call takes a file identifier
(discussed below), an offset into the file, a length to be mapped, and some locking information
(discussed below). The call returns the virtual address at which the file is mapped. In general, the
process has no control in selecting to which part of the address space a file is mapped. Execution

4
Apoilo uses the term mad instead of woateio and so shall we.
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of •zcire instrctions that refer to parts of the virtual addre space that ane not mapped result
in hardware exceptions. The sma.lest amount of virtual addres space that can be mapped is 32K
bytes; the amount mapped is always rounded up to the nearest 32K byte quantity. The namsnap
sya.m is uzed to remove assoclation between the address space and some file..

. prele ru•nuin , on the %,=ee can c rrently map the aithe puart of the "me fe.
11:,alLz tL1. ma ny be MWs,,>d t4 >~~ plzzs iz et.2h proce-'a virtunal ai a lpce.Bh

ouazy c~zmade% by the otlier. Multi~ie procewa ruanixg on ~Actnodesca
t-c ? -mc .21 for re-34 acct= oaly. .1 iLVLe the lv,,est levels of At%4e alow =hlWli piocnbes

cat n.odas to =, p tl,, same Lle for write access, the remlts of m-o&lcjatons to the Ele aze
T" ~c Ths ot of access Wo f-- is cot ci3~-~sly supported by Apollo.

It is pocLible to map a w±gre~n of a file where the segmnent. is longer thzia the c'urrent length of the
file. As i-etrences ame made to parts of the address space that correspond to parts of the file that
do not exizt, diA space is allocated and amociated with the appropriate pan, of the file. Disk space
is not allocated unless and until the referace is made.

Th, DO. IAIN opersaing system Ae-giz, does not pree.t any traditional I/0 syst.n calls like rd
or w'rif. The only I/O is done by the .pa-,er. U"er I/0 is provded via a user-6ste subroutine

lry.T"i Lbrary is imleanenL ", win 61 th-e maxpping primitives.

One =pect of the DOMALN ystern tha makes it unique among commercial workztaionus is that
wny file on any disk attached to any node in the local network can be transparently accewed by
any process on =ay node. By Ltz-nparent" we mcan that the accesing procm doa not need to
consider whether or uot the fis i on the disk attadhed to the node on which the proem is running.

FI k ame identifed by a 64-bit unique identiier (UID). File UID% are =nique acrom all Apollo nodes.
(The UID has the cxesting node's hardware node number embedded in it.) The Amta node of a .-Ole
is the node whooe disk contains the file. The map primitive takes LA UID of a file to map. The file
referred to by the UID can be local or remote (I.te on the aime node as the process cx'•ating the
msp call or not).

The call to map results in no diak I/O. Pages of •.e mapped Nle tre pane faulted on demand from
the home node of the file. The firs reference to a mapped page will cause a page fault. At that
point the pager either reads the file from the local disk, or serids a page-in request to the home node
of the mapped file. In the latter case, the pager must figure out what the fil'-" home node is b&aed
on the file'& UID. To do th" presently the DOMALN system ablveaxte 20 bits of the UID to be the
node ID of the home node of the Ele. This means that a fil can ao be moved between Sodas (a
file can be copied bet•e•n nodes and the original copy can be deleted, but the copy will have a new
UID which contains the node number of the node to which the file wa3 copicd).

Aegis provides a set of system calls for naming files. These calls allow use to specify text path
names of files (path nams ame like Unix file names [431). The purpoe of the naming system is to
translate p&th niames into ULD. T"he naming system contains diractories (whikh are reprewented
as files) that translate path names into UIDL- No information about files per se (e.g. file length,
location of file on disk) is stored in the naming system. The naming system could logically be
implemented outside of Ae"is (modulo a few details).
Aegis also provides a simple file lo<Aing mechanism. For our purposes, it sunces to say that one can
control how many processes have write access to a file at the same time. This control is exertised
at the time a file is mapped. it

3.3 Introduction to the implementation issues

3.3.1 OM within T

How should the permanent object system be related to T? We we two different approaches to this
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question. The fim approach is to think of T as the implasintation ve&"d for the system. In this
approach the programnw~ is lifted up from T and worl-s consistently in % vermanent, object world
presented by the systm. The T prorrainming langug might be modified in some ways to better-
handle the system's facilities and coat..vts.

The second approach to setting the relationship between T and the permanent obJ~n system is to
think of the system as a set of utLW*.y procedures that mre available to the T propam~er. The user of
0OM still programs in T; he c"Il systemn procedures p~rocedures to copy T obj~cts into the pernmueln
object space and back. The language modificat.ions are only thoaw that c&L be implemented with
T's syntax modification tools (macroe). The programmer has to be aware of when he's dealing with
a perm.anent object and when he is dealing with a transient object.

The second approach is clearly less desirable, but it is much easier to implement. Another advantage
of the second approach is that it does not require one to be a language designer. We believe that
one should decide what a language that is designed to deal with permanent objuicts should look Eike
only after one see the ways in which standard 14nguangs sam hadequ"t In 0OM, we adopted the
second approach. The result was acceptable, but less than ideal in ways we will summavrize later.

0OM is written entirely in T. However, 0)M was written with a detailed understanding of how T is
im~plemented. We ;>resent, the OM implemeotation w.ith respect to the T lang~uage and operating
environment. The details we discuss are in gtneral not apparent to the programmer who wants to
tase 0OM. When we use & phrase like 'To T. feature is ... * or "In the 0OM implementation, feature is
..*we are describing bow some aspect of 0)4 is implemented, not bow it appears to the programmer

who uses 0)4.

3.. Reference

Our first concern is the form of an OM rsfsrwises - a reference to a permanent object. Just as
all T (!.P. non-OMW procedures take T references to T objects as arguments, 0)4 procedures take
0OM references to 0)4 objects as arguments. Note that to T, 0O4 references are objects of some
~aser-defined data type. But to the programmer wsing OX, OM references an (not surprisingly)
refereacies to 0OM objects.

To create 0M references within T we could use the standard T mechanism for introducing new
types of objects. Unfor'tunatey, this medtanism is expensive - all objects of ue-defined types are
represented in the heap. It is unacceptable for 0OM references to be repremtod ia the beap. If they
were, all procedure that reurn 0OM references would need to allocate: starage simply to return the
0)4 referenme (We are not talkng about allocating spac for the 0OM object itself.)

Fortunately, one of Ta s type codes Is unused by T. With virtually so modifications to the imple-
mentation of T, we can use this type code for 0OM references. Using this type code, 0)4 references
can be represented immediatey. Whatever format we choose for the referevnc, it must fit in the
upper 29 bits of a T reference.

Are 29 bits enough for an 0OM reference? If wewereabl touse all 2"eferences,it might be.
However, we intend to use the divided mapped address reference design discsed in section 2.2.2.
As noted in section 2.2.3 this umeans that we expect that we can not use all the noesible references.
Suppose we divide the reference Youghly in half - say 14 bits P'( beep Identifier and 15 bit& of within-
heap referenec This allows 16K hea identifiers and 32K references per heap, assuming we maintain
a 32K entry table that translates the in-heap reference to an actual byte offset within the heap.

Let us consider a modification to the multiple table mapped address scheme. Instead of treating
the least significant part of the reference as an Index into a table of byte offsets, It can be the byte
offset itself. The advantage of this scheme is that we save one table lookup (motnory reference) for
each dereferencs. If we are lividing the reference Into just two pieces, this savings Is significant -

we have just one table lookup instead of two. The disadvantage is that we partially re-introduced
the problems associated with the pure add.i strategy: the inability to easily move objects and the
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underuse of all possible refe, nce bit strings. However, l.Uking translation lookLside hardware, we
are wiling to pay this price. AA we will show, thee problans can be reduced somewhat.

if we u~e this mon!d;ed version of the multiple table mapped addres scheme, 14 bits of in-heap
reýzrence does not look so attractive: the adirnum heap size would be j.s 18K xd&rxai=g units
(p:,unb1: bytes) - clclily not lzx•e ezough. If we ecpand the in-heap rderence, we muxt r-duce

-;' Pan ci vt'e rJ±!.-2ce, tiaus recucl-zg tze t~otal nu-mber ef Lezps. '11 Ws W~nt to
hy, .pe 1,.;.týZ.rs be unique jor all LIZ4ý (to aldow heaps to be x.Inually dietcd), this LLdtlon

La~

\,' c Uzc1-2c th .•± •en the propertizs we w•..t of our object system, 29 bits is not ez,)ugh for
an o•-Kct rt•.enc. Before pursuing a remedy to tLis pro-blem, let us fist consider s•ome of the
propeertý, of Q-t tutrs

3.3.3 The sturcture of data structures

Data atmczures are directed gri.phI of objects. In practice, the •raph repreaenting data structures
are not rbitr,.ry. One aces tees, izs, vectors, DAGs, etz., and connectionz between mraphs of these
ty:es to form 7'r -azls. Ai a rtuht, often a izr-e dita strurture has natural pints of diviaion.
For ex•.znpe, if a duta structure is a list of trees, then t';e graph is na.turally partitionable at .he
connection points betweer the trets. Noýe that this is a ei•a6 property of a dat stnructure.

Gapm of data structures m.y a:;,o be pax*thioned based on their iaysmic propert;es. For instance,
some vertices may be examined more frequently than others. There may be locality o' -'erence
ancn% the vertices; i.e. a gý-aph n6ght be partitioned into subT-raphs whoee vertices sv. ac•ce'ed
around the sarne time.

In building a permanent object storag.e system, one can ignore the partitionability of data structures.
Th7 t is, if the system provides re!erences that allow an object to refer to any other object then it
can certairJy implement any dý.t structure. However, such a system is overly general. In general
it is not oecsa fur an object to contain a reference to any other object in the world; It need only
rnier to some sLiller world of objects.

Pmviding the ,eneral functionality is expensive: in a system of reference, like Lsp, the size of
objects other than rtons' is proportional tz the size of the reference. Thus, we want to make the
s',e of a rtference am ani." as possible since doing so will reduce the awmourt of space required to
repmreznt an object. Of course, if we make the size of a reference too mnall, we make it impcarzble
to reftr to an rtcquately la.rge number of object.

3.3.4 Local and non-local references

How do we take advante of the locality of reference among objects in a data &Lructure while still
allowing refer.nces anong axbitrwry sets of objects? Our solution is to allow two kinds of referencesc
local and non-local. Local reerences are used to refer to *nearby' and logically related objects:
objects in the s&me heap as the source of the reference. Non-local references can be uied to refer
to any object. Local references are smaller than non-local references. There are two dereference
mecaniq-sm,, one ior local re.ferences and one for non-kocal ref-rences.

There is a problem with having objects connected by different kinds of references: when a program is
traversing a data structure, followint refer-•,-es, it needs to know what kinds of reference the object _7
currently being examined contairtn so that (1) it can extrat the appropriate number of bits from the
object, and (2) i. can apply the appropriwe dereference mnvchanizi•. Recall that our original model
of the hnolementation of a.i object (see section 3.1) La that in object is a vector of eqwdt-sized &lots
containing rfereiD-ot to other objects. In a straightforwrA4 irnplementation, if theme are different
size rmferences, the alots of an object have to be variable ai!:- and the object h~a to have a descriptor

6Tbe Lhap &or= for obj~ts thMA do V304 Cornnt Mrwbe~CvS to other objatt.

........ ... . . .... .. .. .. ..................................
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Figure 3.2: Three objects in two he"p.

of some uort that allows procedure that want to extract slos from object to tell where each slot -
begins and which kind of reference it contains. This implementation would increase the cost of
accwsing slots in objects by an unacceptabie mount.,.

A --lightly different implementation approach that supports two kinds o references had the non-local
references stor-d outside the object. An object has fixed size slots, but in addition to being able to
contain a reference to a local object, a tsot can contain a reference to a non-local rzference. Any
object Alot that needs to contain a non-]ocal reference instead contains a rTeference t* a non-local
reference. This reference to a non-local rfe.-ence can be simply a local reference. Such a local
reference can be distinguishe•d from a lo.al referernce to a local object by reserving a bit for just
that purpose. This bit can be either in the local reference or in the storage pointed to by the local
reference. We will discuss this in detail later.

in summary, all objects that reside in the same heap can rrier among themselves using local refer-
eaces. The slots in an object are the size of a lo"al referr.e. For an object in one heap to refer to
an object in another heap, it must go through an internedisie non-local reference. We assume thrt
inter-heap references ame infrequent. Another way of saying this is that objects that are part of one
data structure or partition of a data structure am. in a single heap.

Figure 3.2 diagrams three objects in two heap,. Object A (which has 5 slots) contains a reference
to object B (which has 2 slots). Bkth objects A and B are in heap 1. Object A al&. contains a
reference to object C (which has S &lots). Note that object C is in heap 2. Thus, for object A to
refer to object C, theme must be a non-local-reference (labelled X in te diagram). .

The nice property of this approach is that it is cheap in terms of both tinn (Le. time to follow
a reference) and space (i.e. spaLce occupied by a reference) to connect two objects that are Ia the
same heap. Thus, we are optimizing the kind of activity we expect to occur inost frequently: local
traveesd] and local refernce. By local traversal we mean the following of references between objects
within the same partition; programs tend to localize their traversal to a pamition of a data structure
(this is similar to the locality of reference argument in virtual memory syste,-s). By local reference
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Figure 3.3: RPointer representation

we mean reference between two object: within the same partition; an object within a partition most
frequently needs to contain a reference to another object within the sanne partition.

An important property of local references is that they are mea.ningful only in the context of ,ome
heap. That is, in ordex to know what a local reference refers to, one haa to know with what heap
the local ref ence is zaociatd. T'he simple and obvious rule here is that a local reference is a]i ay
.=-ociated with the heap from which the loc.l reference was itself extracted. Local references are
:.ot-creot ed out o thin air. All local references come t-.m inside of obiects that re ido ii sonm

hetip or ame retund by a pimiive that creates new object. In the ltter cza, the heap is kiown
because it was supplid by the cafler to the creation primitive. In the formue cam whoa'r did the
extraction must have known what heaW he was extracting from rnd can associate the extracted local
reference with that same haxp. The only question is how one gets the frst referente from the first
heap. We will address this question later.

We use the term RPointer to mean 'local reference'. RPointers are byte offsets fm the base of
the heap in which the object being referred to resides. (The "R' in "RPointere comes from the fact
that RPointers are Relative to the base of a heap.) We use T's spare type code to indicate an object
of the T type OM RPoiusiv. RPointers arm repr-zsented immediately in the 29 upper bits of the T
"reference.
We can now re-addres the issue of the size of reference. A 29 bit RPointer allows hea"s jp to more
than 500M bytes; objects can be up to this length. This certainly seems like enough for the near
future.

3.3.5 RPointers within T

It is important to understand that to T there is nothing special about RPointers - they are simply
29 bit objects. OM mimics T's implementation of types: the !ow 3 bits of the RPointer form a type
code which indicates the type ef the OM object referred to by the RPointer. The meanings of the
OM type codes (i.e. what type code means what type) is different from the meanings of the T type
c-des.

Figure 3.3 thows the format of an RPointer within a T reference.

3.3.6 Object code

In the present implementation of OM, object code can nct reside in OM heaps. All code is loaded
into the transient heap. The reason for this limitation is that the nature of an object module
produced by the T compiler requires that when it is loaded into a process, portionm of the module
must have process virtual address written into the representation of the module in mmory. We can
not vllgw such proceso-dependent information in OM heaps.
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The structure of object code is complex and intertwined with the T dompiler. When compiling a
module the T compiler produces an object module that contains a pure, position-independent code
section and an impure data section. The pure code refers through the data section to get at values
of variables in other modules. (Since T doesn't have spec"al *function cells' but rather uses the
normal variable binding mechanism to store procedure values, the looking up of values of variables
in other modules is common.) When a module gets loaded, the part of the data section that is
used this way by the code gets filled in to contain references to all the non-local variables that are
referred to by the code in the module. Hence, the da"t section becomes impure.

i
3.4 Heaps

3.4.1 Heaps in plain T

T allocates objects using a simple heap allocation system. At startup it allocates two large pieces
of the process virtual address space. We call these pieces the transientu heaps. Since Aegis does not
sLpport the traditional concept of swap space (i.e. pieces of the disk that are dedicated to backing
process pages that are not part of a disk file) T obtains these pieces of address space by mapping
two temporary files into the process virtual address space. These files are deleted when T exits.

Only one transient heap is active at a time. A heap pointer held in a hardware register is initialized
to hold the virtual address of the beginning of the active transient heap. When a procedure wants
some storage to hold in object, it simply increases the heap pointer by the amount of storage it
wants (rounded up to the nearest multiple of 8 bytes) and uses the old value of the heap pointer
as the reference to the new object. When the heap pointer reaches the end of the active transient
heap (i.e. when there is not enough room in the active transient heap to allocate an object) a GC
flip occurs: the inactive heap becomes the active heap and a copying garbage collector is invoked to
copy all the reachable objects from the previous active heap into the current active heap. The set
of reac!abie objects is determined by recursively following all references from the root set of objects
kno%,ý. t pJiii by the garbage collector and all references from variables on the program execution

3.4 2 .01 iHeaps

Sinc; Cok ran, . !thin an existing operating system that has its own ideas about using the disk, we
have tts work *v.hin the operating system's filesystem. This is not too much of a problem - we can
siampy emk- Dur system within a single large file. However, if we expect to work in a multi-user,
multi-appl: ..a environment it probably makes more sense if we use one file per heap. This allows
.indivi/.jal .x. or applications to use normal file system primitives to copy, delete, backup, protect,
and if necessary examine the contentA of heaps he controls. If all the objects resided in one large
file our .system would have to duplicate these tools. We can consider each heap file as a separate
disk and the system can function along the lines discussed earlier about a multi-disk system.

OM's basic extension ýo T is the introduction of support for multiple simultaneously active heaps.
OM provides primitives for creating objects in these heaps. These primitives take an argument that
identifies the heap in which the object is to be created. OM also provides primitives for accessing
slots within objects. These primitives take both an argument that identifies the heap in which the
object resides and an RPointer argument which identifies the particular object within the heap.

An OM heap is mapped :nto the process virtual address space when objects in the heap need to
be referenced. Toe process of mapping is not very cheap; it requires no disk 1/0 until a reference
is made, but the map call ie a system call (requiring a context switch) and the manipulation of
the memory translation hardware by Aegis is expensive compared with the cost of doing a single
memory reference. Howyver, we assume that once a heap is mapped that many references to objects
within the heap will be ibade. We believe that the way to measure the performance of a system
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such as ours is to measure the average cost of a referenc. If the number of re .nces per mapping
operation is high, than the average cost of a reference is not substantially affected by the cost of
the mapping operation.

OM heaps are position izdependent. An OM heap is a collection of OM objects that refer to ech
oth'.r vsiný RPoli-tem. Recall that RPointrs are oEzts from the base of tde heap. ThY3 allows heaps
to be pl.z•d at any powtion in the virtual ad:I • e without having 7o relocate the contents of
t• kp.

a:-a two reas±o for wanting to avoid relocation to account for the position that a heap is
mapped at. 1".mt, the ccit of activating a hzop (i.e. the rteps e 'ed btlore the objects of intmrest
in a he•ap can be exaxnamed) would lbe into•1nbly hl,•h. Worse yet, the c.4t would be proportional to
the number of objects in the heap, not the number of objects one needs to examine (aon demande
relocation seem:s overly complex). The second problem is that if the beap's contents are relocated,
then the heap can not be used aimlul eouýly by muhiple proc running on the same node. This
is because the prcesm can not guarantee that the heap would be mapped into the same part of
the virtual address space for all processes wanting to acce the heap.

3.4.3 02M he-ap

The primctives that activate and deactivate heaps must have a way ,'f rdferTing to heapn. As we
said earlier, hepas are stored in DOMAIN fila, orie heap per file. There are three poinble ways of
nan-Ang heaps:

1. Use DOMAIN path names (variable length strings).

2. Use DOMG . IN file UIDs (64 bit intefers).

3. Make up oar own naming schemAe.

Approach (1) 15 the obvious approach - users are alre4Zy accustomed to dealing with DOMAIN
path nant.s. The DOMAAIN naning system allows files to be organized hierarcically; reated heaps
could have sbniila names. The drawback to using path names is that they are long and not of
fixed length; this incraxes the overhead rquirtd for manipulating them. As we will see later, heap
names need to be embedded inside OM data structures and will be manipulated fairly frequntly.
Also, using path names means that the heap activation time bicludes the time it takes to turn a
path name into a file UID.

Approach (2) aolves the overhead problems and saves the pathnaae to UID conversion. However,
UlDs are elements of a flat name space. The DOMAIN uer interface is designed to deal with path
names, not ULDs. For a prototype system such as the one we built, we want to make it convenient
to deal with failures using tools in the surrounding environment. Using UlDs would have made this
difficult.

We adopted approach (3). Our naming scheme uses 29 bit heap unique identifiers called HIDs.
Being fixed length and small, HIDs are easy to manipulate. HlIDs are assigned by OM which keeps
a global word that holds the number of the next HID to assign. We assume that heaps are created
relatively infrequently so that having a single global word won't be a serious bottleneck.

OM maintains a permanent global table translating HIDs into DOMAIN path names. When a
HID is presented to the heap activation primitive, the HFD is translated into a DOMAIN path
name which is in turn translated into a UID of a file which is then mapped. (The translation table
also can translate file names into HID this feature ic uselful for debugging.) There is no reason
that the HID translation table couldn't convert HIDs into UUDs except for the prototyping problems
mentioned above. If OM were to be made into a production system, we would have the table contain
a HID to UID trazA&ition. .-

The giobal table is itself represented as a OM object - a permanent hash table. The HID and path
name of the heap holding the table object are known a priori. This heap is called the HID Aemp.
The HID heap is also the place where the 'next HID to use' counter is kept,
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The ID-tc-path-same translation table is a potential bottlenek One way in which we reduce this
problem i6 by having processes that are using OM keep a cache of uaslations that have already
been requested. (The cache can implemented as a hash table kept in each prome's address space.)
Once a HID has been translated in one process, future translations of the same HID do not need
to consult the global table. This is possible since HD are unique and never reassigned to refer to
some otber heap.

Another way to avoid the bottleneck of a global HID transLation table is to have multiple tables.
This can be implemented by dividing the HID into pieces in a way analogous to tle scheme for
dividing object references. In our prototype system the OM um can specify the path name of the
HID heap so he can run his own private world of heaps and permanent objects; he can th-s reduce
the number of procmes contending for access to the HID heap. In the prototype system each
isolated applFation area - i.e. a set of application programs that do not need to rekr to objects in
another set oi application programs - bas its own HID heap. This is not a restriction of the current
system; rather it is a suggested mode of operation that seem prudent while aspects of the system
are still under development.

3.4.4 Active heaps

When a heap is activated, the heap can be characterized as a virtual address in a process and a
length (i.e. the amount of space the heap occupies in the address space). We refer to the starting
virtual address of an active heap as an RiLepB. The RHeapB of an active heap is all that is needed
to dereference RPointers into the heap: the RHeapB is added to the RPointer to form a virtual
addrem of a particular object.

It turns out that it is neceary to associate some additional information with an active heap. An
object of a type called RHsp holds all the informatioa associated with an active heap. RHeap
objects contain.

"* The RHeapB of the heap.

"* The number of bytes mapped.

"* The HID of the heap.

"* The activation count of the heap for this procein.

The heap activation primitive returns an RHeap record. All the OM primitive procedures for
manipulating OM objects take an RHeap argument.

The purpose of the RHeapB field is clear. The reason for the byte count field is that the DOMAIN
unmap primitive requires the length to unmap - there is no way to tell the Aegis to unmap as much
as was mapped. Storing the HID of the. active heap allows quick conversion, from a reference for
an active heap to the HID of the herp.

The idea behind the activation count is to optimize multiple invocations of the activate primitive
on the same HID. Such multiple invocations do *ot result in the heap being mapped multiple times.
(Aegis allows this, but it is clearly a waste of address space.) Rather all activations of a heap other
than the first activation simply increment the activation count and return the previously allocated
RHeap object for that heap. A table translating HIDs into RlHeaps allows this; only one RHeap
object Is ever created in a proem for a single heap. This table is part of the process context - it
resides in the transient heap. Deactivating a heap decrements the heap activation count. When the
activation count drops to sero, the heap is unmapped.

Encapsulating RHeapBs in Rfleape allows a heap to be moved around the process virtual address
space simply by changing the RHeapB slot of the RHeap associated with the teap. This sort of
motion is neemary because the heap is mapped for a particular size, and when It needs to grow
beyond the size for which it was mapped, it must be unmapped and then remapped, and there is

'no guarantee that the heap will be mapped into the sume spot.
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Oue price for embedding RheapBs in RHeaps is that it adds one extra memory reference (and
probably one extra machine instruction) to the dreference procedure: given an RPninter and an
R.Heap, the RleapB must £nt be extracted from the RHeap before in object's virtu.l address can
be calculated. The ccat of týe memory reference is not a great c•n=en since the DOMAIN hardware
his a rn!.'nory cache; we can sa'ely &=me that for muldpe dereferences into a single heap, the

23 of tLe that wil be in the ce.

TVi rtue of no<4:• the pc virtual ad,& 11 'e one W hot we have not pUed xte ely.
We rmly on the Aeýi;; n•appins prniiti•ve to deerrZie where to map he.ps it. aI>•_ion Its
appeaxs to he arlequpt.t for our purx7<as. Oue opu.-ý:.at.on we coald easily ma2ke is to not actuay
un-Map •a h t ua becaus its activaZloa count Lzz dropped to zero. We could kzep it =zpPed Until
the adazss zt.e became full and some heap that isn't skLrady mapped is activated. At that point
we could unmnp the inaztive heaps using ome LRU stratey. This optimizati'on will sometimes
eliminate the cost of the mapping and ur.maPping ope.ration. One rYeaon we haven' adopted the
eptimihation is because (1) it hasn't proved nacewary, and (2) it raises some concurreacy prvblems
if a prozecs on one node wants to activate a heap that is inactive but still mapped into a procem
on another node, it will be unable to do so.

Anotýhr po,.Ibly uselul address sp.are n.anage• ent technique is to un=!,p bheas that are sl active,
but which do not a-p;,,a. to be being accemsed. Such a heap could be unmzpped and the REfeapB slot
of the Rheap for the h--ap could be modiE ao that M:-nces thomuh it would caro an addresing
error. The error could be trapped by 014 and the heap re-me.pp-d. This ýacque would be useful
if a prc4--a needed to have m=,-utpe lar•e heaps multoeovy active. Tals io epec:ally true iL
the prescnt -DOMALI 24 bit addressing etvironment. With an addreas spece of 4G byte (32 bit
addrnas), it is not clearly as importanL

3.4.5 OM heaps in T

OM es ome knowled- about the internals of T in order to mak OM heap accesible to T
procedurts. To T, RI-eapBi appear to be T e.xtends; Le. refereces, to Rlleapls are etend-type
references. With the T type field masked to zeros, an RHeapB reference is the starting address
of a mapped heap. Note that this addres is outside of the transient heap and hence, from T's
perpective, the RHeapB reference is invalid. (For a reference to be valid to T, when viewed as an
addres, the reference must be to a part of the address &pace where the current transient heap is
napped.) Fortunately, the invalidity doesn't matter. The only potential serious somue of problem
migbt be the T garbage collector. However, when the gazbat•e collector encounters an apparently
invalid pointer, it simply copies the pointer to the new transient heap and does not follow it.

Another small problem is that T expects to see a template pointer in the first Cell of an extend.
Clearly it is not possible to embed a T template pointer into an OM heap - it would violate the
process context and position independence properties of the heap. But not filling in the template
pointer slot causes no problems unless in operation is applied to the RHeapB reference; in no other
case does T refer to the template pointer slot.

Since OM heaps appear to T to be extends, a cell from an OM heap can be accemed using =TZXfl>-
ELT, the T primitive for actessing a cell in an extend. The lowest level OM procedures use EXTEWW-

3.4.6 Summary of heap features

Having described the implementation properties of heka, let us review why the heap approach
makes sense.

Heaps are position independent. Since hea•s never contain any machine addresses, heaps can be
mapped into any part of a procem's virtual aderes space without any relocation being required.

---
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Rlocatio s undesirabl, because it is timecoasuming mad w-kes it impossible to share the heap
betw~een multiple procmo

Heaps take advantage of clustering properties in configurations of objects (La. data structures).

Heaps take advantage of DOMAIN paging facilities. Only those disk pages of heAp. that contah,
objcts that are actually referenced are Lransierred from the disk into main memory. This transfer
is the rcaponsibility of the Aegis paging system.

3.5 Intra-heap references

OM extends T with a set of procedures that take RPointers and Rfleaps as arguments. These
procedures fall into two geners. categories alloctors and susm.

An allocator creates a new OM object. An OM object is a o•tiguous piece of an OM heap. The
slots of the object can contain immediate values or refereces to other OM objects. An allocator
takes at least two arguments - the heap in which the object is to be allocated, and the type of the
new object. An aUocaar may take additional arguments which specify things like the initial values
of parts of the object. In terms of the OM implementation, an allocator takes at least one RIlleap
argument and returns an aPointer. In terms of the OM interface thAt the programmer sees, the
allocaLor returns an OM object.

An accemor retrieves or modifies a slot in an OM object. In terms of the OM implementation, an
accAmor takes at least one RHeaW argument and one RPointer argument and returns an RPointer.
In terms of the OM programmer interface, an accemor takes an OM object and returns an OM
object.

An RPointer and an RHeap argument taken together form one logical argument that refers to one
object. Thus, foe simplicity we will sonutims ama that s procedures take *RPointer/RHeap
arguments'. Also, we say that some pair of variables 1/1 refer to an object If I is a variable
whose value is an RPointer to an object in a heap that Bs redfer to by 1. Since we are escribing
the OM implementation, we tend to say that a procedure takes an RPointer/R leap and returns an
RPointer. However it is important to note that RPointas ae an artifact of the CM implementation.
The programmer who uses OM thinks of the procedure as taking or returning &n OM object.

3.5.1 Active objects

Note that acemors and allocators manipulate only objects in active heaps. 'ý"e call such objects
scws objecta. There are no primitives that take an RPointer and, say, a HID to Adentif- a particular
object. Access to an object in this way would be very inefient. Each acsm would have to insure
that the heap referred to by the HID is active. If it is active, the amociat-i RHea&p would have
to be located; if it is not active, the heap would hae to be activsted. ;, would the heap be
deactivated after the access is complete? Clearly activating and deactivating around each
is too expensive. The met of active heaps might be treated like -ages in a virzual memory system.
Heaps would be activated and deacvated based on some usage pattern.

One might argue that we have brought this expense on ourselves. That i by introducing the
notion of heaps we have also introduced the ineffciency of having to activate and deactivate heaps.
However, in any system that deals wil:, disk storage these problems will aise. In the ideal world
acceming the disk would be as fast as accessing main memory and the disk col be treated as an
enaormous flat address space. Acem to an object would be implemented a a direct fetch of the
object's representation from the disk. In the real world, data must be transferred from the disk
to main memory in large chunks if acc is to be efficient. V'iewed in this way, heap activation is
simply the preparation for bulk disk data transfer. No system can avoid this kind of preparation.

!a short, we feel that the compledty of managing heap activation 14 Letter left to a higher level
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of tht system. The hightr levels, having a untion about the logical behavior of a progam, will be
able to bettur guess when a heap should be activated and deactivated. At the low level of primitive
accessors and allocators, activzaton is explicit and only zctive heaps can be maniput•ated.

3.5.2 Am e=anple: O7 p4Pain

"Le us couasider an O'M pair (alzo kn--,*m as a I "mo cell'). 01A ptrir ane 8 Lyzrs Ileg - ez3Lb- f.;r
2 alots. T' e procedure I=113 cre--.is a. new p!ir and Laitaies the p.1's slz.o. I•2 talts
three a'.umen&s: the Rfle~a of th% heap in wh*Ech the pair is to be snalnted, L-e izjtlal cow fnts of
the first slot (called the "ar), and tht initial cc .n=.i of the weord slot (called the edr).

Let us look at what I 3S must do. Fuist, it must Zlocau space from the heap. For every builin
OM type, thece is a procedure that allocites an object of that type and does nothing to the contents
of the obje-t. For UM pairs this procedure is called IPAII-ALLOC:

(B-7IlZX (IC0443 PI P2 H!.AP)
CLZT U1.2 C!PA.1-ALLrC. =2~)))

C.7Z:T (tPAIk1-C=r XlP EZ't) ?I)

.np))

I anIflt-.z . od usen un the OM pair accrao to initialize the contents of the the
pair. IPAIR-AI2OC usm one of a set of low-level procedures il." manipulate heap contents directly
and are not accessible to the user of 0M. One of these proedures is called Z=122--ALLOC.

CMAX!-3PIlflZ (Z!AMP-ALLOC 1WA 2) %%1PAI1-TAC))

LELtY-ALLi04 takes an RH-eap a-ment and a number of cells to allocate and returns an integer
of&et into the heap. X 2X-L-IO T1 is a primitive that cresate an RPointer (immediate) object
from an integer ofaJet and an inte-er value for the RLointer tag field.

Before allocating spac,, L.AAP-ALI2C must insure Qta there is rocm in the heap. Two questions
that must be answered before allocation can bappe=

1. Can the size of the bp be extended without extending put the a&=unt for which the heap
is currently mapped?

2. if the answer to (1) is no, should the heap be extended or garbage collected?

Eve.-y OM heap has a heap pointer at a fixed, known location within the heap. The heap pointer
is used just like the the T tranient heap pointer. When a heap is activated, 'At is mapped for its
current size. (Determining the current length of a heap does not require mapping the first page of
the heap for the sole purpose of extracting the heap length field from the heap. This is be tause the
length can be obtained from the fie length maintained b- Aegiz.) As we said earlier, the actual
amount of address space mapped is the next highest multiple of 32K bytes. Thus, the heap pointer
can typically advance some before the heap needs to be remapped for a larger ie.

Trhe proc of remapping for larger •s.c continues as the heap expands until the heap grows to a
specified size. This size is called the ker Ms which, like the heap pointer, is at a fixed, known
location within the heap. The heap max is a settable parameter for a heap. When the asie of a heap
reaches the heap max for that heap, the garbage collector is invoked to reduce the sie of the heap
(we will discuss garbage collection later). It is up to the application progrmnmer to divide his data
in such a way that heap sizes do not grow in an unbounded way (i.e. that when a heap reaches its
heap max that it is not becaus the heap is full of #os-garbage).

To describe I.XEAP-ALLOC's behavior concrete.y: it compares the the heap pointer plus Cle allocation
request to the length for which the heap is mapped. If there is room, the heap pointer is simply
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ncremeted. if ther Is no room but the heap's sime is les than the heap max, the heap is remapped
for a larger siAm. (While remapping is expensive relative to the cost of incremting the heap pointer,
remapping hapm infrequently compared to the number of tinm the hemp pointer is incremented.)
If the heap max is reached, the garbage collector is invoked.

IPAII-CAR and IPAXI-C=l are the primitive accesors for OM pairs; they access a pair's car and
dr slots, respectively. In the context of the SET special form, these accesoau mo~dfy the contents

of a pair. Let us consider IPAIl-01 in detail (I PAIl-CA works analogously). I PAIR-•C takes an
RPointer and RHep argument and ca nIamZ-Eam

(DElX! (IPAzI-Mrna P VEAP)
(VeOzrM-EXzMuN P 1W 1))

The lPOXTfl-... procedures an part of the OM impkaistaion and are not available to app5-
cation programmers. All OM objects am accemed using thee procedurw. VPOINT•-IAK.ltE take
an RPointer, an RHeap, and a cell index, compute the total offset from the base of the heap, and
calls RIVA?-UAXINL

(DEIll (KPOrTEU•-WINE 1P I 1)
(M.1EAP- UMaY I (+ I (RDIxTE-CADDIES W))))

UZAP-ELoXaXI is a procedure that takes an RHeapB and an integer cell index and returns the
contents of the Pecifed cell of the heap. RPVIXTi'-CA extracts the cell number par of an
RPointer. RIXAP-EXaMIIE is jwt another name for E'TESD-ELT, the T procedure for accessing an
element of an extend (recl that beaps look Like extends to T).

All the procedure mentioned in the preceding paragraph am isur•j•s so that there is no pro-
cedure call overhead. 1OM contains no explicit machine language instructions. It relies colely on T
primitive and the T compiler.

The T compiler ompiles CAR into 2 68000 instructions (3 poec as a 10mHz 68000). The T compiler
compiles JAIt-CA! into 14 instructions (14.4 asec). A T compiler that was somewhat smarter,
but still had no built-in knowledge about OM procedures could reduce that to 7 instructiops (11.4
jac), $ of which were simply shifts on registers (I.. had no memory operant). There is an ongoing
effort by the impkmentors of T to produce a new T compilar that can produce substantially better
code than the current T compiler 1451, and we expect that the new compiler will be able to produce
the 7 instruction version.

3.5.3 Arguments to OM procedures

OM's procedure for manipulating OM objects are modelled after T's procedures for manipulating
T objects. The major difference between OM's and T's procedures is that OM procedures take one
additional argument for each argument that refers to an object in a heap. This extra argument is
an RHeap. Some OM procedures take several RPointer arguments and only one RHeap argument.
These procedures asume that all the arguments refer to objects in a single heap - the one specified by
the RHeap argument. Some OM procedures take one RHeap argument for each RPointer argument.

The fact that OM pro•edures require these extra arguments make them somewhat inconvenient for
the application programmer. We will pursue this issue in the next chapter.

3.6 OM types: Introduction

As in the T type system, some OM types are identied with type codes and others with the extend
mechanism The following types have reserved type codes

Trs tnm for prueus w•b•m bodiesan u mbsltutod Wise as thl can paWo m.
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* Pair

* Suring

* Text

* Null

SType ID

*Non-local reference

One type code is presently u.ussed.

3.8.1 Non-e.•"t.ndz

We have already diwxmd pairs. One additionrl item about pais is that they are often chained
togtther by their edr to form a Iiet of pm-:L.

Catle- r rtrins are iiplme-nteed in two pats. An objact of the text type is a fixed length vector
of c6ar=.,;.- with a le-nth &L the front. An ob of Cie sti'g type is a reference to an object of
the tcxt type plus &a index and a length which select a portion of the text object.

T'Le null type is a set coata.izIng exactly one object - a-,L N 1'vs major function is to mark the end
of a Lht the dr of the aIt pair a ist of pAicntains nazL
In addiion to these types, all T oojects that are rpresented immediatey (e.g. fixnums and charac-
tern) are valid 0M objects. T objacts that are not represented immediately can not be OM objects
because their repreentation is part of the transient heap.

3.3.2 Mxtends a.nd type Identtzkrs

The extend type is not really a type at all but a fag that tells OM that the type of the object being
referred to (cafled the stead) is determined by the contents of the first slot of the extend. In T,
this s!ot contains a reference to the handler, the object code object that :mplementa operations on
obpc'.i containing that reference- In both T and OM extends ain ud to represent all objects of
uzer-&dned type. Since OM cam not store object code in heaps we need some way of indirectly
referring to an object's handler. Even if we could store object code in heaps, we might still want
this level of indirection.

We have already explained why it is difficult to include object code in OM heaps and why we have
decided that all object code resides in the tranzient heap. However, it is not possible to refer to an
object in the transient heap from an object in an OM heap. The contents of the transient heap are
bpecifc to a single process. If we were to put a reference to a transient heap object into an OM
heap, the OM heap would not be free of depenaencies upon a particular proces. Thus, we can not
mntke the first slot of an exti nd pointer to object code aht resides in the transient heap. Since
extends reside inside heaps and the object code that supports extends reside outside heaps, it is
necessary to have a mechanism for findinG something outside a hexp from something inside a heap.
Th7s mechanism must rely on some data structure that is not tied to a proces's context.

OM has objects of type type idtauifier for identifying the type of an object without reference to
an object in the transient heap. Type IDs are represented immediately in the upper 26 bits of
RPointerm Type IDs am simply integers in the range [0..2" - 11. Each type IM identifies some
type - ultimately some piece of code that implements operations on objects of the type. 'Unlike T's
template pointers (which can be consid*.red a type ID of sorts since template pointers define how
objects rmp-,d to operations), type IDMa are. (1) not direct pointers to object code, and (2) are
presentod to the application programmer. A type ID is an indirection mechaniom that allows the

'- . " "- ". ", "• % - " "- % " "o . ". % . .% " % % " . ... . . _ . .. .- .. -. % . -. '.o. . " " -%"% - :
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specification of an extend's type to be separaft from the object code that implements operation on
the object. Type ED* an stored in the first cell of OM extends.

Extend types come in two varieties: primitive and user-ddned. Primitive extend types are extend
.ypes about which OM has built-in knowledge. Vectors an examples of primitive extends (i.e.
objects of some primitive extend type). The essential property of primitive extend types is that
their type ID is fixed and 'now-. by OM. The handlers for primitive extends are built in to 0M.
We will discuss use-defin types later.

3.7 Inter-heap references

The previous two sections have dealt with the issues of objects within a single heap. This section
deals with the mechanism that allow objects to refer aross heaps.

3.7.1 Non-local references and garbage collection

An OM object can be completely identified by identifying the heap in which the object resides and
the particular object within the heap. As discussed in section 3.4.3, heaps a named with heap
identifiers - HID&. Given a HID, we can identify an object within the heap named by that HID with
an RPointer. Thus, it seems that a HID, RPointe: pair can be the non-local reference discussed in
section 3.3.4.

However, this scheme is not adequate since it makes the independent garbage collection of heaps
impossible. Independent garbage collection requires that it ;s possible to identify all the objects
that are referred to by other objects. In general, non-local reference to an object "ppear outside
the heap that contains the object. Thus, given the present scheme, in order to garbage collect a
Aingle heap, all heaps mut be examined toase if they contain sao-local rerencm to objects in the
heap being garbape collected. Scanning all the heaps to find reitraw into the heap being garbage
colected would he nearly as expensive as garbage collecting all the heas and as a result we could
not consider the garbage collector as capable of garbage collecting heaps independently.

To garbage collect heaps independently it in not necemry to know wuen the non-local references
to objects in the heap being garbage collected ar-, only " sich non-local references exist and
to what they refer. At garbage collection time, knowing that the noa-local references exist Deed
not require finding all the non-local references as long as emey time such a reference is formed,
that fact is recorded some place easily accemible to the arlbage collector. That is, that when a
non-local reference is formed, an entry is made in a special part of the heap containing the object
being referred to. We call this part of the heap the keep indtz

The heap index is a vector of RPointers to all the objects inside the heap that are referred to by
non-local references outside the heap. The sise of a heap's index is fixed at the time the heap is
created. We call the proem of adding an RPointer to the heap index .erportix. A reference count
is associated with each RPoiut!r in the index. The reference count indicates how many non-local
references are using that lemmnt in the index If the reference count for an element is .ero then the
element is considered to be free - It can be used the next time an RPointer needs to be exported.

Garbage collecting a heap consists simply of following all the reeencfe leading from objects in the
heap index. All objects found by this procedure ae copied into a new heap. Once all the objects
an copied, the old heap can be deleted. Notw that the entry in the HID heap (translating HIDs to
DOMAIN file names or file UIDe) must be updated to refiec the fact that the heap is backed by a
new file. We will discuss more of the details of garbage collection in the next section.

The heap index allows the non-garbage in a heap to be identified. However, a proiblem still remains:
in general, after garbage collection the offsets of the non-garbage objects have changed. Thus any
non-local references in other heaps will b, wrong. To solve this problem in the present non-local
reference scheme requires that the garbage collector can find and fix all the non-local references to

-7
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GC( seap );
begia

Ilwev~ep : kae3apC)

for I I to Sievfzx N ap )do
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ritturn Nswej;
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FKir Z.4: Sketch of the garbage clector

the heap being gara.ge collected. However, if we modify the format of non-locsA, reierence, we can
avoid the problem.

Let us ch.h,,e the format of no-loA]c~ referencrs to coat-Lin a HID and a keep iadez offte4, rather
than a HID and an RPointer. A heap index offset is an Lt that identi~es a parflcular element
of a heap index. We call these non-local reerences LPUai,,e (the aL* is for "long'). As a part
of garbage collection, the index .a copied from the old heap to the new heap, all the elements of
the index being modifled to contain the new poaitions of objects referenced from the index. Since
LPolnters refer to objects indirtly through the heap index, and becaaae the garbage collector has
insured that the elements of tQh index refer to the same objects they did before garbge collection,
the LPointers do n6t need to be modifed.

Figurr 3.4 contains a sketch of the garbage collector. The garbage collector performs a tree walk of
all the objects in the heap. The heap index is the root of the tree. When an atom (leaf) is reached,
its contents at- simpy copied L to the new heap. For an internal node, a node is created in the new
heap. The new node's slots are filed with the values of reursively applying the garbag_ collector
to all the old no ie' uioms.

Note that for the l',rposes of the above sketch, Loiaters arv atoms. That *s, the grbage cDllector
tree walk does not folhuw LPoint-err to objects in other heaps. The point of our schemne is to allow
heap. to be garbage collected independently, not to garbage collect all heaps At once.

How is the heap index maintained? So far all we've said is that when a LPoi•.ter formn-d, an
entry in made in the bea" index; the entry sontains an RPointer to the object which the LPointer is
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to identify. What happens when the object that refers to the LPointer becomes garbage? At that
point, the LPointer becomes garbage. When all the LPointers that name a particular heap index
element become garbage, then the object referred to by the RPointer in the heap index elements
becomes garbage too. Garbage collection as we've described it doesn't do anything about garbage
LPointers and there is no mechanism for deallocating elements of the heap index.

Our goal is to free elements of the heap index when all the LPointers that are using an element
becomes garbage. To do this we modify the garbage collector so that alter all the non-garbage
has been copied from the old heap to the new heap, all the garbage LPointers in the old heap are
examined. For each garbage LPointer, the reference count of the index element of the heap referred
to by the LPointer is decremented by one. When the count reaches zero, the space occupied by the
object that is no longer referred to by any LPointers is not reclaimed - the space is reclaimed only
when the heap containing that object is itself garbage collected. At that time since the object is
no longer referred to from the index, the object will not be copied into the new heap and the space
is thus reclaimed (aamuing the object that is not referenced from the index is also not referenced
from some non-garbage object in the heap).

To be able to traverse all the garbage LPointers at the end of garbage collection, it must be possible
to find all the LPointers in a heap. This can be achieved by maintaining a linked list of LPointers
whose root is at some fixed place in the heap. Traditional garbage collection techniques require one
to be able to determine whether an object has been copied out already. Thus, at the end of garbage
collection, this list can be traversed and any LPointers that have not been copied to the new heap
are garbage and the procedure described above can be applied to them.

Note that the above scheme does not handle circular references across heaps. For example, if object
A in heap I contains a reference to an LPointer to object B in heap 2, and object B contains a
reference to an LPointer to object A, then even if there are no other references to objects A and B,
then the space occupied by A and B will never be reclaimed by the garbage collector. In general,
only by garbage collecting a set of heaps at once can the circularly linked garbage objects in that
set of heaps be found and removed.

3.7.2 LPointers in detail

LPointeru must be large enough to contain a HID and an offset int. a heap index. Ideally, LPointers
would be represented as T immediate values the way RPointers are. Unfortunately, T does not
have any more spare type codes. However, it is worth examining the packing of LPointers into T
references since in the long run T's reference formnal might change to allow more immediate types.

Are 32 bits enough to hold a HID and an offset into a heap index? First we need to decide whether
HIDs are to be unique for all time. Unique HIDs allow HIDs to be explicitly deleted. If HIDs are
unique, reference from LPointers to the contents of a deleted hesp can be detected because we are
guaranteed that the HID will not have been reassigned to another heap. While we argued against
using UIDs for object references because of performance problems, since the frequency at which
HID* have to be *dereferenced* is less than the frequency at which object references have to be
dereferenced, we choose to use UlDs for HIDs because of explicit deletion capability.

Having decided to use unique HIDs, we must be fairly generous in allocating bits for HIDs. It is
not unusual for a :,-oderate size timesbaring system to have more than 32K files (recuiring 15 bits)
ofa simple intaat. Over the lifetime of a system, the total number of files created can be presumed
to be much larger. The ideal way to generate UIDs is to allocate them consecutively as they &-e
needed. However, this requires access to a central piece of data 'at holds the next UID to assign.
To avoid this centralization, UID generation schemes typically embed a processor ID in the UID
and let each processor pick its win local part of the UID. Since the size of the piocessor ID is fixed
and determined by how many processors are expected to ever exist, this generally increases the
number of bit& that must be allocated to the whole UID. Also, since it is desirable that UIDs are
in fact reliably unique, UID generation schemes typically use a monotonically increasing hardware
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clock as part of Ihe UID. Simce the resolutio, of the dcek must be smali enough to allow two UIDs
generated back-to-back to b, ,•' ue, the nuiber of bit& warned Lo the clew-k-bhwd part of the UCII
is typicaljy large. DOMALN " ID a, ge&neri•ed using emmetiaiy the sche daribeA above
and ame 64 bits in lenm.h.

Even if we wee faily ni&rl y in uur allocation of b!:4ts wo HID2, it secnts unidy that in culd be
rzn&!y enouth so as to be alde to pack bosh a HiD &:.d "- h=• d'ndx ogt into lean tan ,32 bita.

In choosLg, the format of L?.rn nce we t~i~~ l= os; c=n no;t bi-'- r-' to Lt Wi~lhn
a normJl 4L.e (i.-. IJ) rJmau, our opioas a&.m !-a c¢:i,::-2d: t"e formzt of L2> .
can be choon to be w.1-t set= iozc2y coi•-it, niut dm)Lly what =' be p icLd Lo a Mr2l
plice. Hoowever, thdi fmedom h.s a pzice. T (and 0a4) prcdure pe and return m -z.
references; there is no pivizion for pzsng and retu.izzg 'ob'cu with non-iru ate
representations). Thus, all aggregates must be allosa-ed in the heap. Biop al/oc,"on if not free -
the more heap allocated objects there am, the moe cx".eei Ze ga•rage collection becomes.

We chose LPointers to be 2 ceUs (8 bytes) long. The 5zst cell contains a ID and the second ccutain.
the heap index offset. Since the heap alloc=ion g=naTrity is 8 bytes, it would not have mode sense
to have a more compact Lointer. Thlere ean no doubt thQa one cell is su!25ent to hold the ianex
oiffet. Given our model of the ute of hbapi - tha dz.a stnactures amr pa- itioned so that most. of
the re"erences are between objects in tLe same hbtp - 2t incominZ rmerteces ii cevlnly su&lcilnt.

That 4 bytes are suýcint to hold a HiD is waore open to qvew~ion., i• cis :.i'i7y p'non. h given
OM's preqeýt scheme for genemurg HIDe - -onecutively and basd on a omtcnl coant htid in
the HID heap - but we 43 not expect that t" sc.heme would be used in a pro'Iia vemion of
OM because of the problems discumed above. Other -yitems, line the DCMAIN'. that use UIDS
generally are more liberal in their ailocation of bits to VID%. OM' de4gn doe% not prýclu.e the use
of larger HID,. In the curry-nt 'unplementation of OM, as an aid .o dtburging, both the index oil2"et
and the HID are reprmentod a T Rxnu.rr•, thus reduclzg the number of incorning LPotintcra and
the number of heaps to ','. There is no reason why thee values could not be fsiiI 32-bit inmteers. -

LPointers are a type of CM object. They can be nuipulaled by OM proce• .s that a;t av&1lable
to the OM pmorrammer. Note that thLs makes Lointtrs di•erent irom FUoint"e% whicch awe an
artifact of the OM implem~axislon and in principle are of no mor businr.@ to the CM1 progrnsn'me
than amr addresses to the T programmer.

Figure 3.5 diagrams a alot of an object that contains a referemce to an obj-ct in *mother heap.

3.7.3 Making LPolnte-s

LPointers are made with the T-RP•)IR procedure. This procedue takes an RPointer/--
RHeap to specify son- object to be exported. It alio t&kes anether RHeap r-numut to specify
in what heap the LPointer is to be allocated. The procedure returns (an Riointer tc) a Lewly
allocated LPointer.

(LET ((ELT (Rfa!-AaoC-IN•EX-ZLT IP HEAP)))

(Z.LO% ctZ't allocati index ±ez4ente))

(XAXZ-lLPOzlrrU YO-n!P k'W-.AP-mn EZA.P) ELT)))

1I•POAlT-RPOIWTU uses the RHeap primitive RtUAP-ALLOC-IN..X-EL7 to allocate ind initialize a
slot in a heap index. RIkP-Ak!,0C-INDZ-ZLT returns the integer offset of the slot in the index.

WAEX-ILPOINT."E2 sllvcates an LPointer in the heap specified by the first argument and iraitializ,"
the two slots of the LPoiatflr to the tecond and third argumcrts respectively. The newkly created
LPoinver is added to the TO-H!AP's list of LPointers contained within TI-mAP. Note that we take
advantage of the fact that we store the HID in the Rileap stiucture (RaiEAP-HID extracts the HID
field from the RHeap structure).
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Figure 8.5: An inter-hW e~ap mfce

In the current versiou of OM, I _AP-ALLflC-INDZ7-ZLT is not terribly smart. It simply scans the
heap index looking for an element whose reference count is mer. The process of iniding a free index
element could certainly be optimized. For example, we could Han together all the free entries.

The procedure IWOIT-VPOW 1-VIT-MISTING O rNDEX-EL is similar to I -"ORT-IPINTER ex-
cept that it requires the RPointer passd to it ulready k pvumal Ca tk k~p iadcz. If the RPointer-
is found in the index, the appropriate reference count is increased by one and the index offset is used-
in the newly c,4ad LPointer. If the ointer is Dot found in the iudex, ihe procedure behaves just
like I IEXPORT-IPOUT The idea behind I.EXPORT- PVaDI U-TM-EXIBTDC-I 1 EX-ELT iT that it
is desirable Utat rsltipe ILPPeiwtas to the same object shae the same indexelement. That way
the size of the index can be mnia~mised. If an application program knows that an object it is ex-
porting is not already in the index, It can use I EXPOT-LPOINT which does not require the index
to be scanned (asuming the optimized version ot KEW-ATLI -rxDXX-ZLT. Otherwise t must use
IELTOrtT-IP0XN11-WITN-EXISTIN0-1IKDE.X-ELT

Recall that in our initial discuion of non-local reference in section 3.3.4 we pointed out that it
would be neomsswy to hiv% a bit to distinguish 1kc-l reflerences to local objets~t from local references
to non-local references It should now be clear that this bit becormes available simply by virtue of
our type ta: s fheme. One of the RPointer type codes is used to indicate a reference to an LPointer.

3.7.4 Dereferenclng LPoIntezs

OM's primitive procedures manipulate active obje•t• . The procedures take oI;R or more RPoint-
er/RHeap argument& to Rindite what objects are to be manipulated. L ointer. can refer to any
object, active or not. Thus, in general, given an LPoiniter to an object, It is first necessary activate
&he object. This conversion r-ult In an RPointer/RIleap that refers to the now-active object and
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can be used to manipulate the object.

The procedure I LPC014I -CONTI-- M. takes an RPointer/feap to an LPoizw (recall that LPointers
are themselves OM Objects) and returns an RPointer to the oblec referred to by the LPointr.
Nate that the returned RPointer can be interpreted only in the context of the heap identifie•d in the
"LPcinter.
Ln1NI=-CM1rEI1rS is defined a

=71YEy IPI7'- LP =ZAP)

Let us examine ix in some detail. !LP01-ICflX and ILPOVINT -RIf are the acceeors for
LPointer objects. ILPOII Z -91D returns the EMD field of an LPoiner;, I NI •" -IND"= returns
"the index offset field of an LPointer.

BID-."RHEAP take3 a HID. and, if the heap named by the HID is active, ret=u3n the R1i•ip for the
active heap; if the named heap is not active, the procedure returns false. zot thAt before ca-ling
-LOINTr.M-CMlfTZJT the heap refermnced by the LPointer ,,-a ment to I0L , -CT must

have been activated; e.g. by executing-

(CMeIATZl-HZA (I L Ifl.R-HID L? MkP))

AP-IDE -ELT-VALTU returns the RPointer at the specified offact into the specifitd active heap's
!ndex

Suppose a variable contains (an RPoiiter to) an LPointer to a pair. The following procedure retutns
the cd, of the pair.

(DE•INE (•PAIR-Cka-VL&-LPOlN"7'T LP EEAP)

(Acrrv~z-HV2 CPOI'4r2zl-RID LP HZAP))))

*•' 3.7.5 Comparison with Bishop's ORSLA

Bishop's thesis [141 describes OQSLA, a system that is in some ways similar to ours. ORSLA
depends on special hwdware; neither the hardware or software was actuaDy built. ORSLA has
are". which correspond to 0M hebeps. ORSLA has only one kind of referene. However, to enable
the independent garbage collection of areas, all referenc•s between areas go through istcr-,aes liaks
"(IALa). IALs are special objects understood by the hardware. The hardware makes a reference to
an IAL appear to be to the object to which the IAL refers. IALA are similar to OM's LPointers

* 4 except that IALs contain actual object references, not something like LMointer's offset into a table
of object references.

-• _Each area has two distinguished lists: a list of all IALs inside the area, and a list of all IALa outside
the area that refer to objects inside the area. Ihe first list contains outgoing IALa and the second
list contains incoming IALs (thewe terms are with respect to a particular area). Since every IAL is
both inside some area and pointing into some other area, every IAL is on two lists. The root of the
ORSLA garbage collection of an area is the list of incoming IAIa.

"Since ORSLA has a single form of reference, it is conceivable that IALs could be placed in the area of
the object to which the 1AL refers instead of the area of the object that contains the reference to the
IAL. However, as Bishop notes, this would make it impossible to garbage collect areas independently
since when the IAL moved as a result of its being in a heap that was being garbage tollected, the
reference to the IAL from the object in the other heap could not be fixed.

Note that in C'M, the analog of an LAL is the combination of an LPointer and an element of a heap, rindex. That is, in a sense we have a two-piece iAL, half of which is in the source of the Ron-local

- - - - - - --%
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reference and half of which is in the target of the non-local reference. Only the latter half is relevent
to the garbage collector. That this piece of information is in the heap being garbage collected,
rather than in some other heap, is important. It means that the locality of reference of the garbage
collector is improted - it doesn't have to touch all the heaps in which non-local references to the
heap being garbage collected reside. In the ORSLA garbage colector, the roots of the garbage
collector are spread throughout many heaps, all of which have to be touched.

OM does have a locality of reference problem though: at the end of the garbage collection, if
there are garbage LPointers, the indexes of the various heaps referred to by the LPointers will
have to be modified. Thus, the degree of non-locality of reference in OM garbage collection is
proportional to the number of garbage outbound non-local references. The degree of non-locality
of reference in ORSLA garbage collection is proportional to the number of non-garbage inbound
non-local references. Which system's garbage collector has the better behavior (i.e. minimizes
the amount of non-locality of reference) can be determined only experimentally. Note that OM's
garbage collection procedure is amenable to techniques for increasing locality. For example, the
heap indexes might be stored separately from the heaps themselveL Multiple indexes might be
packed together to increase the locality of reference.

3.8 Concurrent access to heaps

If we want the data structures stored in heaps to be accessible by multiple orocesses running
concurrently, we need to examine what techniques need to be used to assure the integrity of the
data.

In this section we will consider the case of multiple processes running within a single physical main
memory (i.e. on a single DOMAIN node) trying to concurrently access a heap. OM does not allow a
Lingle heap to be accessed by multiple processes that are not sharing a single physical main memory.
",ais is because the OM implementation uses the Aegis file mapping primitives and these primitives
do not support that sort of concurrent access.

3.8.1 Controlling concurrency

The tZorrect manipulation of certain parts of a heap requires that a single process have exclusive
access to the heap while the manipulation is happening. Advancing the heap pointer is an example
of such a manipulation. The allocation mechanism must be able to get the current value of the heap
pointer and then increment it atomically. Similarly,-the heap index mutt be accessed in a way that
insures that two processes do not obtain the same index element as a result of exporting an RPointer.
These concurreucy problems are not limited to the parts of the heap that are examined and modified
by only the OM implementation. In general, application programs that can run concurrently on the
same heap need to control access to objects in the heap.

Aegis has two mechanisms for controlling concurrent access to data- file locking and eventcounts.

File locking allows a process to map a file in a way that restricts the way other processes can map
the file. For example, a process can map a file for read/write access and lock the file so that other
processes can have read but not write access to the file. File locking provides fairly coarsely grained
control of concurrency. The lock is set when the file is mapped; the success of the mapping operation
is determined by what locks are already set at the time the operation is executed. Thus, using. the
locking mechanism requires the process to re-map the heap file before a"d after each operation,
or set of operations that need to be atomic. Aegis does not have a mechanisnr for automatically
blocking a process that attempts to map a file in a way that is not allowed by the existing locks.
Thus, the process would have to 'busy wait', re-trying the map operation periodically. Clearly,
this overhead would be unacceptably high for operations llke advancing the heap pointer.
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However, file locking i appropriate when the lock will be held for a relatively loLg period of time and
the expected concurrency is low. For exzm--le, in a mail system, there is a possibility for concurrency
in the acc•es made by the program tha. adds to mail to a mll b=x and the propm that reads
the mail box. Each program can mp and lock the heap for the duration of some logical operation.
For the formr it would be durinz the operations that co aitute addl.3 the new mse; for the
lattar it would be dun n opm:•ion like d'iLplz ing the hiev, of sI zie !•, :" in a ma&l box.
Tlha durations are loag compared to 1he duraton cf the cper-nio of z J:,gv the h•- p po!;ntr.
If there is contention for the heap, it is acc-eptable for t.L prroaz= to bi1y twit, try to map
every second or go. The user won% notice and the program won't be wang CPU cyclza to much.

Eventcounts allow processes to synchronize at a firer lweve and with Ics overhend than with 5le
locking. Eventcount amre equivalent in power with se=phors. All proce:aeds accin•g the same
part of a heap must agree to obey the semmphore asocited with that part of the heap. In the
case of application related daL&, the sen'aphore can be referenced from the object whome contents
are to be &,xensed concurrently. The Aegi eventcount primitives allow a procem to block until the
eventcount indicates that the procem has exclusive accs to the object.

The problem with eventcounts is that they introduce overheýad. The overhead is in the cor. of the
check of the eventcount before ýhe data -n be acces&ed. (ThiL check is x system call to Aegis.) In
cases where it is appropriate, the file locking approach has less overhead because no checks need to
be made before each acces.

A special cas that we expect OM needs to deal with is concurrency on oaly the OM-internal
parts of the heap (e.g. the heap pointer and index) and not on an application's object inside the
heap. Since the access patter= to these internal data structures am well known, it is reasonable
that concurrency control be implemnnted using the hardware %et-ýand-aet' instruction and busy
waiting since we know that the process will never have to wait too long. Ideally, the busy wait loop
should include a call to the operating system auggesting that it select another process to run7 . As
opposed the the eventcount approach, in this approach the operating system call happens only if
the resource is locked. Thus, with a resource that is almost always unlocked (e.g. the hem-) pointer),
the test-and-set approach is much cheaper than the eventcount upproa.ch.

3.8.2 Garbage collection

The OM heap garbage collection procedure we've described is correct only if no processes are
manipulating a heap when the garbaee collector beg-ins procsing that b-6p. If the gSarbage collvctor
can be invoked asynchronously (e.g. in the middle of an object allocation primitive) then it is poeible
that the only reference (RPointer) to an object is in a variable on a process's execution stack (or in
a register). Since the garbage collector tracts objects only from the heap itdex, &a object referred
to from only the stack will be fiscarded. Also, in general, RPointers on the stack to ob*ects that
are not discarded will be incorrect after the garbage collection because the garbage collector may
have moved the objects.

"Traditional garbage collectors solve the prcblem of references from the stack by putting those ref-
erences in the root set at the start of the collection. Unfortunately, we can not easily use this
technique because it is not possible to tell what heap an RPointer on bhe stack refers to. Without
knowing the heap associated with these RPointer, the garbage collector can not trace through the
RPointers on the stack.

There is no easy solution to this problem. The current implementation of OM simply does not
allow the garbage collector to be invoked asynchronously. This restriction is severe but does not
make the current implementation unusable. Not being able to garbage collect asynchronously is a
problem only if applications are creating garba-e rapidly. It garbage is not being created rapidly,
the rate r.t which the heap needs to be garbage collected is low. If each run of an application does
not create a lot of garbage, it is a reasonable restriction that the garbage collector can be invoked

7 Unfortunfately Aegis does not supply the m*casary functicnality wo do this, but It would not be difcult so add.
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only between (and not during) runs of the application. Our view is that OM heaps arm used for
archival storage, not intermediate rmults that quickly become garbage. Such intermediate results
should be allocated in the transient heap.

If we want to support asynchonous invocation of the garbage collector, we must make it possible for
the collector to determine the heap ahmociated with every RPointer on the stack. For each RPointer
in a stack frame (resulting from one procedure activation) there must be an R.eap that is azsoci.;ed
with that RPointer and that RHeap must be in the same stack frame as the RPointer. This could
fail to be the cae only if some procedure took an RPointer argument but no Rfeap argument. But
no such procedures exist because such procedures could not do any useful operation. Since a single
frame can contain many RPointers and RHeaps, the problem for the garbage collector is to pair vp
the RPointers with the RHeaps.

With sufcient knowledge about the way the compiler lays out stack frames and by requiring every
RPointer argumret to be followed by an RHeap argument (or by adding some declarative syntax
that achieves the same effect) it would be possible to write a garbage collector which could deduce
the RPointer/RHeap pairings on the stack and hence be able to trace references to OM objects from
the stack.

3.9 Heap structure in detail

Figure 3.6 shows the actual format of a heap. The part above the dashed line represents the transient
heap. I is some variable whose vYlue is (a reference to) an RHeap structure which describes some
active heap. The last slot of the RHeap structure is an RHeapB which to T appears to be a pointer
to an extend that is outside the transient heap. The section of the figure below the dashed line is a
part of the same proe's addre spa into which some heap is mapped.

Note that the RHeapB from the RMeap is actually a pointer to the fourth cell of the heap. T7his is
because Ts conventioa for exend references is that the reference points to the first data cell of the
extend - i.e. the slot following the T template pointer. To T, heaps appear as vecter.-t4, xltevd.
A vector-type extend is an extend that has a length cell before the template pointer. Vector-type
extends are used to implement Lisp's traditional vector of references. Vector-type extends are also
used to implement byte ,eetors and bit rector. During the debuggi.ng of OM, we were able to set
the template pointer Alot of the heap to point to the byte vector template in the transient heap.
This enabled us to use the T standard byte vector primitives for examining the heap.

The heap has two major sections: the header and the daua sections. The header contains:

Heap poiante: The cell numl5i (i.e. offset from the base of the heap) of the first free cell in the
heap.

Mat hkap pointsr: The maximum value the heap pointer should be allowed to reach. When UEAP-
ALLTC notices that the beap pointer has reached this value, the garbage collector Is invoked.

Heed of LPoiter list: The head of the list of LPointers contained within this heap.

Size of iade:: Maximun number of elements in the heap index.

Inde. elementa: Vector of RPoirters and reference counts.

Data cells: Section in which OM objects are allocated.

The heap pointer is initialized to the cell number of the first data ceiL .UAP-AL C uses and
increments the heap pointer. Note that the offset part of an RPointer is the offset from the base
of the heap, not the offset from the beginning of the d40 cell section. If the offset were from the
beginning of the data cell section then the RPointer de-eftnce procedure would need to contain an
additional addition operation to account for the size of the heap header. Since this size is a function
of the heap index size, which is not constant for all heaps, the derefcrence procedure would have to
get the heap index length from the heap, adding another memory reference to the procedure.
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I l!oo•atre I

I Ra•ference count I

I IPonter I

I Reerece Count I

Figure 3.7: Index element format

The size of the heap index is fixed at the time a heap is created. An alternative approach would be
to allocate the index within the data cell section and to maintain a pointer from the heap header to
the current heap index. With this approach, whe.- the index fills up, a new copy could be allocat
and the pointer from the header could be adjusted. This approach is slightly more complicated and
introduces yet another layer of indirection that must be followed at LPointer dereference time. For
these reasons, the current OM implem•-atkn simply uas a fixed length vector in the heap header.
The elements of the vector alternate betuen RPointas ad reference counts as shown in figure 3.7.

3.10 OM Types: More details

3.10.1 Getting code Into T

Before discussing the issue of uuer-defined types in OM, we must briefly examine the environment
in which we expect programmers to work. We are not attempting to build a single-language,
hnegrated program editing, debugging, and production-an environment like Smailtalk. (Such an
environment would be nice to have, but is outside the scope of this work.) Programmers will write
their programs uaing a conventional text editor and have another context consisting of a T interactive
system augmented by OM. The text editor may be embedded within the same proein as the T
system or may be in a separate proesm but in either cm, the maintenan of the programmer's
code is outside the scope of T and OX.

T source code In text files must be compiled before it can be incorporated into a T environment.
By 'incorporation' we mean a procein that makes user procedures and definitions available within
a T environment.

T has two compilen: the ussndalr compiaer, which produces tree-oriented Intermediate code that
can be executed by an interpreter that is present in the T environment, and TC, which produces
native machine Inhtuctions (that can be executed by the real processor). TC is much slower than
the standard compiler. However, the compiled code produced by TC executes much more quickly
than the compiled code produced by the standard compiler. TC produces its result into a file
(called an J'*et fi/e) of machine instructions which can then be read into the T environment. The
standard compiler dispenses with the object file and produces the intermediate code directly into
the T environment. It is not possible to save the output of this compilers, but it runs so fast that it

eNote that thisI a good example of a tuslcm. in which a psmasm ob*t system would be very usreul - the
complled code cmid be saved as a prsmfes objet.

. . . .. • . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .
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is acceptable tW have the programmer's source code oompil-d each time it needs to be incorporated
into a T environment."

The T interactive environment communicates with the user via a 'read, compil., inrpret, print'
loop that reads a T source string, compiles it into intermedijte code, interpretively executes the
int e,-chit code, and prinmt the results and then r•ats the cycle. The "compie, interpret" sap
is 3omedmzs c.j!iJd touakaion and the loop is c.&1d the 'rtad, v4, prLnt loop" (or PRZL for zhort).

The L= procedure ta file name argument and L irora.aa te contimu of the Le. If the file
is an obec*t fi:e, the binary loader is invoked. Othew;ize, the cotents of the Ue is incorporated by
applying the ilZL to the file.

3.10.2 User-defined types

User-defined extend types am created using the D=Z11- I D023.-TY'!Z specia! form. This form
defines a type and an associated seat of methods for objects of that type. The syntax and behavior
of rIi:r- I C3..7•T-TTE is related to T's C=3.T form, so we wiil cuamine the latter first. -

The C3.-=CT form is both decdrative and proceduraL It dedcares a set of handled operations and
associated methods, and allocates an object that responds to the declared set of operations in the
specilied way. The syntax of Ci.N, is:

(C3JC•'T call-part meth•od-paxt)

The call-part can be ignored for our purposes. The sathod-part is L list of method clause. The
syntax of a method clause is:

(onthod-head method-body)

Where a mothod-head looks like:

(operation argi ... arga)

operation is an expression (typically just a variable) whose value is an operation. The argi are
the arguments to the operation. Within the method-body - the code that implerments the method
- the argi are bound to the values in the operation invocation. The first argument is always the
object to which the operation is being applied; this argament is czaed the s4f earp eaL If the
method wants to apply another operation to the object, it apples the operation to the value of the
self ar-gument.

Execution of an •BJECT special form yields (a reference to) a new object. The new object Is
closed over the lexical environment in which the 03=E.T form appears. Method bodies can contain
references to variables that are lexically apparent from but defined outside the DBJrCT form. When
a handled operation in applied to the result o," the CJE.i special form, the appropriate method is
selected from the object's ast•od-part and is executed; references to closed-over variables in the
method yield the values those variables had at *he time the object was created.

How does the behavior of 03ZCT map onto our model of objects as a vector of slots containing
references to other objects? The OBJ=.CT special form does not say anything about slots. Note
however, the implementation of the *cl-sing over' procedure requires that space be allocated to
hold the values of closed-over variables at the time the closure is created. This space, plus a
rference to an object that contains the methods, is the object. Thus, the closed-over variables are
the slots in the object.

Consider the following piece of code:

1o6t Liap sytor call soamkthing like the standard compiler a reeia, and something like TC a sOmplr. In fact, In
T, I users are not sware that there is a Kanidaid compiler that Is converting their worc• code Into intermediate
codel; they inW that T is simpty interpretIng their soumce code.



Managing Peraaent Objects 53

(DrmN 100
(LAXNUA (X Y Z)

(OBJECT iL
((NEaOld SELF II)

(+- 3 X 1)
((ANOTRZI-OP SELF K)

(CA1 Z)))))

This code assigns a procedure of three argumonts to the variable 700. The procedure returns an
object that handles two opersions called OE-OP and AXOTHER-OP. The object is closed over the
variables X, T, and Z which are the arguments to the procedure.

Note that each execution of the O3JECT form yields a new, distinct object.:

(SET A (700 1 2 *(THIS 13 A LIS?)
(SET D (700 10 20 ' (ALPHA BETA GAIGIA))
(ONE-OP A 6) , (+ 5 X 1) - (C 6 1 2) 8> 8

(ONE-OP B 5) > (+ 5 X Y) -> (4 5 10 20) -> 35

The representation of the object that is the value of A is something like:

A --- > - -

I *-.... i....Object code for ONE-OP &Mt AXOTHER-OP
4.--- --

X:I * .. . .

Y:I . 2
4-----------4-

Z:l (TrIS IS A LIST)
4-----------.

The traditional term (from Smalltalk) for variables that are available to the method clause$ is
iastsase wenie.e. Instance variables are the names of the slota of an object. Th values of !instan.,
variables are what make one instance of an object created by the OBJECT special form different from
another instance of an object created i, IAt same OBJECT fom.

Smalltalk and Lisp Machine Lisp 1531 support object-oriented programming facilities similar .o T's.
One way in which their facilities differ from T's is that in Smalialk and LM Lisp there are separate
primitive for declaring types of object and creating an object of a particular type. Also, in the
declarative form the instance variables are declared explicitly and are not determined by the context
surrounding the declaration. The number of instance variables that are declared determines the size
of objects.

Taking after Smaultalk and LM Lisp, OM has a dedrativ, mechanism for introducing new object
types. The reason we adopted this approach is that we feed that it is required in a permanent
object system. The goal of T's object-oriented support is to allow object types to be unnamed and
implicitly created; T object type definitions are dependent on context (Le. the cortext surrounding Z
the OBJECT form). Our goals ar different.

As a progrmmmer debugs procedums, he edits, compiles, asd re.incorporstes all or parts of files.
He may destroy his T process and start a new ow and lncporste his procedures into it. In T,
the incoiporaion (not the execution) of a procedure that contains an OBJECT form constitutes the
definition of a new type. We do not believe that this is the appropriate way to introduce new types
into a permanent object system.

Creating a type in a permanent ;bject system is a serious thing: the system is obliged to retain all
the information relaed to the type for as long as objects of that type exist. In our system, since we
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can not store object code in heas this retention means the wrtida of an ,ternal Me that describes
the t••pe (more on this lier). Thus, it owe= undesirble that. es aim creattd evientially as a
side-e-Zet f1l~e in T.

It M" be pcc to modily the methods thzt make up a type. T'- means it must be pssible
to rti.:ir to a t-yr - t. type have a name. In T, it is not pc=ib "ncor.poýz a rev; 'ion of
an =LJ I Iortn. la z~t, ~re no wzytotcr to anex:;t- "T irza it is bwied

Lh 3 opaeque cOMPIed object. in OM, tya have text names and a t7,iT mer caX g--t all
tht Li., a about type rimrply by knowizg the type's narce

Tbe, of th e prob-I= of udedt ed types in our sms is thco eth•t com nta tr'pae
must be tre.%t d di•'-!mtly from ordinary user code. 'A need not aLd does not 1, ,,, :mck of all user
procedures that aze incorporated into a running T/OM environment. But OM mr., e,:p tr=k of
code and other inlform&tion t"t applies to type deinitions, regardlas of whether tL,., Zfiitions
apply to types that a•e bein; uzed in any active T/OM environment.

D='L- 1 C ZC7-TTPZ is the OM special form for introduciag new types. The syntax of .. ?17-

opintnca-vzaba

~thlod-clausau)

type-zaam is the name of the new type. .tioas is a list containing cfttain options ab•out whether
the ir.3tance vxriables are accessible outside the mathad-clanasw . £astaze-vaziablos anr the
names of the slots of the object. a.A-c€laus;* is similar to the method clums of C3J.=T.

Oper••ions applicable to OM objec.s ar created using CL2TM-0?E7•T' which is analogous to
1"3 DL1,lZ.-CxflATCA.

A.l information about OM types is sored in a special heap caled the v Any. OM has special
knowledge about this heap in much the same way that it does about the EID heap discussed earlier.
T••e type heap contains wyeral thin,

"* The next type ID to sign.

"* A table translx type " na#ys to type ID.

"o A table tnnslating type Me into type names.

"* A table trailating type IDs into type source file razas.."

"* A table translating type UDs into lengtb&

We wiA explain how this informxton is maintained by explaining the behavior of DEFINE- 103JECT-
TYPL The execution of a DZfINI- I ̂ 32-.CT-TTPZ form caues a new OM object type to be crated. A
new type ID is generated by reference to the type heap. A slightly modified version of the DF.TIIE-
IC'7JZCT-TTPE form is writ ýen to a new filt (called a ty" sou•es file) whose name is entered into
the t•blk translating type iDs into type sour" file names in the type heap. This file is owned by
the OM system, not the uw., The tame and ED of the type is entered into the type-name-to-type
ID translation table and the type-ID-w-type-ninme translation table. The typ ID and type length
(number of slots) is enta--.,e into the type-ID-to-en gth translton table.

When the DEFINE- I E03CT-TTPZ form is compiled, the method clauses are not compiled, When the
result of compiling the DZ7IVE- IOBJECT-TYPZ form is executed, it is manipulating method clause
source code, not object code. T7hus, incorporating a source file containing a D-FI5E-I C1JCT-T•- E
form does not result in the compil&ton of method dauses. This aspect of OM types %ll become
dearer as we describe operation dispatch in OM.
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3.10.3 OM operation dispatch

Operation dispatch is the process of invoking an object's method in response to an operation being
applied to the object. In GM, operation dispatch happens when an OM operation is applied to an
OM object. Tbe operation in-ocation is syntactically identical to a procedure call, except that the
head of the form must evaluate to an operation object instead of a procedure object. The first two
arguments to the operation must specify the object to which the operation is to be applied. These
two arguments must be .n RPointer and an RHeap.

Operation dispatch begins by extracting the type ID from the first slot of the object to which
the operation is being applied. This type ID is looked up in a per-proces table (residing in the
transient heap) that translates type IDs into active tgiyea. An active type is one whose handler
has been incorporated into the transient heap. If the type ID is found in the table, the associated
handler is invoked. The handler is simply a procedure that compares the operation object being
invoked against all the operation objects listed in the the DEFINE-IOBJZWT-TTf for the type ID. If
the operation is handled by the type, the associated method is invoked. Otherwise, if the operation
has a dedfuld method, it is applied. Otherwise, an error is raised since the operation can not be
handled.

If the type ID is not found in the per-process active type table, the operation dispatch me,.anism
translates the type ID into a type source file name by referring to the type heap. The type source
file is then compiled by the standard compiler, incorporated into the T/OM environment and a
handler is constructed. If a version of the type source file that has been compiled by TC exists, that
compiled version will be incorporated instead of invoking the standard compiler. The type ID and
handler are entered into the active type table and operation dispatch proceeds as described above.

3.10.4 Type redefinition

In any permanent object system, suppose a programmer has defined a type and then creatu rome "
objects of that type. Now suppose that the programmer wacts to modify the type. Does he %s-nt
to modify the behavior of existing objects of that type or does he want only objects created after
the change to have their behavior based on the modified type and to have old objects retain their
old behavior? If the former, what sorts of changes to a type are compatible with existing objects? 7
If the latter, in what sense, if any, are the unchanged and changed types the same type?

There are cases where type definitions need to be modified without crewting a new type. Fixing
bugs is one example- if a chanrze to a type definition is the fixing of a bug in the definition, old
objects will probably want their behavior modifie% to the new, less buggy behavior.

There are cases where the changing of a type definition must be treated carefully. For example,
suppose the new definition specifies a larger number of instance variables. If the new definition is
applied to old objects, an error will occur when the slot that doesn't exist in old objects is referenced.
One might be tempted to say that the new definition with a iarger number of instance variables is
creating a new type. This attitude is not entirely adequate though. The old type and new type
might have much in common. By forcing them to be differnt types, we are causing whatever
similarity the two types have to be lost. For example, methods in the new type that don't refer to
the new instance variables might be identical to methods in the old type. If a bug is found in such
a method, the fix should be applied to both the old and new type.

Conventional databases have had to deal with problems similar to those described above. The
traditional sulution is to force the user to dump his data and then reload it using the new type
(schema). This is essentially a result of the fact that database systems typically use highly compact
and optimized dta structures to represent data. Such representations are' not easy to change
dynamically.
We do not yet know how to solve the problem of type redefinition. The Smalltalk and LM Lisp object
type systems essentially do not deal with the problem in full generality. The underlying structure

"-° -'." °- .... -" ,°o "o . ".' ~..........- "........................ . . ..-- ,.-!
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oi our system allows both e ,sting types to be modi•ed and new types to be created. Presently
D=fI.U- IC•3Z.T-TYE always cmrez a new type (Le. type ID). Once ceated, an object's behavior
is not chagied by subsequent executious of UMS.- IC3J -TYPL However, since this form specdes
the type nase, it would be trivial to make it optiozzJly modify the behavior of an c In; type ID
to which the type name trlnskal.m All tha is reuired is that imxteal of adding an entry to the
tab]ts in the type hup that tale a type ID as a key, tha those tables be ý..pdated to •iL•t "e Lew
d2'Jon.,[.

To d•.J witýh the cs. where a new type needs to be M-crated (e.g. when the numb4 of L- ce "
vrixabl - has c•=Z, ad) we would Ike to conider the new type tO b a new fe•Cmaoii of an exLing
type. Fýr some purposes dLlwa-ent gtner"tiom of te same type will be considered different types,
but for other purp-e3 they might be conaidt-ed te samze type. For example, the two types would
be conaidered different by the operation dispatc mechanism However, if an object type defnition
editor were tr be included as part of T/04, the two types might be considered to be same for the
purpose of Yethod modi5cation.

- - -~- -- " . , C 4



Chapter 4

Programmer interface

The previous chapter dealt with the low-level implementation ismu in OM. We now address the
imues related to how programmers actually use OM. The major topis of this section are the syntactic
tools the progamme uses and semantic isues the programmer must deal with. At the end of this
chapter we describe two sample use of OM.

4.1 Simple syntactic tools

T, Eke most Lisps, has a mechanim for modifying the syntax a( the langus-c This mechanism .a
called a ate". OM deinam some macos to make programming using OM mom convenient and leas
prone to error.

9ITI-ACTIVE-HEAP is a mao that controls heap activation. T- underlying activation control
primitives, ACTIVATE-HEAP and DEACTIVATZ-HEAP an inconvenient and if not uaed correctly can
lead to heaps not being properiy deactivated For ecample, in:

(DEFINE (TOO IID)
(LET (CHAP (ACTIVATE-HEAP MI)))

(DEACTIVATZE VAP HID)))

if an error occurs within the '...', and the stack is unwound to top-level, DEATIVATE-HEAP will not
be called, and the heap will be left active. To avoid this potential probl-m, the procadure should
be written:

(DEFINE (7o HID) 0
(UJIVIND-PRMTCT

(LET ((HAP (ACTrVATE-HEAP HID)))

)
(DEACTIVATE-HEAP lI-D)))

UNrIID-P&IOTCT is a T special form that insw- that its second form (the call to DEACTIVATE-HEAP
in this case) will be executed.

By using WTTHI-ACTIVE-HEAP, the above can be simplified to:

(DE7INE (T00 HID)
(WITH-ACTIV-HEAP sueM BID

57
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Which cxp•nds into a defnition which is identical to the UVI•--PI=T1T version above.

IWT-LPOI s3• i a more spahisticated macro that coztrols the activion of heaps bald on
LPointeru. Recall that objects refe-red to by LPointers can not bt examined wunil the LPoInter -
is converted to an RPo r/RHa that refers to &a object in an active heap. 1VT•-LPC•fll..
simp'15e3U t1P writing of code tha does the converslon. For example, consider a procedure that ta•s'
an -"Pointer/11.lcrp to an LPo.. aer.

M0 U

(! I~-!.... 12 LC- LP L? - LP)

The first p&At (called the pezcific,'=oa) of the VITI"-LUCIXlII form specifia the LPointers that
will be used withLin the second part (called the kWy) of the IWTM-LPO•ZA form. The LPointer
',p4=.ficaztn is a lht of triples (,..e ex=n)1e above has only one triple). The first element of the
triple is a pseudo-variable that will be describeJ shortly. The second and third elnts of the triple
ane a reference (RPointer/RlHeap) to the LPointer bein; ured.

Jtnt bt.cre the body of the is.-LPC::f. i executed, all the heapa named by the LPointers in
the specZýcation are activawed. After the body is executed, aJ tlhee heaps are desctivated. (The
-nszro utft ACTrVATE-3Z.,y and -"ZACTIVAT1Z-•= P Do d aa•ically nested I IT7-LPOI2•Ct2, actually
aimply manipulate the heap Fp-.tvalion count.)

The paeudo-vwiihEabs am u.zod to refer to the RPointer/RHea.p pair% that renclt from converting the
LUointer reference into a refer'er to an active object. Within tie body of the lIT-LPT117',

two variables are introduced; one is bound to an P,'ointer that refers to the objec*t referred to by
thze LPointer Lnd the other is bound to the PI-Heap tha rý -alt from ectiva•nig the heap rferred to
by the LPointer. The names n these variable are constac-o•d from the name of the pudo-variable.
For peeudo-variable var, the vyriable wr I can be usad to refer to the RPointer, and the variable
vsrIH can be used to refer to the RPletap.

Alao, every ocxurence of tae paeudo-vazizble itself is rephaced by tw variables that are bound to the
RPointer/RMeap that refers to the object referred to by the original LPolnter. Thus, the wcample
above could be rewritten:

(MUMl-Z (700 LP LP-H --)
(lwrn-LP1oXZ2~ CCV LP LP-UZAP))

4.2 Programming with two kinds of references

The previous chapter described the primitives for derdencing RPoinmer and LPointerm However, it
did not address the question of how a program is to know which derefeence mechanism whould be
applied to a particular reference. Should the deciuiou about how the reference should be derefenced
be made dynamically or statically? For examrple, given the expresion:

(IPAIR-CARI It )

should I PA-IR-CAit (statically) assume that 1/Il rrfers to an O.M pair, or should it (dynamically) see
if 1/H refers to an LPointer that needs to be dereerenced to reach the pair?

Another issue related to having two kinds of refereaces is the kind of reference returned as the value
of a procedure. Given the nature of our :mplementation environment, a procedure always Actually
returns an RPointer. But I& It an RPointer to the object being returned, or is it an RPointer to an
LPointer to the object being returned?
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4.2.1 The dynamic approach

The dynamic approach requires that the primitive that extracts an Rloian from an object look
athe type of the RPointer. if the type tag indicate that the type is LPointer, the primitive could
then invoke the dereference mechanisn on the LPoicrw. Accnors that retrieve a slot in ea object
have ta cýeck to wee if the. type of their argumcnt is LPoiater. Recall that ^ll such accesors call
LVOINTER-EXAXINE to get the contents of a slot. We could rewrite EIn T-SX-E IN t-o be:

(DL!InM (RPft1ITn-EUXAM~ I? LEAP 1)
(COND ((LPOIrY=7? XP)

(,wrT3-Lpoxrru (CP I? lEAP) D.a D ef. L~ainter
(RpoIVMz-EXAIawE Pta PIN I)))

(T
(UWEAP-AMINZ VEAP (. I (R1PVITZ-CADR= RP))))))

This generality comes only at the price of incrasing the cos of the dereference mechaniam every .
time an RPointer is extracted from an object, the RPointer must be examined to wee if it refers to
an LPointcr..

The dynamic approach dso requires that accenors thAt modify a slot in an object have to check to
aee if the reference being stored is to an object in another heap. We -ould jwwrite 3PI}Y..E-DEPOSIT
(the procedure used by all accesors that modify slots in objecs) to b:.

(ZFINE (IPOIRTEX-DEPOSIT UPI LEAPt I In HU.AP)
(coD ((CNOT (- -01 NEAP2')).

(CkOXRnX -DTPCSIT

(IvnoT-ROnXM RP2 KEAP2 MP,) ,EAP.)) L..
(T

(kaZAP-DEPCT A.P (C I CPIwMM-CADU-•t?)) M.))))),:

In add.tiou t3 the cost in time, there ;s a cost due to increased code siWe IrP"=-ELAXIVZ is
expanded in line. The addition of the LPOZNM 1? test will increase the sie of the expansion. To
save space, the code to dereierence the LPointer can be left out of the in line expansion; only the L.
te" #md a call tr a ,rocedure to do the LPointer dereferenc< will be included. (In the came where
the RPointer points to an LPointer, the cost of an extra procedure call is not signiScant since the
LPointer derfe'nce is expensive anyway.) However even with the LPointer dereference moved to
a subroutine, #.ae size of the compiled RPMIXTEN-EWAJ4IXE will increase by about 1/3 (recall from
section 3.5.2 that the s.-ginal sequence is about 9 iwstuetions; the LPointer test and subroutine
call will be at least 3 instructions). The size of the expanded XPOIE'El-DEPOSIT will increase also.

Besides the time and spa.e efficieucy prcblems with the dynamic approach, there is a logical problem:
the RPointer returned after automatically dereferencing An LPointer (in IPCINTZR-EXAXINE) will
be to an object in beap different from the object from wbkh contained the RPointer to the LPoir'ter.
7'he wriraed RPoizter is useless wo he procedure that called the accesso, since the procedure does
nct have a handle on the heap that contains the object the re.urned RPointer refers to. One obvious
way to get amunJ this problem is to make RVI TER-AW- IWU return an LPointer in cae it ha
dynar.,"Ily dereermnced an LPoiate."

(DEFIbE (IPOINTEA-L(ANIUIN I REAP I)C•0N4D ((L•OIrnT? UP) -"-.

(OVIT-LPzINTR (UP RP ,AP2)).

aIt av had the option o( building hardware we would &•rue that this t4s could be performed in p kie ,Witt the
3AP-gZZMXEZ but we're * so we so I.
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: Pair Pair
: 1 2

----------- -------. ÷ ------

>Pt --- ) I B I I - :- I *--I--->! I

---------- *--- --

heap
REAP A boundary HEA B

igure 4.1: An LPointer to two pain

(1Z;C:rePOI = 4.12 : An ue F? I) pa P)
(T

(AUZAP-ZXAX4INZ MEAP (+ I CV2C1NTZ?-CADDRV.S IP))))

However, thL• solution is unsetLfactory. Assume P 11/? 1H refers to an LPointer in heap A that refers
to a pair in heap B and asunie that the ur of that pair is alio a pair. Figure 4.1 shows how the
pairs are arranged. To retrieve the cdt of the second pair, using the dynamic approach, we could
write:

(LET M(, IPAIt-cDR (1PAIR-CAR ?I& PI3) 111)))

Since P I/P.iH refers to an LPointer, the LPointer will be dynamically dereferenced by IPAIR-CAL
The vslue returned by IPAIR-eA.R will be a newly allocated LPointer (in heap A) to the object
referred to from the car of the first pair. When IPAIR-CDR is applied to the LPointer returned by
IPAIR-CAR, thie LPointer will be dynamically dereferenced.

Simply to follow this etr-cdr chain, we allocated a LPointer and did an LPointcr dereference. The
LPointer becomes garbage as soon as the 1PAIR-C1R is executed.

4.2.2 The static approach

Instead of automatically derefe-ren-ing and creating LPointers, we can leave it up to the programmer
to specify where LPointers are and where LPointers need to he created as paxt of the programming
process (i.e. statically). The static approach is predicated on the fact that the structure of an
application's objects - i.e. whiich objects &re in which heaps and where the inter-heap references are
- is fixed. OM is a system designed to deal with applications whose data structures are fixed in this
way.

To use the static approach, the programmer must adopt a certain style of programming. The goal
of the sty.e is to minimize (and hopefully reduce to zero) the amount of storage (especially garbage)
that is allocated by procedures that do not create logically new objects. That is, we don't want
procedures to allocate storage simply to return results that in principle do not require storage to be
allocated. In particular, w- want to avoid allocating LPointers when it is not necessary to do so.

If the structure of an application's data is fixed, the need for the generality of the dynamic approach
is reduced. For example, it is not necessary for accessors to dynamically check to see if a ref'rence
is through an LPointer if it is possible to statically assert that the reference is never through an
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LPointer. In caw the programmer can't assume whoee the LPointan are, he can insert the check
for LPointers himself (or simply introduce a layer of procedures that do the check and dispatch
accordingly). In this cawe, the system is no more or kam efficient than the dynamic approach. In all
other cams however, the dereference mechanirm is cheae.

Another aspect of the static approach is that LPointem are explicitly created. Note however that
LPointers will not need to be eated in all the ca in which the dynamic approah would have
created them. For example, using the static approach, following the .ar-cdr chain dascrib-ad above
would be written as:

(ITrr-LPOINMTE ((Q PIR PIW))
(LET ((X (IPAIR-Col (IPAIR-CAR ajIt Qll) Q11)))

Note that we are assuming the original RPCIMIrtE-EIiN - the one that does not autormatically

dereference and create LPointers.

Within the body of the IVITH-LP0INTER, QIR/QIa refers to the firat pair in heap B. The IPAIR-CAR

returns an RPointer to the object referenced by the first pair's car - the second pair in heap B. The
IPAIR-cM1 returns an RPo;nter to the object referenced by the sec nd pair's edr. Note that we can
ute QII as the second argument to IPAIR-CDI because we know that the scond pair is in the same
heap as the first pair (which is identified by Q It/QI1).

Unlike in the dynamic approach, the above expression does not cause a gratuitous LPointer to
be created and then dereferenced. The general case of which the expreaion is an example is the
successive application of procedures to an object:

(71 (F2 ... (Fa PlR PIE) ... PIE) PIN)

where P /P•I I is a reference to an LPointer and the return values of the Fi are objects in the same
heap as the object referred to by that LPointer. In the dynamic approach, since P IVt/PtN refers to
an LPointer, an LPointer will be allocated for each intermediate object, and this LPointer will be
derderenced right away by the next procedure application. The static approach avoids this cost by
making the progrwnmer explicitly specify (via IV•IT-LPOIXTEM) that a piece of code should run
"within a particular heap' and that intermediate results should not have an LPointer allocated to
rdefr to them.

In the static approach, since LPointers are never automatically allocated, it is also up to the pro-
grammer to expLicitly specify calls to ILEORT-lPOIN•rL Which procedures allocate and return
LPointers is a convention determined and followed by the programmer. His procedures fall into one
of two classes: those that work within a single heap and return RPointers to their results, and those
that span heaps (by dereferencing LPointers) and return LPointers to their results. Procedures in
the latter clas will have the form:

(DEFINE (0 Qat Qal)
(IvIrr-LPoINTEK ((P Qal Qi8))

(OEXPOIT-RPOINTER (?I (M2 ... (Fn PI1 PIE) ... PIN) PIN)
PIN
Q II)))

Procedures like C take an LPointer to some object, dereference the LPointer, apply a set of procedures
to objects within the same heap as the object referred to by the LPointer, and then return an
LPointer (in the same heap as the original LPointer) to the return value of 0.
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4.3 A pre-proce~sor

The fact that an OM procedure that takes a reference t an OM object trakeA two arguments to pass

the reference is a nuiance to the prommer. The two arpument logisally identify a single object.

Normally a progra.mmer uL one ar~ument to id nf"y a single object.

Th- pap-pproc 'Th• apr•.ch taý.s of the f?.ct that there is a great dejgee of resuAity
in the way TPointeri and UL•ap, are p=1 •.oz procedures. Note that all OM procedures that

Lie an RPoiiter and Rlleap return an IR.Iointer that refers to an object that is the same heap

LI the RPoinztr ar-amen.t. WiLh some imzllt •ayc:ic modiIcations to T, the piogrammer can
be relieved of the chore of spe:i'ying both the 1?Pcnter and R~eap argument. A pre-procesor
can automaticaly turn the programmer's one wrgument version of the code into the 4wo argument
version that the OM primitives expect.

The bmic idea of the syntactic modifcA.ion is that the programmer will declare all variables that
hold a reference to an OM object. For examzple

C(I (Z?)
(+ (Q A) B)
C))

This defines a procedure P that takes three arraments, the first and lAt of which are references to
OM objects. A pre-processor takes the def aition and tr--nsforms it into the two-argnnt zastly:.

M=M2 (P AIR AlE 3 CII. C11)(17, U7)
C. C� �Ai Al) 3)
ClI))

verl 1 and var &- ae substituted for &: occureuces of ver. However, if oar appears in return position,
just va;ell is substhiuted for vat.

The pre-processor is not geMeral yet. The trandormation above relies on the fact that Q returns
an integer, not an OM object, and that the result of Q is being paswed to a procedure that takes
integers, not OM objects. What if Q returned an OM object (i.e. an RPointer) and instead of +
receiving the result, the procedure being called expects an OM object as its first argument? That
is:

(DZ71zVZ (P CC1,WAR A) IS CDMVA! C))
(CIF Z?)

(It (Q A) B)
C))

CDUIIZ M (DXVAt X) Y)
(IF T

x
Y))

Note that R is really a procedure of three arguments: the X argument gets expanded into two
arguments by the pre-processor. Thus, when P calls R it needs to supply the RHeap argument that
goes with the RPointer returned by Q.

In general, a call form A that:

1. Invokes a procedure that returns an RPointer, and

2. Appears in the argument position of some other call form B that takes an OM object in that
position,

must have an RHeap inserted after call form A:
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I I I I

I B--A-- - II I

The * marks the point of insertion.

For the pre-processor to do this insertion, it must know something about the procedure being
invoked. In particular, for a procedure Q, it must know the Rfleap that is to be associated with
the MPointer that Q returns. Fortunately, this is generally a static property of the procedure- The
RHeap of the returned RPointer is the lame as the RHeap of one of the objects pased to the
procedure. Thus, we can augment the definition of Q with a declaration of what argument's RHeap
is the RHeap of the returned RPointer:

(DEFINE (Q (ONVAR M)) (UrTURN-INLAP 3)

)

This says that Q returns an OM ob.;ect identified by the RPointer returned oy Q and the RHeap
associated with Q's first argument, . Tris is enough information so that the pre-processor can
transform the definition of P into:

(DEFINE (P All All B Cl1 CIR)
(IF (Z?)

Mi (Q All All) All B)
Cit))

The AI RZEAP in the call to It is inserted baned on the fact that the definition of Q says that the
RHeap of the result of Q is the same as the RHeap of Q's first argument.

If the RER1-itAP clanse is omitted, the pre-proceuor asumes that the procedure returns a
non-OM object (e.g. an integer).

While it appears that the pre-procemor can automatically gy-merate Map arguments for many
cases the programmer is still responaible for knowing when a data stricture crones a heap bound-
ary. Doesn't the programmer have to mention an RHeap explicitly at this point? The answer
is &no' because of the pre-processor in combination with the IVITH-LPOINTER macro enables the
programmer to forget about the RHeap argument even in this case.

Consider the following simple example of a procedure that deals with data in multiple heaps. Sup-
pose a procedure P is passed a list of LPointers. Each LPointer is a reference to a vector of integers
in another heap. Suppose we want P to sum up all the integers in all the heap. We could write P as
follows:

(DEFINE (P (OWA, L))
(COND ((.ULL? L)

0)
(r.,T

(4 (l OVI -LPOINTERM (VEC (OPAIR-CAR L)))
(LOOP (zrrIAL (suM 0))

(mNCi I Timm 0 To (_ (IVECTOR-LEECT! Vr.-) )
(DO (SET SUM (÷ SUM (IVECTMR-ELT VEC I))))
(RESULT SMU)))

(P CIPAIR-CDR L))))))
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Note:

IN=L? is a primitive procedure that takes an RPointer/RHeap and returns froc if the RPointer is
to ýhe null object.

I PAI-=2 is a primltive procedure that takes .a RPointer/Rl'leap to an OM pair and returns the
edr of the padz. IPIM-C-2 is d--c¢red to the prt-proce=or to return an RPointer that is
in the same heap a3 the argment to JPAr-,>C.. Thus, in the recursive call to P inside the
d&±iition of P, the R h2Mp anaci aed witih L (i.e. the second real argvxent to P) will be
ixe,?ted Apter the Call to U'kl.-CZ

l',•.•2-L A is a primitive procedure that takes an RPointer/Rlieap to an OM vector and
returrn an izteger.

IVZC'•D?-ET is % primitive procedure that takes an RPointer/Rflep to an OM vector and an
integer oijet into the vector, and returns the R.Pointer at the &?ecified offset. MC•TMR-EL.T
is declared to the pre-proceswior to return an RPointer that is ik 'be same heap as the first
argument to !'VC.2--ZT. However, in this example since the caJ to IV T=It-L-T appears
inside a c.1ll to a non-OM procedure (i.e. *), the RHeap is not inserted.

Not- that the one clause in the specificstion part of the UI-LPVt'rA.R has just two elements:
the pseudo-varisale VZ, and the expre-sion (IPAR-cAR L). Since like IPAIR-C•fR, IPAIR-CuL is
d&eca.ed to tht pr-e-procewvor to return an object in the same heap as its argument, the sped~cation
clause will be filled out to be the full triple, the last element being the R~eap that was passed to P.

While we have not actuly implemented the pre-processor described above, v do not believe
that tle implementafion would be all that difcult. The main inconvenience to the progwnmer
introduced by the pre-proceszor is one that is found in any system of declarations: declaration must
precede refermn Lisp systes amre typically more flexible, allowing refereces to procedure that
have not yet been defined. However, this flexibility ie possible only when ,compiuineth reference
does not require awy info.mation that appears in the definition. The pre-processor does require such
information, and he.ce the definition mu.t precede the reference. We believe that this is not too
onerous a task for the programmer.

4.4 The mixed object environment

OM runs within a T environment. Programs that use OM can create normal T objects (in the
t-ansient heap) and CM objects (in a permanent heap).-

0M provides primitives for copying object. between the transient and a permanent heap, and
between permanev! heaps. These primitives are not general structure traversem. That is, they do
not take a reference to an object of arbitrary type and copy that object and all objects reachable
from that object into another heap. In general, with a large graph of objects (data structures), finer
control is required; when copying a data structure, objects will need to be allocated in different
heaps. No simple, single copying primitive could handle all possibilitie of where objects are to
be allocated. Thus, OM provides primitives that copy atoms (ircluding LPolnters) between heaps.
More sophisticated copying procedures can be built out of the primitives.

Being able to allocate objects in the transient heap and then later copy them into a permanent heap
can be useful. This is because it allows one to write procedures that allocate new objects without
regard to what heap the objects should be allocated in. This may be a convenient programming
style for certain appLications. In such applications, at a crtain level of abstraction all procedures
that allocate new objects always do so in the transient heap; at the next higher level of abstraction,
the objects are copied into the appropriate permanent heap.

Another advantage of being able to copy transient objects into s permanent heap is that it allows
allocation to be a bit more recklem. In programs that allocate objects but in which it is not statically
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possible to know which of the allocated objects will be permanent, if all the object are allocated in
a permanent heap, some would be garbage. The garbage objects are costly in terms of garbage
collection time (a program that generates a lot of garbage cause the garbage collector to be invoked
more frequently). If, however, the objects are always allocated in the Uanment heap and then the
ones that are to be permanent are copied into a permanemt heap and the amount of garbage is
not too great, the garbage is 'free'. A program that creates a certain amount of garbage in the
transient heap can do so with no time penalty if it doem't allocate ao much that the garbage collector
is invoked on the transient heap before the procm exits. Since the trusient Leap i transient, all
itt; contents are by definition garbage when the proem exits; garbage collection on that heap is
implemented simply by deletlng the entire heap. Thus, no garbage collection time penalty (other
than the time required to delete the heap file) is incurred.

Thee is some clumsin that results from writing program that deal with both OM objects and
T objects. In the current implementation of OM, there is no easy way. to avoid this. In another
implementation of OM we expect we would simply dispense with T objects altogether and have a
unique OM transient heap associated with each process. This heap would be like any other OM heap
except that the maximum size of its heap index wouid be zero - i.e. there cold be no references
from other OM heaps .- to th:s heap. Thus, when the process exits, the heap can be deleted. This
strategy would eliminate the clumsines of dealing with the T transient heap without aacrificing the
advantages associated with that heap as described aove.

4.5 Finding the first reference

In order to manipulate an object, a program must have a variable whose value is a reference to
the object. But when a program start., the values of all its variables are undefined. How does a
program go from having no references to having some references?

Programs do not operate in a vacuum. Programs are started because people want them started. Peo-
ple give arguments to progrars. If the programs are to manipulate permanent stage, the arguments
must indirectly identify objects (if they did not name objects, the program could not conceivably
manipulate stat.). However, these identifications are not OM references, but something more high
level - something that is meaningful to a person, e.g. the string name of a 'mailbox" or a number.
The problem is to transform the kinds of arguments people give into references to objects.

There are two general questions involved here. F'ust, what are the met of objects that are known a
priori by the system? Second, what are the mechanism for finding other objects from the known
object.?

4.5.1 File systems

Traditional computer file systems provide a model for dealing with problem of finding objects given
only a small wet of known objects and some logical identification of the desired object. The objects
in a traditional file system are directorie. and files. The known object is typically a "root directory'
that is in some known place on tht disk. The file system has a mechanism for finding a file given
the string name of a file and the root directory.

F'desystem directories are a simple mechanism for converting high level references into lower level
references. However, they have the two main properties in which we are interested. First, they have
a piece of Information that is known a priori. Second, they contain system maintained functions
and data structures that convert high level references into lower level references.

4.5.2 File systems as a model for OM naming

One strategy for giving high level names to OM objects is to imp!ement our own hierarchical naming
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system. We defne an object that is known a priori by OM - a dirsto o•ject - that maps string
names onto LPolt-cra. A dirtctory object is any object that responds to the DhratoryLookip
operation (that tak a &ing) by returning an LPointer. The result of the lookup could be a
rence to yet "other direc;try object, or to a leaf in the directory tree. In this way, an object
can be compleiy zzm.-• winlh 'i list of strings. Looking up an object given a list of strings simply
requi.-_ traversng the tN4 of dimctory ob:ýcts atan-g at the root dirctory object and returning
the LPointer that -'v-is tLe r.ult of the h-z lookup.

Note t'at thle abo, ý- ysm is mortEefiuble 't"r= a traddi tion Mtsystzem u~min.g xystem. A directory
obil-ct i. free to iupldnitnt Cirr_147L*w;-up L urny way it chooses. The obvious approach would be
for the object to aimply mrntsan n haih table r-.pping strin•s onto LPointer,. However, it could do
more sophisticated uthngs. The object mn-h treat cer.n wtrings in a special way. For example, we
could make a directory object that when pretent•d with a person's name yielded a person's mailbox
object. However, this same object when preaented with the string "MyMhAilmox' would yield the
mailbox object associated with the person that owns the process executitg the operation.

4.5.3 A genernI •anaing strat27y

Note that this hierarchical nuamkng sy•tem need not be the only way to support high level names.
Diferent. applications can implerent d3Zerent systems. OM does not commit applications to a
particul.ir naming system. Al that OM iza'Mf must supply is a top level to all the naming 2ystems
- i.e. a single directory that maps naming system names onto naming Syaem object. an entry
point into a data structure that can be u.ed by procedures that want to tralae high level names
to object rcferencefs. The hierarchical naming system that takes a list of strings and produces an
LPointvr is simply one nAmung system in tte top level. This naming system can be entered in
the top level under some well known name (e.g. sTreeNares'); the value of this entry is the root
directory object for the naming tree.

4.5.4 Nnnln, In tha e current implementation

The current implementation of OM does not include the general top level naming system name
table described above. Since OM is running on top a conventional file system that has a hierarchical
naming system, we took advantage of that naming system. The DOMAIN naming system lets us
name heap& However, we stLll need to identify a particular object in the neap.

In early versions of OM we allowed procedures to treat the heap index as a record with namued fields.
The names were artifacts of the source code and were not stored in the heap itself. This system
is analogous to reccrdz in Algol-like languages: a program refers to a field of record by name, but
when the program is compiled, the names disappear and the field is ident.fied simply by its offset
from the beginning of the record. In OM, elements of the index could be given symbolic names;
these names could be used in conjunction with an Rleap to obtain an element of the index. The
symbolically nawed elements of the index were excluded from the pool of index elements that are
assigned as a result nf EOXP T-MPOIN-I Using thiz record-like scheme a first referenct could be
obta:ned simply by activating a heap (using its path Lame) and ref-rring to one of the symbolically
declared heap index elements.

The problem with the scheme as we implemented it was that there was no way to be sure that a
symbolic name was not being used to retrieve and element from the index of a heap that was not of
the right "type" (i.e. that the particular elements of the heap index were not reserved for references
by the particular set of symbolic names). The problem is analogous to one that would arise if in
Pascal a field name from any record type could be used after a name of a variable whose type was
any record type. E.g. in:

type ri - racord
a: integer;
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b: integer;

type r2 - record
Z: char;
y: integer;
end;

Tax
vi: ri;

v2: r2;

begin
vi.Y : 0;
end

the reference to vi.y is inv4aid. But in the system we impkemented in OM, this sort ,•i illegal
reference would ge Andetected. The cazse of the problem is that heaps are not typed. However, if
we associated a type code with each aet of symbolic index element names and we Stored this type
code in all heaps for vlhich we wanted to a&low index elements to be refereed to symbolically, then
references through symbolic element names could be dynamically checked to see if they were being
applk 3 to the right type of heap.

Instead of implementing this typing system, we abandoned the record-like approach to the he4ap
index. OM ar-.ady has a type system and there is no point in introducing anothtf one.

The current OM naming systems consists of a facility that allows the programmer to identify one
dihinuguuied object per heap. The distinguished object mechanism is a way of specifying and
obtaining a known object within a heap. A heap's distinguished object can be obtained simply by
having the heap's HID. The OM primitive )I1ST!N fSi•-•lEDZCZ takes an RHeap (gotten by
activating a heap) and returns an RPointer to the heap's diWtinguished object. When used in the
context of the SE= special form, DISTINGUISEED-WEF.NCZ can be used to set a heap's distinguished
object. In this context, the program must supply an RPointer to the primitive.

Before the distinguished object mechanism can be used it is necessary to get the HID of some
heap. In the current naming system implementation, HIDs can be obtained using the OM primitive
T.-NA-• -BID. This primitive takes a DOMAIN path name and prodoces the HID of the heap
that has that path name. Using DISTINGUISRED-REULEECE and FILE-NAME-RID it is possible to
get a reference to & known cbject. Thus, DOMAIN path names are the log'cal names of ýhe known
OM object.

4.6 Sample applications

To see how usable the design and implementation ef OM is, we built two sample applications that
use OM. These applications are representative of the kinds of applications OM is designed to handle.

4.6.1 OM/UMaU

UMail is a display-oriented electronic mail user interface program that runs on the DOMAIN system.
UMail lets users send messages and receive and store nemages in mail boxeis. UMail does not use
OM; OM/UMail does. In UMail mail boxes are stored in simple text files. When UMail starts, it
reads and parses the text file into an Internal data structure- When UMail exits, it rewrits the
text file if the contents of the internal representation of the mail box changed. The cost of the parse
and rewrite steps is barely tolerable for moderately Large (50-100 message) mail boxes. Elee ronic
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bulletin boards, a sub-clam of mail boxms, are general larger &ad using UMnil to examine them is
virtu4fly impc&ýible. ThIs was one of the reaznos that made us to want to make an OM version of
UMaf.-

In UM4il, the internal re-presentation of maýil Lax is a I'mal box obiect'. ThIs object band.es
cert~un o-pera.tion.; e.g Seu~zeCL'1g, A11.%Lg, DfdateJ~, Epnerzz'2I~s h loczJl st. te of a
malil bcx co=13As of a llza of ' eoblects'. A n"e boch .. zt~iCe~. ~ JiM
aad Print. The local &st of a meaa objec<t iaduda. the text of the iicintzrs to
v2zious inter-ting header. in the "-- t; inLernal timts pre•ting the date ~me ... was senit
azd dlivered; and :flap (e.g. 'mnae to be deluted').

ne changts neeasw to turn tmin ino OMU74l a were relatively 1forw if tedious
(lacking the pre-proc.sr). The conversion went far enough to dernonatrate that we c. maint.in
the OM versions of th ail box and mea object. An eire mail box objer-,, ;iah all the
memsagas it r'e.nces, is kept in a single heap. One heap contains ev-tly one mil box. The first
reference is obttined by o tructiLg the DOMAIN puzh name of the heap fle from the logical
(abstract) name of the mail box (e.g. a bu-Iti~n board or user name), activating the heap, and
following the heap's distinguished rdference, which relfti to the mz•il box oblct.

OM/UIXail did not repl.ce UMaiO as the production mail user interface. We stopped working on
OM/UMail as it became xpparent that -.e could le.%rn more xbout how wtl OM works from de ng
and implementing an application from acrazch, rathet than converting an existing application.

4.6.2 Naming server

The second sample application to use OMI is a naming database manager (NDB?,J). We use the terms.
"database' and "database manaWger in a very eneral sense - as terms that mean 'a collection of
permanent, structured datae and "a set of progrms that manipulate that data'.

The motivation for the NDBM project was to replace 'he DBM available an a DECSYSTEM-20 in
the Yale Comrp~ier Science Department. The data hed in the DEC-20 dazabae includ.s:

"* Personal information. E.g. peonle's home address and phone number, user ID, electronic
mailing address..

"* Host (computer) information. E.g. host nicknaes network addresses.

"* Mailing ls information. Members, maintainers and desciptive information about electronic
mailing list&.

_The DEC-20 DBMAi written in Lisp. The permanozt, external representation of the database is a
single, large text file containirg the printed representation of a si• !c, large Lisp lisL. When the DBM
starts, it reads and parme the file into a Lisp list, the internal representation of the database. The
time to read and write the database is very long. The data is not simultaneously tharahle among
wev-ral procesoes. Access to the data is by a network server procen that handles one transaction
at at time from other processe. The user interface to the database manager is one of these other
processes.

The DEC-20 DBM uses the relational model. However, the generality of the relational approach
was never exploited. One reason for this is that the generality was not needed. Another reason is
bemcause the DBM implementation is not very sophisticated, and the time to execute the relational
operations is quite high.

The implementation of NDBM is in no way based on the DEC-20 DBM. However, the NDBM is
designed to hold the same data as the DEC-20 DBM.
In designing the NDBM we viewed the task as a permanent duia structure problem, rather than
as a traditional databam design problem. The database is relatively small (Leveral hundred people,
several hundred hosts, a hundred m-iling lists) and we were not interested in applying sophisticated -
database technology.
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In thinking about the problem of storing the kinds of data we reedW to sru, we developed a way
of thinking about stucturing data in general, rather than structuring the particular data at hand.
As a result, the NDBM is a more a DBM framework than a actual DBM. It is a framework in the
sese that it defines a set of operations and their semantics, but does not supply the implementation
of the operations. It does not specify any properties of the data to be stored in the da tabe. An
i•s.tanc of & fnemwork is a set of objects that behave in the way specifed by the framework.

The framework defines two sets of types of objects: item and duetrp~or. A type is in the set of item
types if it responds to the operations defined on item types. Item types are analogous to record
types in a conventional dastaase. Item objects - Le. objects whose type is an item type - are like
records in a traditional database. The local state of an item object contains information about the
entity being aescribed by the object.

For example, an instance of the framework might have a type called Person which is in the set of
item types. Each person in the instance is repreented by a single object whose type is Person. A
Person object presumably contains strings containing a person's home address, phone number, etc.

Item objects can alho contain references to other item objecu. E.g. a Ms&i#Liet object can have a
list of Person and MailimpList objects.

A type is in the set of descriptor types if it responds to the operations defined on descriptor types.
Descriptor types are used to create and organise item objects. Every descriptor type Las exactly
one associated item type. Descriptor objects - i.L. objects whome type is a descriptor type - are
like database schema. in a traditional database. The local state of - descriptor object presumably
contains data structures that allow individual items to be stored and retrieved. We say that a
descriptor object covrs a set of item objects. A descriptor object covere an item object if it is
possible to obtain a reference to the item object by applying th-, lookup operation to the descriptor
object.

Descriptor types must handle operations like:.

Item T7•m: Return the item type associated with the descriptor type.

NewItsm: Create and return a new item; add the item to the descriptor index (lookup table).

Lokuplhom: Given a key (e.g. a string), return the item object arociated with that key.

Walkhtem.: Apply a procedure (passed as an argument) to all the items that the descriptor object

Skow: Produces a printed representation of all the items the descriptor object covers.

Item types must handle operations like:

Deseripdor7ýte: Return the descriptor type associated with the Item type.

Show: Produce a printed representation of the item object's contents.

In any instance of a framework, both item and descriptor types are free to handle additional op-
erations. For item types, it is expected that they will handle all sorts of operations peculiar to
the instance. E.g. an instance containing the Person item type described above would presumably
handle an operation to retrieve a Person object's home address string.

The framework imposes a conveuation on how objects in an instance should be spread out across
heaps. The convention is that there is exactly one heap per item type in the instance. All the objects
of the same item type reside in a single heap. The descriptor object that covers the item object
resides In the same beap. There is one additional heap, called the master esep, that contains only
one object: a vector of all the descr'ptor objects in the instane. The master heap's distinguished
reference points to this vector.

We implemented an instance of the framework that is designed to hold the kinds of data in the
DEC.20 database. We then moved virtually all the contents of the DEC-20 database into the
instance of the framewcrk. The instance has eight type: four descriptor types and four item types.



70 Managing Permannmt Objects

The four item types Am' Pdrs~o H641, MailgLiJA and UserIA• the four desciptor types ame:
Persoltas~c, Ho 'tDeac, MaiLigLiaLDir, aL,.i UdrED~Duc T'", descriptor types tupport tranalation
between string Ii s (e.g. a perwon I name) sad ftfemuces to ittm objects by usang hash tables that
a ,e p of t.he local swe of the descriptor obim" Dactptor types a&Lo support operations that
A!!,;u rnodlcatloni to be m~ade to item objecta Int.±rtctively.

ýýL'ýl ~ a J- -'OC -4dr to vie or mo~ysom ý of the datz!s&e, one or more he-pA
n•y "be &ctivated. The heaps ar activatad for exclazive Le - for the duration of the ac"ivzaion, no
otLý h ý-<:= r c access the samne part of t~ie dztb,'. T,'L-., rni .y seemlike a senoaa mre~~rction,
but co-rdering th-at urn were quite able to live wih he wtic,]y one-atw--time WC= o*ered
by D1e D.-20 DBMS, the restrirý,on is a.tuly net too serioua. In NDBM, multiple procwft
Can sirm uaneously accew par's of trhe datz!)-e as long a3 Že parts am in dfferent heap,. More
concurrency could be accomodated by uzing one of the tecr.iques discussed earlier. However, given
the nature of the access patterns (infrequent and short), the current scheme seems satidactory.

4.7 A more ambitious scheme

In tbhi section we dtscibe a scheme for making the applicat.on pro7ranmmer's task conidedrably
easier than it is in the curre.tt O%{ implementation. This xcheme involves uzing -jqedisl compiler
optlinzaidon techniques to make certain apparently expensive operations free.

4.7.1 Active References

At the application level, let us replace the concepts of RPointers and RHeaps with a single concept:
aeitv refennee (ARefI. At the OM implementation level, an AMR is a T object (i.e. not an OM1
object). APe-' never reside in OM heap. An AMf is an aggregate - its represientation is not
immediaze, it resides in the transient heap.

An ARe" contains %an RPointer and an RHeap - but this of no concera to the progrmmer. We say
that an ARe! contains an RPointer and R.Heap so that we can descri'se the ARef approach in terms
of primitives we have already discussed. Them primitives will no lorger be used by the programmer.

ARefs are like LPoint.ers in that they completely specify some OM object. ARefs are active in r
the sense that they apply only to some particular active heap. An ARt! is meaningful oruy in the
context of a particular process.

We can intrnduce a layer of abstraction that uses ARefs ;nstead of RPointerz and RHeaps. For
example:

(DEFINE (AREY-EXAXINZ ARE? I)
(MAXE-AREY (RPQI1E2-V=AINF. (.ARZY-LVOINrr All!?)

(AR!?-LEAP ARE?)

(AW-"EA" APZ".)

Where XM -AREF takes an RPointer and an RHeap and makes (i.e. allocates in the transient heap) L-
&a ARef. AU-1POIIRM_ extracts an ARef's RPointer and AW-RiAP extracts an ARef', RHeap.
Thus, AREY-EXAINE takes an ARe? and an offset into an object and returns an ARef to the object
referencýd from the Ith slot of the object referenced by ARF?.

IPAIR-CAR can be defined in terms of ARZT-E•X •' instead of MPOINMTX-EXA)MINL'

CDI7INE (IPAIR-CAX 03J)
CAJP-EXANINE GBJ 0)
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This new 1PAIl-CM now looks more like T's ordinary CA1 than the old IPAII-CAR does because
the aew one takes just one arguent. Thus we have solved the two argument problem without
resorting to a pre-procmeor. 5

We need to define AlU-DEXC'IT to serve the same function for AR-efs that VDPCTrrU-DEPOSIT
serves for RPointe"

(DMINI (ARt7-DL-'aWI ALtTJ I AMlM)
(RGoII'r-DMICsrIT (AW-I rzlY ARM)

(Alfl-13WA ARM? )

(ARE?-lPOIWTZ1 ARZ)2)
(AlU-UW AWE2))

This procedure sets the Ith slot of the object referred to by ARlt to be t.e object referred to by

But there it a price for the ARM approach. One price is in the extra layer of indirection it introduces.
But more importantly it is expensive in terms oa storage in the transient heap. To simply extract a
field (e.g. the er) of an object (e.g. an OM pair) -,-quires an ARd to Le allocated in the transient
heap. The cost of this is unacceptably high. But there is a way to avoid the cost.

4.7.2 A smart compiler

Consider the normal T expremion:

(LET %'%X (CONS expreuaioan- .xwreusion-2)))
(÷ (+.MU X) (CDI X))"

It menu clear that since the egse cedJ constructed in th~is expression is never passed to a procetlure
tha' might store away a reference to the cell, a clever compiler that knows the meanings of the
procedures CONS, CAR, and C=A could transform the above expression into:

(LET ((X-CAR expr-seion-l)
(X-CDR expression-2)

(÷ X-CAR X-CDW))

applying a procedure similar to reduction in strength.

Now consider the expressin:

Ct!PAIR-CAR CIPAII-CAR 033))

The inner IPAII-CAR allocates and returns an AMe. This ARe! is passed to the outer I PAIR-CAR
and then becomes garbage (since IPAIR-CAR will not store the AR. in any object). Based on the
definition of IPAIR-CAR, we can rnyrite the above exp.-emion as:

(LET ((P (ARE.-EXAMIME 03J 0)))

(AXRF-EXA.•wfE P 0))

Based on the definition of AREF-EXANIM! we can rewrite the above expression as:



72 'Managing PerManent Objects

(LET ((P (MAK-A3. (RFIXcZ f-EXAXIdflZ (ARU-lscxwT o~j)

0)

a))

Uzin: the compiler techzn.qu.e desc~i'zed above, since the ARPef held in P is ra~t saved away, we know

thtwe c= &afely erlrn~ina.te the f.-Lt realtiLZ in:

(UET C(P-RP0iNrm (2 I==-ExAl iNE (A-T717IT 027)

0))

(P-MWZA CAR=-LIMAP OBI))

Now wehave allocate1 only one ARef inat-ýi of t-o. If the ori-,pnal exprn~o is emibedded it
(say) another I PAIR-tk%, still1 only oue AMe wil be aIllocazed as both inner SJ.=E-AM"7s will be
eilyn~inAted.

If we implement the proposed cornpler technique, we can reitrodut the ",torniz-tic &defrencing
of LUointenr deocibed in section 4.2.1. Now however, in.~tead of autoniauicaily mv.A~ng an LPoinw~r
to re-turn, we create an AM.L We redefie AAZ-27AMIAJE to check for an A~sz pointzing to an
LPointer-

(D11 CAIU-Et"VTZ~ I
(LET M?~ (U -Rn!W171 ARZ-4))

(17 LP~ioxT=r R.P)
(ITM -LPO I I Ta (UP V H))

(MXkE-A=7 CJnINTZX-=A9Ix Nit PHU I) PIW)
(4AlrE-ARZY (RpOINrTM-.~ RP? N 1) 9)))

To zma~ke flK?-DEPOSIT do the right thing in case the two ARefs it is passed refers to objets that
are n. in the samve heap, it must be defined to create an LPointer that case:

(DEuz ARDENII AP.M71 I AZ=72)
(LET ((RIl( OR-ftPOITrM A,'-71))

(31 (APE?-XRZAP AREF1))

(112 (Af2F7-RIIE ARE72)))
(MI:D %I(- III HI)

(LPOINTEA-DEPOSIT JtPI It I Rnf 12))
(T

CU'ODINTER-DEPOSIT

XI a

(D~ARU>LwIN CAR7-LIJ! 11) HIM)

0 EXPORT- XnDINTZX CAREF-M~Irrr ARE?) CAREY-IHEW ARV?) H))
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If the he of the target object (AIw) is the same as the heap of the sourne object (ARM) -

the object a relerence ;o which is being deposited - then the slot in the object is simply s. to the
R.Pointer to the source object. Alternatively, if the source and target objects are not in the s•me •..
heap, an LPointo- nust be created in the target object's heap; the LPointer wust point to the source
object. AW-LPOINTER) is simply a procedure that allocates an Poini"er to the &aMe object that
the ARefs refers to. Note that we can't simply store the ARef in the target object's heap because
an ARef is not a proc-context independent quantity (because it cootaias an Rfleap) and it does
not refer through the heap index.

4.7.3 Active references and heap activation

We can further extend the ARe scheme to na) the activation of heaps transparvzt to the pro-
grammer. The general idea is to automically control what heaps are mapped into the process virtual
addres space. When an object in a heap needs to be examined, the heap has to be activated. If
there is room in the virtual address space, the heap is simply mapped. If there is not room, then
some already mapped heap must be 'bumped' - i.e. forcibly unmapped to make room f~r another
heap.

Recall that the RBeap data structure coa .- ins a HI and an RHetaB. The RIHeapB is the active
heap's bae address in the process virtual address space. Suppose that when a heap is bumped, we
:.t the RHeapB fi-Jd of the R.Heap to be nuiL Since only one RHeap structure is allocated for a
single active heap, all the ARda wili refer ,o a heap via a single RHWa structure. Thus, we can
modify AE-.XAMINIZ (and simil ly ALEtDEO5IT) to be:

(DEFINE (AID-ELuaXIN ARE? 1)
(LET ((U (AXu•-3PXor- AXE?))

(9 (AX-RUEA. . lW))) .
(IF C14=L? (XCIAP-ASE )) -W)

(REACTIVATE-REAP W)
(7 (ILPOINTEZr? P)

(0vITI-LPOvrr' U(P R? W))
(NAIl-ARE? (RtINTivm-EZAmuIn FI Pilp I) Pis))

CXAXZ-ARE. (POINrrE-KXA IXI 1 1 I) 1))))

ZACTTVArZ-IAP simply remap" the heap indentiled by the RHeap's HID feld and updates the
RHeap structure's RHeapB field to contain the address at which the heap is remapped. Note
that REACTIVATE-REAP takes an RHeap, while AC'TIVCATZ-IUAP takes a HID. T-ne only times that
ACTIVATE-OfAP would be called is in t•e cae of a&. LPointer being derferenced (i.e. as a result of
executing !VITR-LPOITM expression in AIU-EWAMINE), or in some afinrt reference' case.

ACTrvAT-H.EAP needs to be modified to check the anourt of free virtual adress spare, and deacti-
vating heaps if necesary to make room. Ideally, heaps should be dear.ivated using a `Wat recently " -

used* (LRU) strategy. Supporting LRU would require exporting some page reference information
from Aegis. Aternatively, a simple active heap FIFO might be sufficient to manage the adde."
space. This is an area for future research.

4.7.4 Object a]ocation.

It is ytill the responsibility of the progrwamme to decid, in what heap an object should be placed.
The allocation procedurem still take an arurr=ec specifying in what heap the new object should be
created. There is not a *right' or "wrong' pl.ci t3 pre an object. Rather there are more or leaws
optimal places. The optinal placemrrent of an oliject is one thaý. minimuizs the number of LPointers
to the object. That is, in general, an cbject should be place in bhe heap that conta.n4 the most
references to the object. Placing an object in a sub-optimal place will not caroe a program to behave
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hi 'ctly; it will simply increase the execution time of the program and the amount of heap space

¢.. .~ Benefits and costs

The AR f approach is not in convict with the approach of storing objects in multiple heaps and
having tw. kinds of references. Rovever, the ARef approach simplifies the application programmer's
job sirce it relieves him of the chores of:

"* Foliowing the RPointaer/RHeap argument convention;

"* Managing LPointers, and

"* Activating and deactivating heaps.

The pre-processor approach eliminates only the first cf these chores. But even in that chore, it
imposes more work on the prograrn.mer than does the ARe! approach.

The ARef approach has two main costs. Firs± it requires a wophisticated compiler that applies the
optimization discussed above. The compiler must reliably detect the ca.es that can be optimized.
If it fails to detect a case, an unnecessary ARef will be allccated. If the cae is in the middle of
a loop, many unnecessary ARefs may be allocated. The investigation of the compiler techniques
involved here ame beyond the scope of this work.

Note that the cost of the sophisticated compiler is in both compiler devclopmen-t and com.niler
execution time. The former cost is paid just once, but it is high enough that %-. were not willing
to pay it for this project. The latt.-r cost is the increased execution time incurrd by the logic that
detects the optimization we have described. However, " cost can be reduced by not applying
the optimization on versions of the procedures that are in the debuging phase. Once debugging is
complete, the expensive compilation can be performed - once.

Another cost of the ARe! approach is that the cc-st of the accessors goes up. A_`F-•,•VM E has two
more test - one to we if an ARef refers to an LPointer, and one to insure thit the heap is active
- than RPOINT •1-•Al4~rZ This cost is in both code size and execution 'ime_ Given the size of the
definition of ARl-EL=tU J, we are unwilling expand it inline at each occur-tnce of an acceesor. The
alternative is to use a procedure call. If we do this, the cost of th2 ARef approach is only execution
time. Note that compared with other existing object-based systems (e.g. SmalItalk and Hydra), the
cost of acceising a slot in an object is still fairly cheap.



Chapter 5

Conclusion

5.1 Reviewing the problems and their solutions in OM

In chapter 2 we described the problems that arise in a system that needs to store data permanently.
We will now review the problems discussed there and how OM addresses them.

5.1.1 Integrity and atomicity

OM guarantees the integrity of data against logical program error by presenting a consistent pro-
grammer interface. This interface insures that programs can access data in heaps only using the
primitives that insure integrity.

OM does not addrm the problems that result from hardware errors or disasterous software errors
(e.g. system crashes). Thus, the potential for lows of data integrity is present if such errors occur.
We feel that this limitation does not make OM unusable since users already deal with this sort of
loss of data due to such errors.

OM does not support atomic operations. However, we see the current OM system as a vehicle on
which systems that support atomic operations can be built.

5.1.2 Abstraction

OM supports abstract access to data using the object-oriented programming model and the type sys-
tem we described. This allows programmers to ignore issues of disk and file formatting. Application
programs access data using operations that are logical and abstract.

5.1.3 Storage control

Storage is controlled in OM using the heap model and garbage collection. The time required to
allocate a piece of storage (excluding garbage collection overhead) is small. Heaps can be garbage
collected independently making the use of garbage collected storage feasible. The heap model
seems to be a natural one for the class of application programs whose data structures are naturally
partitionable.

5.1.4 Sharing and concurrency

In OM, objects can be shared among users and applications that use the interface presented by OM.
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Since heaps are bsed on DOMAIN files which are pag•-faulted on demand, only those objects that
need to be accessed are ever read into main memory.
OM supports concurrency as well as the DOMAIN system does. That is, application programs can
u3e the DOMAIN synchronization primitives to control concurrent wccess. For highly concurrent
processes, we suspect that these primitives are too expersive.

5.1.5 Security

OM uses the DOMAINq access control primitives to irnure wecil-it.y at the heap level. Access to
individual objects can not be controlled. For the ki-ids of apportions we have in mind for OM (e.g.
the ones we described as sa•role uses of OM) this restriction is not a serious problem.

5.1.6 Reliability

OM does not address issues of reliability.

5.1.7 Performance

In the design and implementation of OM, we have stressed performance over reliability and availabil.
ity. We built a system that makes a•cessing permanent objects nearly as cheap as non-permanent
objects. In using OM, progr"anmers do not need to use special tectiniques (e.g. buffering) to increase
performance.

5.1.8 Reference

OM has two kinds of references: local (RPointers) and non-local (LPointers). Local refeences are
rmal! and fat to dereierence. Non-local references ae larger and more expensive than local refer.

ences. OM's local references are smaller and cheaper than the references used in many permanent
object systems. The combination of RPointers and LPointers allow programs to be as efficient as in
conventional programming systems in which all the objects are in a single (relatively smali) address
space, while supporting a very large number of permanent objects.

Having two kinds of references creates some problems for the programmer. We outlined several
techniques for making the fact that there are two kinds of references nearly transparent without
giving up the advantages of the two reference scheme.

5.2 Design Philosophy

We approached the problem of a permanen. object storage system with a very practical orientation.
We used existing hardware and operating system software. We based the programming environment
on an existing progamnr.ing language. While this limited what our system could do, it enabled us
to build a real system in which we could build real application programs.

. . . . . . . . . . .. . . . . . . . .
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