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‘problems encountered by a programmer adopting either of these strategies, and
we describe our system whose design is an attempt to strike a balance between
the flexibility of the ad hoc approach and the rigidity of the approach that
employs a database.

A key goal of our work is the design and implewmentation of a system that makes
the manipulation of permanent objects nearly as easy and flexible as the mani-
pulation of "transient" objects - i.e. the memory resident data structures
that programmers are accustomed to dealing with. We wish to hide the details
associated with the fact that permanent objects must have their permanent home
in a disk file system. /E_,’

Our system is written in T, a dialect of Scheme, which ig in turn a dialect of
Lisp and runs on the Apollo workstation. The systea provides tools to make it
relatively easy to write T programs that manipulate these permanent objects.

A secondary yoal of our work is to support distributed computing by allowing
multiple processors to have access to permanent objects. While the system
does not address all the issues associated with distributed computing, we
believe that the mechanisms provided can be effectively used in the course of
solving certain problems in a distributed way.
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Chapter 1
Introduction

Programmet. are often confronted with the problem of writing programs that need to manipulate
{create, access, modify, delete) permanpent objects {data structures). By “permanent nbjects” we
m+an odjects that live Jonger than ope iavocation of & program. These ovjects must be stored in
the computer’s file system.

Ganerally the capabilities of file systems and the tools for manipulating file systems are primitive.
File systetns present only the simplest of data types (e.g. cne-dimensional array of characters). More
complix data structures can be built on top of these simple dota types, but the implementation
time is significant. As a result, a programmer is not inclined to thuuk that he is dealing with a
permanent object when be really is. He aimply views his programs as reading a file, constructing
rome transient data structures in main memory, reading or modifying those dats structures, and
possibly rewriting the file that was read as the first atep. The programmer is pot _icouraged to
view the disk file merely as a data structure in another guice. Often the format of tae output of the
program is desiged to be useful for human reac »vs of that output in spiie of the fact that the only
piTson who is likely to read it is the progrummer himeelf while debugging bis programs.

In this thesis we will be concerned with the issues of ~reating, modifying and administering per
manent objects in T [44,48], & dialect of Scheme [52], which is in turn a dialect of Lisp [{39]. The
goal of our work is to blur the distinction between permanent aad non-permanent objects; l.e. to
make the writing of programs that manipulate permancnt objacts neariy ss easy as the writing of
progrars that manipulate non-permanent objects. We will describe the design and implemeniation
of a programming system that allows permancnt objects to be accessed using primitives that are
analngous to the primitives used to access non-permanent objects. The system we will describe has
been built acd used for non-irivial applications.

The work described in this thesis differs from previous work ia permanent objects in that it supports
a potentially very large set of objects of both small anc large size, and it allows these objects to be
sccessed by different vsers and application programs.

1.1 An example

Consider a user’s eluctronic mail box. Within a program that manipulates s mail box there is & mail
bor data structure that might consist of a linked list of mail memage objects. Each mail message
might consist of: a string containing the text of the meseage; some boolean fags indicating, for
example, wheiher the message has been read by the user; & pointer into the téxt of the message
where the inessage headers Legin; and a pointer into the text of the message where the mesrage
body begins.

The mail bax is of intarest to ot least two programs: a mail user interface program that lets & user
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read and modify the contents of bis mall box; end a mail delivery program thst adds new, incoming
mall to the mnayd boex. These prosrams may be lovoked maltipis tines to manipulate the mail box.
The moll box exists lndependentiy of the prograrms that secess .

A tysical bmplumensation stratesy taken by a programoner (e.g. 2a in CZ [{15], 2 mail veer interface

----- T g

for the DICEYITINE-20) who does not v‘e‘w a mull box a3 a parmasent objact 3 thls the mall

Trze rends in o3 fot Dl that contains all fle user’s momanss. Toe proy
s oo lodividuad me se Depending on the convantons of the mall system, the moms
zied by some sequence of choracters thaf sre g.w.:::tme,d ot to a_;\pwmr in te :«mt of 2

5 » ey be preci-lad by 8 ot siving of digits which when jsterpreted a3 an
heeil v ""\:: ey bries of the mees: r2 thet follows. Ouce broken up into individual
sres, the prozran ailocales objescis to bold the mariiazes and links the maresges together to
formn the entim mall box date structure as described abeve. Fevhaps the St lae of each memage
copteins 3 string of ones and seros indicating the values of the various rsessage Bags. This ctring
will have to be parsed into booclean values and stored in the aporopriste alots in the memaze dats
sLrucinie,

The o ingerfner prorram manisulates the mail bax o‘j'w:t. m rezvanze 3o uidr eomumands, When
the ey wdts e menoTi, i n,.w':‘_m re-wvrites the toxt ol relect the new stade of the mail
pe, This prosedure «_o“:.rs of traverting the mall box dm structure and writing its conteunts in

e format expected vy all progrums that manipulate the mail box fle.

1 problem with thls approach s the cost of paruing the fle o2 prorram startup and
srrialiiog the dle on program w*’* '“"‘iaa, spaesiad 4y a8 toe zize of th 2ol box inereases. Our
+l L so dimenitrate that, given the rizht wch, the proyramamer esm think of scmething like a

HoX 28 & perminant oblect end ~‘~m. 23 3 rezult, prozrams that manipulate the object can be
r to write and more euiciznt \n exscution.

" " LI )

1.2 Ureditisnal aspreoachs

Thre eie ot least two traditional approaches for dealicg with permanont oblecta. For studying
N

5ia ticsr anpronaches, it will be convenient to think of tie objacts s having two inpresentations:
iaternal and external. The intarnal representstion iz the format of the data strectare when it resides
in rin memory; the external representaiion is the format of the data stucture when it resides in
gralle ohorr e (e.g. dlsk Iles in 8 conventional fle syatem).

w2 e purosch esniints of writing an ad hoe set of subrontines that convert frem the internal
tion te the extarnal revresentation and set of routines that do the reverer convarsion.
spreech b marrinally better than the one taken to solve the mail bex protlem ubove.

# zrcond appeoach I8 to interface the application progremn that needs to wse pernancrt dats
pires with an exinting *databeee manazes® We use the term *databass manager® in a wery
wiy 1o Tean a set of provrams or mbmuunu that hrve beea desiznad to store and retrieve
cuu; from a file wystem.,

1 canes where the internal representation s gimple {e.g  a character string ar a vecter of inte-
£ure), the temptation is great for a prezrammer to uze the ad hoc solution. He saya: *I doa’t
waat to get involved with the complexity of such-and-such databsaze systemn. T just write my
strines/numbers/ete. out to a simple text {ile.® Unfortunately, this seductive reasoning results in
a pregrsm that is not only not as {3t as it mizht be {due Lo the representation conversions}, but
ene that is aluo nard to modify and hard to extend. Having implemsnied one 8d hoc solution, the
programmer is unlikely to went to implernant another one (or modify the existing one) in order to
accomodate Increased {unctionality. As a recult, the functionality does not get implernested.

V/liat sre the arguments in favor of using en existing database menazer? A clear advantage is that
much of the programrr2r’s work is already done for him by the database mansger. The programmer
need not be concerned with the detaiis of the file system. Most sophisticated database systarms offer

b
{

.
T e

crv vy
’
Pt}




Maanaging Permanent Objects 3

some degree o1 reliability in the face of hardware faiiure. Database managess take care of storage
allocation.

Unfortunately, interfacing to a database manager may introduce some problems. The program
interface to the database manager forms an “embedded language.” That is, the set of cslls by
which the application program accesses data maintained by the databuse manager is a language of
its own. This laaguage is built on top of the language in which the calls to the datahsse manager
are written. As a result, the programmer is no longer programming using solely the primitives of
the base programming lsaguage. In fact, the primitives of the base programming lsnguege may
pot even be applicahle to the application’s data, which now resides in the world of the database
manager.

Thus, taking the database approach to solving the permanent sbject problem obliges the program-
me: to work in two languages: the base lJanguage and the database embedded language. Ofter this
complexity is great enough to dissuade the programimer of a mediunwsize application from using
the database manager.

Creating and using embedded systems is not always bad. In meoet large programming projects one
ends up construciing and using some sort of embedded language. Some languages support such
embedding better than others {e.g. Lisp systemrs generally have a poweriul macro facility). Even
in languages that do not allow modification to their syntax, the subroutines that the programmer
defines for wse by himself, but especially for use by other programmers working ot the same project,
define the semantics of 4 language. When & piogramming project adopts a set of conventions and
interfaces that make up ihe specification of an embedded language, the comprekensibility or the
overall project increases; functionality can be expressed in termns of the embedded language instead
of in terms of the base language.

There is a key difference between embeddings such as the ones that go on all the time and the
eanbedding of a large daiabase svstem. In the former case, the programmers in the project design
the embedded sysiem themselives, to their own specifications. In the laiter case, the embedded
language is typically not under the control of the project that uses the database. As 3 result,
the programmer may be forced 1o use an embedded language that is not at all appropriate to his
application.

A significant limitation of both the ad hoc and the database approach to storing permanent data
is that they are unable to deal with pointers. By *“pointer® we mean the traditional programming
langusge construct that allows indirect refcrence to data. Siace pointcrs are convenient tools for
the programmer, it is undesiable that they should be unavailable when storing permanent objects.

The limitations of the traditional approaches outlined above become clear when dealing with even
simple data structures. For exampie, Lisp has a primitive procedure called map that appiies a
procedure to a linked list of objects. Lists are easy to cveaie and may, and other procedures provide
a clean and convenient mechanism for accessing the data in the list. Use of lists in Lisp programs
is pervasive; use of lists in external representations is unusual.

If the linked list is maintained within he database manager, two problems can srise. The first
problem is tnst the database manager mizht not expert references v> the middle of a linked list.
That is, the database manazer might export references to individuai data items, but not to data
structures that it views 3s being internal to the database system. As a result, tnere is no refererce
that can be pissed as the procedural argument to mep,

A second problem that can arise is that even if the application can obtain a reference, the list that
s constructed and maintained by the database manager might not be manipulatable by mep {and
tlee elements of the list by the proucdural argument to map) because of differences between the
representation maintaiaed by the database manager and the representaticn expected by the Lisp
system. The coat of this representation conversion is unacceptably hish. It the permanent object
system we built, representation conversion is not necessary.

The .go;l of the work described iu this thesis is to develop a system for managing permanent objects
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that is miore gouweral thaa the ad hoo meihiods but lus cumbemyome than the methods 15t require
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intzrfacing to a datsbase system.
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network. Receuly, much roelred Las boen eoncernad with the problem of belng sbis to toke
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advantage 01 he newly aveilable small procersors (e.z. the Motorola €3040) configured in a network
in order to make applications run frster or more reliably. Much of this research has addressed
concurrency problems: if there nre v“' itiple processes running on muSzip‘e proceisers aceassing the
zorne data (or replicated copies of the du»&) how do you coordiuate their activity to insure the

iniayrity of the dota?
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2 one can addrocs the Daves in zonirolling concurrent access to d:m., it i3 frst pecuizary to
cca:.malas' the prevlems in simply w‘w"nfg the data. The isrue of making the data svailzole to the
muitiple processes hos ‘ar»n dlucuszed eliewhere, but not to the level of detall necorsary to tiluminste

the hard problecas that srise in 2 real implerrentation

Thouzh distributed computing is not the main teopie of our werk, we denigned our permanent
objri system and hullt our bnnlementation in a way that doss aot ,«\_}.xue the Inter introduction
of as::":hz- ticatzd concurrsney com | mechanizms. Qur current implemestatisn has rather course-
d concurreacy ceatrol. However, even this level of control ia useful for distributed applications
where concurrency i3 low - i.e. where conflicting requests {or access to data occur infrequently. For
example, the applicationa in our mail system example - the mail user inter{acs and the mail deliverer
- are exarnples of spplicaticns that mizht be distribnted among a number of procomora. Ia this case
ihe xpucted degme of corcurrensy is low, and simple concurrency coatrol tachniques {e.g. waiting
for a file to becomme unlocked) are suidicient to solve the pioblem.

A permazent oblect system has many potertizl applications in addision to the mall system examnle
ziven above. We list some apnlications that deal with permaunent data, deseribe exdsting implemen-
tations, and descibe bow a general permanent object gystem couid be used in an implememation.

o Compiler auxiliary files

The T compiler produces a ssppost file that contains 2ll the macro end constant definitions in the
medule being compiled. The support file can be referenced in other files 30 that when those files
are compiled, the information from the support file can be used to produce more eflicient code.
Presently in T, support fles rre text fles con!.ai;.ing printed T expm-mions. The compiler mun
read and parse the entire support Sle when it is referznced from the Sle being compiled. Uaing a
permanent object aystem, the data structures describing the macro gnd constants delnitions esald
be permanent objects and accessed more quickly. We could take this path further and replace source
text files themselves with pezmanett objects describing the program source.

o Text formatter database.

The Scribe document preparation system [47) uses a set of database files describing output devices,
docuinent formats, and bibliographies. These files contain text string Scribe commands. When a
reference is made to a particular device, dacument formas, or bibliography from a document bcing
formatted, Scribe must linenrly scan one or more of the document vext Sles. This scan can be
very sxpensive, especially in the case of large bibliographies. Using & permanent object system, the
database could be represented as a set of permanent objects and accessed more efficioatly.
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g o Registry of users.

Y The Unix [13] system for registering users is a text file containing one live for each uscr. Each
' line contains (among other things) a user ID, password, and full name. Any applications tLat need
the informuatic ) must read and parse the text file. Mechanisms to coantrol concurreut access 1o the
registry would be useful but are nun-existent, hence exposing the system to data corruption. The
Sle bas a rigid format and the presence of programs that rly on tie format makes it difficult to
extend the registry t0 held new kinds of information about users. 1ne rigidity is partially a result
of the sd hoc way the data is stored and accessed. Using s permanent object system, each user
could be represented as a permanent object and the entire regisiry ss s permanent ccllection of
those objecit. The objects could be designed to allow both extensibility of information about users
and concurr:ncy down to the individual user level.

TP Y

q e On-line belp systems.

é The on-line help system used on the DECSYSTEM-20 at the Yale Department of Computer Science
consists of a text file (called the indzz file) that contains a list of indices (words) and help file names.
! Users query the system using an index and the system responds by offering to display the contents
of the help files associated with that index. Whenever the index file is modified (by a help system
administrator}, a binary file must be produced (by running a special program that converts the
index text dle text to an index binary file). The format of the text file is designed to simplify the
sdininistrator’s job. The format of the binary file is dexigned to make the help system programs run
efficiently. Using a permanent object system, there would be no need to have two representations
(text and binary) of the index file. The index could be a permanent object that could be accessed
both by the belp system programs in response to users’ queries and by help system administrators
to change tae contents of the index. :
All of these applications involve permanent, structured data that must be changed in a controlled
way. Many existing implementations of such applications use inefficient techniques (such as those
that require unnecsesary parsing and formatting of data) or ungeneral inechanisms designed for
a single application. An effiicient, general, and simple object management system will improve the
performance of such applications and encourage programmers to write more such useful applications.

Mgt % R iy an 4

b
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1.5 Outline ol the rest of the thesis

=T

- The forus of this thesis is a system we cali OM, a system for managing permanent objects. We
designed and implemented a running version of OM. We also cesigned and imiplemented two sample
applications systems that run using the facilities provided by OM.

Chapter 2 covers the problems associated with building a system ihat meets the goals described
above. Chapter 3 discusees the implementation of OM. Chapter 4 discusees how programmers writz
application programs using OM; in this chajrter we also describe the sample application prgrana
we built. Chapter 5 summarizes OM and discusses how well it solves the problems raiced in chapter
2.

(300 A 155 0 il
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In this chapter, we outiize some of lhe problems faced by a systera that maintains permanent
cbiects. Our basic model {or the computing eavironraent in which permanent objects are maintained
iy waditional; we sssume a CPU with 2 fast main wemeory of fmited eize and a larger, slower disk
memory. Data i trans!

ferred back and {orth between diak and maln premovy in relatively large units
(comparsd to the srnallsst units the CPU can deal with) and a2 a relatively slow rate (compared to
the rzte at which the CPU can aecess main memory).

2.1 Pormanpent data

Many of the probiems that arise from wanting to preserve objects result from the fact that since
objects can be manipulated only within main memory and since main memory can not hald all the
permanent obiacts, there needs Lo be a controlled, reliable mechanizm for moving data in and out of
main memory. The experience guined in desizning virtual memory and database systems is relevant
to the understanding end the solving of these problams. A pesmanent object systzm of the sort
we've outilned can use tachniques from both virtual memery sysiems and dxtabose gystema. Virtual
mernory Syularna provide a model of bow to refor to objecis that are “not veally there®. Database
systemns ouer examples of how o deal with the permanence issues,

We will discuss the {foilowing topics in permanent data:

» Inteerity and atomicity
e Abstraction

e Storage control

o Sharing and concurrency
e Security

o Reliability

o Performance

-

In our discuszsion of these problems, we will be giving each problem only & short characterization.
The orientation will be very practical since we are interested in how they relate to the system we
have actually built. In designing this system we have tried to be practical so that the the system
could be actually built. Later, we will discuss how our system addresses these problems.
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2.1.1 Integrity and atomicity

By integrity we mean the functionality that insures that the permanently preserved data is not
corrupted. What are the major potential sources for such corruption?

The most obvious source of corruption is a machine crash. (In addition to actual machine crashes,
absormal termination of individual processes or failure of pieces of bardware (e.g. disk or network
communication hardware) can cause problems similar to a crash.) Some of the permnanent data
may have besn in the main memory of the crashed machine. If the main memory copy of the data
contained changes that were not yet reflected in the copy of the data maintsined in stable storage,
then applications that use the data could be in trocble.

For example, suppose some large data struciare is being modiSed when a crash occurs and also
suppose that only part of the modified structure has been rewritien to stable storage before the
crash. Assume that parts of the daia structure contain related information ~ e.g. a string of
characters and an integer indicating the length of the string. Suppose the part of the data structure
containing the integer langth got written to stable storage but the part containing the characters of
the string did pot. Then an spplication program that accesses that string might accers too few or
too many characters. (In the latter case it would presumably see “garbage”.)

Anotbes source of corruption is program error. In the course of application program debugging
(or later when sorne unforeseen bug arises in productivn use of the application} the spplicatien
might present some logicaily inconsistent pieces of data for permanent storage. The problem here
is in defining what *logically consistent® means. i the permanent data storzge system is 10 reject
certain pieces of input then the consistency rules must be specified and be part of the system.
Unfortunately, the specification of the data consistency rules may be non-trivial {and a task in
which the programmer may be unwilling to engage). In addition, if the data storage sysiem is to
be relatively simple, modular, and efficient, it may not be easy for it to maintain the set of rules for
a large set of applications.

The traditicnal approach to maintaining integrity of permanent data is to use tecbniques which
guarantes the stemicity of a set of changes to data. Atomicity is a property that implies that if
any of a set of changes are made (i.e. made to the permanent copy of the daza in stable storage),
they all are made. If for some reason the system fails in the middle of a set of changes, the
system guarantees that it appears that none of the changes have been made. There are various
implementation techniques that can be employed to assure atomicity when requesited. As will
become apparent later, these techniques are not easily applicabis to the system we design. Thisisa
H.nitation of our current system, but since sur goal is to gain experience with a real permanent object
maintainance system, we are willing to tolerate the potential for loss of integrity for experimenta:
purposes.

2.1.2 Abstraction

It should be the goal of any data storage system to provide some level of abstrection. For our
purpoees, an abstraction is a mechanism that does two things:

o It transiates logical references to data into physical references to the data itself.

o It hides details of the representation of the data (e.g. how many bits are allocated to what)
from the programmer.

By logical reference, we mean the name of a field in a structure or a key into a table mapping logical
references into physical references. “Physical reference® is a relative term. What we really mean is
“less logical reference”. That is, in & sys. m that presents layers of abstraction, only the bottom
layer can be considered to be addressed by phiysical references (e.g. physical main memory address
or disk block address). Each software layer above the bottom iayer uses references that are logical
with respect to references used in the layer below. I layer A is below layer B, a major function
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of layer A is to tranclate layer B's logical references into layer A's lese logicsl {l.e. more physical)
references.

Fax a,.s,mg;}z:, a& o 1&/«..! a reference misht be a perzon’s Lum nawse represented as a string;
he d 20 a lower u:w:: :.I*mt is 53 ] y mfum’mu % &b«‘m’ !.he
yer in ’;1

fapemesg, A uui e
sure the lnfermation nbout
=t layers.

# overzll problem of chocsing the form of reforences and dus/pniog the translation mechanism is
cnz.wd in any dala storuge system; our spproaches will be disevused lazer.

other role of abstraction is to hide the representation and implementation of a data structure in
one pen of a systemn frvm anotler part of the same system. The purpose of this sort of abetraction
is to (hopefully) allow chanwes to the representalion or imnplernamiziion to be mads withozt having
1o szour the e““re gysiern for pr“ﬂs vhere a pm*mtm.::r hu.a “crented® by ermploying seme piece
of 1nlormunsie out the data structure which, by the “clicial” specilcation of the interface with

which be is muppc.wri Lo work, he is not mt.med to wploy.

Tor excample, suppose scine module of a syrtam chooses to !.‘l""p.tu.d"L‘l 2213 s linked lists; this medule
&c’m t3 subroutings that manipulate sets, but it dees pot “revzal”® that ssts are actuaily Dists, If the

dlignt of tha reodule always wies the subroutines provided by the it mwndule, the cllent 18 unzilacted
H tha set module is cha ~’~wd to represent pets as bit wvactors. i, howewer, the clicnt does rely on the
fact that sats are bmplomented as linked ll.@ta, ke viclates the et sbuiraction snd bence when the
implementation of that absiraciion changes, the cliemt breaks,

2.1.3 Storazz coztrel

A systern that maintsins data permanently must desl with the imse of controlling the allocation
of storege occupied by the data. The sysiem must be able to allocate blocks of sterage of varying
sizes and it must be able 1o know when storage occupied by data has become “free® - available for
allocation to another piece of data.

The literature is fuli of techniques for allocating storage. (Knuth's work [20] ia a standard refersnce
for these techniques.) Serme techniques require that data storsre be axpliciiy fived by the application
that owrns the data occupying the storsze. An alternative techninue is gerdage eolicction. Garbnge

collection is a process that separates the gpace of objects into garbaze and non-sarbage. An cb)ett
is zarbage if there is no way 1o obtain & reference to the objzct; otherwise the object is non-garbage,
The literature contains many descriptions of garbage collection techniques. (Cchen's survey [13]
contains an excellest summary of these techniques.)

The main advantz-2s of vsing a storage control policy that relies on garbare collection are:

e Allccation can typically be done very quickly.
e There is no dangling reference problem.

In & garbage collection based storage system, storage can be allocated out of a monolithic heap
(i.e. a storage pool with no internal structure). The state of the storage pocl consista of an index
(called & Aeap pointer) into the heap., The allocation procedure consists simply of advancing the
heap pointer by the number of storage uaits requested by the caller and then returning the old haap
pointer to the caller. Such a procedure can be implemented in a few machine instructions and hence
can be open-coded, avoiding the cost of a procedure call to the allocation procedure. © ¢

In storage systemns that are not based on garbage coliection and hence rely on the explicit freeing of
storage, the dangling reference problem can arise. A dangling reference is a reference froin one data
structure to another whore the reference is to a piece of storage that has been previously explicitly
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freed. This is a problem since the freed storage may be realiocated 10 some pew data structure and
the dangling reference would then refer to something cther thar it is supposed to. In a garbage
collection based system, since there is no explicit free operation, there is no way for a reference to be
dangiing. The garbage collection procedure is defined in such a way that any reference to a object
ensures that the data object will not be freed.

However, there is a serious drawback to depending on garbage collaction. While it at first appears
that allocation is cheap, to be fair ope has to the factor in the cost of the garbage collection. Such
a factoring produces a more accurate cost of the allocation operation. Also, in traditional garbage
collectors, while the garbage collector is running, no other part of the program can run. I garbage -
collection takes a long time and it occurs frequeatly enough, this titne can be-intolerable. However,
recent work in incremental and paralie] garbage coliccting straiegios lessen some of the pain garbage
collection causes |11,18.1,26,27].

3.1.4 Sharing and concurrency

By the ability to share objects we mean that nothing sbout an object restricts it to being ased by
one user, or one application program, or one process.

When we say a set of processes run copcurrently, we mean that all the processes are active and
runnable over some period of time. By concurreni access to objects we mean accens to objects by
concurrent processes. We will use the term concurrency 1o maan the measure of concurrent access 1o
objects. The degree of concurrency is determined by bow many processes are comnpeting for access
to a set of objects over how long a period of time. We say there is a high degree of concurrency if
a large number of processes want access to a similar set of cbjects over a short period of time. We
say there is a low degree of concurrency if a small number of processes want access 10 a similar set
of objects over a long period of time.

A system tha. supports sharing need not necessarily support a high degree of concurrency. Enabling
concurrency does require that the preblems of sharing have been solved.

Let us first consider the probiems related to sharing per se. The main probiem here is that all
information about an object must be accessible from a reference to the object. No information
about the object can be encoded in procedures that are known only to some user or application
program. Also, the format of references to objects (section 2.2 discusees the issue of reference format
in detail) must not rely on a particular user’s or apnlication’s context.

ror concurrent sharing, let us first consider multiple processes sharing a siagle main memory. We
assume for reasons of correctness and efficiency that the system should allow just one copy of a
particular object in main memory no matter how many processes are sharing that objeci. The im-
plementation of sharing depends on the lower level memory architecture of the underlying operating
system. On operating systems that do not support virtual memory, the implementation is easy:
translate identical references from different processes to the same object into the same address in
physical memory where the object has been read.

Operating systems with virtual memory support come in two varieties: (1) ones in which all processes
run in the same virtual addreas space {which is larger than the amount of physica! memory on the
machine); (2) ones in which each process runs in its own separate virtual address space. In case (1)
the implementation of sharing is the same as in a system without virtual memory.

In order to be able to implement the sharing of objects in case (2), the system must support
primitives that allow the manipulation of the process page map. That is, it must be possible to
arrange the page map of two processes so that references to some set of virtual addressee in one
process produce the same values as references 1o a possibly different set of -addresses in another
process. Given these primitives, the system can arrange that there is one copy of the object in main
memory and thas all references to it from all processes point to the single copy of the object.

Given the ability to mazage processes state and main memory as described above, concurrent read
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acseas to objecis presenis no partienlor problems. ‘The renl problans of sharing arise when eith

(1) oue or more processes want 1o be sile Lo modify, not just read the date; or (U} muliiple procmuss
wizhing to read or modify the data do not share a comimon main memory. The ;n;rai*;k;m raised by case
{1) & rnainly one of sernantics, The problem ralsed by caze (2) s i addizion sae of uplomentation

2lency.
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any procers that bas a re
with a refloreuce to the object, ur soroe Dmited set of ap ;L@_‘om, this jolsney *’~m~: approach s
acceptabie. For example, supsose she sdared Jate consisie of an integer thas needs to be incrumented
when a particular event occurs La any oue of o number of processes, I the mackine has on atomic
inctement-mamory insirection, thea ils implementation will work fne.

In genera! however, if there are to b«: wiiters cocxisting with other writers or resdeis, there must be
syachronization in erder to eliow the pradicanble and correct modileation of dria structures, ¥oran
example of how lack of rymehronisutlion can i ,.uu o pro! blemns, conmder the following classie update
problem: supposz one Procuid o8 travering a st of ebjosty reprazenting a Lt of empleyess and
Do ’uymg the salury Seld of each & .-d ca some formula (in}’ to account for indlation);
surmose also that 2t the same time anctisr nrocers s modifying a single employee’s salary to acctunt

AT

for a ralie becarse the emploves b s baen promoted. Tae two preemses mizhs olnh in the following
way: suppese both procesges (being uneor ,zmm,mﬁ by any symchrseivaden mishanism) fetch the

selary Seid for the emp m"tc b siag '; moted, The first proce@;s computes the new salary and stores
i back into the puwn ob N; the ae»c*-*d prozess nearly simultsneously cortputes the raise and
atores thal aew salary b&c.k. Insiesd of the empicyse ending up with an ipcresse in sajary due to
both inflation and promotion, he gets only one iacresase (iTuoring this sert of iutersciion, there s the
izsue of which incresse computation ~:onld be done first, but tht is net s synchronization concern).

One obvious way to dasl with this sort of concurrency problem is to make al] reguasts for modii-
cations go through a single proccss (olten called 8 momitor) which is the oniy one that can astually
modify the object. This sort of sciution Liza two problems. First, it Jimits concurrency - all medif.
cation requests arc forced to line up and be executed serially. This problem can be ameliorated by
having multiple modiSer processes each of which is responzible for a disjoint set of objocts, Unlusy
you have one process per object,! zoncurrency may still be imited. Another problem is that the cost
of modifications goes up tremendoualy; it is sow much mere expansive to modify than read data.
Some databare systems are cozstructed in tals fashion, and v {act both writse and reads go throurh
an intermediate procesa. Sin'e we are devizning & system that is supposed to make nccesaing aad
modifyiug permanent objects as similar 23 posiilie to accemirg and medifying transient objects, we -
consider it unacceptable to have such an intermediate procass.

An alternative traditional technique for dsaling with concurreacy is to use locks (such as sema-
phores). (There are many languags constructs in existence and praposed for dealing with aynchro-
nization, but they all ultimately raly on locks.) A lock controls what set cf processes hav: what
kind of concurrent access to a pisce of data. The lock can be specified to allow multiple resders
and no writers, or one reader/writer and no other readers, or multiple readers and writers (the
unconstrained case above), Since there is both time and space ovizhead to each lock, a single lock
may cottrol more than one piece of dats in crder to reduce the overhead. The locking grennlerity
says now small a set of objects need Lo be locked in reality in order to lock just one object. A
syatem with small granularity is one with the potential for high concurrency — since the number of
ol'jects Iocked with one lock is low, the chances thas other processes can work on other, unlocked
dn.u is high. Conversely, large granulerity can potertislly limit concurrency, T‘hus, lock gra...nlmty
is traded off against potential concurrency. .

Now let us consider the issue of concurrent sharing when the multiple processes do not share a

VHewitt [25] proposss such a rystem, dut It ls not clear bow penctical i s,
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common main memory. Note that in the case of shared main memory, the thing that enabled
sharing to be implemented easily is that the same processor usiag a singls memory can implement a
memory reference relatively efficiently. While on virtual memory systems the cost of impiementing a
memory reference is somewhat higher than on non-virtual memory systems, the cost is atiil tolerably
low. Trying to extend the “virtuality® of memory (o non-shared physical memory is not likely to
result in acceptable performance. That is, one can imagire making the memory reference operation
work over a network of computers each with its own private memory. However. real implementations
of systems with such a facility have never been entirely succassful. At beat, the programmer has
been forced to be aware that some memory refervnces (i.e. opes to local mamory) are cheap, and
others (i.e. ones to another computer’s memory) are considerably more expensiva.?

For the practical purposes of building an implementation on couventional machines, we chose to
disallew concurrent sharing from multiple processes using disjoist main memories. This is a limi-
tation, but not one that is impossible to live with because cne can coften divide a problem so that
the processes that need to access data concurreatly can abare main memory with each other. Also,
even when processes must run in disjoint memories, it is often possible to partiticn a daia structure
so0 that parts that have no ister-dependencies can be manipalated in separate memories.

2.1.5 Security

For many applications it is important that a permanent data storage system provide security mech-
anisrma. Thas is, it should provide a way of allowing some users to bave one kind of access and other
uzers to have another kind of access. There are two issues to be addressed in this area: (1) What
is the granularity of the specification of the class of users? (2) What is the granulsrity of the data
to wiich a single security specification applies?

The issue of the granularity of the specification of the class of user basically comes down to this:
how many bits of specification do you want to allocate to identifying users? 1deally the spezification
should allow different access to be specified for each distinguishable user. If there are a lot of users,
this will require a lot of bits. H this specification bus to be daplicated for each object to be protecied,
then this form of specification is unacceptable. If however raultiple objects that are to be protected
identically can share the same protection specification, we are ess fikely to worry about the ien~th of
the specification. The space of possible protections is large, but in practice the number of different
protections used is relatively small compared with the total number of objects being protected. The
situation is further helped if users can be characterised as being members of » clam (say, systems
programmers) rather than individuals. Then the protection applicable to ar entire claas of ucers
can be expressed simply by referring to the clam instead of to each individual user,

Intertwined with the issue of how protection is specified is the issue of how small a set of objects can
be protected by a single specification. Even if we use a scheme in which diferent objects can share
the same speciScation, we still need a way to express which specification we want. If we uase, say, &
32 bit integer to identily which specification we want, it is unlikely that we would want to protect
sets of objects as small as or approaching 32 bits ir length since if we did, the storage overhead of
the specification would be as large or pearly & large as the data itself. For practical purposes, it is
usually acceptable to allow the size of the set of data to be protected to be relatively large.

3.1.6 Reliabliity

Reliability is a measure of how loug a system runs withoat failure. Researchers in the field have
made many suggestions about how programming projects can produce more reliable systems. It is
not clear what the practical implications of this research are however. For our purposes, we wili
have to rely on our intuitions about reliability. For instance, we know that a system that spreads
one set of logically related objects over multiple disk drivas is prone to reliability problems — as

3C.nemp [54] is an example of a system with this property.
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the pumber of mutuslly dependent pleces in a system increases, the chances that the failure of any
individual plece affecting the relability of the system increnses.
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object referenes can be thouuht of as the ob)

1

in desizning a reference msachapizme

o ‘What is the form of the refevence?

e What i3 the mechanizm and cost of dereferencing (e, the procedure that obtains a plece of
zn object given the object’s reference)?

o Hew many layers of reference does the system provide?

o How does the underlying hardware afact ihe clisice of refarence?

1

® V) hat is the programmer’s and the user’s view of the refernca?
The £rst thing o pote is that an object reference is ultimately a siring of bits. In this section we

will discuss the issues amociated with choosing the format of that string and the mechanisms for
dereferencing given the bit sining.

2.2.1 A first cut

Permanent objecis’ nt home is on siable storaze ~ a disk for instance. A natural frat
permane

approach to the problem of choesing the reference form is to suy that an object reference is sitmply”

the disk addrees at which ths object begins. Suppese » disk address is simply an integer offzet that
indicates how far from the beginning of the disk the object being referenced is. Dereferencing then
simply consists of reading the appropriate number of bytes from the disk into main memory where
the object can be manipulated by the CPU. Let us refer to this as the pure address strategy.

What are the problems with the pure address spproach? One problem is that since it is reancnable
to ersume that objects will tend 10 be larper than the interval between disk addresses, if our object
references are dick addresses, then we are wasting bits. This is because even when the dick ia is
full of objects there will be disk addresses that don’t correspond to the starting position of some
object. Logically, these unused addrezses represent bit patterns that could in principle be used as
object references. We are not proposing that this scheme be modified to use those addrenses, only
that their existence implies that we are not getting full mileaze out of the bits we have allocated
to the task of making vp references. Thus, if we have an N tit references, we are typically going to
be able to make somewhat leas that 2% object references. Ideally, we would like to be able to get
exactly 2V refersnces.

Another problem with the pure address approach is that it makes it difficult to move objects around.
Objects might move around for several ressons: (1) garbage collection, (2) storage compaction
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(without garbage collection), and (3) “logical reasons®. By logical reasons we mcan reasons that
are not real requirements of the system. For example, suppose the system consists of many disks
attached to many computers. Extend the notion of disk addrecs so that the disks are arranged in
some order and each disk is assigned a subrange of the eutire disk address space. An example of &
logical change is a user’s request to move Lis set of objccts to a disk thax is attached to his computer
instead of one attached to another computer. ' we use the disk address scheme, then moving an
object requires that ail references in other objects to the object being moved must be updated to
refer to the new address. In general, this is equivalent 10 garbage collection - the entire object space
may have to be swept to find ali the references.

A refinement on the pure sddress approach that solves the above problems is to have a table that
maps references onto disk addresses. The reference assigned to an object is a key into the mapping
table. The pr-” lem of unused bit patterns goes away because the refecence can be any one of the
bit patterns poaible; the table is responsible for tranaiating all valid bit patterns (i.e. patterns that
have been amignes by the mappiug mechanism) into disk addresses. The problem of m-ving objects
also goes away. An object’s moving is transparent to the holder of & reference because the only
change that needs to be made is to the mapping table slot where the actual disk address appears.
Let us call this the mapped sddress approach.

Let’s look at this mapping mechanism in more detail. The obvious implementation is to have a
vector whose length is the total number of objects (and by extension, references} we wish to allow.
Dereferencing then simply consists of indexing into the vector at the position indicated by the
reference and returning the disk address found at that slot. This vector must be placed at some
known place on this disk. While simple, this approach obligss us to mziutain a potentiaily large
table many of whose slots may be unused if all the possible references are not being ute’ at any
__ven time. Each dereference requires that we read the disk potentially twice: once to read the disk
address from the vector and once to read the data located at that disk sddress.

We want dereferencing to be fast - dereferencing is in the fmer loop of all proceming of permanent
data. Slowing down dereferencing slows down everything. The mapping mechanism must be fast.
As an optimization we can keep a copy of the mapping data structure in main memory. This saves
us one of the disk accesses. Unfortunately, having the table in main memory makes us feel even
worse about the table’s size.

We could use a more sophisticated mapping mechanism like hash tables. One decides how big to
make a hash table based on the expected number of keys (i.e. references) one needs to map into
values (i.e. disk sddresses). Thus, we can reduce the sise of the table. However, the cost of looking
something up in a hash table is considerably greater than the direct lookup that is done in a vector.

Any kind of mapping scheme that requires large parts of the mapping data structure to reside in
main memory has two major problems. The first proklem is one of reliability. We are kerping a data
structure that is critical to maintaining the consistency of the complete system in volatile storage;
if the system crashes, we're in big trouble. To reduce the potential for disaster, we can periodically
copy the mapping data structure back to disk. Nevertheless, the risk remains.

A second problem with keeping the mapping data structure in nain memory has to do with c¢on-
currency. Multiple processors that do not share a common main memory do not have equal uccess
to the mapping data structure. It is likely that any mechanism that tries to simulate equal access
will have serious performance problems; one processor will run quickly while the others run slowly.

2.2.2 Dividing the world

The cause of both the storage overhead and concurrency problems noted above is ultimately that
the mapping mechanism is fiat and unpartitioned. If we could break it up into smaller pieces then
(1) the amount of mapping data structure that needed to be resident at any time would be reduced,
and (2) multiple proceasors could run concurrently as long as they stayed in separate areas of the
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Figure 2.1: Muitiple table mapped address dereferencing

The traditional approach for breaking up a mapring mechanioni ia to divide the refarence bit string
into multiple parts. This is 3 technique that is cfien anplied in virtwal memory systems. Each
subtatring of biis i3 & xey into a sable. All brt the last suleiriag are keys into tabizs that map bit
strings into inble identifers. The last table macs a key into a disk aadreos. The st table is at
sorue “well known” Jocation. Let us call this scheme the multiple table mapped eddress spproach.

Dercferencing in this acherne conaists of breaking up the reference juto the separate bit strings and

then starting with the well known table, looking up each substring in successive tables (the location,

of each table is the result of the previous lookup) until the last substring is nsed. The lust subetring,
instead of being an index into & talle of takle identifiers, is an index into a table of dizk addressess.
At sny given tiume, only one of the tzbles has to be in main memory. In practice, references are
broken up into just two cr three pieces,

A problem with the ynultiple table anprozch is that even if all the tables happen to slready be in
main remory, we have to make as many memory references as there are tables in the course of
just oue full dereference operstion. la virtual memory systems, this problem is partly helped by
introducing spacial hardware that stores the last few references that were derefarencsd along with
the identifier of the final table used {or each reference. Any future reference whose upper substirings
match an entry in the special hardware table can skip the process of locking throagh all the tables
and simply use the result saved in the special hardware table. This process is sommtimes called
trunsiation lookaside (or translation ceching).

Let us now consider the issue of st~rage allocation in our simple disk uddress based object system.
How is the disk space managed so that allocation is fast? If we want to rely on garbage eollection

-.'.
O“- >
N

B TR
. e
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to reclaim free space, we can use the allocaiion mechanism described earlier - simply have 2 heap
pointer that indicates the boundary between used and unused disk space. Unfortunately, now
we bave introduced a bottleneck analogous to the one introduced by our first simple mapping
mechanism. The problem now is allocation instead of dereferencing and the bottleneck is the heap
pointer (or in general whataver data structures are associated with the allocation process) instead
of the mapping table. All requests for storage have to go through the allocation data structure.

Just as we broke up the mapping mechanism, we will now break up the allocation mechanism. The
straightforward way to do this is to divide the entire storage pool into pieces and associate separate
allocation data structures with each piece. Let us call a piece of the entire storage pool a Aeap. In
fact, it will tu:a out to be convenient if we break up the storage pool along the same lines as the
broken up mapping mechanism. Thau is, the last table in the set of mapping tables will contain
disk addresses that are in just one of iae areas of the disk {i.e. sterage pool).

An advantage of the heap approach is that now instead of storing full, presumbiy long, disk addresses
in the table, we can store just the offsets from the beginning of the heap on the disk; one entry
in the table contains the base adduas {a full disk sddress) of the heap covered by the table. In
addition to being small, another advantage of offsets is that they are position independent. That is,
if necessary, we can move a heap (say to another disk) without having to change anything except the
base address. Another advantage that we will go into detail on later is thac if a few more changes
are made to the strategy, it will be possible to do partial garbage collections, i.e. garbage collection
of a heap rather than the entire storsge pool. This means that one of the onerous aspects of garbage
collections - the long time to do garbage collection - can be somewhat ameliorated.

2.2.3 Dividing the world is not free

Note that as a result of the divisions in the reference and allocation structures, we have introduced
the problem that there will be some set of references that will not be used. How does this happen?
Without loss of generality, assume that the reference is divided into just two parts. The first part
is conceptually a reference to a heap; the second part is 2 reference to a particular object within
the heap. The maximum number of objects in a heap is fixed by ihe size of the second part of the
reference. We expect that the assignment of objects to beaps will not be random with respect to
thec meaning of the objects - that for reators that will be elaborated on later, programs and users
will place logically related objects in the same heap.

Assuming this model of the use of heaps, it is possible that some beaps will contain more objects
than others. Ax a result, there will be heaps for which the second part of the reference is larger
than it needs to be. Unfortunately, in our reference acheme, the sizes of the parts of the reference
are fixed. (Through the use of clever encoding techniquas it is possible to have a reference scheme
in which thz size of the pieces of the reference can vary “by need®; we consider such techniques too
expensive {or our purposes.) Thus, each lightly populated beap will result in a number of references
that are not used (and are not logically usabiz). Clearly, we need to pick the size of the pieces of the
reference to minimize this problem. But in doing the division, since we are using direct lcokup and
not hashing, we are obliged to pick sizes of the parts of the reference tnat allows for the maximum
-~ not expected ~ number of objects per heap. Since we can assume that most heaps will not be
completely full, we will have unused references. This is the price we pay for introducing partitioning.

2.2.4 Reusability of references

While we didn't explicitly state it, in both the pure add-ess and the mapped address approach, we
have assumed that references can be reused. That is, if an object is deleted (i.¢. discovered to be
unreferenced after garbage collection), we can reuse the reference to refer to some newly created
object, In the pure address strategy, this simply means that we can put some new object in a place
where some old object lived and thas the dixk address of that place (the reference to the old object)

r



18 ’ Masaging Permane.t Objects

now becomes a refirence to the new object. In the muvped addruss m**,twy, it nicans that we can

rezse the alot in the mapping data strusture that held the wauslstion betwesn the mleencs aad
ha old sblect’s diuk addrezs to held the trapslstion bemren betwesn the refercnos and sorme pew

oby*ct 3 dizk addrems; we pesnrn the relerence to the old object to the allscator of sie new m,aJ

A plrirmase aprum.., o rauioy vl ; & pot TeL
: { ..m,i 1D L
a0,

Tha Gron questica that arises o the UID somrowsh s *how do you
eporoach i to uze a dock; 2 cleak s 2 coniinuas
is “how many ohjects will evar Le o o L erder 1o declde
haw masny bits long the refersnce should be. I\wk thad in the amie of noweUlD systarms, the sise
of the refarsnce is determined by bow many objects cun wxima st a5y vaotsal n'\t ha‘w many will
ever exizt. [n either case, experionce tells us that we should overestirmate. Thoculng oo small a
reference is aom\"mg to avoid becaune running out of refernnces is a fxed basrier when it hapypens,
your ayrtem fulls apart. Chocting o0 1:».’_’.": a reference has the cost thal you con ww,, spste {an
hardware) aliveating bita that you
s for sure thonsh = 2 UlD o0

An rdvaatage to the UiD 25

s
camt. The zemerd G

[+ 9

zroume, There b po simple answer to the prouizm, One thlng
: a roforemce than doas & ¢ m-‘.u.;) syiTm.

sroach i that oblects cxa be explielily deletad {le. fraed) wit
baving to worry ahwut danziang r-n. nees. Lo be more precize, dargling relerinces pre
problem, but they are a previom that wil be detected. As noied eoriler, 13 & noa-UlD erutom,
expiicit fresing lesves open the peasinility that the refersmes will be reasmizned to a new objuct and
that dangling refepences (1.2 refersnces m the cld objoct thzt are now raferences 1o the new obiect)
will be dereferenced producing meaninglos resuits. in a UID systend howeser, wien the abject Is
fread, the reference Is mariod as being mvmfl, and dereferencing it will cause an error that caa be
detected by the stermge system.
T’ e disadvantuge of a UID system is that the cost of dereferencing iz high, The data structure
that maps the UID ints a disk address will have to be co‘:nm‘;:wd fa.g. & hush table). There is
po natural wey to divide the relrrence a3 was dooe above, (One con imagine dividing she reference
and having multipic mapping tables, but doing so would not produce the desired benefita)

2 vpes and

a2
Y

By rads we mean the programming languare procedures that impiemaens the absirnciions diecunsed
in section 2.1.2. It must be pomsible to gut {rum a reference to an obisct to the code that inplements
abstractions on the object, Vee call the characteristic of an object that determines what code should

be used to implement abstractions on the objoct, the object's tyse.

In a traditional pregramining lansusgs like Pascal, it is not neressary for the representation of an
cbject to contain un indication of the type of the object. This is because all variables have types aud
an object is the value of a varisble or the value of some fieid of an aggregrate whese type is known.
In T (ke all Lisps), variables do not have types. Thus, the type of an object mus’ be explicitly
azsocisted with the objeet fnuif Tlie obvious mechaniem for doing this is to allocate some space in
the object to hold a type adentifier. Optimizations of this achem. will be dlscuased in wection 3.2.1.

Given that type IDs are kept in objects, we need a mechanism that takes a type 1D and returns
a procedure that takes some operation that is to be perfcrmed on an object and implementa the
operstion cn the obis:t. Thls pmcedure is the handler mentioned in section 3.1. Idexlls, code in our
worid of perroanent objeuts would be a permanent object itself. Thus the result of the mechanism
just described could simply be a refermnce to a handler object. In fact, if code can be rrpresented
23 a prrmanent object, the type ID could simply be a reference to the handler object,

Gne renson for wanting the ty e 1D to be something other than a reference to a code object is that
we can assums that there will probably be more objects tLan types of objects. As a result, the
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number of bits needed 10 hold a reference is larger than the number of bits need=d to hold a type.
Since every object will have a type ID embedded in it, we would like to minimize the size of the
sype ID. Another reason for having a layer of indirection between type IDs 2nd code objects is that
it permits a level of abstraction. Types can be thought of independent from their implementations.
Implementations can be changed without having to modify all the objects that contain the ¢ype ID.

If we introduce a layer of indirection between type IDs and code, we must Leep a global table that
maps type IDs onto code objects. 1n order to avoid making this table & bottleneck in the system,
each process would presumably keep a local cache of the map. {Note: tvis solution works only as
long as tbe handler c.cresponding to a given typs ID never changes.)

Another issue about types and code that n=eds to be addressed is how to deal with type redefinition.
Suppose we create a *ype, create some objects of that type, and then want to modify the behavior
of objects of that type (i.e. bow those objects respond to opesztions}. Do we want to modify the
behavior of existing objects of that type, or only objects created after the type is modified? Also,
what if the type definition wants a different number of slots assigned to objects of that type? There
are cases when one wants old objects to “see” the new type definition ~ for instance when one is
fixing a bug in some method. There are cases when one wants them not to see the new definition. fn
this case, one might be inclined to call the change an introduction of a new type, not a redefinition
of an existing type. But this would be hiding the relationship between objects of the ¢ld type and
cbjects of the new type. Suppose a bug is fixed in a nrethod ~ one would want ths bug fixed in both
the old and the new handler (type deSnition).

2.4 Frevious Work

Many other researchers have worked on systems that tried to scive some of the problems discussed
in this chapter. We will briefly discuss some of that work.

2.4.1 Capability systems

The tet.n eapability system [20] is usually applied to a system that is specially designed to keep
track of references to objects. Levy’s masters thesis [35] contains an excellent summary of the-»
systems. In capability systems, access to data is controlled by the fact that a precess can refer only
to objects for which it has capabilities. A capebility is essentially a high-level machine address. The
only way to obtain a field of an object is with a machine instruction (or kerne] call on machines
that do not have capability-based hardware) that takes a capability and an offset into the object.
Urlike other systems it is not possible for unprivileged processes to create capabilities from other
data types. Part of creating & process is the assigning an initial set of capabilities to the process.
The process can then pass those capabilities unto processes that it invokes.

2.4.2 Hydra

The Hydra operating system for the C.mmp multiprocessor [54,16] has been an ir:fluential model for
researchers interested in capability syster=. “he underlying bardware (which cousists of PDP-11s)
is not capability-orieated. However, Hydra supports capability-based references to objects. This
{unctionality is supplied by machine instructions that trap to the kernel whichh then authenticates
the reference and does the requested operation.

2.4.3 IBM System 38 ©oT

While they have long bad an attruction o researchers capability systems bave not become common
in the real vorld. The IBM System 38 is one of the {»w commercial systems based on the capability




18 Managing Permansnt Objects

model. 'The System 38 hardware is capability-oriented. In spite of the fact that is has an object-

orienied model - the system presents a one-ievel object atore which eliminates the distinction between

objects in main memory and objects stored on the disk - the Sysiem 38 does not provide anvthing
g other than a traditional programming envircoment {COCZOL and RPG-T).

2.4.4 Iptal LAPIL 432

b tel's JAPX 432 microprocsasor and associated operating system, iMAX 4352 {29,41] is a recent
commercial entry icto the world of capabiiity systemas. The 432 system is also object-oriented, but
v unlike the System 33, ths 432 makes apparent to the programmer the distinction betwesa active
b N and passive objects. Pascive objects are referred to using 80 bit UlDs. Active objects are referred
to using 24 bit 432 access descriptors.

The 432 is not in widespread use and the status of the IMAX project is unclear.

p The reccat trend in computer architecture desizn has been toward machines with a considerably
’ simpler mode! [43]. The £rmware that supports capability systems is extensive. As a result, it is
hard to debug and hard to optimize.

5

S N e e

2.4.5 Smalltalk

Smalltalk [31,22] is » languzge, operating system, and programming environment. The oaly suc-

i };;‘ cessful Smalltalk implementations have been on microcoded personal worksiations.3
;'_: . Smalltalk is the canonical objact-oriented environment. The Smailtalk langusge introduced many
v ‘~ of the concepts and much of the terminology of object-oriented programming.
»
1 2.4.8 Eden

The Eden projoct {32,2,2,4] Is a project attempting to build a distributed computing environment
around ohject-oriented principles. Zden objects are relatively expensive and heavy-weight and hence
K are used to represent a collection of data. In Eden, objects are active entities. When an operation
is applied to an object, a process corresponding to the object (not to the invoker of th= object) is

} activated to run the objsct’s method for the operation. Part of the Eden project is the development
L of a programming language, EPL, based on Concurrent Euclid, The purpose of EPL is to allow
[ Eden objects to be coded conveniently. Using EPL, active Eden objects can have multiple threads
of control. —

Originally, the Eden project expected to run on the Inte] 432 microprocessor. However, the present
Eden prototype is running on multiple VAXes connected via a local Ethernet.

e e ram i 7
Ce ww

2.4.7 Object-oriented machines

There have been several proposals frem MIT for “object-oriented machines®. The machines bear a
resemblance to capability machines in that the hurdware is specifcally designed for keeping track
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; of references. None of the proposed machines have been built.

Bishop [14] describes ORSLA, a system with a very large linear, paged address space. All procemses
- run within the same addreos space. Object refcrences ars virtual addresses, not UIDs. The address
O sise is proposed 1o be scmewhere between 40 and 50 bits (the minimal addressable unit is a 64 bit
-;.j word). As an optimizatior, a reference vontains some object size and type information i addition
L' $The recent implementation ¢! Smalltalk on the SMI SUN 63000-based workstation {17] apparently aprroaches the
- - performance of the better microcoded implementation; it i not clear if this iniplementation will succeed in making

Smalitalk more widely used for large appiications.
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to the virtual address of the object. Thus, the sixe of an ORSLA reference is between &8 and 81
bits.

Bishop’s main idea is a scheme for yartitioning the address space into ereas and allowing arcas to be
garbage collected independently. The arca scheme depends on irter-area references going through
tnter-area links 30 that the garbage collector can determine the root set for the coilection of a single
ares. The proposed hardware would mazke inter-area links transparent to the programmer.

Lunicwski [38] describes AESOP, an object based perzonal computer. AZSOP incorporates soime of
the ideas of ORSLA. In addition, Luniewski investigated some of the programming language issues
involved with working on the proposed architecture. He adopted the CLU language model [36].

Snyder 149] describes another object-oriented sysiem based on CLU. His thesis discusses come of
the lower level hardware issues associated with such a system. Also, Snyder propesed the use of
reference counts instead of garbage collection to allow storage to be reciaimed.

2.4.8 APL

The APL workspace [21] is one of the earliest examples of a mechanism that supports permanent
structured objects. Early APLs provided only a mechanism for copying objects from one user’s
workspace into another. Modern APL systems provide mechanisms [or also sharing values among

workspaces.

24.9 2P0MS

The Persistent Object Management System (POMS) [7,8,0,10,42] is a project that has extended
ALGOL to deal with permanent objects. The underlying permanent sicrage mechanism is the
Chunk Management Systemn (CMS). CMS provides a database-like interface for POMS. On first
reference to a permanent object POMS requests the image of the object from CMS; POMS deals
with a copy of the object and the changes made by the program using POMS is not made permanent
until the program commits the changes at which point the image of the object is copied back into
CMS.

2.5 The Smalltalk - Hydra spectrum

In looking at the various systems that have adopted the object-oriented model, one can see a range
of concerns to be addressed. Smalitalk and Hydra are at opposite ends of several spectra:

Smalltatk | Hydra
object sise |  smaul large
number of objects large very large
cost of dereference smali large
‘language integration good bad
objects sharable? no yes

32.5.1 Object size

All object-oriented systems are desigred to support well a particular range of object sizes. Ideally,
a systein should support a range of sizes from just a few bytes to thousands and millions of bytes.
In practice, it is difficult to support such a range. One finds that a system discourages the use of
small objects by introducing a fairly large storage overhead per object. For instance, if the system
imposes a 18 byte overhead per object, it is unlikely that programmers will create many objects of
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16 bytis or leus ~ programumers will tend to combine several logically related amall objects into cne
larger objoct to munimiss the overbead. This obacuring of logical objects reduces the usefulness of
the system. In fact, if the per-object penalty is large enough, one tends to view objects the same
way one views flas in a traditional operating system.

Smallzalk is oriznted toward dealing with mmall obiects — every piete of data in Simalltalk is an
object; the Smalltalk implementors’ experiente has shown that evernge object size ia only about 20
bytee [22]. The per-object overtead is 8 bytes (4 bytes in the object and 4 bytes in the object table).
The largest object is 123K bytes {large, Lut probably not large esough for all applicationa).

Hydra is oriented toward dealing with somewhat larger objects than Staalltalk, The pereobject
overhead for an active objact is 56 bytes; the per-object overhend for a pasaive object is 22 bytes,
Almes [1] points out that these overheads can in principle be reduced to 32 and 16 bytes respectively.

2.5.2 Number of objects

Another desizn aspect of object-oriented systems is the number of obiects that can exist a¢ the same
tirme. Traditional Smalltalk implementations use 16 bit object references and hence can support 32K
objects. The reason this number isa’t 64K is because Smalltalk lmplementations typically encode
intagers in the range ~2!3,. 4 218 — 1 in the object reference itself; one of the bits ins the refesence
is taken to mean *] am a smal] integer, not a real reference”.

Some more recent Smalitalk implementations have used 32 bit references (12, but it is not clear
that they are designed so that they can actually support 232 objects. LOOM [28,51] is an experi-
mental system for extending the Smalltaik obiect space by introducing a secondary object memory;
the Smalltalk interpreter automatically moves objects between primery and sezondary memory.
References to objects in secondary memory are 32 bits long.

As opposed to Smalltalk, Hydra was designed to support a large user comimunisy that weuld work
on C.mmp. As a result, Hydrs was designed to support a larger number of oblects than Simallialk.
Hydra uses a 64 bit object reference which is composed of a 60 bit fiald which contains the value of
a 1 microsecond clock at the time of the object's creation, and a 4 bit proceszor ID. The increased
per-object storage overhead of Hydra as compared to Smalltalk is in part duz to the larger reference
gize.

2.5.3 Sharing of objects

Another area in which Hydra comes out ahead of Smalitalk is in the area of sharing. Again, since
Hydra was designed to be a multi-user environment, it needed to support the sharing of objects
amoug users. In Smalltalk, each user works in his own object space and there is no (attractive)
mechanism for sharing Smalltalk objects among diferent Smallitalk users.

2.5.4 Cost of dereferencing

In Smalitalk, all objects are entered in an object tablc (OT). A reference to a Smalltalk object is
an index into the OT. The OT entry for an object contains the memcry address of the object,
a reference count, and other miscellaneous information. Obtaining a field of an obiect requires a
mernory reference to the OT in addition to the memory reference to obtain the field itself. The
size of the OT is fixed and the entire OT must be in main memory. For Smalltalks with 18 bit
references, each entry in the OT is 32 Lits long. Thus the total size of the OT is 123K bytes.

In Hydra, an object can be e¢ither passive or active. An object is activated a.ut.om'u.ii':any when
a field of the object is request. Hydra uses UIDs ss object references and hashing as part of the
dereference mechanism. A data atructure called the sctive GST keeps track of all active objects
(i.e. objects in main memory). A data structure called the pessive GST keeps track of all passive
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objecta (i.e. objects on disk). Obtaining a field of an object requires a hashed lockup in the active
GST; if the object is found there then the main memory address of the object is extracted from
the active GST cntry and used to pick of the field of the object. I the object is not in the active
GST, the object is activated (which requires reference to the passive GST) and then the procedure
proceeds as it does for an active object. This process of obtaining a piece of a Hydra object is
handled by operating system code and is initiated by a user procems by executing a kernel call ~ a
special rachine instruction that is trapped by the Hydra operating system.

Eydra's reference mechanism is clearly more expensive than Smalltalk’s. The xernel call in Hydra
can be used to copy out large pieces of an object into a procems’s local memory; evidentally this
feature is used to minimire the number of kernel calls necessary %0 obtain an object’s state. The
expense of dereferencing ercourages programmers to make larg: objects whose contents can be
retrieved with one kerne] call.

2.5.5 Language integration

From our point of view, the most serious deficiency of Hydra is the evident lack of an environment for
programmer’s to design and build systems basad on object-oriented principles. From the descriptions
of Hydra, it is not at all clear how one actually programs nn it. Smalltallt, on the other band, is
the ultimate in object-oriented programming environments. The language and the environment are
complete integrated. Tools are provided for inspecting the object space.

2.5.6 Summary

The point of our Smalltalk/Hydra comparison is not to show that one or the other is better.
Rather, the point is to show how two systems which are both “object-oriented” can turn out so
differenily as a result of different goals. Smalltalk’s implementors were interested in making a single-
user programming environment to exploit the concepts of object-oriented programming. Hydra's
implementors were interested in making a multi-user, reliable, multi-processor operating system
based on object-oriented principles.

In our system we have tried to find a mid-point in the spectrum of possibilities that characterise the
differences between Hydra and Smalitalk. It would be fair to szy however, that we started at the
Smallialk end of the spectrum and tried to generalize to a system that has some of the properties of
Hydra. The Eden project is an example of a project that started at the Hydra end of the spectrum
and attempted to support the programming ease and efficiency of Smalltalk.

2.6 Message passing instead of object moving

An essentially different line of research that is concerned with sharing of data concerns the support
for message passing' in a programming system. This research bas proposed the introduction of
programming language primitives that send data to and receive data from other processes. In
the systems discussed above, data is manipulated .imply by dereferencing a pointer to the data.
Multiple processes can access the data; there is no explicit moving of data among the processes
wanting to access the data. This sort of access to data seems natural and does not require novel
programming language constructs. However, access to the data is unconsirained - synchronization
is not part of the model. The message passing approach can be viewed as an attempt to allow the
synchronization of processes’s access to data. '

SN.B. In Scalltalk and other languages with similar gouals, this term Is often used to mean something iike “generic
procedure call® but this is net the senes we intend Sere.
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Extansions to CLU have been propesed o allow message pussing. [23,24,50]. More recently, the
Argus project [37] has introduced the notion of guardicn a8 the repository for shared data; commu.
nication with guardians is implementad via the Jowsr-level mesage passting mechanizm.

1 2.8

2.7 Burmmoary and approazih of thls work

The framework in which we have designed and bailt our system for maintaining permanant oblects
inciudes the following sssumpiions:

o The system runs on coavestional hardware.
e The system runs within a convesntional operating system.
o Application programs that use the system are written in an extended converiions! language.

All our assumptions, but especially these thres, result from our desire to build s system in which
we could experlnent with projramming in a permanent object system. Requiring shat we build
hardware or operating system softwars or design a new programming language would have incressed
the scope of the project beyond our ability. Given the alternatives of a iess than ideal system
with which we could actusily experiment o1 a perfect sysiem that would at best be only partially
implemented, we chose the less than ideal system. In addition, from a purely experimnents] point
of view, we wisned to demonstrate that the irmplementation of theve concepts does not sbeolutely
require sophisticated new laagusges, hardware, or operating system software.

e The entire space of objects can be naturally divided into sabspaces {heaps) of objects.

That we assume that the space of objacis can be naturally divided means that theve will be some
set of applications for which our system will not be useful. For instance, if the object space conuists
of a large highly connected graph of objucts of the sams= type, there may be no natural way to divide
that snace. Note however, that if the undividable space is small enouzh 2o that the applicstion’s
objects can fit within the largest possible heap, the application caa use our system.

o The systemn does mo? provide complete transparency for the appiication pregrammer,

A system that provides complete transparescy does not require thit the programmer know the
pattern of inter-heap references, or what kinds of objects reside in what beaga, or in what heap the
next object should be ailocated. In our system, the programmer doss have to kuow these thines,
We hope that experience with using a system like ours can help in designing a practical system in
which complete transparency w posible.

o The system does mot provide high reliability in the face of hardware or communications failure.

This assumption is related in part to the first two assumptions. Givea that we were unwilling to
build hardware or operating systems, it is dificult to improve th> reliability of our system beyond
the level provided by conventional hardware and software. The gross relisbility of our system is
as good as the conventional system on which it is built. This level ie good erouzh for people who
uze the conventional system, so it is reasonable to believe that it will suffice at least for our initial
implementation. In the long term, hizher reliability is probably required since in a system of the
sort we built, the loss of a wery small amount of data can potentially lead to disasterous resulta.

o The system does mot provide mechaniams for a high dezree of concurrency.

We are interested in supporting the sharing of objects by multiple procetses. Secondarily, we are
interested in allowing as much concurrency as is possible using convestional tachnidues (locking,
busy waiting). We believe that our system supports the solution to problems that have a low degree

of concurrency. The syatem does not support concurrency amcng processes running in separate
pbysical memories.
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e The system supports only fairly coarse protection.

H a system is to provide access Lo permanent objects that is nearly as fast as sccess to transient
objecta, it seems that it must rely on special hardware to allow protection down to the leve! of
individual objects.
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Implementation

In this chapter we will discuss the design and implementation of OM, our system for supporting
permnanent cbjects. YWe will be concentrating on the lowest Jevels of the system.

3.1 The object model

The model of data that we will use in this thesis is typically called sdject-oricated. This model has
been popularized by Smalltalk. Since the term has diferent meanings to different people, we will
briefly describe what it means to us.

The entities in object-oriented system are (not surprisingly) objects. An object is a piece of contign-
ous storaze. Atomic objectc have pre-deiined siorage layout. Mon-atomic objects ave divided into
equal-tized slots; each slot contains a reference to some object. Integers and sirings are examples of
atomic objects. A vector is an example of a non-atomic object. '

An important concept in the object-oriented view is the notioa of reference. Objects do not contain
- objects, they contain refersnces to objects. Thus, two different obiects can refer to the sams object,
Two references are said to be cdemtical if they refer to the vary same cbject. Two objects are said
to be equrvaleat if thers is no way to tell them apart. That is, any procedure applied to one obisct
yicds the same result as the same procedure applied to the other object. Two references can be
nor-identical yet refer to equivalent objects,

Objects can be mutable or not. An object is mutable if the storage occupied by the object can be
modified. Integers are imimutable objects. Strings and vectors can be mutable. A mutation to ap
object is sometimes calied a srde-¢fJect.

Computation cccurs by invoking operations on objects. (An operation is the same 83 s Srnalitalk
message.) When an operation is invoked we say the object respoands to the operation by exscuting
some code. We call the code that implements she respoase a method We call a collection of
methods a Aand!:r. The type of an object is defined by its bandler. This is an operational view of
types. Operations are generic; i.e. they can be applied to any object. However, an object does not
necesaary handle every operation. An error occurs if an operation is applied to an object that does

not handle that operation. The ectire process from operation invocation o method execution is
called operation dispatch.

The object model just described is essentially that of T. Much of the terminology we use is T's.
One reason for using this model is that it is T°s mode] and sur system will be running within T
and used by programmer’s familiar with T's model. Another reason we use this model is that it is
simple - objects can be accessed in a uniform way.

24
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3.2 The Environment

The environment in which we implemented OM consists of the T programming language and the
Apollo DOMAIN computing environment. When we began the project, we were fully aware of the
fact that by trying to work within an existing environment, we would bave to compromise on what
functiopality we would be able to support. OM does nat provide the complete transparency and
ease of use that many unbuilt sys:sms have proposed.

A clear advantage of working with existing tools is that we were able to more quickly address the
issues .. which we were interested: What is it like to program a large system where all data is
stored 33 permanent objects? Can such a system be made efficient? Another advantage in not
being language designers is that our =nd product is not a system that is unfamiliar to & ready user
community - a community already familiar with T is move likely to use a language that is much
like T than they are a totally new language. Finally, it is unproven that a permanent object system
actually requires a special purpose language, hardware, or operating system. We wanted to se2 how
sophisticated a system could be built within a relatively traditional environment.

3.2.1 The T programming language

T is a dialect of Scheme, which in turn is a dialect of Lisp. Schesne differs from Lisp mairnly ir the
fact that variables are consistently lexically scoped. In this respect, Scheme is more like traditional
Algol-like languages than are traditional Lisp implementations. The latter rupport dynamic scoping;
i.c. the value of a variable is determined by the contents of the control stack, noi the lexical position
of the variable.

Scheme supports procedures as *first-class objects”. That is, procedures are legitimate objects
(like strings, vectors, and pairs! that can be bound to variables and pessed ss arguments to other
procedures. Procedure objects are created by the LANEDA special form3. Procedure objects are also
known as closeres because when a LAXBDA form is executed, it returns a procedure objecs that is
closed over the lexical environment of the LAXIDA form. That is, when the procedure object is called
and the body of ihe procedure is executed, references to variables that are free with respect to the
LAKEDA form but that are in the lexical scope of the LANEDA form yield the values the variables had
4t the time the procedure odject wes crealed.

T is essentially a practical realization of Scheme. Before T, there were no practicas Scheme imple-
mentations in widespread use.

Like many Lisps, T runs in an interactive environment. This environment contains a T interpreter
that allows the debugging and incremental redefinition of procedures. The T compiler takes source
files and produces object modules that can be lcaded into the T interactive environment for execu-
tion.

T, like all Lispe, is a language of reference. That is, the values of variables are references to objects,
pot objects per se. Diflerent variables can refer to the same object. Objects can contain references
to other objecta. Procedures return references to objects. In general, objects are allocated in heap
storage. T uses a copying gart .ge coliector to reclaim storage occupied by objects that are no longer
reachable.

T references are 32 bits long. The low 8 bits of the reference are used as a type code. The type
code is used to determine the type of the object being referred to. For instance, if the type code
is 5, then the object at the address specified by the refevence is an adjacent pair of references - an
8 byte T pair. The high 29 bits of the reierence is a virtual address in quads (8 byte chunks), not
bytes. Figure 3.1 shows the Jormat of a T reference. Note that 3 quad address left justified in a 32

1Liep's traditionsl ene cell is called & “pair” in T.

3 Spacial form is the traditional Lisp term for syntax In the language that is used to denote something other than a
call on a procedure. .

N RN
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Figure 3.1: T reference format

bit werd is a byte address (i.e. if the low 8 bits of a reference are masked to zerca, a valid machine
address results).

Let us briefly examine how this sort of type code scheme works. In T, choosing a granularity® of
8, the low three pita of the machine address of an object are always zero. Hence in a T refirence
these three bils can be used to stom the type code; this requires that before using a T reference as
» machine address, the jow three bits must be cleared. If the type code of a reference is known (or
can be azsumed), thea the dearing of the type code can typically be done ¥a the same instruction
that fetches a Seld of the cbiect: the displacement £2ld of the instruction is simply decremented to
account for the increment that the type code will canse. In T, as in most Lisps, the machine code
produced for primitive procedures such as CA2 azsumes that its argument is a pair and hence il can
assurme the type code is a particuiar value,

Given fixed word and type code fieid aizes, the total number of unique references is also fixed. As the
minimum object size is decreased, the total number of usable references decreasss (azsuming some
objecis are larger than the minimum object size). Thus, in effect, as the granularity decreases, the
total number of objects that can exist at a tirne decresses. As the minumum object size is inereused,
if there are & number of obyacu that are logically smaller than the minimum object size, the total
amount of wasted space increases.

T uses a granularity of 8 because Lisps traditionally make heavy use of objects that contain exactly
two references.

Since T needs to support more than 8 types of cbjects, ane of the 8 pessible tyne codes is used to
mean *the type of the object is encoded in the first ceil (4 byte quantity) of the object™. This type
code is called the extend type code. The first cell of an extend-type object is called the object’s
template povnter. Objects represented in this way are called ertends.

In principle, ail type information could be eticoded in templates and no type code in the refercnce
would be needed. However, there are two ressons for type codes. First, they aliow certain objects to
be represented without the extra storage of a template pointer; e.g. without type codes in references,
cons cells would have to be 8 cells long instead of 2. The second reason for putting the type code in
the reference is to spesd up the process of determining whether a reference is Lo an object of one of
the frequently used types. For example, given a refcrence to an object, one can dstermine whether
the object is a pair simply by looking at the reference ~ the contents of the object itself need not be
examined.

T supports the styla of object-oriented programming described in r.ction 3.1. Recall thut the first
step in operation dispatch is to get from a reference to an object to the handler associsted with the
object. The way tais is implemented in T is as follows (we make some minor simplificationa): if
the reference’s type code is not exrtend, then the bandler is obtained from a fixed vector of bandler
procedures; the vector is indexed by type code. If the reference’s type code is extend, then object’s
template pointer !s taken to be the reference to the object’s handler procedure. Once the hand)er

SBy granularity we mean the smallest unit of allocation - Ls how imail objects can be.
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is obtained, T calls it, passing the operation being invoked as an argument; the handler returns the
method associated with the operation. T then calls the method.

T application programimers are not aware of the machinery of operation dispatch described above.
The OBJECT special form allows programmers to allocate objects and specify how the objects are
to respond to operations. Handlers are part of the T implementation and are not visible to pro-
grammers. Operation invocations are syntactically identical to procedure calls. In T source code,
procedure calls are expressed as & list whose head is an expression that yields a procedure object
and whose tail is a list of arguments to the procedure. The only difference between this and the
syntax of operation invocation is that the head must yield an operation object. The first argument
to the invocation is the object to which the operation is applied. Operations are defiued using
DEFINE-OPERATION which has a syntax similar to DEFINE, the procedure definition special form.
The body (code) of the DEFINE-QPERATION is called the defeult method — the code that is 1o be
executed in case the operation is applied to an object that does not handle the operation. If the
body is empty, then when the operation is applied to an object that does not handle the operation,
an error is signalled.

As an space optimization, certain objects are not represented in heap storage. These objects are said
to be represented immedialely. Immediate objects are represented within a reference. References
with certain type codes are taken to be immediate objects. For example, if a reference has type code
0, then the high 29 bits of the reference are takes t be an integer in the range —2%8.. 4238~ 1; T calls
such integers Fiznwms. Immediate representations are important because one wants to minimize
the allocation of heap storage that will become garbage quickly. For instance, if Fixnums were not
represented immediately, then the + procedure would have to aliocate space in the heap to hold its
result. If this result was not saved, but only passed to another procedure, as in (= 2 (+ 3 4)),
then the result of + becomes garbage, resulting in the heap’s filling up quickly.

3.2.2 The Apollo DOMAIN computing eavironment

The computing environment in which we developed O} is the Apolic DOMAIN [5,8,33,34). DO-
MAIN is an integrated environment of high performance personal nodes* attached by a high apeed
{12M bit/sec) local ring network. The present Apollo hardware uses a Motorola MC68000 or
MC68010 microprocessor [40]. The 88000 instruction set is traditional and memory is byte ad-
dressed. A node typically bas from about 1M to 2M bytes of private main memory; it is not
possible to share main memory among multiple nodes. Each user node has a high rosolution bitmap
display; Apollo makes server nodes that do not have displays but which can be accessed from other
nodes on the ring. The DOMAIN software supports multiple processes on a single node; each pro-
cess runs in its own virtual address space. We discuss below those feature of the DOMAIN system
that are relevant to our work (we make some minor simplifications for ease of presentation).

The DOMAIN virtual memory architecture presents a virtual address space that is in principle 224
(16M) bytes long; part of that space is reserved by the operating system and the amount available
to user code is about 8M bytes (it is expected that later Apollo hardware will support a larger
virtual address space as true 32 bit microprocessors become available).

The process virtual address space is divided into 1K byte pages. For a page to be usable it must be
mapped to a disk file. By page’s being “mapped” we mean that it corresponds to a page in a disk
file. A memory reference by a machine instruction to a virtual address in the mapped page yields
a piece of the disk file page. Depositing a value into a virtual address modifies the contents of the
file. The pager is responsible for optimizing updates of main and disk memories.

Parts of the address space are made usable by issuing a mep system call. The call takes a file identifier
(discussed below), an offset into the file, a length to be mapped, and some locking information
(discussed below). The call returns the virtual address at which the file is mapped. In general, the
process has no control in selecting to which part of the address space a file is inapped. Execution

“Apolio uses the term node instasd of workstalion and so shall we.
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of machire instructions that refer 0 parts of the virtual address space that are not mapped result
in bardware exceptions. The amallest armount of virtval address space that can be mapped is 32K B
bytes; the amount mapped is always rounded up to the nearest 32K byte quantity. The samap EC,
system i used 1o remove aasocistion betwesn the address space and some filc.

Mluiviple procesazs ruaning on the same node can concurrently map the ssine part of the same fle,
aly the Llxs may be mapped to dilerent places in esch procos’s virtual eddozms space, Both
3 see any chaa;jws made by the other. Muliiple processss running on dilcrent nodes can
map the same Jle for read access oaly. Wille the iswest levels of Aegls allow multiple proceeses
oa difzrent podes to map the same Lle for write accem, the results of modifications to the Sl are
undeined. Thuis sort of access 10 £ s not ciicially supported by Apollo.

e

‘UL"

1t is pessible to map a segment of a file where the acyment is longer thau the curreat length of the
file. As ieferences are made to parts of the address space that correspond to parts of the file that
do not exist, dizk space i3 allocated and smociated with the appropriate part of the file. Disk space
is not allocated unless and unsil the referencs is made. S
The DOXAIN operating system, Aegis, does not preseat any traditional I/0 rystem calls like read K
or wriie. The oaly 1/O is done by the parer. User 1/0 is provided vis a user-stute subroutine
litrary., This library is implemented using the mapping primitives.

One zspect of the DOMAIN system that makes it unique among commercial workstations is that e
any fle on any disk sttached to any node in the local network can be transparently accessed by L
any process on any node. By *transparent” we mean that the accessing process does not nead 0
consider whether or ot the fls i3 on the disk attached to the node on which the process is running. o

[Py

Files are identified by a 84-bit unique identifer (UID). File UIDs are anique acroas all Apcllo nodes.
(Tae UID has the eresting node's hardware node number embedded in it.} The Aome node of a ille :

is the node whose disk contains the file. The map primitive takes we UID of a file to map. The le h
referred to by the UID can be local or remote (i.c. on the same node as the process ex=cuting the R
mayp call or not). h
The call to mep results in no disk I/0. Pages of tiie mapped 8le zre page faulted on demand from "_‘
the home node of the iile. The firat reference to 8 mapped page will cause s page fault. At that e
point the pager either reads the §le from the local disk, or sends a pege-ia roquest to the home node oo
of the mapped file. In the latter case, the pager must Sgure out what the fle's home node is based R
on the file’s UID. To do this, presently the DOMAIN system allocates 20 bits of the UID to be the R
node ID of the home node of the file. This means that a file can not be moved between nodes (a —
fils can be copied betweesn nodes and the original copy can be delesed, but the copy will have a new -
UID which contains the node number of the node to which the file was copicd). ::.
Aegis provides & set of system calls for naming files. These calls allow users to specify text path T
rames of files (path names are like Unix file names [43]). The purpose of the naming system is to AN
translate path names into UlDw. The naming system contains diroctories (which are reprerented N
as filles) that translate path pames into UIDs. No information about files per se {e.g. file length, —
location of file on disk) is stored in the naming system. The naming system could logically be o
implemnented outside of Aegis (modulo a few details). Wi
Aegis also provides a simple file locking mechaaiam. For our purposes, it suffices to say that one can .
control how many processes have write access to a file at the same time. This control is exercised e
at the time a file is mapped. L
3.3 Introduction to the implementation issues 1;‘.::._'
3.3.1 OM withla T -
How should the permanent object system be related to T? We sse two different approaches to this T
-P".-r
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question. The first approach is to think of T as the implementation vehicle for the system. In this
approach the programmey is lifted up from T and works consistently in 3 permanent object world
presented by the system. The T programming language might be modified in some ways to better
handle the system’s facilities and conccpis.

The second approach to setting the relationship between T and the permanent objxt system is to
think of the system as a set of utility procedures that are available to the T programmer. The user of
OM still programs in T he calls system procedures procedures to copy T objocts into the permanent
object space and back. The language modifications are only those that car be implemented with
T’s syntax modification tools (macros). The programnier has to be aware of when he’s dealing with
a permanent object and when he is dealing with a transient object.

The second approach is clearly less desirable, but it is much easier to implement. Another advantage
of the second epproach is that it does not require one to be a language designer. We believe that
one should decide what a language that is designed 1o deal with permanent objucts should Jook like
only after one sees the ways in which standard langusges are inadequate. In OM, we adopted the
second approach. The result was acceptable, but less than ideal in ways we will summarize later.

OM is written entirely in T. However, OM was written with a detailed understanding of how T is
iraplemented. We present. the OM implementation with respect to the T langrage and operating
environment. The details we discuss are in geperal not spparent to the programmer who wants to
use OM. When we use & phrase like “To T, feature is ...” or *In the OM implementation, jealvre is
...” we are describing how some aspect of OM is implemented, not how it appears to the programmer
who uses OM.

3.3.2 Refarence

Our first concern is the form of an OM reference ~ a reference to a permanent object. Just as
all T (i.e. non-OM} proceduree take T references to T objects as arguments, OM procedures take
OM referances 10 OM objects as arguments. Note that to T, OM references are objects of some
user-defined data type. But 1o the programmer azing Oid, OM references are (not surprisingly)
re{erencen to OM objects.

To create OM references within T we could use the standard T mechanism for introducing pew
types of objects. Unfortunately, this mechanism is expensive - all objects of user-defined types are
represented in the beap. It is unacceptable for OM references to be represented ia the hesp. If they
were, all procedures that return OM references would need o allocate storage simply to return the
OM reference. (We are not talking about allocating space for the OM object itaelf.)

Fortunately, one of T"s 8 type codes is unused by T. With virtually no modifications to the imple-
mentation of T, we can use this type code for OM references. Using this type code, OM references
can be represented immediately. Whatever format we choose for the reference, it must fit in the
upper 29 bits of a T reference.

Are 29 bits enough for an OM reference? If we were able to use all 2%® references, it might be.
However, we intend to use the divided mapped address reference design discuseed in section 2.2.2.
As noted in section 2.2.3 this means that we expect that we can not use all the nossible references.
Suppose we divide the refersnce roughly in half ~ say 14 bits of beap identier and 135 bits of within-
beap reference. This allows 16K heap identifiers and 32K references per heap, assuming we maintain
a 32K entry table that translates the in-heap reference to an actual byte offset within the beap.

Let us consider a modification to the multiple table mapped address scheme. Instead of treating
the least significant part of the reference as an index into a table of byte offsets, it can be the byte
offset itself. The advantage of this scheme is that we save one table lookup (ineinory reference) for
each dereference. If we are Jividing the reference into just two pieces, this savings is significant -
we have just one table lookup instead of two. The disadvantage is that we partially re-introduced
the problems amociated with the pure address strategy: the inability to easily move objects and the
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underuse of all poesible refeence bit strings. Bowever, lacking translation lookaside bardware, we
are willing to pay this price. As we will show, these problemrs can be reduced somewhas.

If we use this modified version of the multiple table mapped address scheme, 14 bits of in-heap
reference does not look so atiraciive: the maximum heap size would be just 186K addressizg units
ably bytes) ~ clearly nat larze eaocugh. If we expand ibe in-hesp reference, we must reduce
.p i0oatiler pan of the ruference, thus reducing the iotal number of beaps. I e wuat to
iosntiLers be unique for all tire (to allow heaps to be manually deleted), this linitetion

L unsccantable.

YVWe comciude that given the propertizs we waat of our object system, 29 bits is not emsugh for

an eblect reference, Belfore pursuing a remedy to this problem, let us first consider some of the
propertiss of data siructures.

3.3.3 Thae structure of data structures

Dara struciures are directzd graphs of objects. In practics, the grapha representing data structures
are not arbitrary. Coe sees trves, Lists, vectors, DAGS, ete., and conpections between graphs of these
tyves to form larzor rraphs. As a result, often a iarze dsta strusture bhas natural points of divisien.
For example, if & data structure s & list of trees, then t'ie graph is paturally partitionable at the
conneciion points betweer the trees. Note that this s a slaise property of a data structure,

Grapia of data struciures may alzo be partitioned based on their dymemic properties. For instance,
some vertices may be examined more {requently than others. There may be locality o riference
amcny the vertices; 2. a graph might be partitioned into subgraphs whoee vertices are accessed
around the same time.

in building & permanent object storage system, one can ignore the partitionability of data structures.
That is, if the system provides references that allow an object wo refer to any other object then it
can certainly implement any data structure. However, such a system is overly general. In general
it is not pecessary for an object to contain a reference Lo any other object in the world; it need only
refer to some amaller world of objects.

Providing the general functionaiity is expensive: in a system of reference, like Lizp, the size of
objects other than atomm® is proportional tc the size of the reference. Thus, we want Lo make the
ize of a reference as snall a3 poasible since doing w0 will reduce the amount of space required to
repiesent an ohject. Of course, if we make the size of a reference too amall, we make it impoasible
to refzr to an rdeyuately large number of objecta.

3.3.4 Local and non-local references

How do we take sdvantage of the locality of reference among objects in a data siructure while still
allowing references among arbitrary sets of objects? Our solution is to allow two kinds of references:
local and noo-local, Local references are uzed to refer to “nearby” and logically related objects:
objects in the same heap as the source of the reference. Non-local references can be used to refer
to wny object. Local references are smaller than non-local references. There are two dereference
mechaniams, one jor local mierences and one for non-local refsrences.

Theve is a problem with baving objects connecied by different kinds of references: when a program is
traversing a data structure, following refersnoes, it needs to know what kinds of reference the object
currently being examined containg so that (1) it can extract the appropriate number of bits from the
chject, and (2) i* can apply the appropriate dereference mechanisin. Recall that cur original model
of the imolementation of an object (see section 3.1} is that an object is a vector of eguel-sized slota
containing referencos to other objects. In s straightforward implementation, if there are different
size references, the alots of an object have to be variable sizz and the object has to have a descriptor

$The Linp term for objects that 6o not contain referencas to other objects.

[
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Figure 3.2: Three objects in two heaps

of some vort that allows procedures that want to extract slois from object to tell where each siot
bezins and which kind of reference it contains. This implementation would incresse the cost of
accewaing slots in objects by an unacceptabie ammount.

A slightly different implementation approach that supports two kinds of references has the non-local

references stord cutside the object. An shiect has fixed size slots, but in addition 1o being able to
contain a reference to a local object, a tlot can contain a reference to a non-local rzference. Any
object alot that needs to contain a non-local reference instead contains a reference to a non-local
reference. This reference to & non-local reference can be simply a local reference. Such a locai
reference can be distinguished from a lo-al reference to a local object by reserving a bit for just
that purpose. This bit can be either in the Jocal reference or in the storage pointed to by the local
reference. We will discuss this in detail later.

in summary, all objects that reside in the same heap can rvier among themselves using local refer-
ences. The slots in an object are the size of & local referwuce. For an object in one beap to refer to
an object in another heap, it must go through an intermediste non-lccal reference. We asvumne thzt
inter-heap refereaces are infrequent. Another way of aayirg this is that obiects that are part of one
data structure or partition of & data structure arv in a single besp.

Figure 3.2 diagrams three objects in two heaps. Object A (which has § slots) contains & reference
to object B (which has 2 slotws). Beth objects A and B are in bcsp 1. Object A alsez contains a
reference to object C (which has 8 siots). Note that object C is in heap 2. Thus, for ob)ect. Ato
refer to abject C, there must be a non-local-reference (labelled X in tie disagram). -

The nice property of this approach is that it is cheap in terms of both time (i.e. time to follow
a reference) and space (i.e. space occupied by a reference) to connect two objects that are Ia the
same heap. Thus, we are optmising the kind of activity we expact to occur most fraquently: local
traversal and local reference. By local traversal we mean the following of references between objects
within the same partition; programs tend to localize their traversal to a partition of a data structure
(this is similar to the locality of reference argument in virtusl memory systems). By local reference
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Figure 3.3: RPointer representation

we mean refersnce between two cbjects within the same partition; an object within a partition most
frequently needs 1o contain a reference to ancther object within the sanwe partition,

An important property of locai references is that they wre meaningful only in the context of some
heap. That is, in order to know what a local reference refers to, one has to know with what heap
the local reference is associated. The simple and obvious rule here is that a local reference is always
azsocizted with the bheap from which the local refersnce was itsell extracted. Local references are
rot zreated out of thin air. All local references come £.m inside of objects that reside in some
hewp or are returned by a primitive that crestes new objects. In the lstier case, the heap s known
because it was suppliad by the caller to the creation primitive. In the former case whoear did the
extraction must have known what heap he was extracting {rom and can associate the extracted local
reference with that same haap. The only question is how one geis the first reference from the first
beap. We will acdress this question later,

We use the term RFointer to mean *local reference”. RPointers are byte offscts from the base of
the heap in which the object being referred to resides. (The *R” in “RPointer® comes from the fact
that RPointers are Relative to the base of a heap.) We use T s spare type code to indicate an object
of the T type OM RPointes. RPointers are represented immediately in the 29 upper bits of the T
reference,

We can now re-address the issue of the size of reference. A 29 bit RPointer allows beaps ap to more
than 500M bytes; objecis can be up to this length. This certainly seems like enough for the pear
future.

3.2.3 RPointers within T

It is important to understand that to T there is nothing special about RPointers - they zre simply
29 bit objects. OM mimics T's implementation of types: the low 8 bits of the RPointer form a type
code which indicates the type f the OM object referred to by the RPointer. The meanings of the
OM type codes (i.e. what type code means what type) is different from the meanings of the T type
ccdes.

Figure 3.3 shows the format of an RPointer within a T refersnce.

3.3.86 Object code

In the present implementation of OM, object code can not reside in OM heaps. All code is loaded
into the transient heap. The resson for this limitation is that the nature of an objéct module
produced by the T compiler requires that when it is loaded into a process, portions of the module
must have process virtual address written into the representation of the module in memory. We can
not sllow such process-dependent information in OM heaps.
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The structure of object code is complex and intertwined with the T compiler. When compiling a
module the T compiler produces an object module that contains a pure, position-independent code
section and an impure data section. The pure code refers through the data section to get at values
of variables in other modules. (Since T doesn’t bave special “function cells® but rather uses the
normal variable binding mechanism to store procedure values, the looking up of values of variables
in other modules is common.) When a module gets loaded, the part of the data section that is
used this way by the code gets filied in to contain references to all the non-local variables that are
referred to by the code in the module. Hence, the dats section becomes impure.

3.4 Heaps

3.4.1 Heaps in plain T

T allocates objects using a simple heap allocation system. At startup it allocates two large pieces
of the process virtual address space. We call these pieces the transients heaps. Since Aegis does not
support the traditional concept of swap space (i.e. pieces of the disk that are dedicated to backing
process pages that are not part of a disk file) T obtains these pieces of address space by mapping
two temporary files into the process virtual address space. These files are deleted when T exits.

Only one transient heap is active at a time. A heap pointer held in a hardware register is initialized
to hold the virtual address of the beginning of the active transient heap. When a procedure wanis
some storage to hold an object, it simply increases the heap pointer by the amount of storage it
wants (rounded up to the nearest multiple of 8 bytes) and uses the old value of the heap pointer
as the reference to the new object. When the beap pointer reaches the end of the active transient
heap (i.e. when there is not enough room in the active transient heap to allocate an object) a GC
Jlip occurs: the iractive heap becomnes the active heap and a copying garbage collector is invoked to
copy all the reachable objects from the previous active heap into the current active heap. The set
of reachabie objects is determined by recursively following all references from the root set of objects
knowr = p.isii by the garbage collector and all references from variables on the program execution
k.

3.42 Dl Ileaps

Sinc: OM ran - ithin an existing operating system that has its own ideas about using the disk, we
have o work w-uhin the operating system’s filesystem. This is not too much of a problem - we can
simply emb<: sur system within a single large file. However, if we expect to work in a multi-user,
multi-appll - .0 environment it probably makes more sense if we use one file per heap. This allows
:ndividual v 1. 1 or applications to use normal file system primitives to copy, delete, backup, protect,
and if nacessary examine the contents of heaps he controls. If all the objects resided in one large
file our system would have to duplicate these tools. We can consider each heap file as a separate
disk and che system can function along the lines discussed earlier about a multi-disk system.

OM’s basic extension to T is the introduction of support for multiple simultaneously active heaps.
OM provides primitives for creating objects in these heaps. These primitives take an argument that
identifies the heap in which the object is to be created. OM also provides primitives for accessing
slots within objects. These primitives take both an argument that identifies the heap in which the
object resides and an RPointer argument which identifies the particular object within the heap.

An OM beap is mapped into the process virtual address space when objects in the heap need to
be referenced. The process of mapping is not very cheap; it requires no disk 1/O until a reference
ia made, but the map call is a system call (requiring a context switch) and the manipulation of
the memory translation hardware by Aegis is expensive compared with the cost of doing a single
memory reference. However, we assume that once a heap is mapped that many references to objects
within the heap will be fhade. We believe that the way to measure the performance of a system
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such as ours is to measure the average cost of & reference. If the number of references per mapping
operation ia high, than the average cost of & reference is not substantially affected by the cost of
the mapping operation. .

OM heaps are position independent. An OM hesp is a collection of OM objecta that refer to each
other veing RPointers. Recall that RPointers are offuets from the base of the heap. This allows heaps
to be placed at any position in the virtusl address rpace without having o relocate the contents of
the Rawp.

There are two reasons for wanting to aveid relocation o account for the position that » heap is
mapped st. Flmt, the cost of activating a heap (l.e. the steps required before the objects of intarest
in a heap can be examined) would be intelerably hizh., Worse yet, the cost would be proportional to
the number of objects in the heap, not the number of objects one needs to examine (*oa demand”
relocation seems overly complex). The second problem is that if the heap’s contents are relocated,
then ths heap can not be used simultaneowsly by multiple processes running on the same node. This
is because the processes can not guarantee that the heap would be mapped into the same part of
the virtual address space for all processes wanting to access the heap.

3.4.3 MNaming OM heaps

The primitives that sctivate and deactivate heaps must bave a way of referring to heapa. As we
said ewrlier, henna are stored in DOMAIN fles, one heap per file. There are three possible ways of
naming heapa: .

1. Use DOMAIN path names (variable length strings).

2. Use DOMZ IN £le UIDs (24 bit integers).

3. Make up oar own naming acheme.

Approach (1) is the obvious approach ~ users are already accustomed to dealing with DOMAIN
path pames. The DOMAIN naming systesn allows fles to be orsanized hierarchically; reiated heaps
could have sunilar names. The drawback to using path names is that they are long and not of
fixed length; this increases the overhead raquired for manipulating them. As we will see Inter, heap

names need o be embedded inside OM data structures and will be manipulated fairly frequently.
Also, using path names means that the hesp activation time includes the time it takes to turn a
path name into a file UID.

Approach /2) solves the overhead problems and saves the pathname to UID conversion. However,
UlDs are elements of a flat name space. The DOMAIN user interfuce is designed to deal with path
names, not UIDs. For a prototype system such as the one we built, we want to make it convenient

to deal with failures using tools in the surrounding environmest. Using UIDs would have made this
difficuit. '

We adopted approach (8). Our naming scheme uses 29 bit hesp unique identifiers called HIDs.
Being fixed length and small, HIDs are easy to manipulate. HIDs are assigned by OM which keeps
a global word that holds the number of the pext HID to assizn. We assume that heaps are creatad
relatively infrequently so that having a single global word won’t be a serious bottleneck.

OM maintains a permanent global table translating HIDs into DOMAIN path names. When a
HID is presented to the heap activation primitive, the HID is translated into a DOMAIN path
name which is in turn translated into a UID of a file which is then manped. (The translation table
also can translate file names into HIDs; this feature io useful for debugging.) There is no reason
that the HID translation table couldn’t convert HIDs into UIDs except for the prototyping problems
mentioned above. If OM were to be made into a production system, we wos!d have the table contain
a HID to UID tracalation. .ot

The giobal table is itself represented as a OM object - a permanent hash table. The HID and path
name of the heap holding the table object are known a priori. This heap is called the HID Aeap.
The HID Leap is also the place where the “next HID to use” counter is kept.
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The HID-to-path-name transistion table is a potential bottleseck. Cne way in which we reduce this
problem is by having processes that are using OM keep o cache of translations that have already
been requested. (The cache can implemented as a hash table kept in each process’s address space.)
Once 3 HID has been translated in one process, future transiations of the same HID do not need
to consult the global table. This is possible since HIDs are unique and never reamigned to refer to
some other heap.

Another way to avoid the bottleneck of a global HID translation table is to have muitiple tables.
This caa be implemented by dividing the HID into pieces in a way analogous to the scheme for
dividing object references. In our prototype system the OM user can specify the path name of the
HID heap 3o he can run his own private world of beaps and permanent objects; he can thrs reduce
the number of processes contending for access to the HID beap. In the prototype system each
isolated applization ares - i.e. a set of application programs that do not need to refer to objects in
another set oi apolication programs - Las its own HID heap. This is mot a restriction of the current
sysiem; rather it is a suggested mode of cperation that seemns prudent while aspects of the system
are still under development.

3.4.4 Active heaps

When a heap is activated, the heap can be characterised as a virtual address in a process and a
length (i.e. the amount of space the beap occupies in the address space). We refer to the starting
virtual address of an active heap as an RcapB. The RHeapB of an active beap is all that is needed
to dereference RPcinters into the heap: the RHeapB is added to the RPointer to form a virtual
address of a particular object.

It turns out that it is necessary to asmsociste some additional mfoﬂnwon with an active heap. An
object of a type called RHesp holds all the information aseociated with an active heap. RHeap
objects contain:

e The RHeapB of the heap.

e The number of bytes mapped.
e The HID of the heap.
e The activation count of the Leap for this process.

The heap activation primitive returns an RHeap record. All the OM primitive procedures for
manipulating OM objects take an RHeap argument.

The purpose of the RHeapB field is clear. The resson for the byte count field is that the DOMAIN
unmap primicive requires the length to unmap - there is no way to tell the Aegis to unmap as much
as was mapped. Storing the HID of the active heap aliows quick conversions from a reference for
an active beap to the HID of the herp.

The idea behind the activation count is to optimize multiple invocations of the activate primitive
on the same HID. Such multiple invocations do not result in the heap being mapped multiple times.
{Aegis allows this, but it is clearly a waste of address space.) Ratber all activations of a heap other
than the first activation simply increment the activation count and return the previously ailocated
RHeap object for that heap. A table transiating HIDs into RHeaps allows this; only one RHeap
object is ever created in a process for a single heap. This table is part of the process context - it
resides in the transient beap. Deactivating a heap decrements the heap activation count. When the
activation count drops to zero, the heap is unmapped.

Encapsulating RHeapBs in RHeaps allows a heap to be moved around the process virtual address
space nmply by changing the RHeapB slot of the RHesp associated with the heap. This sort of
motion is neceseary because the heap is mapped for a particular size, and when it needs to grow
beyond the size for which it was mapped, it must be unmapped and then remapped, and there is
“no gnarantee that the heap will be mapped into the same spot.
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Oue price for embedding RBespBs in RHeaps is that it adds one extra memory reference (and
probably one extra machine instruction) to the dereisrence procedure: given an RPointer and an
Rieap, the RHeapB must £rat be extracted from the RHeap before an object’s virtuzl address can
be calculated. The coat of the memory reference is not a great concern since the DOMAIN hardware
h2s a memory cache; we can safely asume that for multiple dereferences into » single hewp, the
REzep3 of the that hoap will be in the cache.

The izsue of managing the procems virtval address space is one which we bave not pusued extensdvely,
We rely on the Aeyls mapping primitive to determine where to map heaps. Iis allneation stratagy
appears to be adequate for our purpeses. COpe optimization we could easily make is to not actually
unmap a beap just because ita activation count hzs dropped to sero. We could koep it mapped unti]
the address gpace became full and some heap that lsn’t siready mapped is activated. At that point
we could unmap the insctive heaps using some LRU strategy. This optimizsticn will sometimes
eliminate the cost of the mapping and unmanping operations. One rezson we haven’t adopted the
eptimization is because (1) it hasn’t proved necesaary, and (2} it raises some concurrency problems:
if a proce=s on one node wants to activate a heap that is inactive but still mapped into a process
on ancther node, it will be unable to do so.

Another posmibly usaful address space management technique is to unmmep heaps that are still active,
but which do not appear to be being accesmed. Such a heap eould be unmapped and the RHeapB slot
of the Rheap for ths heap could be modified so that refsrences through it wounld cause an addressing
error. The ervor could be trapped by OM and the heap reemappod. This ‘achnigue would be useful
if a procszs peeded to bave multiple large hesps simultaneoualy active. This is especially true in
the present DOMAIN 24 bit addressing eanvironment. With an address spece of 4G byte (32 bit
address), it is not clearly ws important.

3.4.3 OM heaps in T

OM uses some kncwledre about the internals of T in order to make O heaps accemsible to T
procedures. To T, RE2apBs appear to be T wxtends; ie. references to RHeapBs are extend-type
references. With the T type field masked to seros, an RHearB reference is the startirg address
of a mapped heap. Note that this address is outside of the tranasient keap and bence, from T's
perspective, the RHeapB reference is invalid. {For a reference to be valid to T, when viewed 28 an
address, the reference must be to a part of the address space where the current transient heap is
mapped.) Fortunately, the invalidity doesn’t matter. The only potential serious source of problem
might be the T garbage collector. However, when the garbage collactor encounters an apparently
invalid pointer, it simply copies the pointer to the new transient heap and does not follow it.

Anocther small problem is that T expects to see a template pointer in the first cell of an extend.
Clearly it is not possible to embed a T template pointer into an OM beap - it would violate the
process context and position independence properties of the heap. But not flling in the template
pointer slot causes no problems unless an operation is applied to the RHeapB reference; in no other
case does T refer to the template pointer slot.

Since OM hezps appear to T to be extends, a cell from an OM heap can be accemsed using EXTEND-
XLT, the T primitive for accessing a cell in an extend. The lowest level OM procedures use EXTEND~
nr.

3.4.6 Summary of heap features

Having described the implementation properties of heaps, let us review why the heap approach
makes sense,

Heaps are position independent. Since hezps never contzin any machine addresses, heaps can be
mapped into any part of a process’s virtual sddress space without any relocation being required.

-------
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Relocation is undesirable because it is time-cousuming and makes it impossible to share the hesp
between multiple processes.

Heape take advantage of clustering properties in configurations of objects {i.e. data structures).
Heaps take advantage of DOMAIN paging facilities. Only those disk pages of heape that contaiu

objects that are actually referenced are iransierred from the disk into main memory. This transder
is the responsibility of the Aegis paging system.

3.5 Ihtra-heap references

OM extends T with a set of procsdures that take RPointers and RHeaps as arguments. These
procedures fall into two genersl categories: sllocators and sccessors.

An allocator creates & new OM object. An OM object is a contiguous piece of an OM heap. The
slots of the object can contain immediate values or referencas to other OM objects. An allocator
takes at least two arguments - the heap in which the object is to be allocated, and the type of the
new object. An allocaior may take additional arguments which specify things like the initial values
of parts of the object. In terms of the OM implementation, an allocator takes at least one Rileap
argument and returns an fiPointer. In terms of the OM interface that the programmer sees, the
allocator returns an OM object.

An accessor retrieves or modifies a slot in an OM object. In terms of the CM implementation, an
accessor takes at least one RHeap argument and one RPointer argument and returns an RPointer.
In terms of the OM programmer interface, an accessor takes an OM object and returns an OM
object. .

An RPointer and an RHeep argument taken together form one logical argument that refers to one
object. Thus, for simplicity we will sordetimes say that such procedures take “RPointer/RHesp
arguments®, Also, we say that some pair of variables R/ rcfer to an object if R is a variable
whose value is an RPointer to an object in a heap that is referred to by 1. Since we are descridbing
the OM implementation, we tead to say that a procedure takes an RPointer/R ‘leap and returns an
RPointer. However it is important to note that RPointers are an artifact of the CM implementation.
The programmer who uses OM thinks of the procedure as taking or returning «a OM object.

3.5.1 Active objects

Note that sccessors and allocators manipulsate only cbjects in active heaps. ‘'e call such objects
sctive obyecta. There are no primitives that take an RPointer and, say, a HID to .dentifv a particular
object. Access to an object in this way would be very inefficient. Each access would have to insure
that the heap referred to by the HID is active. I it is active, the associat~3 RHeap would have
to be located; if it is not active, the heap would have to be activated. PBui would the heap be
deactivated after the access is complete? Clearly activating and deactivating around each access
is too expensive. The set of active heaps might be treated like ~ages in a virsual memory system.
Heaps would be activated and deactivated based on some usage pattern.

One might argue that we have brought this expense on ourselves. That is, by introducing the
notion of heaps we have also introduced the inefiiciency of having to activate and deactivate heaps.
However, in any system that deals wiih disk storage these problems will arise. In the idesl world
accessing the disk would be as fast as accessing main memory and the disk could be treated as an
enormous flat address space. Access 0 an object would be implemented as a direct fetch of the
object’s representation from the disk. In the real world, data must be transferred from the disk
to main memory in large chunks if access is to be efficient. Viewed in this way, heap activation is
simply the preparation for bulk disk data transfer. No system can avoid this kind of preparation.

Io short, we feel that the compiexity of managing beap activation ‘s better left to a higher level
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of the system. The higher Jevels, having a uotion about the legical behavior of a program, will be
able to better guess when a heap should be activated and desctivated. At the low level of primitive
sccessors and allocators, activation is explicit and only sctive heaps can be munipulated.

3.5.2 An example: O pairs

Let us consider an OM pair (also kaswr as a “cons celi*). ON peir are 8 bytes long - enough for
2 alots. The procedure 1CCUS creates 3 new OXM pair and initiziizes the pairs slota. 180H3 tales
thres arguments: the Reap of the heap in which the pair is to be allocated, the initial contents of
the first slot {called the cer), and the inidal contents of the second slot {called the edr).

Let us lock at what 10213 must do. First, it must allocate space from the heap. For every builii
OM type, there is a procedure that allocates an object of that type and does nothing to the contents
of the object. For UM pa.'u'a, this procedure is calied 1PAIR-ALLOC:

(CEPINZ (1COUS PY P2 HIAP)

(L=T ({22 (IPAIR-ALLCS I249)))
(STT (1PAIR-CAR RP EZAP) P1)
SZT {IPAIR-CIQ RP ITAP) P2)
2P

10013 calls 1PAIR-ALICS and then uses the OM pair sccemsors to initialise the contents of the the
pair, {PAIR~ALLCC uses one of a set of low-level procedures iSas manipulate beap contents directly
and are not accessible to the user of OM. Cne of these procedures is calied REZAP~ALLDE,

(DEFINT (IPAIR-ALLOC HAP)
(MAXE~RPOINTER (RSZAP-ALLDC BZAP 2) %LIPAIR-TAG))

RIZAP-ALLGC takes an RIesp argument and a number of cells to allocate and returns an integer
offiget into the beap. MAIZ-RPOINTLR is a primitive thal cresies an RPointer (immediate) object
from an integer olluet and an integer value for the RPointer tag feld.

Before allocating space, REZAP-ALLCC must insure that there is room in the beap Two questions
that must be answered before allocation can Eappen:

1. Can the aize of the heap be extended without extending past the mnount for which the heap
is currently mapped?
2. I the answer to (1) is no, should the heap be extended or garbage collected?

"Every OM heap hes a beap pointer at a fixed, knewn location within the heap. The heap pointer
is used just like the the T transient heap pointer. When a beap is activated, it is mapped for its
current size. {Determining the current length of a heap does not require mapping the first page of
the heap for the sole purpose of extracting the heap length field from the beap. This is be :ause the
length can be obtained {rom the file length maintained by Aegis) As we said earlier, the actual
amount of address sTace mapped is the next nighest multiple of 32K bytes. Thus, the heap pointer
can typically advance some before the heap needs to be remapped for a larger size.

The process of remapping for larger sives continues as the hesp expands until the heap grows to a
specified size. This size is called the Aeey maz which, like the heap pointer, is at a fixed, known
location within the heap. The heap max is a settable parameter for a heap. When the size of a heap
reaches the beap max for that heap, the garbage collector is invoked to reduce the size of the heap
(we will discuss garbage collection later). It is up to the application programmer to divide his data
in such a way that heap sizes do not grow in an unbounded way (i.e. that when a heap reaches its
heap max that it is not because the heap is full of mon-garbage).

To describe REEAP-ALLOC’s behavior concretely: it compares tte the heap pointer plus (e allocation
request to the length for which the heap is mapped. U there is room, the heap pointer is simply
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incremented. N there is not room but the heap’s sive is less than the beap max, the heap is remapped

for » larger sive. (While remapping is expensive relative to the cost of incrementing the heap pointer,

remapping bappens infrequently compared to the aumber of times the beap pointer is incremented. )

If the heap max is reached, the garbage collector is invoked. .
IPAIR-CAR and !PAIR-CDR are the primitive accessors for OM pairs; they access a pair’s cer and ‘
edr slots, respectively. In the context of the SET special form, these sccessors modify the contents

of a pair. Let us consider |PAIR-COR in detail (JPAIR-CAR works :na!ogow:ly) tPAIR~COR takes an

RPointer and RHeap arpument and calls RPOINTER-EXANIYE.

(DEFINE (!PAIR-CDR P EEAP)
(RPOINTPR-EXANINE P HEAP 1))

The RPOINTER-. .. procedures are part of the OM implementation and are not available to appl-
cation programmers. All OM objects are accessed using these procedure:. RPOINTIR-EXANINE takes
an RPointer, an RHeap, and a cell index, computes the total offset from the base of the heap, and
calls REEAP-EXAMINE.

(DEFINE (RPOINTER-EXANINE RP H 1)
(XIEAP-EXAMINE B (¢ I (RPOINTER-CADDRESS ¥P))))

REEAP-EXANINZ is a procedure that takes an RHeapB and an integer cell index and returns the
contents of the specified cell of the heap. RPOINTER-CADDRISS extracts the cell number part of an
RPointer. REZAP-EXAMINE is juct another name for EXTEND~ELT, the T procedure for aewmng an
element of an extend (recsll that hesps look like extends to T).

All the procedures mentioned in the preceding paragraph are iatesrsdls ® 50 that there is no pro-
cedure call overhead. OM contains no explicit machine language instructions. It relies eolely on T
primitives and the T compiler.

The T compiler compiles CAR into 2 82000 instructions (3.8 peec oa a 10mHz 68000). The T compiler
compiles 1PAIR-CAR into 14 instructions (14.4 usec). A T compiler that was somewhai smarter,
but still had no built-in knowledge about OM procedures could reduce that to 7 instructions (11.4
usec), $ of which were eimply shifts on regisiers (i.e. had no memory operand). There is an ongoing
effort by the impkmentors of T to produce a new T compilar that cun produce substantially better
code than the current T compiler [45], and we expect that the new compiler will be able to produce
the 7 instruction version.

3.5.3 Arguments to OM procedures

OM’s procedures for manipulating OM objects are modelled after T's procedures for manipulating
T objects. The major diference between OM’s and T's procedures is that OM procedures take one
additional argument for each argument that refers to an object in a heap. This extra argument is
an RHeap. Some OM procedures take several RPointer argumeats and only one RHeap argument.
These procedures assume that all the arguments refer to objects in a single heap ~ the one specified by
the RHeap argument. Some OM procedures take one RHeap argument for each RPointer argument.

The fact that OM precedures require these extra arguments make them somewhat inconvenient for
the application programmer. We will pursue this issue in the next chapter.

3.6 OM types: Introduction

As in the T type system, some OM types are identified with type codes and others with the extend
mechanism. The following types have reserved type codes:

$T's term for procedures whose bodles are substituted inline at the call position.

......................................
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e Pair

e String

o Text

e Null

o Extend
. e TypeID
Non-local reference

[

One type code is presently unused.

3.8.1 Non-exctends

/e have slready discussed pairs. One additicnal item about pairs is that they are often chaired
together by their edrs to form a st of pairs.

Charscter tirings are implemeanted in two parts. An object of the text type is a fixed length vector
of characters with a Jength at the front. An objest of the string type is a reference to an object of
the text type plus an index and a length which select a portion of the text object.

The null type is a set containing exactly one cbiect - acll Neils mejor function is Lo mark the end
of a list: the edr of the lagt pair in & iist of pairs contains null ~

In addition to these types, all T oojects that are represented immediately {e.g. Hxnums and charac-
ters) are valid OM objects. T objocts that zre not represented immediately can not be OM objects
because their representation is part of the transient heap.

3.6.2 Zxtends and type ideatilars

The extend type is not reaily a type at all but a flag that teils OM that the sype of the object being
referred to (called the estend) is determined by the contents of the frst slot of the extend. In T,
this tlot containg a reference to the handler, the object code object that implements operations on
objzcs containing that referencs. In both T and OM extends are used to represent all objects of
user-defned type. Since OM can not store object code in heaps, we need some way of indirectly
referring to an object’s handler. Evea if we couid store object code in heaps, we might still want
this level of indirection. '

We have already explained why it is difficult to include object code in OM heaps and why we have
decided that all object code resides in the transient heap. However, it is not possible to refer to an
object in the transient heap from an object in an OM heap. The contents of the transient heap are
specific Lo a single process. If we were to put & reference to a transieat heap object into an OM
heap, the OM heap would not be free of depenaencies upon a particular procesa. Thus, we can not
meke the first alot of an extsnd pointer to object code that resides in the transient heap. Since
extends reside inside heaps and the object code that supports extends reside cuiside heaps, it is
pecessary to have a mechanism for finding something outside a heap from something inside a heap.
This mechanism must rely on some data structure that is not tied to a process’s context.

OM has objects of type type identifier for ideatifying the type of an object without reference to
an obje:t in the transient heap. Type IDs are represented immediately in the upper 28 bits of
RPointers. Type 1Ds are simply integers in the range [0..22% - 1]. Each type ID identifies some
type - ultimately some piece of code that implements operations on objects of the type. Unlike T's
template pointers (which.can be considured a type ID of sorts since templawe pointers define how
objects respind to operations), type IDs are: (1) not direct pointers to object code, and (2) ere
presentod to the application programmer. A type ID is an indirection mechanicm that allows the
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specification of an extend’s type to be separate from the object code that implements operation on
the object. Type IDe are stored in the first cell of OM extends.

Extend types come in two varieties: primitive and user-defined. Primitive extend types are extend

types about which OM has built-in knowledge. Vectors are examples of primitive extends (i.e. .
objects of some primitive extend type). The eesential property of primitive extend types is that

their type ID is fixed and “nowu by OM. The handlers for primitive extends are built in to CA{.

We will discuss user-defin.  types later.

3.7 Inter-heap references

The previous two sections have dealt with the issues of objects within & single heap. This section
deals with the mechanisms that allow objects to refer acroes heaps.

3.7.1 Non-local references and garbage coilection

An OM object can be completely identified by identifying the heap in which the object resides and
the particular cbject within the heap. As discussed in section 3.4.3, heaps are named with heap
identifiers ~ HIDs. Given a HID, we can idectify an object within the heap nained by that HID with :
an RPointer. Thus, it seems taat a HID, RPointer pair can be the nen-local reference discusied in -
section 3.3.4. -
However, this acheme is not adequate since it makes the independent garbage collection of heaps ‘
impossible. Independent garbage collection requires that it is possible to identify &ll the objects

that are referred to by other objects. In general, non-local references to an object appesr outside

the beap that contains the object. Thus, given the present scheme, in order to garbage collect a e
single heap, all heaps mast be examined to see if they contain non-local references to objects in the -
heap being garbage collected. Scanning all the heaps to find references into the beap being garbage . e
collected would be nearly as expensive as garbage collecting all the heaps 2nd a8 a result we could
not consider the garbage coilector as capable of garbage collecting beaps independently.

To garbage collect heaps independsatly it is not necessary to know where the non-local references
to objects in the heap being garbage collected are, only tist such non-local references exist and
to what they refer. At garbage collection time, knowing that the non-local references exist peed
not require finding all the non-local references as long as every time such a referenes is formed,
that fact is recorded some place easily accessibie to the garbage collector. That is, that when a
non-jocal reference is formed, an entry is made in a special part of the heap containing the object
being referred to. We call this part of the beap the Aeep indes

The heap index is a vector of RPointers to all the obiects inside the heap that are referred to by
non-local refzrences outside the heap. The sise of a beap’s index is fixed at the time the heap is
created. We call the process of adding an RPointer to the heap index exporting. A reference count -
is associated with each RPciutsr in the index. The reference count indicates how many non-local
references are using that element in the index If the reference count for an element is sero then the
element is considered to be free ~ it can be used the next time an RPointer needs to be exported.

Garbage collecting a heap consists simply of following all the references leading from objects in the
heap index. All objects found by this procedure are copied into a new heap. Once all the objects
are copied, the old beap can be deleted. Note that the entry in the HID heap (translating HIDs to
DOMAIN file names or file UIDs) must be updated to refiect the fact that the heap is backed by a
pew file. We will discuss more of the details of garbage collection in the next section.

The heap index allows the nos-garbage in a beap to be identiied. However, a problem still remains: -
in general, after garbage collection the offsets of the non-garbage objects have changed. Thus any v
non-local references in other heaps will by wrong. To solve this problem in the present non-local -
reference scheme requires that the garbage collector can find and fix all the non-local references to —
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Ge( Baap );
begia
HeuZeap := NakaHeap();

for I := 1 %o SizsClsenlndex{ ¥ewSaep ) do
Sotideapladexiiot( Hewlsap,

I,
Celuo{ BeapladexSlet( Hsap, I ), Hevleap )
)

Daletelaan( Nowisap );
and;

GeOne{ Obj, Beap ):
bagia
if Atsmie( 0%§ ) tdan
HewCb] 1w CopyAtom( Cdj, Baap )
alaés bagzia
Eawldj := Hakelbj( Bizelflbject( Chj ), Haap );

for I :» 1 to Bizs0?0bject( Cbj ) do

Sat0b3Slot( Hawldj, Y, Celzal O0%i8lae( Cuj, 1) );
end;

return Aswld);
sod;

Figure 3.4: Sketch of the garbage collector

ihe heap bedng Qarb&ge collected. However, if we modify the format of non-locs] references, we can
avoid the problem.

Lat us change the format of non-loct] references to covtain a HID und a Aeap index offsct, rather
than a HID and an RPointer. A heap index ofiset is an iuteger that identifes a particular element
of a heap index. We call theze non-local references LPointers (the *L” is for *long®). As a part
of garbage collection, the index is copied from the oid heap to the new heap, all the elements of
the index being modified to contain the new positioas of objects referenced from the index. Since
LPointers refer to objecta indirectly through the besp index, and because the garbage collector nas
insured that the elements of the index refer to the same objects they did before garbage collection,
the LPointers do nct nesd to be modiSed.

Figure 3.4 conta.ns a sketch of the garbage collector. The garbage collector performs a tree walk of
all the objects in the heap. The heap index is the root of the tree. When an atom (leaf) is resched,
its contents ars simp.y copied i.\to the new heap. For an internal node, a node is created in the new
heap. The new node’s slots are filled with the values of recursively applying the garbage collector
to all the old noile™ slos.

Note that for the pirposes of the above sketch, LPointers are atoma. That is, the garbage collector
tree walk does not foliuw LPointers to objects in otber heaps. The point of our scheme is to allow
heaps to be garbage collected independenily, not to garbage collect all heape at once,

How is the heap index maintained? So far all we've said is that when u LPointer is formod, an
entry is made in the beap index; the entry <ontains an RPointer to Lthe object which the LPointer is
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to identify. What happens when the object that refers to the LPointer becomes garbage? At that
point, the LPointer becomes garbage. When all the LPointers that name a particular heap index
element become garbage, then the object referred to by the RPointer in the heap index elements
becomes garbage too. Garbage collection as we've described it doesn’t do anything about garbage
LPointers xnd there is no mechanism for deallocating elements of the heap index.

Our goal is to free elements of the heap index when all the LPointers that are using an element
becomes garbage. To do this we modify the garbage collector so that after all the non-garbage
has been copied from the old heap to tke new heap, all the garbage LPointers in the old heap are
examined. For each garbage LPointer, the reference count of the index element of the heap referred
to by the LPointer is decremented by one. When the count reaches sero, the space occupied by the
object that is no longer referred to by any LPointers is not reclaimed ~ the space is reclaimed only
when the heap containing that obiect is itself garbage collected. At that time since the object is
no longer referred to from the index, the object will not be copied into the new heap and the space
is thus reclaimed (assuming the object that is not referenced from the index is also not referenced
from some non-garbage object in the beap).

To be able to traverse ali the garbage LPointers at the end of garbage collection, it must be possible
to find all the LPointers in a heap. This can be achieved by maintaining a linked list of LPointers
whose root is at some fixed place in the heap. Traditional garbage collection techniques require one
to be able to determine whether an object has been copied out aiready. Thus, at the end of garbage
collection, this list can be traversed and any LPointers that have aot been copied to the new heap
are garbage and the procedure described above can be applied to them.

Note that the above scheme does not handle circular references across heaps. For example, if object
A in heap 1 contains a reference to an LPointer to object B in beap 2, and object B contains a
reference to an LPointer to object A, then even if there are no other references to objects A and B,
then the space occupied by A and B will never be reclaimed by the garbage collector. In general,
only by garbage collecting a set of heaps at once can the circularly linked garbage objects in that
set of beaps be found and removed.

3.7.2 LPointers in detail

LPointers must be large enough to contain & HID and an offset int.. a hesp index. Ideally, LPointers
would be represented as T immediate values the way RPointers are. Unfortunately, T does not
have any more spare type codes. However, it is worth examining the packing of LPointers into T
references since in the long run T's reference format might change to allow more immediate types.

Are 32 bits enough to hold a HID and an offset into a heap index? First we need to decide whether
HIDs are tn be unique for all time. Unique HIDs aliow HIDs to be explicitly deleted. If HIDs are
unique, reference from LPointers to the contents of a deleted hesp can be detected because we are
guaranteed that the HID will not have been reassigned to another beap. While we argued against
using UIDs for object references because of performance problems, since the frequency at which
HIDs have to he “dereferenced” is less than the frequency at which object referencez have to be
dereferenced, we choose to use UIDs for HIDs because of explicit deletion capability.

Having decided to use unique HIDs, we must be fairly gznerous in allocating bits for HIDs. It is
not unusual for a .aoderzte size timesharing system to have more than 32K files (recuiring 15 bits)
at & single instant. Over the lifetime of a system, the total number of files created can be presumed
to be much larger. The ideal way to generate UIDs is to allocate them consecutively as they are
needed. However, this requires access to a central piece of data “Lat holds the next UID to assign.
To avoid this centralization, UID generation schemes typically embed a processor 1D in the UID
and let each processor pick its ov/n local part of the UID. Since the size of the processor ID is fixed
and determined by how many processors are expected to ever exist, this generally increases the
number of bits that must be allocated to the whole UID. Also, since it is desirable that UIDs are
in fact reliably unique, UID generation schemes typically use a monotonically increasing hardware

. . .
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clock as pert of the UID. Since the resolution of the slock must be amali encugh to allow two UlDs
generatad back-to-back to be w-igue, the number of bits assigned to the clock-based part of the UID
is typically large. DOMAIN {TiDs are geperuted using essentially the scherne described above
and are 54 bits in lengih.

Even if we were fairly miserly in vur allocation of bits vo HIDg, it seems anlilcly that we could be
miserly snonzh 5o as to be abi2 to pack bosh a HID and 2 hoep ndax olltet into less thun 32 bita.

In choocing the format of LPoisters, unce we decide that LPolniers con not boe made to It witkin
a normal sized (l.e. local) reference, our optioas are luss coneirrined: the format of Liuinlers
can be chossn to be whal seerns logically coirect, nut sitnply what cen be pacied into a small
place. However, this freedom bos a price. T {wnd Ox{) procedures puss and return Exed-sive
references; there is no provision for passing azd returing sziresstes {ebjects with non-imummediate
representations). Thus, all azgregates must be allocated in the benp. Heap allocation is not free -
the more hesp allocated objects there are, the more cxpensive garbage collection becomes.

We chose LPointers to be 2 celis (8 bytes) long. The Srat c2ll contains a HID and the second containg
the heap index oTset. Since the beap allocation grantlarity is 8 bytes, it would not have made sense
to have a more compact LPointer. There can no doubt that one call is sulficient to hold the ladex
offzet. Given our model of the use of heaps - that daia stractures are partitioned so that most of
the references are between objects in the same beap - 2% incoming references i certainly sullcient.

That 4 bytes are su{Scient 0 hold a HID 18 more open to question. It is certainly enourh given
OWM’s presect scheme for generatirg HiDe - <onsecutively and based om a eutral count beld in
the HID beap - but we du poi expect that this scheme would be used ir a preduciion version of
OM because of the problems discussed above. Gther cystems, like the DOMAIN, that use UlDs
generally are more liberal in their 2llocation of bits to UIDs. OM'x desiyn does not preclude the vse
of larger HIDs. In the current unplementasion of OX, a3 an aid vo debugging, both the index ofset
sad the HID are represented as T Fumums, thus reducing the number of incoming LPouintess and
the number of heaps to 334, There is no reascn why thess values could not be fnll 32-bit integers.

LPointers are a type of CM cbject. Thev can be manipulsted by OM procadures that ave available
to the OM piorrammer. Note that this makes LPointers diferent iroms RPointers, which are an
artifact of the OM implementaison and in principle are of no more busine to the O programmer
than are addresses Lo the T programmer.,

Figure 3.5 diagrams a slot of an cbject that cortains a reference to an objsct in snother heap.

3.7.3 Making LPointars

LPcinters are made with the 1EXPCRT-RPOINTER procedure. This proczduve takes an RPointer/-
RHezp to specifly some object to be exported. It also takes ancther RHesp arzument to specily
in what heap the LPointer is to be allocated. The procedure returns (sn RPointer t¢) a rewly
allocated LPointer.

(CEFINZ ()EXPORT-RPOINTER RP HZAP TO-NEAP)
(LET ((ELT (REEAP-ALLUC-INDEX-ZLT RP EFAP)))
(Ir (icT L)
ERNOR "can’t allocats index elezant®))
(MAXZ-ILPOINTER YO-HEAP (KITAP-RID EEAP) ELT)))

VEXPORT-RPOINTER uses the RHeap primitive REEAP-ALLOC-INDEX-ELT to allocate and initizlize a
slot in a heap index. RUEAP-ALLCC~INDEX-ELT returns the integer offaet of the slot in the index.
MAKE-1LPOINTER allucates an LPointer in the heap specified by the first argument and izitializes
the two slots of the LPoiater to the second and third arguments respectively. The pewly created
L.Pointer is added to the TU-HZAP's list of LPointers contained within TO-HTAP. Note that we take
advantage of the fact that we store the HID in the RHeap stiucture (REEAP-RID extracts the HID
field from the RHeap structure).
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(Cmwee S8 cvad|Cecn § weed|Lees § - =>:

| hesp offset | Q4T (LP) | TT (RP) | ~===+
+ + + + |
. : |
Slot of aa object |
|
|
v

| HID [y S 6.2 ¢ B |

| beap index offvet I g ¢ 2 ¢ B

e 29 >|{ €= 3 —==>|

LPainter object
TT (RP) « 3 = T type cods for RPointer
TT (FX) = 0 = T type code for Fixnum

GUT (LP) » { = OU type code for LPointer
Figure 3.5: An inter-beap reference

In the current version of OM, RHZAP~ALLOC-IXDIX~FLT is not terribly emart. It simply scans the
heap index looking for an element whose reference count is sero. The process of finding a free index
element could certainly be optimized. For example, we could link together all the {ree entries.

The procedure | EXPORT-RPOINTER-WITE-EXISTING-INDEX-ELT is similar to |EXPORT-RPOINTER ex-
cept that it requires the RPointer passed to it elrcady be present (n the hesp indez. If the RPointer
is found in the index, the appropriate reference count is incressed by one and the index offset is used
in the newly creatsd LPointer. If the RPointer is not found ia the iudex, the procedure behaves just

like 1EXPORT-RPCINTER. The idea bebind 1 EXPCRT-RPOINTER-VITH-EXISTINC-INDEX-ELT is that it

is desirable that multiple LPcinters to the same object share the same index element. That way
the sise of the index can be minimised. If an application program knows that an object it iz ex-
porting is not already in the index, it can use 1EXPORT-RPOINTER which does not require the index
to be scanned (assuming the optimized version of REEAP~ALLOC-INDEX-ELT. Otherwise it must use
{PORT-RPOINTER-YITN-EXISTING-INDEX-ELT

Recall that in our initial discussion of non-local reference in seciion 3.3.4 we pointed out that it
would be necessary to huve a bit to distinguish iocal references to local obiects from local references
to non-local references. It should now be clear that this bit becomes available simply by virtue of
our type tar scheme. One of the RPointer type codes is used to indicate a reference to an LPointer.

3.7.4 Dereferencing LPointers

OM’s primitive procedures manipulate active objectsa. The prucedures tak: ‘one or more RPoint-
er/RHeap arguments to indicate what objects are to be manipulated. LFointers can refer to any
object, active or not. Thus, in general, given an LPoiiter Lo an cbject, it is first necessary activate
the object. This conversion reeuits in an RPointer/RHeap that refers to the now-active object and
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can be uzed to manipulate the object.

Tks procedure | LPOINTER-CONTENTS takes an RPointer/RiHeap to an LPoinser (recall that LPointers
are themselves OM objects) and returns an RPcinter to the object referred to by the LPointer.
Note that the returned RPointer can be interpreted only in the context of the heap identified in the
LPcinter. '

LPOINTIQ-CONTENTS is defined as:

(DEZFIFE (ILPOIWTEIR-CONTENTS LP I2AP) :
(RIBAP-INDEX-ZLT-VALUE (GID->RNCLP (ILPOINTZR-EID LP EDAP))
(ILFOIKTER-INDEX LP HEAP)))

Let us examine iv in some detall. !LPCINTER-INDEX and 1LPOINTER-EID are the accessors for
LPointer objerts. |LPOINTZR-HID returns the HID field of an LPoinster; ILPDINTER-INDEX returns
the index offset field of an LPointer.

HID->RHEAP takes a HID.and, if the heap named by the HID is active, returns the RIienp for the
active heap; if the named heap is not active, the procedure returns false. MNote that before calliing
ILPOINTIZR~-CONTZNTS the heap referenced by the LPointer arqument to ILPOINTIR-CONTENTS must
have been activated; e.g. by exscuting:

(ACTIVATZ-HEZAP (ILPOIITER-HID LP EZAP))

REEAP~INDEX-ELT-VALUZ returns the RPointer at the specified offsct into the specifiad active heap’s
index.

Suppose a variable contains (an RPoiuter to) an LPointer to 1 pair. The following procedure returns
the cdr of the pain

(DEFINE (1PAYR-CAR-VIA-LPOINTER LP HEAP)
(1PAIR-CDR (ILPOINTER-COLTRETS LP HTAP)
(ACTIVATE-BEA® (ILPOINTER-EID LP HZAP)I))

3.7.5 Comparizcn with Bishop’s ORSLA

Bishop’s thesis [14] describes ORSLA, a zystem that is in seme ways similar to ours. ORSLA
depends on special hardware; neither the hardware or software was sctually built. ORSLA has
areas which correspond to OM hesps. ORSLA has only one kind of referense. However, to enable
the independent garbage collection of areas, all references between areas go through snter-gres links
(LALs). IALs are special objects understood by the hardware. The hardware makes a reference to
an AL appear to be to the object to which the IAL refers. IALs are similar to OM’s LPointers
except that IALs contain actual object references, not something like LPointer’s ofset into a table
of object references.

Each area has two distinguished lists: a list of all IALs inside the area, and a list of all IALs outside
the area that refer to objects inside the area. The first list contains owtgoing IALs and the second
list contains incoming IALs (these ‘erms are with respect to a particular area). Since every IAL is
both inside some area and pointirg into some other area, every IAL is on two lists. The root of the
ORSLA garbage collection of an ares is the list of incoming IALs.

Since GRSLA has a single form of reference, it is conceivable that IALs could be placed in the area of
the object to which the IAL refers instead of the area of the object that contains the reference to the
IAL. However, as Bishop notes, this would make it impossible to garbage collect areas independently
since when the IAL moved as a result of its being in a heap that was being garbage tollected, the
reference to the IAL from the object in the other heap could not be fixed.

Note that in OM, the analog of an 1AL is the combination of an LPointer and an element of a beap
index. That is, in a sense we have a two-piece IAL, half of which is in the source of the pon-local
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reference and half of which is in the target of the non-local reference. Only the latter half is relevent
to the garbage collector. That this piece of information is in the heap being garbage collected,
rather than in some other heap, is important. It means that the locality of reference of the garbage
collector is improved - it doesn't have to touch all the heaps in which non-local references to the
heap being garbage collected reside. In the ORSLA garbage collector, the roots of the garbage
collector are spread throughout many heaps, all of which have to be touched.

OM does have a locality of reference problem though: at the end of the garbage collection, if
there are gzarbage LPointers, the indexes of the various heaps referred to by the LPointers will
have to be modified. Thus, the degree of non-locality of reference in OM garbage collection is
proportional to the number of garbage outbound non-local references. The degree of non-locality
of reference in ORSLA garbage coilection is proportional to the number of non-garbage inbound
non-local references. Which system’s garbage collector has the better behavior (i.e. minimizes
the amount of non-locality of reference) can be determined only experimentally. Note that OM’s
garbage collection procedure is amenable to techniques for increasing locality. For example, the
heap indexes might be stored separately from the heaps themselves. Multiple indexes might be
packed together to increase the locality of reference.

3.8 Concurrent access to heaps

If we want the data structures stored in heaps to be accessible by multiple orocesses running
concurrently, we need to examine what techniques need to be used to assure the integrity of the
data.

In this section we will consider the case of multiple processes running within a single physical main
memory (i.e. on a single DOMAIN node) trying to concurrently access a heap. OM does not allow a
siugle heep to be accessed by multiple processes that are not sharing a single physical main memory.
‘A ais is because the OM implementation uses the Aegis file mapping primitives and these primitives
do not support that sort of concurrent access.

3.8.1 Controlling concurrency

The zorrect manipulation of certain parts of a heap requires that a single process have exclusive
access to the heap while the manipulation is happening. Advancing the heap pointer is an example
of such a manipulation. The allocation mechanism must, be able to get the current value of the heap
pointer and then increment it atomically. Similarly, the heap index must be accessed in a way that
insures that two processes do not obtain the same index element as a result of exporting an RPointer.
These concurreucy problems are not limited to the parts of the heap that are examined and modified
by only the OM implementation. In general, application programs that can run concurrently on the
same heap need to controi access to objects in the heap.

Aecgis has two mechanisms {or controlling concurrent access to data: file locking and eventcounts.

File locking aliows a process to map a file in a way that restricts the way other processes can map
the file. For example, a process can map a file for read/write access and lock the file so that other
processes can have read but not write access to the file. File locking provides fairly coarsely grained
control of concurrency. The lock is set when the file is mapped; the success of the mapping operation
is determined by what locks are already set at the time the operation is executed. Thus, using the
locking mechanism requires the process to re-map the heap file before and after each operation,
or set of operations that need to be atomic. Aegis does not have a mechanism for automatically
blocking a process that attempts to mzp a file in a way that is not allowed by the existing locks.
Thus, the process would have to “busy wait™, re-trying the map operation periodically. Clearly,
this overhead would be unacceptably high for operations like advancing the heap pointer.
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However, file locking 1s appropriate when the lock will be held for a relatively loug period of time and
ths expected concurrency is low. For examnle, in a mail system, there is 3 poasibility for coneurrency
in the accesses made by the program thai adds to mail to s mail bax and the program that reads
the mail box. Each program can map and lock the hesp for the duration of sorpe logicsl operation.
For the former it would be during the operations that constitute adding the new message; for the
latter it would be during n operaiion like displeying the besders of 2l the meusngzs in o mail box.
These durations are long compared to the duration of the cperation of advancing the heap polater.
If there is contenticn for the heap, it is accepiable for the programs to busy walt, trying to map
every second or 80. The user won't notice and the program won’t be wasting CPU cycles too much.
Eventcounts allow processes to synchronize at a finer level and with lcus overhesd then with Sle
locking. Eventcounts are equivalent in power with semaphores. All processes accessing the same
part of a beap must agree o obey the semaphore associzted with that part of the beap. In the
casze of application related data, the semaphore can be referenced from the object whose contents
are to be accezsed concurrently. The Aegis eventcount primitives allow & process to block until the

eventcount indicates that the process has exclusive access to the object,

The problem with eventeounts is that they introduce overhend. The overhead is in the coat of the
check of the eventcount before vhe data ~an be accessed. (This check is & system call to Aegis.) In
cases where it is appropriate, the file locking approach bas lees overhead beczuse no chacks need to
be made before each access.

A special casze that we expect OM peeds to deal with is concurrency on esly the OM-internal
parts of the heap (e.g. the heap pointer and index) and not on an application’s object inside the
heap. Since the access patterns o these internal data structures are well known, it is reasonzble
that concurrency control be implemanted using the hardware “iest-and-224" instruction and busy
waiting aince we know that the process will never have to wait too long. ldeally, the buay wait loop
should include a call to the operating system suggesting that it select ancther process to run’. As
opposed the the eventcount approach, in this spproach the operating system call happens only if
the resource is locked. Thus, with a resource that is almoeat always unlocked {e.g. the heap peinter),
the tast-and-set approach is much dheaper than ihe eventeount spproach.

3.8.2 Garbage collection

The OM heap garbage collection procedure we've described is correct only if no processes are
manipulating a heap when the gerbage collecior berins processing that beap. If the garbege collentor
can be invoked asynchronously (e.g. in the middle of an object allocation primitive) then it is possible
that the only reference (RPointer) to an object is in a variable on a process’s execution stack {or in
a register), Since the garbage collector traces objects only from the heap index, &n object referred
to from only the stack will be discarded. Also, in general, RPointers on the stack to objects that
are not discarded will be incorrect after the garbage collection because the garbage collector may
have moved the objects.

Traditional garbage collectors solve the precblem of references from the stack by putting those ref-
erences in the root set at the start of the collection. Unfortunately, we can not easily use this
technique because it is not possible to tell what heap an RPointer on ¢he stack refers to. Without
knowing the heap associated with these RPointer, the garbage collector can not trace through the
RPointers on the stack.

There is no easy solution to this problem. The current implementation of OM simply does not
allow the garbage collector to be invoked asynchronously. This restriction is severe but doss not
make the current implementation unusable. Not being able to garbage collect asynchronously is a
problem only if applications are creating garbage rapidly. If garbage is not being created rapidly,
the rate ot which the heap aeeds to be garbage collected is low. If each run of an application does
not create 8 lot of garbage, it is a reasonable restriction thet the garbage collector can be invoked

TUnfortunately Aegis does not supply the necessary functicnality to do this, but It would not be difficult to add.
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only between (and not during) runs of the application. Our view is that OM heaps are used for
archival storage, not intermediate resuits that quickly become garbage. Such intermediate results
should be ailocated in the transient beap.

If we want to support asynchonous invocation of the garbage collector, we must make it possible for
the coliector to determine the heap associated with every RPointer on the stack. For each RPointer
in a stack frarme (resulting from one procedure activation) there must be an RHeap that is associsted
with that RPointer and that RHeap must be in the same stack frame as the RPointer. This conld
fail to be the case only if some procedure took an RPointer argument but no RHeap argument. But
no such procedures exist because such procedures could not do any useful operation. Since & single
frame can contain many RPointers and RHeaps, the problem for the garbage collector is to pair vp
the RPointers with the RHeaps.

With sufficient knowledge about the way the compiler lays out stack frames and by requiring every
RPointer argument to be followed by an RHeap argument (or by adding some declarative syntax
that achieves he same effect) it would be possible to write a garbage collactor which could deduce
the RPointer/RHeap pairings on the stack and hence be able to urace references to OM objects from
the stack.

3.9 Heap structure in detail

Figure 3.6 ahows the actual format of a heap. The part above the dashed line represents the transient
heap. P is some variable whose vzlue is (a reference to) an RFeap structure which describes some
active heap. The last slot of the RHeap structure is an RHeapB which to T appears to be a pointer
to an extend that is outside the transient heap. The section cf the figure below the dashed line is a
part of the same process’s address space into which some heap is mapped.

Note that the RHeapB from the RBeap is actually a pointer to the fourth cel] of the beap. This is
because T’s convention for extend refersnces is that the reference points to the first data ceil of the
extend - i.e. the slot following the T tempiate pointer. To T, heaps appears as vector-type extends.
A vector-type extend is an extend that has a length cell before the template pointes. Vector-type
extends are used to implement Lisp’s traditional vector of references. Vector-type extends are zlso
used to implement byte wectors and it vectors. During the debugging of OM, we were able to set
the template pointer slot of the heap to point to the byte vector template in the transient heap.
This enabled us to use the T standard byte vector primitives for examining the heap.

The heap bas two major sections: the header and the data sections. The header contains:

Heap pointer: The cell number (i.-c. offset from the base of the heap) of the first free cell in the
heap.

Maz heep pointer: The maximum value the heap pointer should be allowed to reach. When REEAP-
ALLOC notices that the beap pointer has reached this value, the garbage collector is invoked.

Head of LPosnter list: The head of the list of LPointers contained within this heap.
Size of indez: Maximun: number of elements in the heap index.

Indez dements: Vector of RPointers and reference counts.

Dats cells: Section in which OM objects are allocated.

The heap pointer is initialised to the cell number of the first data cell.- RHEAP-ALLOC uses and
increments the heap pointer. Note that the offset part of an RPointer ia the offset from the base
of the heap, not the offset from the beginning of the Cata cell section. If the offset were from the
beginning of the data cell section then the RPointer dersferunce procedure would need to contain an
additional addition operation to account for the sise of the heap header. Since this size is a function
of the heap index sise, which is not constant for all heaps, the dereference procedure would have to
get the heap index length from the heap, adding another memory reference to the procedure.
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Figure 3.7: Index element format

The size of the heap index is fixed at the time a heap is created. An alternative approach would be
to allocate the index within the data cel! section and to maintain a pointer from the heap header to
the current heap index. With this approach, whe= the index fills up, a new copy could be allocated
and the pointer from the header could be adjusted. This approach is alightly more complicated and
introduces yet another layer of indirection that must be followed at LPointer deveference time. For
these reasons, the current OM implem ataticn simply uses a fixed length vector in the heap header.
The eJements of the vector alternate betvreen RPointers and reference counts as shown in figure 3.7.

3.10 OM Types: More details

3.10.1 Getting code into T

Before discussing the issue of user-defined types in OM, we must briefly examine the environment
in which we expect programmers to work. We are not attempting to build a single-language,
incegrated program editing, debugging, and production-use environment like Smalltalk. (Such an
environment would be nice to have, but is outside the scope of this work.) Programmers will write
their programs uaing a conventional text editor and have another context consisting of a T interactive
system augmented by OM. The text editor may be embedded within the same process as the T
system or may be in a separste process but in either case, the meintenance of the programmer’s
code is outside the scope of T and OM.

T source code in text files must be compiled before it can be incorpcrated into a T environment.
By “incorporation® we mean a process that makes user procedures and definitions available within
a2 T environment.

T bas two compilers: the standard compiler, which produces tree-oriented intermediate code that
can be executed by an interpreter that is present in the T environment, and T'C, which produces
native machine instructions (that can be executed by the real processor). TC is much slower than
the standard compiler. However, the compiled code produced by TC executes much more quickly
than the compiled code produced by the standard compiler. TC produces its resylt into a file
(called an edject file) of machine instructions which can then be read into the T environment. The
standard compiler dispenses with the object file and produces the intermediate code directly into
the T environment. It is not possible to save the output of this compiler®, but it runs so fast that it

‘NmmuM;MWﬁ:d&mh-Mlmmeﬂldbcm'yunful-cbe
compiled code couid be saved as a permanent object
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is acceptable tu have the programumer’s source code compiled each time it needs to be incorporated
into & T environment.?

The T interactive environment comrmunicates with the user via & “read, compile, interpret, print”
loop that reads a T source string, compiles it into intermediste cade, luterpretively executes the
intermediate code, and prints the results and then repesis the cycle. The “compile, interpret® siep
iy pornazimes called evafuation and the loop is called the *read, eval, print loop? (vr REPL for short).

The LOAD procedure takes a file name argument and incer orates the contents of the dle. If the Sle
iz an object file, the binary loader is invekaed. Ctberwise, the contents of the {ile is incorporated by
applying the REPL to the fle.

3.10.2 User-defined types

User-defined extend types are created using the DEFINE-10BJRCT-TYPE special form. This form
defines a type and an associated set of methods for objects of that type. The syntax and behavior
of DEFINE~ ICRJECT-TYPE is related to T3 CIJZLCT form, 30 we will examine the latter firat.

The C3JZCT form is both declarative and procedural. It declares a set of handled operations and
associated methods, and allocates an object that responds to the declared set of operations in the
specified way. The syntax of L3JTST is:

(03J2ZCT call-part method-part)

The call-gart can be ignored for our purpcees. The msthod-part is z list of method clauvse. The
syntax of a method clause is:

(method-head mathod-body)
Where a method-head looks like:
(operation arg! ... argn)

oparation is an expression (typically just a variable) wheee value is an operation. The argi are
the arguments to the operation. Withia the method-body - the code that implements the method
- the argi are bound to the values in the vperation invocation. The frst argument is always the
object to which the operation is being appiied; this argument is called the sulf argumenl If the
method wants to apply another operation to the object, it applies the operation to the value of the
self argument.

Execution of an OBJECT special form yields (a reference to) & new object. The new object is
closed over the lexical envirenment in which the OBJECT form appears. Method bodies can contain
refersncss to variables that are lexically apperent from but defined outside the 0BJLCT form. When
a handled operation is applied to the resuit o, the C3JEST special form, the appropriate method is
sclected from the object’s mathod-part and is executed; references to closed-over variakles in the
method yield the values those variables had at the time the object was created.

How does the behavior of 0BJECT map onto our model of objects as a vector of slets containing
references to other objects? The OBJECT special form does not say anything about slots. Note
however, the implementation of the “closing over® procedure requires that space be allocated to
hold the values of closed-over variables at the time the closure is created. This space, plus a
reference to an object that contains the methods, @ the object. Thus, the closed-over variables are
the slots in the object.

Consider the following piece of code: Tt

PMost Lisp systers call something like the standard compiler a resder, and something like TC a complsr. In fact, in
T, most users are not aware that there is a standard compiler that is convarting their source code into intermediate
code; they think that T is simply interpreting their source code.
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(DZrINe roo
(LAMBDA (X Y 2)
(0BJEZCT ¥IL -
((oNz-Qy SELF X)
(+3Xx7)
((ANOTHER-OP SILY )
(car 2)))))

This code assigns a procedure of three arguments to the variable FCO. The procedure returns an
object that handles two operations calied ONE-OP and ANOTEER-OP. The object is closed over the
variables X, Y, and Z which are the arguments to the procedure.

Note that each execution of the OBJECT form yields a new, distinct object:

{SET A (F00 § 2 *(THIS I8 A LIST))
(SET B (F00 10 20 *(ALPHA BETA GAMNA))

(ONE-OP A B) = (+ §XY) => (+512) =8
(ONE-QP B B) => (+ 5 X Y) => (+ 5 10 20) => 35

The representation of the object that is the value of A is something like:

A ===d feccccaces

|  #meecjece=> Object code for ONE-OP and ANOTHER-OP

rmcccna -

S e !
brccnccnn -+

T:1 Snece|enaady 2
s s -

Z:| s----]----> (TRIS IS A LIST)
pocmcocas -

The traditional term (from Smalltalk) for variables that are available to the method clauses is
tastance variebles. Instance variables are the names of the siots of an object. The values of instanu
variables are what make one instance of an object crested by the OBJECT special form different from
another instance of an sbject created by the 2eme DBJECT form.

Smalltalk and Lisp Machine Lisp [53] support object-oriented programming ‘acilities similar .o T's.
One way in which their facilities differ from Ts is that in Smalitalk and LM Lisp there are separate
primitives for declaring types of object and creating an object of a particular type. Also, in the
declarative form the instance variables are declared explicitly and are not determined by the context
surrounding the declaration. The number of instance variables that are declared determines the size
of objects.

Taking after Smalitalk and LM Lisp, OM has a declerative mechanism for introducing new object
types. The reason we adopted this approach is that we feel that it is required in & permanent
object system. The goal of T’s cbject-oriented support is to allow object types to be unnamed and
implicitly created; T object type definitions are dependent on context (i.e. the cortext surrounding
the OBJECT form). Our goals are different.

As a programmer debugs proceduves, he edits, compiles, aud re-incorporates all or parts of files.
He may destroy his T process and start a new one and incorporate his procedures into it. In T,
the incoiporation (not the execution) of a procedure that contains an OBJECT form constitutes the
definition of a new type. We do not believe that this is the appropriate way to introduce new types
ioto a permanent object system.

Creating a type in & permanent -bject system is a serious thing: the system is obliged to retain all
the information related to the type for as long as objects of that type exist. In our system, since we
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can net store cbject code in heaps, this retention means the wriiing of an external {ile that describes
the type [more on this later). Thus, it seems undesirable thai (vpes are created essentially as a
side-eiloct like in T. '

It must be pessible ¢o mauify the methods that make up a type. 10 s means it must be pem;ib}e
1o refer t0 8 tywe — that the type have a mamme. In T, it is nod pomaible 5 incorporate 8 revision of
zn existiog C3J20T form. In faet, there 1s no wey $o refor to an existing  JJUOT dorpar it s Luried
wathin an opague compiled object. In OM, types have text names a.mi a proghuner can gzt all
the infsrmaticn about type simply by knowing the type’s name.

The eszence of tue problem of user-defned typm in our system is that code thu: |
must be trested diferently from ordinary user code. CM need not and does not ke rack of all user
procedures that are incorporated into a running T/OM eavironment. But OM mu.. [oep track of
code and other informaiion tuat applies to type definitions, regardlees of whether thcur definitions
apply %0 types that are being used in any active T/OM environment.

vioey "*‘-IQBJ‘?CT ~TYPE is the OM special form for introducing new types. The syntax of .. "FINE-
108J20T-TYPE is:

nlements tipes

(CIFINE-1C3JECT-TYPE type-zams
options
izstance~variablas
method-clagses)

-uamn is the name of the new type. wytions is a list containing certain options about whether
the instance variables are accessible outside the metied-clauvses. instaace-variablas are the
names of the slots of the object. maszcd-clauses is similar to the method clauses of CI3JECT.

Crerations applicable to OM objects are created wsing 1DEFINEZ~CPERATION which is analogous to
T3 DEFINE-CPERATION.

11 information about OM types is siored in 3 special beap called the tope Acep. CM has special
knowledge about this beap in much the same way that it does about the HID besp dlacussed eariier,
Tise type beap contains several things )

o The pext type ID to saxign.

» A table translating type names to type IDa.

» A table translating type iDs into type names.

e A table translating type IDs into type source file nazaes.
e A table translating type IDs into lengtha.

will explain how this information is maintained by explaining the bebhavior of DEFIHE- 103 JECT-
TYPE The execution of a DEFINE~133JZCT-TYPE form causcs a new OM object type to be created. A
new type ID is generated by reference to the type heap. A alightly modified version of the DEFINE-
1ORJZCT-TYPE form is writien to a new file (called & type sowres file) whese name is entered into
the table translating type |Ds into type source file names in the type heap. This file is owned by
the OM system, not the user. The name and ID of the type is entered into the type-name-to-type
ID tranalation table and the type-ID-to-type-nume translation table. The type ID and type length
{number of slots) is entersd into the type-ID-to-length translation table. -

When the UEFINE~103JECT-TYPE form is compiled, the method clauses are not compiled. When the
result of compiling the DZFIUE-1CBIECT-TYPE form is executed, it is manipulsting method clause
source code, not object code. Thus, incorporating s source file containing a DEFINE-10BIRCT-TYPE
form does not result in the compilation of method clauses. This aspact of GM types will become
clearer as we describe operation dispatch in OM.
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3.10.3 OM operation dispatch

Operation dispatch is the process of invoking an object’s method in response to an operation being
applied to the object. In GM, operation dispatch happens when an OM operation is applied to an
OM object. The operaticz invocation is syntactically identical to a procedure call, except that the
head of the form must evaluate to an operation object instead of a procedure object. The first two
arguments to the operation must specify the object to which the operation is to be applied. These
two arguments must be xn RPointer and an RHeap.

Operation dispatch begins by extracting the type ID from the first siot of the object to which
the operation is being spplied. This type ID is looked up in a per-process table (residing in the
transient heap) that translates type IDs into active lypes. An active type is one whose handler
has been incorporated into the transient heap. If the type ID is found in the table, the associated
handier is iavoked. The handler is simply 3 procedure that compares the operation object being
invoked against all the operation objects listed in the the DEFINE-1UBJECT-TYPE fcr the type ID. If
the operation is handled by the type, the associated method is invoked. Otherwize, if the operation
bas a defsult method, it is applied. Otherwise, an error is raised since the operation can not be
handled. :

If the type ID is not found in the per-process active type table, the operation dispatch me hanism
translates the type ID into a type source file name by referring to the type heap. The type source
file is then compiled by the standard compiler, incorporated into the T/OM environment and a
handler is constructed. If a version of the type source file that bas been compiled by T exists, that
compiled version will be incorporated instead of invoking the standard compiler. The type ID and
handler are entered into the active type table and operation dispatch proceeds as described above.

3.10.4 Type redefinition

In any permanent object system, suppose a programmer has defined a type and then creates rome
objects of that type. Now suppose that the programmer wacts to modify the type. Does he want
to modify the behavior of existing objects of that type or does he want cnly objects created after
the change to have their bebavior based on the modified type and to have old objects retain their
old behavior? If the farmer, what sorts of changes to & type are compatible with existing objects?
If the latier, in what sense, if any, are the unchanged and changed types the same type?

There are cases where type definitions need to be modified without cre=ting a new type. Fixing
bugs is one example: if a char_e to a type definition is the fixing of a bug in the definition, old
objects will probably want their behavior modified to the new, less buggy behavior.

There are cases where the changing of a type definition must be treated carefully. For example,
suppose the new definition specifies a larger number of instance variables. If the new definition is
applied to old objects, an error will occur when the siot that doesn't exist in old objects is referenced.
One might be tempted to say that the new definition with a iarger number of instance variables is
creating a new type. This attitude is not entirely adequate though. The old type and new type
might have much in common. By forcing them to be different types, we are causing whatever
similarity the two types have to be lost. For example, methods in the new type that don’t refer to
the new instance variables might be identical to methods in the old type. If a bug is found in such
a method, the fix should be applied to both the old and aew type.

Conventional databases have had to deal with problems similar to those described above. The
traditional solution is to force the user to dump his data and then reload it using the new type
(schema). This is essentiaily a result of the fact that database systems typically use highly compact
and optimised daia structures to represent data. Such representations are not easy to change
dynamically.

We do not yet know how o solve the problem of type redefinition. The Smalltalk and LM Lisp object
type systems essentially do not deal with the problem in full generality. The underlying structure

-
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of our system allows both existing types to be mediSed and new types to be created. Presentiy
DEFINE- 1LBJECT-TYPE always creates a new type (Le. type ID). Cnce created, an objent’s behavior
is not changed by subsequent executions of DEPINT- 1C3JECT-TYPE. Bowever, since this form speciiies
the type naowe, it would be trivial to make it optionally modify the behavior of an existing type ID
to which the type name trauslates. All that is reguired is that instead of adding an entry to the
tablus in the type besp that take a type ID as a key, that those tables be updated to rellect the pew
delzniton,

To dau] with the case where a new type nesds to be genarated (e.g. when the number of instance
variables has changed) we would like to consider the new type to be a new gencruiion of an existing )
type. For some purposes dilersnt generations of the same type will be considered different types,
but for ciher purpozes they might e considared the same type. For example, the two types would
be considered different by the operation dispaich mechanizm. However, if an object type definition
editor were is. be included as part of T/OM, the two types might be considered to be same for the

purpose of 1aethod modilcation.
| -

-
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Chapter 4

Programmer interface

The previous chapter dealt with the low-level implementation issues in OM. We now address the
issues related to how programmers actually use OM. The major topics of this section are the syntactic
tools the programmer uses and semmantic issues the programmer must deal with. At the end of thic
chaptar we describe two sample uses of OM.

4.1 Simple syntactic tools

T, like most Lisps, has a mechanism for rodifying the syntax of the language. This mechanism s
called & macre. OM defines some macros to make programming using OM more convenient and less
prone to error.

YITH-ACTIVE-EFAP is a macro that controls beap activation. The underlying activation control
primitives, ACTIVATE~EEAP and DEACTIVATE-EENP are inconveniest and if not ueed correctly can
Jead to heaps not being properiy deactivated. For example, in:

(DXFINZ (YOO XID)
(LET ((HEAP (ACTIVATZ-EEAP 1IL)))

.(él.-RCTIVAT!'-"uAP 1ID)))

if an error occurs within the *...", and the stack is unwound to top-level, DEALTIVATE-HEAP will not
be called, and the heap will be left active. To avoid this poiential problem, the procedure should
be written:

(DEYINE (ro0 HID)
(UNYIND-PROTECT
(LET ((HEAP (ACTIVATEZ-EEAP RID)))

(DEACTIVATE-HEAP EID)))

UNVIND-PROTECT is a T special form that insurs, that its second form (the call to DEACTIVATE-HEAP
in this case) will be executed.

By using YITH-ACTIVE-HEAP, the above can be simplified to:

(DEFINE (FOO HID)
(YITE-ACTIVE-HEAP BEA: NID

»
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Which expands into a definition which is identical 10 the UNSYIXD~PROTECT version above.

1YITE-LPOINTER i3 a more sophisticated macro that controls the activadon of beaps bmd’ on
LPointers. Recall that obiscta referred to by LPointers can not be examined until the LPolnter
is converted to an RPointer/RIzap that refers to aa object in an active besp. WITH-LPOINTER
simplifies the writing of code that does the conversion. For example, consider a procedure that takecs
zn FPointer/Ricap to an LPolaten

(SIPINZ (PUO LD LE-ENAP
(ryrTa-LpzIaTiEn ((V LP LR-EZAP))
(1PAIR-L23 VIZ V1))

The first part (called the specification) of the 1WITI-LPOINTER form specifies the LPointers that
will be used within the second part (called the beady) of the 1¥ITR-LPOIATIR form. The LPointer
“pecificasivn is a list of triples {the exammle above bas only oce triple). The fret element of the
triple is a pseudo-variable that will be described shortly., The necond and third elements of the triple
are a reference (RPointer/RHeap) to the LPointer being uzed.

Just befors the body of the YUTTI-LPCINTIR is executed, all the beaps named by the LPointers in
the speciication are activated. After the body is executed, all these heaps are desctivated. (The
macro uses ACTTVATE-HZAP snd DTACTIVATE-EEZAP »o dyoaniically nested ' 91TI-LPOINTERS actually
simply manipulate the heap activation count.)

The paeudo-variablis are used to refer to the RPoinier/RHeap pairs that rexult from converting the
LPointer reference into a refersrze to an active object. Within tze body of the 1¥ITE-LPOINTIR,
two variables aze introduced; one is bound to an RPointer that refers to the object referred to by
the LPointer and the other is bound to the RHeap thae n ~ults from sctivating the heap referred to
by the LPointer. The names of these variable are constructed from the name of the pssudo-variable.
For pseudo-variable var, the variable ver!R can be used to refer to the RPointer, and the variable
var!d can be used to refer to the RHeap.

Also, every occurence of the paeudo-variable itself is replaced by twe variables that are bound to the
RPointer/REeap that refers to the object meferred to by the original LPointer. Thua, the example
above could be rewritten:

(DEFINE (P00 L LP-EZAP)
(19ITE-LPOINTER ((V LP LP-HEAP))
(1PAIR-CDR V)))

4.2 Programming with two kinds of references

The previous chapter described the primitives for derefencing RPointer and LPointers. However, it
did not address the question of how a program is to know which derefes ence mechaniam =hould be
applied to a particular reference. Should the decisiou about how the reference should be derefcnced
be made dynamically or statically? For example, given the expression:

(1PAIR-CAR R H)

should IPAIR-CAR (statizally) assume that R/3 refers to an OM pair, or should it (dynamically) see
if R/4 refers to an LPointer that peeds to be dereferenced to reach the pair?

Another issue related to having two kinds of references is the kind of reference returned as the value
of a procedure. Given the nature of our implementation environment, a procedure always actually
returns an RPointer. But it it an RPcinter to the object being returned, or is it an RPointer to an
LPointer to the object being returned?

e
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4.2.1 The dynamic approach

The dynamic approach requires that the primitive that extracts an RPointer from an object look
at the type of the RPointer. If the type tag indicates that the type is LPointer, the primitive couid
then invoke the dereference mechanizm on the LPointer. Accessors that retrieve a siot in 22 object
have tu check to see if the type of their argument is LPoioter. Recall thst all such accessors call
RPOINTER-EXAKINE to get the contents of a slot. We could rewrite AZ0INTER-EXANINE w0 be:

(DEFINE (RPOINTFR-EXANINE RP EZAP I)
(Co¥D ((LPOINTEXR? RP)
(1YITH-LPOINTER ((P RP HEAP)) :s*s Deref. LPointer
(RPOINTER-EXAMINE PIR PIE I)))
(T
(REEAP-EXAMINE HZAP (+ I (XPOINTER-CADCRESS RP))))))

This generality comes only st the price of increasing the cost of the dereference mechanism: every
time an RPointer is extracted from an object, the RPointer must be examined to see if it refers to
an LPointer.}

The dynamic approach tlso requires that accessors that modify a slot in an object have to check to
see if the reference being storad is to an object in anoiher heap. We ~ould rewrite RPOINTER-DEPOSIT RERKS
(the procedure vsed by all accessors that modify slots in objects) to be: G

(CEFINE (XPOINTER-DEPCSIT RPI1 HEAPY I RP2 HEAPZ)
(COoND ((NOT (= HEAP1 EEAP2))

(RPOINTER-DEPCSIT
RP1 HEAPL
1
(1 EXPORT-RPOINTER RP2 HEAP2 HEAP1) HEAP1))

(T

(REEAP-DEPOSIT REAPL (+ I (RPCINTER-CADDRESS RP)) OBJ)))))

In additicn t> the cost in time, there is a cost due to increased code size. RPOIFTER-EXANINE is
expanded in line. The addition of the LPOIXTER? test will increase the sise of the expansion. To
save space, the code to dereference the LPointer can be left out of the in line expansion; cnly the
test and a call tc a procedure to do the LPointer dereference will be included. (In the case where
the RPoiater pointa to an LPointer, the cost of an extra procedure call is not signifcant since the
LPointer derefevence is expensive anyway.) However even with the LPointer dereference moved to
a subroutine, wne size of the compiled RPOINTER-EXAMINE will increase by about 1/3 (recall from
section 3.5.2 that the csiginal sequence is about 8 instructions; the LPointer test and subroutine
call will be at least 3 instructions). The size of the expanded RPOINTZR-DEPOSIT will increase also.

Besides the tiine and space efficiency prcblems with the dynamic approach, there is a Jogical problem:
the RPointer returned after automatically dereferencing an LPointer (in RPOINTER-EXAMINE) will
Le to an object in beap different from the object from which contained the RPointer to the LPoirter.
The relarned RPointer is useiess v ihe procedure that called the accessor since the procedure does
nct have a handle on the heap that contains the object the returned RPointer refers to. One obvious
way to get around this problem is to make RPOINTER~EXANINE return an LPointer in case it has
dynaruically dereferenced an LPolater:

(DEFINE (RPOINTIR-IXAMINE RP HEAP 1)
(coND ((LPOINTER? RP) <ot
(I\WITE-LPOINTER ((P RP HEAP2))

111 we had the option of bullding hardware we wouid argue that this test could be performed in paruilel witk. the
REKAP-EXAMINE; but we're Dot 80 we noa't.




60 Managing Perms. .t Objects

Pair Pair
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Figure 4.1: An LPointer to two pairs

(1EXPCAT-2POINTER (RPOIATEI-EWANINE PI I) BEAR)))
(T
(REEAP-EXAKINE EEAP (+ I (RPCINTER-CADDRESS RPIIIND)

However, this solution is unsetisfactory. Assume PI12/P13 refers to an LPointer in heap A that refers
to a pair in heap B and assum= that the cer of that pair is also a pair. Figure 4.1 shows how the
pairs are arrzuged. To retrieve the edr of the second pair, using the dynamic approach, we could
write:

(LET ((X (YPAIR-CDR (IPAIR-CAR PIR P!E) PIH)))
)

Since PIR/PiH refers to an LPointer, the LPointer will be dynamically dereferenced by 1PAIR-CAR.
The value returned by IPAIR-CAR will be a newly allocated LPointer (in heap A) to the object
referred to from the cer of the first pair. When 1PAIR-CDR is applied to the LPointer returned by
IPAIR-CAR, tae LPointer will be dynamically dereferenced.

Simply to follow this cer-edr chain, we allocated a LPointer and did an LPoinier dereference. The
LPointer becomes garbage as soon as the 1PAIR-CDR is executed.

4.2.2 'The static approach

Instead of automatically dereferencing and creating LPointers, we can leave it up to the programmer
to specify where LPointers are and where LPointers need to he created as pass of the programming
process (i.e. statically). The static approach is predicated on the fact that the struciure of an
application’s objects — i.e. waich objects are in which heaps and where the inter-heap references are
- is ixed. OM is a systam designed to deal with applications whose data structures are fixed in this
way.

To uge the static approach, the programmer must adopt a certain style of programming. The goal
of the sty!e is to minimize (and hopefully reduce to zero) the amount of storage (especially garbage)
that is allocated by procedures that do not create logically new objects. That is, we don’t want
procedures to allocate storage simply to return results that in principle do not require storage to be
allocated. In particular, ws want to avoid allocating LPointers when it is not necessary ¢o do so.

If the structure of an application’s data is fixed, the need for the generality of the dynamic approach
is reduced. For example, it is not necessary for accessors to dynamically check to see if & refcrence
is through an LPointer if it iz possible to statically assert that the reference is never through an
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LPointer. In case the programmer can't assume where the LPointars are, he can insert the check
for LPointers himself (or simply introduce a layer of procedures that do the check and dispatch
accordingly). In this case, the system is no more or less efficient than the dynamic approach. In all
other cases however, the derefercnce mechanirm is cheaper.

Another aspect of the static approach is that LPointers are explicily created. Note however that
LPointers will not need to be created in all the cases in which the dypamic approach would bave
created them. For example, using the static approach, following the car-cdr chain describod above
would be written as:

(1YITE-LPOINTER ((Q PIR P!E))
(LET ({X (1PAIR-CDR (IPAIZ-CAR QIR QIE) QIE)))
)]

Note that we are assuming the origzinal RPOINTER-EXAMINE ~ the one that does not autoriatically
dereference and create LPointers.

Within the body of the |¥ITE-LPOINTER, Q'R/Q!8 refers to the first pair in heap B. The 1PAIR-CAR
returns an RPointer to the object referenced by the first pair’s car - the second pair in heap B. The
IPAIR-COR returns an RPointer to the object referenced by the second pair’s edr. Note that we can
uve Q11 as the second argument to 1PAIR-CDR because we know that the second pair is in the same
heap as the first pair (which is identified by QIR/Q!E).

Unlike in the dynamic approach, the above expression does not cause a gratuitous LPointer to
be created and then dereferenced. The general case of which the expression is an example is the
successive application of procedures to an object:

(ry (F2 ... (Fa PIR PIE) ... PIH) PIR)

where PI1R/P!H is a reference to an LPointer and the return values of the Fi are objects in the same
heap as the object referred to by that LPointer. In the dynamic approach, since PIR/P1E refers to
an LPointer, an LPointer will be allocated for each intermediate object, and this LPointer will be
dereferenced right away by the next procedure application. The static approach avoids this cost by
making the programmer explicitly specify (via !VITE-LPOINTER) that a piece of code should run
*within a particular heap” and that intermediate results should not have an LPointer allocated to
refer to them.

In the static approach, since LPointers are never automatically allocated, it is also up to the pro-
grammer to expiicitly specify calls to 1EXPORT-RPOINTER. Which procedures allocate and return
LPointers is a convention determined and {ollowed by the programmer. His procedures fall into one
of two classes: those that work within a single heap and return RPointers to their results, and those
that span heaps (by dereferencing LPointers) and return LPcinters to their results. Procedures in
the latter class will have the form:

(DEFINE (G QIR Q!B)
(IWITE-LPOINTER ((P QIR QIN))
(YEXPORT-RPOINTER (¥F1 (F2 ... (Fn PIR P1E) ... PIH) PIR)
1} |
QIEI))

Procedures like C take an LPointer to some object, dereference the LPointer, apply a set of procedures
to objects within the same heap as the object referred to by the LPointer, and then return an
LFointer (in the same heap as the original LPointer) to the return value of G.
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4.3 A pre-proceasor

The fact that an OM procedure that takes a reference to an OM object takex two arguments to pass
the reference is a nuisance to the programrmer. The two arguments logizally identifly a single object. v
Normally & programmer uses one argument to identify a single object.

The pw—pmc SHELR Y appmm takes advantase of the fact that there is & great d«,‘m of regularity

in the way RPointers and lileaps are pamm srnong procadures. Note that all OM procedures that v
take an RPoiuter and R}esp return an RPointer thet refers to an object that is the same heap

38 the RPointer argurment. With some small ayntactic modilications to T, the programmer can

be rclieved of the chore of specifying both the RPcinter and REeap zrgument. A pre-processor

can automatically turn the programrmer’s one argument version of the code into the iwo argument

version that the OM primitives expect.

The basic idea of the syptactic modification is that the programmer will declare all variables that
hold a reference to an OM object. For example:

DTEINE (P (CHVAR A) B (CuVAR ©))
{(IF (27
(+ (A A B
c))

This defines a procadure P that takes three arguments, the Srst and last of which are references to
OM objects. A pre-processor takes the definition and transforms it into the two-argument style:

(CZFIFE (P AIR AR B CIR CID)
ar 2n
(+ (Q AIR A1) B)
c11))

ver!k and var!H a=e subatituted for all cccurences of ver. However, il var appears in return position,
just veriR is substizuted for var.

The pre-processor is not general yet. The transformation above relies on the fact that Q returns
an integer, not an OM object, and that the result of § is being passed to a procedure that takes
integers, not OM objects. ‘What if Q returned an OM object (i.e. am RPointer) and inatead of +
receiving the result, the procedure being called expects an OM object s its first argument? That
is:
(DEFINE (P (CMVAR A) B (OHVAR C))
(zr (2?7 ' e
(2 (Q A B
()]

(DZFINE (R (ONVAR X) Y)
(Ir v
X
)

Note that R is really a procedure of three arguments: the X argument gets expanded into two
arguments by the pre-processor. Thus, when P calls 2 it needs to supply the RHeap argument that
goes with the RPointer returned by Q.

In general, a call form A that:

1. Invokes a procedure that returns an RPointer, and ©or

2. Appears in the argument position of some other call form B that takes an OM object in that
position,

must have an RHeap inserted after call form A:
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The » marks the point of insertion.

For the pre-processor to do this insertion, it must know something about the precedure being
invoked. In particular, for a procedure Q, it must know the RHeap that is to be associated with
the RPointer that Q returns. Fortunately, this is generally a static property of the procedure. The
RHeap of the returned RPointer is the same as the RHeap of one of the objects passed to the
procedure. Thus, we can augment the definition of Q with a declaration of what argument’s RHeap

is the RHeap of the returned RPointer: ’

(DEFINE (Q (ONVAR N)) (RETURN-RHTAP X)
2

This says that Q returns an OM object identified by the RPointer returned vy Q and the RHeap
associated with Q's first argument, X. This is enough information so that the pre-processor can
transform the definition of P into: '

(DEFINE (P Ai2 A!X B CIR CIE)
(Ir (z?)
(R (Q AIR AJH) AlH B)
cir))

The AIREZAP in the call to R is inserted based on the fact that the definition of Q says that the
RHeap of the result of Q is the same as the RHeap of Qs first argument.

If the RETURN-REEAP clause is omit'ed, the pre-processor assumes that the procedure returns a
non-OM object {e.g. an integer). .

While it appears that the pre-processor can automatically generate Efieap arguments for many
cases, the programmer is still responaible for knowing whes a data structure crosses a heap bound-
ary. Doesn’t the programmer have to mention an RHeap explicitly at this poiat? The answer
is “no” because of the pre-processor in combination with the 1WITH-LPOINTER macro enables the
programmer to forget about the RHeap argument even in this case.

Consider the following simple example of a procedure that deals with data in multiple heaps. Sup-
pose a procedure P is passed a list of LPointers. Each LPointer is a reference to a vector of integers
in another heap. Suppose we want P to sum up all the integers in all the heap. We could write P as
follows:

(DEFINE (P (OMVAR L))
(COND ((1NULL? L)

0)

(ELSE

(+ (IYITH-LPOINTER ((VEC (1PAIR-CAR L)))

(LOOP (INITIAL (SUM 0)) ..
(INCR I FROK O TO (- (IVECTOR-LENGTE VEZ) 1))
(DO (SET SUN (+ SUN (IVECTOR-ELT VEC I))))
(RESULT SUX)))
(P (I1PAIR-CDR L))))))
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Note:

{HULL? is a primitive procedure that takes an RPointer/RHeap and returns tree if the RPointer is
to the null object.

1PAIR-CER is a primitive procedure that takes an RPointer/RHeap to an OM pair and returns the
edr of the pair. JPAIR-CIR is declared to the pre-processor to return an RPointer that is
in the same heap a3 the argument to IPAIR-CD2. Thus, in the recursive call to P inside the
definition of P, the RHcap amocinted with L (i.2. the second real argument to P} will be
loserted afler the call to 1JAIR-CEN.

1VIOTOR-LEUCTY is & primitive procedure that takes an RPointer/RHeap to an OM vector and
returns ~a integer.

{VZCTOR-ELT is 3 primitive procedure that takes an RPointer/RHesp to an OM vector and an
imteger odset into the vector, and returns the RPointer at the vpecified offzet. 1VISTOR-ELT
is declared to the pre-processor to return an RPointer that is in ‘he same beap ss the first
arzument to 1VICTIR-ILT. However, in this example since the cail to IVECTOR-ZLT appears
inside a call to a non-OM procedure (i.e. +), the RHeap is not inserted.

Note that the cne clauze in the specification part of the 1WITE-LPOINTER has just two elements:
the pseudo-variable VZC and the expression (JPAIR-CAR L). Since like 1PAIR-CDR, 1PAIR-CJR is
declared to the pre-processor to return an objecy in the same heap as its argument, the specification
clause will be filied out *o be the full triple, the last element being the RHeap that was passed to P.

While we have not actuslly implemented the pre-processor described above, we do not believe
that the implementation would be &ll that difficult. The main inconvenience to the progammer
introduced by the pre-processor is une that is found in any system of declarations: declaration must
precede reference. Lisp systems are typically more flexible, allowing references to procedure that
have not yet been defined. However, this flexibility iz possible only when “compiling® the reference
does not require any information that appears ir the definition. The pre-processor does require such
information, and bence the definition must precede the refsrence. We believe that this is not too
onerous a task for the programmer.

4.4 The mixed object en{!ironment

OM runs within a T environment. Programs that use OM can creste normal T objects (in the
transient beap) and OM objects (in a permanent heap).-

OM provides primitives for copying objects between the transient and a permanent beap, and
between permanep! heapa. These primitives are not general structure traversers. That is, they do
not take a reference to an object of arbitrary type and copy that object and all objects reachable
from that object into another heap. In general, with a large graph of objects (data structures), finer
control is required; when copying a data structure, objects will need to be allocated in different
heaps. No simple, single copying primitive could handle all possibilities of where objects are to
be allocated. Thus, OM provides primitives that copy atoms (ireluding LPsinters) between heaps.
More sophisticated copying procedures can be built out of the primitives,

Being able to allocate objects in the transient heap and then later copy them into a permanent heap
can be useful. This is because it allows one to write procedures that allocate new objects without
regard to what heap the objects should be allocated in. This may be a convenient programming
atyle for certain applications. In such applications, at a cirtain level of abstraction all procedures
that allocate new objects always do so0 in the transient Leap; at the next higher level of abstraction,
the objects are copied into the appropriate permanent heap.

Another advantage of being able to copy transient objects into a permanent heap is that it allows
allocation to be a bit more reckless. In programs that allocate objects but in which it is not statically
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possible to know which of the allocated objects will be permanent, if all the object are allocated in
s permanent beap, some would be garbage. These garbage objects are costly in terms of garbage
collection time (a program that generates a lot of garbage causes the garbage collector to be invoked
more frequently). If, however, the objects are alwvays allocated in the transient heap and then the
ones that are to be permanent are copied into a permanent heap and the amount of garbage is
not too great, ihe garbage is “free”. A program that creates a certain amount of garbage in the
transient heap can do so with no time penalty if it doenn't allocate so much that the garbage collector
is invoked on the transient heap before the process exits, Since the transient Leap s transient, all
ity contents are by definition garbage when the process exits; garbage collection on that heap is
implemented simply by deleting the entire beap. Thus, no garbage collection time penalty (other
than the time required to delete the heap file) is incurred.

There is some clumsiness that resuits from writing program that deal with both OM objects and
T objects. In the current implementation of OM, there is no easy way to avoid this. In another
implementation of OM we expect we would simply dispense with T objects altogether and have a
unique OM transient hoap associated with each process. This beap would be like any other OM heap
except that the maximum size of its heap index wouid be sero - i.e. there covld be no references
from other OM heaps ..:ito this heap. Thus, when the process exits, the heap can be deleted. This
strategy would elimiuate the clumsiness of dealing with the T transient heap wichout aacrificing the
advantages associated with that heap az described above.

4.5 Finding the first reference

In order to manipulate an object, a program must have s variable whose value is a reference to
the object. But when a program starts, the values of all its variables are undefined. How does a
program go from having no reflerences to having some references?

Programs do not operate in a vazuum. Programs are started because people want them started. Peo-
ple give arguments to programs. If the programs are to manipulate permanent state, the arguments
must indirectly identify objects (if they did not name objects, the program could not concesvably
manipulate stats). However, these identifications are not OM references, but something more high
level ~ something that is meaningful to a person, e.g. the string name of a “maiibox® or a number.
The problem is to transform the kinds of arguments people give into refsrences to objecta.

There are two general questions involved here. First, what are the set of objects that are known a
priori by the system? Second, what are the mechanisins for finding other objects from the known
objects?

4.5.1 File systems

Traditional computer file systems provide a model for dealing with problem of finding objects given
only a small set of known objects and some logical ideatification of the desired object. The objects
in a traditional file system are directories and files. The known object is typically a *root directory”
that is in some known place on the disk. The file system has a mechanism for finding a file given
the string name of a file and the root directory.

Filesystem directories are a simple mechanism for converting high level references into lower level
references. However, they have the two main properties in which we are interested. First, they have
a piece of information that is known a priori. Second, they contain system mairtained functions
and data structures that convert high level references into lower level references.

4.5.2 File systems as a model for OM naming

One strategy for giving high level names to OM objects is to imp'ement our own hierarchical naming
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system. We define an object that is known & priori by OM ~ a dirsctory odyect — that maps string
names onto LPolzters. A dirsciory objuct is any object that responds to the [Dhrectorylookup
operation (that tokes a string) by returning an LPointer. The result of the lookup could be a
reference to yet another directory object, or to a leaf in the directory tree. In this way, an object
can be completzly pamoad with 3 list of strings. Locking up an object given a list of strings simply
requires iraversing the trwe of directory obizcts starting =t the root dirsctory object and returning
the LPointer that wus the result of the lusg Jookup.

Note that the aboy: cystem is more 8axible thar a tradition flesystem pamicy system. A directory
object is free to implement DirestoryLociup i way way it chooses. The obvious approach wonld be
for the object to simply malniain a hash table mapning sirings onto LPointers, However, it could do
more sophisticated things. The object might treat cartzin sirings in a special wsy. For example, we
could make a directory objest that when prezented with a person’s name yizlded a person’s mailbox
object. However, this same object when presented with the string “MyMailBox™ would yield the
mailbox object associated with the person that vwns the process executiug the operation.

4.5.3 A genezral naming stratze~y

Note that this hierarchical naming svstem nesd not be the only way to support hizh level names.
Diferent gpplications can implement diferent systems. OM does not cammit applications to a
particular naming system. All that ONM itaslf must supply is & top level to all the naming systems
- i.e. a single directory that maps naming system names onto naming sysiem chyects: an entry
point into a data structure that can be used by procedures that want to translate high level names
to object references. The hierarchical naming system that takes a list of strings and produces an
LPointer is simply one naming systern in tze top level. This paming system can be entered in
the top level under some well known name (e.g. “TreeNarnes”}; the value of this entry is the root
directory object for the naming tree.

4.5.4 Naming in the current implementation

The current implementation of OM does not include the general top level naming system name
table described above. Since OM is running on top a conventionsl iile system that has a hierarchical
naming system, we took advantage of that naming system. The DOMAIN naming systern lets us
name hesps. However, we siill need to identify a particular object in the neap.

In early versions of OM we allowed procedures to treat the heap index as a record with named fields.
The names werz artifacts of the source cods and were ot stored in the heap itself. This system
is analogous to recerds in Algol-like languages: a program refers to a field of record by name, but
when the program is compiled, the names disappear and the field is identified simply by its offset
from the beginning of the record. In OM, elements of the index could be given symbolic names;
these names could be used in conjunction with an RHeap to obtain an element of the index. The
symbolically named elemcents of the index were excluded from the pool of index elements that are
assizned as a result of EXPORT-RPOINTCR. Using this record-like scheme » first reference could be
obtained simply by activating a heap {using its path rame) and refsrring to one of the symbolically
declared heap index elements.

The problem with the scheme as we implemented it was that there was no way to be sure that a
symbolic name was not being used to retrieve and element from the index of a heap that was not of
the right “type” (i.e. that the particular elements of the beap index were not reserved for references
by the particular set of symbolic names). The problem is analogous to one that would arise if in

Pascal a field name from any record type could be used after a name of a variable who=e type was
any record type. E.g. in:

type r1 = racord
a: integer;
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b: integer;
ood;
type z2 = record
x: char;
y: diateger;
sad;
ver
vl: ri;
vad: r2;
begin
vl.y := 0;
and

the reference to vi.y is invalid. Bur in the system we implemented in OM, this sort of illegal
reference would g¢ undetected. The cause of the problem is that heaps are not typed. However, if
we associated a type code with each set of symbolic index element names and we stored this type
code in al} heaps for which we wanted to allow index elements to be referred to symbolically, then
references through symbolic element names could be dynamically checked to see if they were being
applic ] to the right type of heap.

Instead of implementing this typing system, we abandoned the record-like approach to the heap
index. OM alr:ady has a type system and there is no point in introducing another one.

The current OM naming systems consists of a facility that allows the programmer to identify one
distinguished object per heap. The distinguished object mechanism is a way of specifying and
obtaining a known cbject within a heap. A heap’s distinguished object can be obtained simply by
having the heap’s HID. The OM primitive DISTINGUISEED-REFEREXCE takes an RHeap (gottea by
" activating s heap) and returns an RPointer to the heap’s distinguished object. When used in the
context of the SET special form, DISTINGUISEED-REFEREACY can be used to set & heap’s distinguished
object. In this context, the program must supply an RPeinter to the primitive.
Before the distinguished object mechanism can be used it is necessary 1o get the HID of some
heap. In the current naming system implementation, HIDs can be obtained using the OM primitive
FILE-NANE-BID. This primitive takes a DOMAIN path name and produces the BID of the Leap
that has that path name. Using DISTINGUISHED-REFERENCE and FILE-NAKE-RID it is possible to
get a reference to a known cbject. Thus, DOMAIN path names are the logical names of the known
OM object.

4.6 Sample applications

To see how usable the design and implementation ~f OM is, we built two sample applications that
use OM. These applications are representative of the kinds of applications OM is designed to handle.

4.6.1 OM/UMail

UMail is a display-oriented electronic mail user interface program that runs on the DOMAIN system.
UMail lets users send messages and receive and store messages in mail baxes. UMail does not use
OM; OM/UMail does. In UMail mail boxes are stored in simple text Sles. When UMail starts, it
reads and parses the text file into an internal data structure. When UMail exits, it rewrites the
text file if the contents of the internal representation of the mail box changed. The cost of the parse
and rewrite steps is barely tolerable for moderately large (30-100 message) mail boxes. Elec’ ronic
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bulletin boards, a sub-class of mail boxes, are general larger and using UMail to examine them is
virtually impoasible. This was one of the reasons that made us to want to male an OM version of

In UMail, the internal revresentation of & mail Lox is a *mail bex object™. Tuis object handles - ;:;:f‘wf
certain operations; e.g Scleet’dag, Addldeg, DeleteMly, EzpunpeDeleted’dsge. Tae local state of a oy
mail bex conaists of Lzt of *mzczaze objects®. A muizsage obiset handies the operatione: Jnitlley L
axd Prinl. The local state of a mexzage object lncludes: the text of the mu ; Lo
various interssting headers in the fext; internal tiress representing the date the mewac: o :-'.j"_:

A

and delivered; and Sags {e.g. “memaze to be deleted”).
The charzes necessary to tum Ulall into O3 /U{all wers relatively straightforws:d
(lacking the pre-processor). The converzion went far enough to demonsirate that wee. i1

the OM versions of the mail box and message object. An entire mail box objers, with all the
messages it references, is kept in a single heap. One heap contains exasctly one mail box. The frst

reference s obtained by constructing the DOMAIN path name of the hesp fle from the logical Sl
{abstract) name of the mail box (e.g. a bullstin board or user narme), activating the beap, and .
following the heap’s distinguizhed reference, which refers to the mail box obiect. o
OM/UMail did not replace UMail a3 the production mail user interfsce. We stopped working on :-'_j",-
OM/UMall as it became apparant that w= could learn more about how wall OM werka from desisving o
snd implementing an application from scraich, rather than converting an existing application. A
4.8.2 Naming server - N
The second sample application to use CM is a paminyg atabase manager (NDBX). We use the terms.
“database” and “database manager” in a very general menss - as terms that mesn “a collection of ) .
permanent, structured data® and “a set of programs that maaipulate that data”. NN
[y

The motivation for the NDBM project was to replace she DBM available oo a DECSYSTEM-20 in

the Yale Computer Science Department. The data held in the DEC-20 database includes: ) -.....«

e Personal information. E.g. peovle's home address and phone pumber, usrer IDs, electronic EVE
mailing addreraes. e

o Host (computer) information. E.g. host nicknames, network addresses. __“

o Mailing list information. Members, maintainers and descriptive information about electrenic —
meiiing Lsta.

_. The DEC-20 DBM is written in Lisp. The permanent, external representation of the database is a
single, large text file containing the printed representation of a siz e, Iarge Lisp list. When the DBM
staris, it reads and parses the fille into a Lisp list, the internal representation of the database. The T
time to read and write the dxtabase is very long. The data is not simultaneously tharable among -

several processes. Access to the data is by s network server process that handles ope transaction ——
at at time from other processcs. The user interface to the database manager is one of these other s
processes.

The DEC-20 DBM uses the relational model. However, the generality of the relational approsch
was never exploited. One reason for this is that the generality was not needed. Another reason is e
because the DBM implementation is not very sophisticated, and the iime to execute the relational mo
operations is quite high. :

The implementation of NDBM is in no way based on the DEC-20 DBM. However, the NDBM is
designed to hold the same data as the DEC-20 DBM.

In designing the NDBM we viewed the task as a permanent duta structure problem, rather than
as a traditional database design problem. The database is relatively small (ssveral hundred people,
several hundred hosts, a hundred mailing lists) and we were not interested in applying sophisticated
datzbase technology.
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In thinking about the problem of storing the kinds of data we Lseded to store, we developed a way :
of thinking about stucturing data in general, rather than structuring the particular data at hand. oy
As 3 result, the NDBM is 2 more a DBM framework than ar actual DBM. 1t is a framework in the )
sense that it defines a set of operations and their semantics, but does not suppiy the impiementation

of the operations. It does not specify any properties of the data to be stored in the database. An

instance of & fremework is a set of objects that behave in the way specified by the framework.

The framework defines two sets of types of objects: item and deseriptor. A type is in the set of item
types if it responds to the operations defined on item types. Item types are analogous to record —
types in a conventional database. Item objects ~ i.e. objects whoee type is an item type — are like .
records in a traditional database. The local state of an item object contains information about the
entity being aescribed by the object.

For example, an instance of the framework might have a type called Person which is in the set of
item types. Each person in the instance is reprecented by a single object whoss type is Person. A R
Parson object pra\u_nnbly contains strings containing a person’s home address, phone number, etc. o

Item objects can alac contain references to other item objecta. E.g. a MailingList object can bave 2
list of Person and MaslingList objects.

A type is in the set of descriptor types if it responds to the operations defined oan descriptor types.
Descriptor types are used to create and organize item objects. Every descriptor type Las exactly
one associated item type. Descriptor objects - i.e. cbjects whose type is a descriptor type ~ are
like database schemas in a traditional database. The local stete of 5 descriptor object presumably
contains data structures that allow individual items to be stored and retrieved. We say that a
descriptor object covers a set of item objects. A descriptor object covers an item object if it is
possible to obtain a reference to the item object by applying th+ lookup operation to the descriptor
object.

Descriptor types must handle operations like:

E% B CAUPLPERLP:

Item Type: Return the item type associated with the descriptor type.
Newltem: Create and return a new item; add the item to the descriptor index (lookup tabie). ,_
Lookupliem: Given a key (e.g. a string), return the item object arociated with that key.

Walkltems: Apply a procedure (passed as an argument) to all the items that the descriptor object
covers,

Show: Produces a printed representation of all the items the descriptor object covers.

N

Item types must handle operations like:

Descriptor Type: Return the descriptor type associated with the item type.
Show: Produce a printed representation of the item object’s contents.

In any instance of a framework, both item and descriptor types are free to handle additional op-
eraticns. For item types, it is expected that they will handle all sorts of operstions peculiar to
the instance. E.g. an instance containing the Person itemn type described above would presumably
handle an operation to retrieve a Person object’s home address string.

The framework impouses a conveution on how objects in an instance should be spread out across w
beaps. The convention is that there is exactly one heap per item type in the instance. All the objects e
of the same item type reside in a single beap. The descriptor object that covers the item object OO
resides in the same heap. There is one additional heap, called the master Aeap, that contains only
one object: a vector of all the descr'ptor objects in the instance. The master heap’s distinguished
reference points to this vector. ’ :

We implemented an instance of the framework that is designed to hold the kinds of data in the
DEC-20 database. We then moved virtually all the contents of the DEC-20 database into the e
instance of the framewcrk. The instance has eight type: four descriptor types and four item types.
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The four item types are: Psrson, Hest, Madinglist, and UserlD; the four descriptor types are:
Personlose, HostDese, MadisaglistDese, aud UserIDDese The descriptor types support translation
betwewn string keys {e.3. & person’s name) and references to item objecta by using hash tables that
are part of the local state of the descriptor objocts. Descriptor types also support operations that
allow modifications to bz made to item objects interactively.

When s wser lovokes a procedure to view or modify some plcce of the database, one or more heups
may be aciivated. The hesps are activated for exclusive vue - for the duration of the sctivation, no
otlier process can access the samse part of tue database, Thls may seem like a setious restriztion,
but considering that users were quite shle to live wilh the strictly one-at-a-time sccess ofered
by the DEZC.20 DBMS, the restriction is astually net too serioua. In NDBM, muluple processes
can simuitaneously accewas paris of the database as long as the parts are in different beapa. More
concurrancy could be accomodated by using one of the technigues discussed earlier. However, given
the nature of the access patterns (infrequent and shert), ihe current scheme seems satiaflactory.

4.7 A more ambitious scherme

In this section we describe a scheme for making the application programmer’s task considzarably
easier than it is in the current OM implementation. This scheme involves using special compiler
optimizstion techniques to make certain apparently expensive operations free,

4.7.1 Active References

At the application level, let us replace the concepts of RPointers and RHeaps with a single concept:
sctive reference (ARef). At the OM implementation level, an ARef is a T object (i.e. mot an OM
object). ARefs never reside in OM heaps. An ARz is an aggrerste - its representation is not
immediate, it resides in the transient heap.

An ARef contains an RPointer and an RHeap - but this of no concera to the programmer. We say
that an ARef contains an RPointer and RHeap so that we can descrive the ARef approach in terms
of primitives we have already discussed. These primitives wiil no lovger be used by the programmer.

ARefs are like LPointers in that they completely specify some M object. ARefs are active in
the sense that they apply only 1w some particular active heap. An ARef is meaningful only in the
context of a particular process.

We can intmduce a layer of abstraction that uses ARefs ‘nstead of RPointers and RHeaps. For
exampie:

(DEFINZ (AREF-EXAMINE AREF I)
(MAXE-ARE? (RPOINTER-EXAMINE (ARTF-RPOINTER ARZT)
(ARZF-REEAP ARSF)
9}
(AREFP-RAEAP ARZF)))

Where NAXE-ARET takes an RPointer and an RHeap and makes (i.e. allocates in the transient heap)

83 ARef. AREF-RPOINTER extracts an ARef’s RPointer and AREF-REZAP extracts an ARe{’s RHeap.

Thus, AREF-EXAXINE takes an ARef and an offset into an object and returns an ARef to the object
referenced {rom the Ith slot of the object referenced by ARE?,

1PAIR-CAR can be defined in terms of ARZY-EXANIXE instead of RPOINTER-EXAMINE.

(DEZFINE (IPAIR-CAR 03J)
(AREF-EXANINE 0BJ 0)
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This new 1PAIR-C\R now looks mote like T°s ordinary CAR than the old 'PAIR-CAR does because
the uew one takes just one argun.ent. Thus we have solved the two argument problem without
resorting to a pre-processor.

We need to define AREF-DEPOSIT to serve the same function for ARefs that RPOINTER-DEPOSIT
serves for RPointers:

(DEFINE (AREF-DEPOSIT ARIF1 I ARRF2)
(RPOINTER-DEPCSIT (AREF-RPOINTEZ AREF{)
(AREF-REZAP AREF))
1
(AREF-RPOINTER AREF2)
(AREF-RIEAP AREF2)))

This procedure sets the Ith slot of the object referred to by AREF1 to be tue object referred to by
ARCT2,

But there is a price for the ARef approach. One price is in the extra layer of indirection it introduces.
But more importantly it is expensive in terms of storage in the transient heap. To aimply extract a
Beld (e.g. the cer) of an object {e.g. an OM pair) roquires an ARef to Le alfocated in the transient
beap. The cost of this is unacceptably high. But there is a way to avoid the coat.

4.7.2 A smart compliler

Consider the normal T expression:

(LET {.X (CONS expressiocn-i expression-2)))
(+ (fAR X) (cDR X)))

It seemns clear that since the cens ce:l constructed in this expression is never passed to a procedure
tha' might store away a reference to the cell, a clever compiler that knows the meanings of the
procedures CONS, CAR, and CDR could transform the above expression into:

(LET ((X-CAR cxprnuioﬁ-l)
(X~CDR expression-32)
(+ X-CAR X-CDR))

applying a procedure similar to reduction in strength.

Now consider the expressicn:
(I1PAIR-CAR (IPAIR-CAR OBJ))

The inner 1PAIR-CAR allocates and returns an ARef. This ARef is passed to the suter 1PATR-CAR
and then becomes garbage (since 1PAIR-CAR will not store the ARef in any object). Based on the
definition of 1PAIR-CAR, we can rywrite the above expression as:

(LET ((P (AREF-EXANINE 0BJ 03))
(AREF-EXANINE P 0))

Based on the definition of AREF-EXANINE, we can rewrite the above expression as:
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(LZT ((P (MAKZ-ART? (RPOIATER-EXAMINT CARST-EPOINTER OBJ)
{AREF-RAZAP 030)
. 0)
(ARZF-REEAP CBID))
OGUXE-AZ2? (RPOINTER-SULEED (AREF-RZMINTIR P)
(LLIF-210%AP P)
o)
(AREF-RIZA2 P)))

Ueing the compiler technigue described above, since the ARef held in P is not saved away, we know
that we can aafely eliminate the frst MAZE~ARZP, resultiny in:

(LET ((P-RPOINTER (PPOINTER-IXANINE {ARSF-RPOINTER 03J)
(AREF-REZAF 37)
6))
(P-RHZAP (ARIT-RAZAP OEI)))
(UXE-ARZF (RPOINTIR-EUMINE P-RPOINTER
P=LLAP
)
P-HEAP))

Now we have allocate? only one ARef instead of two. Uf the original expression is embadded ic
{say) another IPAIR-GAR, still only cne ARef will be allocated as both inner KAXZ~ARSTs will be
eliminated.

If we implement the proposed compiler technigue, we can re-introduve the zutomatic dereferencing
of LPcinters described in section 4.2.1. Now bowever, instead of automarically creatisg an LPointer
to rxturn, we create an ARel. We redefine ARIF-EXANINE to check for an ARels pointing to an
LPointer:

(DEFINE (AART-EXAMINE AREF 1)
(LET ((2P (ARES-RPOINTER ARIT))
(3 (ARZF-RETAP AREF)))
(I7 (LPOIXTER? RP)
(YITE-LPOINTER ((P 2P 1))
(HAXE-ARTY (RPOINTZR-DXAMINZ PIR P12 1) PIE))
(MAXE-ARZY (RPOINTER-EXAMINE PP H I) I))))

To make AREF-DEPCSIT do the right thing in case the two ARefs it is passed refers to objects that
are no. in the same heap, it must be defined to create an LPointer that case:

(DEFINE (AREF-DEPOSIT AREF1 I ARTP2)
(LET ((2P1 (AREF-RPOINTER ARZr1))
(81 (AREF-MAZAP AREP!1))
(RP2 (AREF-RPOCINTEX ARET2))
(32  (AREF-REEAP AREZ2)))
(coup {(= H1 37)
(KPOINTER-DEPCSIT RP1 HY I RP2 H2))

161
(RPOINTYR-DEPCSIT
'P1 Hi
1

(AREY->LPOINTER AREF2 X1} HI)))))

(CEFINE (AREP->LPOINTEZR AREF B)
(1EXPORT-RPOINTER (ARZF-~RPOINTEZR AREF) (AREV-REEAP AREF) H))
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If the heap of the target object (AREF1) is the same as the heap of the source object (AREF2) -
the object a reference .0 which is being deposited - then the slot in the object is simply sei to the
RPointer to the source object. Alternatively, if the source and target objects are nat in the same
Leap, an LPointer must be created in the target object’s beap; the LPointer must point to the source
object. AREF-LPOINTER) is simply a procedure that allocates an LPoinser to the same object that
tbe ARels refers to. Note that we can't simply store the ARef in the target object’s beap becauase
an ARef is pot a process-context indepeadent quantity (because it contaius an RHeap) and it does
not refer through the beap index.

4.7.3 Active references and heap activation

We can further extend the ARef scheme to rasl: the activation of heaps transparent to the pro-
grammer. The general idea is o automically control what heaps are mapped into the process virtual
address space. When an object in a heap peeds to be examined, the heap has to be activated. If
there is room in the virtual address space, the beap is simply mapped. If there is not room, then
some already mapped heap must be “bumped” - i.e. forcibly unmapped to make room {or another
heap.

Recall that the RBeap data structure co :-ins a HID and an RHea?B. The ltHeapB is the active
heap's base address in the process virtual address space. Suppose that when a heap is buniped, we
set the RHeapB fiald of the RHeap to be null Since only one RHeap struciure is allocated for 3
single active beap, all the ARefs wili refer "5 a beap via a single RHeap structure. Thua.,wecan
modify AREF-EXANIXE (and similarly AREF-DEPCSIT) to be:

(DEFINE (AREF-IXANINE ARZY 1)
(LET ((RP (AREP-RPOINTER AREY))
(8 (AREF-REEAP . XET)))
(IF (NULL? (RHEAP-BASE H))
(REACTIVATE-EEAP B))
(17 (LPOINTERT RP)
C(IVITE-LPOINTER ((P 2P N))
(HAKZ-AREF (RPOINTER-EXANINE PiX PIH I) PiH))
(GUAXZ-ARZY (RPOINTER-IXANINI RP % I) B))))

REACTIVATZ-HEAP simply remaps the heap indentifiea by the RHeap’s HID feld and updates the
RHeap structure’s RHeapB field to contain the address at which the heap is remapped. Note

that REACTIVATE-HEAP takes an RHeap, while ACTIVATZ-REAP takes a HID. The oanly times tha:

ACTIVATE-HEZAP would be called is in the case of ar LPointer being dereferenced (i.e. as a result of
exscuting !¥ITA-LPOINTER expression in AREF-EXAMINE), or in some “Srat reference” case.

ACTIVATZ-HEAP needs to be modified to check the ainourt of iree virtual address space, and deacti-
vating heaps if necessary to make room. Ideally, heans should be deasiivated using a “lesst recently
used® (LRU) strategy. Supporting LRU would require exporting some page reference information
from Aegis. Alternatively, a simple active heap FIFO might be sufficient to manage the addres:
space. This is an area for future research.

4.7.4 Object allocation

It ia stil] the responsibility of the programmer to decide in what heap an object should be placed.
The allocation procediiren still take an srgumer.c specifying in what henp the new object should be
created. There is not a “right® or *wrong” plece t5 pv* an object. Rather there are more or Jeus
optimal places. The optiinal placement of an ohject is one thai minimizes the number of LPointers
to the object. That is, in general, an cbject should be p'ace in the heap that containa the most
refevences to the object. Placing an object in a sub-optimal place will not cause a program to behave

e

-~




74 Mprnaging Permanent Objects

in wtly; it will gimnply increase the execution time of the program and the amount of heap space

4.0 Benefits and costs

The AR { approach is not in confict witn the approach of storing objects in multiple heaps and
having two kinds of references. However, the ARef approach simplifies the application programmner’s
job sirce it relieves him of the chores of:

s Following the RPointer/RHeap argument conventicn;
e Managing LPointers, and
e Activating and deactivating heaps.

The pre-processor approach eliminates only ihe first c¢f these chores. But even in that chore, it
imposes more work on the programmer than does the ARef approsch.

The ARef appreach has two main costs. First it requires a sophisticated compiler that applies the
optimization discussed above. The compiler must reliably detect the cazes that can be optimized.
If it fails to detect a case, an unpecessary ARel will be allccated. If the case is in the middle of
a loop, many unnecessary ARefs may be allocated. The investigation of the compiler techniques
involved here are beyond the scope of this work.

Note that the cost of the sophisticated compiler is in both compiler devclopment and comniler
execution time. The former cost is paid just once, but it is hizh enough that we were not willing
to pay it for this project. The latter cost is the increased execution time incurred by the logic that
detects the optimiration we have described. However, this cost can be reduced by not applying
the optimization on versions of the procedures that are in the debugging phase. Once debugging is
complete, the expensive compilation can be performed - once.

Another cost of the ARef approach is that the cost of the accessors goes up. AREF-EXAMINE has two
more tests — one to ace if an ARef refers to an LPointer, and one to insure that the heap is active
- than RPOINTEZR-EXANINE. This cost is in both code size and execution time. Given the size of the
definition of AREF-EXANINE, we are unwilling expand it inline at each occurrence of an accessor. The
alternative is to use a procedure call. If we do this, the cost of ths ARef approach is orly execution
time. Note that compared with other existing object-based systems (e.g. Smalltalk and Hydra), the
cost of accessing a slot in an object is still fairly cheap.




Chapter 5

Conclusion

5.1 Reviewing the problems and their solutions in OM

In chapter 2 we described the problems that arise in a system that needs to store data permanently.
We will now review the problems discussed there and how OM addresses them.

5.1.1 Integrity and atomicity -

OM guarantees the integrity of data against logical program error by presenting a consistent pro-
grammer interface. This interface insures that programs can access data in heaps only using the
primitives that insure integrity.

OM does not address the problems that result from hardware errors or disasterous software errors
(e.g. system crashes). Thus, the potential for loas of data integrity is present if such errors occur.
We feel that this limitation does not make OM unusable since users already deal with this sort of
loas of data due to such errors.

CM does not support atomic operations. However, we see the current OM system as a vehicle on
which systems that support stomic operations can be built.

5.1.2 Abstraction

OM supports abstract access to data using the object-oriented programming model and the type sys-
tem we described. This allows programmers to ignore issues of disk and file formatting. Application
programs sccess data using operations that are logical and abstract.

5.1.3 Storage control

Storage is controlled in OM using the heap model and garbage collection. The time required to
allocate a piece of storage (excluding garbage collection overhead) is small. Heaps can be garbage
collected independently making the use of garbage collected storage feasible. The heap model

seems to be a natural one for the class of application programs whose data structures are naturally
partitionable.

14

5.1.4 Sharing and concurrency

In OM, objects can be shared among users and applications that use the interface presented by OM.

75
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Since hezps are based on DOMAIN files which are pags-fauited on demand, only these objects that
need to be accesaed are ever read into main memory.

OM supports concurrency as well as the DOMAIN system does. That is, application programs can
use the DOMAIN synchronization primitivas to control concurrent access. For hizhly concurrent
processes, we suspect that these primitives are too expensive.

5.1.5 Security

OM uses the DOMAIN access control primitives to insure security at the beap level. Access to
individual objects can not be controlled. For tkhe kinds of appiizations we have in mind for OM {e.g.
the ones we described as sample uses of OM) this restriction is not a serious problem.

5.1.6 Reliability

OM does not address issues of reliability.

5.1.7 Performance

In the design and impleinentation of OM, we have stressed performance over reliability and svailabil-
ity, We built a system that makes accessing permanent objects nearly as cheap as non-permanent
objects. In using OM, programmers do not need to use special teciniques (e.g. buffering) to increase
performance.

5.1.8 Reference

OM has two kinds of references: local (RPointers) and non-local (LPointers). Local references are
smal! and fast to dereference. Non-local references are larger and more expensive than local refer-
ences. OM’s local references are smaller and cheaper than the references used in many permanent
object systems. The combination of RPointers and LPointers allow programs 1o be as eficient 23 in
conventional programming systems in which all the objects are in a single (relatively smali) addresa
space, while supporting a very large number of permanent objects.

Having two kinds of references creates some problems for the programmer. We outlined several
techniques for making the fact that there are two kinds of references nearly transparent without
giving up the advantages of the two reference acheine.

5.2 Desizn Philesophy

We approached the problem of a permanent object storage system with a very practical orientation.
We used existing Lhardware and operating system software. We based the programming environment
on an existing progamming language. While this limited what our system could do, it enabled us
to build a real system in which we could build real application programs.
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