L~ AD-A148 998 COHESION IN COMPUTER TEXT GENERATION: LEXICAL
SUBSTITUTIONCU) HRSSRCHUSETTS INST OF TECH CHHBR!DGE
LAB FOR COMPUTER SCIENCE R A GRRNVILL

UNCLASSIFIED MIT/LCS/TR-318 N80@14-80-C-0850 G 5/7

I ENENENEEENE
EEEEEEEREEEEEE
EEEEEEEEEENEEE
HEEEEEEEEEEEEE
HREEEEEEEEEEEE
HEEEEEEEEEEEEE
—

ﬁw-;;q

v

Ay

"t e e

il N O
JASY =

s EEF]

HEE] m_umuu.m

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

LABORATORY FOR %} AACILEED

- i INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-310

gontriact NOOOL4=8-=t1501)

AD-A148 990

COHESION IN COMPUTER
TEXT GENERATION:
LEXICAL SUBSTITUTION

Robert Alan Granville

. by I
L i
*y 'S
«? b
. AR
x

6D ELECT!

~DISTRISUTION STATEMENT A & JANT s
DIST&LBUTION STATEMENT A "j
Approved for public release %
ii B

Distribution Unlimited o

— e

SESTTECTINGT O30 SOUARE CAMBRIDGE NMNASSACHTE SE TS 00130

TRV Y VYW

-

Lt S gk Jesth Jad 4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wnen Date Entered)

. REPORT NUMBER

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVY ACCESSION NO,
MIT/LCS/TR-310

450

3. RECIPIENT'S CATALOG NUMBER

N-AIES
TITLE (and Subtitie)

Cohesion in Computer Text Generation:
Lexical Substitution

S. TYPE OF REPORT & PERIOD COVERED
Trip Report

6. PERFORMING ORG. REPORT NUMBER
MIT/LCS/TR-310

AUTHOR(s)
Robert Alan Granville

. CONTRACY OR GRANT NUNBER(®) |
N00014-80-C-0505

PERFORMING ORGANIZATION NAME AND ADDRESS
Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, MA 02139

10. ’ROGRAM ELEMENT, PROJ!CT TASK

€A & WORK UNIT NUMBER
61153N 14, RR01408,
RR0140801, NR 049-309

Arlington, VA 22217
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice)

CONTROLLING OFFICE NAME AND ADDRESS

Office of Naval Research (Code 433)

. REPORT DATE
May 1983

800 N. Quincy St.

. NUMBER OF PAGES

118

. SECURITY CLASS. (of this report)

UNCLASSIFIED
[1%a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

3

. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, i1 different from Report)

SUPPLEMENTARY NQOTES

. KEY WORDS (Continue on reverse side if necessary and identily by block number) - I

Natural Language, Natural Language Generation, Utterance Realization,
Cohesion, Endophoric Reference, Lexical Substitution, Synonyms,
Superordinates, General Nouns, Pronominalization, Focus, Distance.

20. ABSTRACT (Continue on reverse side it necessary and identify by block number)
DD . 5", 1473 eoition oF 1 NOV 65 1S oRsOLETE UNCLASSIFIED
$'N 0102- LF- 014- 6601 SECURITY CLASSIFICATION OF THIS PAG .
N A A N A A I AR A R O L I P T A i P ' .
e e e e A e e e S e e N S NN e e e

P AL TR L N L gL O B ST N g At DA G S S AR S S S S A A S B AR

r o

Cohesion in Computer Text Generation:
Lexical Substitution

by

T RN . ¥
Py AN
. I PR

Robert Alan Granville

PR]

Badd

Pl garamn ot asag S
el A
PRTPSEN o afe

May, 1983

© Massachusetts Institute of Technology 1983

o
This rescarch was supported (in part) by the Office of Naval Research contract N0014-80-C-0505 and

(in part) by the National Institutes of Health Grant No. 1 P01 LM 03374-04 from the National Library of
Medicine.

Laboratory for Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts 02139

DTIC

ELECTE
JANT 185

B

.............
..............

e
..'- et \‘.\f'rt v', g'-'r. '1..'-' 7

B T A S
s

Eane aul)

ASAOA IS NN N AR A A CA CERE DS CACAMELISLSUSL SN ALty S AP E A AR A

Cohesion in Computer Text Generation:
Lexical Substitution

by

Robert Alan Granville

Submitted to the Department of
Electrical Enginecring and Computer Science
in Partial Fulfillment of the
Requirements of Master of Science

/ Abstract

\0'1'his report describes Paul, a computer text generation system designed to create cohesive text. ‘The
device used to achieve this cohcsion is lexical substitution. Through the use of syntactic and semantic
information, the system is able to determine which type of lexical substitution will provide the necessary
information to generate an understandable reference, while not providing so much information that the

reference is confusing or unnatural.

Spccifically, Paul is designed to deterministically choose between pronominalization, supcrordinate

substitution, and definite noun phrase reiteration. The system identifies a strength of antecedence recovery
for each of the lexical substitutions, and matches them against the strength of potential antecedence of each
element in the text to sclect the proper substitutions for these elements. There are five classcs of potential

antecedence, based on the clement's currcnténd previous syntactic roles, scmantic case roles, and the current
focus of the discourse. Through the use of thc_sacxical substitutions, Paul is able to generate a cohesive text
which exhibits the binding of sentences through presupposition dependencics, the marking of old information

from new, and the avoiding of unnecessary and tedious repetitions. p
Thesis Supervisors: /

Peter Szolovits
Associate Professor of Computer Science

Robert Berwick
Assistant Professor of Computer Science

Keywords: Natural Language, Natural Language Generation, Utterance Realization, Cohesion,
Endophoric Reference, Lexical Substitution, Synonyms. Supcr{)rdinatcs. General Nouns, Pronominalization,

Focus, Distance

Acknowledgments

1 would like to thank cveryone who contributed to this work, and everyone who aided, abetted,
encouraged, cajoled, or in any way assisted me during this project:

I would like to personally thank Pete Szolovits and Bob Berwick for their exceptional advice and
encouragement, their invaluable contributions in clearing my thinking processes and improving my writing,
and for reading drafts with incredible speed when time was of the essence.

1 owe a huge dcbt to the Clinical Decision Making Group for providing insights, encouraging me when
I needed it, putting me on the right track every time I strayed, and adding a little humor to the work day.

I would like to remember all my past co-workers over the past few years who have helped me in
thinking about this work and the direction it should take. I especially thank Lance Miller, Amy Zwarico,
Michal Blumenstyk, Mugsy, Lightfingers, Machincgun, Maddog, and the whole Heidorn gang.

I feel I owe a special personal debt to George Heidom for his encouragement, his sacrifice of personal
time for my part, his keen insights and suggestions, and for his tolerance of the Kid's capricious whims.

Without personal friends to give me support and perspective, this thesis and I would not have survived
each other:

I would like to thank the Ashdown Irregulars for their sparkling conversational wit, their charming
dinner companionship, and their always just being there when I needed them. 1 especially would like to thank
Brian Oki, Richard Sproat, and Monty McGovern for tolcrating me when I was silly, and supporting me
when I wasn't.

I would like to thank the MIT Community Players for giving me an outlet and constantly reminding me
that the problem set will be there tomorrow, but this flat has to be built tonight. I owe a special debt t0 Amy
Schrom, Ronni Marshak, and especially Robin Nelson for providing me with wonderful shoulders to cry on
more times than [can remember.

1 owe much to Corine Bickley for telling me that everything is going to be all right, and for keeping my
attitude properly adjusted.

My dictionary defines fairh as "bclicf without proof, confidence, reliance, loyalty:”
i To Karen Jensen, who had faith in me long after 1 had ceased to, and who wouldn't let me give up on

mysclf. I cannot express the depth of my debt toward, and the magnitude of my appreciation and affection
5 for, Karen. If there is anything good in this thesis, it is dircctly attributable to her, while all shortcomings are
sz duc to the shortcomings of the author. Karen has becn the best of teachers, advisors, coworkers, confidants,
. companions, and most importantly, friends.

To my parents, who believe in me and my work without understanding, which is the most profound act
of faith. This, and everything I do, is humbly dedicated to them.

/N

cosv |
msrecren
)

Accession For

| NTIS GRAZI
| DTIC TAB O
Unannounced 0

48

Justilication o

By
Distridbution/

Availability Codes

Avail and/or
Dist Special

Al

...........
.........

''''''''
-

- -'-.‘_ et et e .': e -'; LN
P, -.}".'w'_'-'.:h.,'\’.-'. u...-

-+ cmmrm s w v =

e =

LIntroduction ittt it ittt
Ll.StatementofthcProblem, i it i i i e
L2.Cohesioniiiii it i i it e e e s
13. Lexical Substitutionottt ittt it it e e e e
14. The Approachof ThisReport: Paul ittt ennennns
1.5. Outline of the Remaining Chapters. ittt it iinntnnerenn

2Cohesion. et i i e e e i i e e
2LIntroduction. e i i it e et i i e
22.TheGoalsof Cohesion. v v vt ittt it it it ie e
23.CohesiveRelations. i ittt i i i i i e
24.Cohesionvs.Coherence ittt i i i i e e
25.CohesiveDeviCes.t it i i et e i s it e et e

25 L Reference. it i i it e i e et i e e

2.5.2. Substitution

R .5 1T+ 13 1
J3.Superordinates e e i et e e e
3A.General NOUNSt ittt ittt i ittt ettt s it st tas s isansann

3.5. Personal Pronouns

A S .

AT AP

- LA TR TR

'-'.-'.- o " ’-'.-‘..".n.' '.'.". Ry
UR NN NN NN NN N

:
‘1
¢

R, T v

P
feed

3.75.Endophoric Limitations. i ittt it et i e e e 4

l 3.8. Comparison with Another Systemttt ittt ittt e sttt e i enennn 45

4 IntrodUCHON. . . . vttt ittt e e ettt et e 48

A N P RECOMES vt it ettt ittt es ettt e assenaneronneanenneas 48

4.3. Augmented Phrase Structure Rules

4.4. Condition Specifications.t ittt ittt e e ettt e e e

4.5. Creation Specifications.covii i

46. TheComplete NLPRule ittt eenonnnenoanananas

47.NamedRecords.

4. Cover AttIiDULES oottt ittt ittt e et e

..
.......................................
.......................................

...

--

--

73.FuturcResearch
Appendix 1: from Alice’s Adventures in Wonderland
Appendix 1E; Trace of Control Variables. .
Appendix 111: Additional Examples . .

Appendix IV. BNF for NLP.

Appendix V: NLP program for Paul .

References

........

Table of Figures

3-1: FragmentofaSemanticHierarchy o0 ittt it ittt et e e et e
32 SynonymMS fOr OdOr. i e e i et et e
3-3: Example of Uncontrolled Synonym Substitutionc. ...
3-4: Classification of SynonymsbyConnotationt iv i ittt nnnnnnnnn
3-5: AnotherSample Hicrarchy oo i i i i e e e e
3-6: Story with Uncontrolled Lexical Substitution o v i ittt i et e ettt e e n s n
3-7: The Five Classes of Potential Antecedence.ot i i it i i i,
3-8: Mapping of Potential Antecedence Classes to Lexical Substitutions
39:Expected Focus Algorithm. ittt ittt ittt n e
10 The Sample StOTY it h e et it e e
3-11: The Simple Pronominalization Rule.ttt it tmmennnnennns
3-12: Results of Simple PronominalizationRulettt nnns..
3-13: Paul’s Version of Sample Storyt ittt i e e i i et e e
4-1: Fragmentof an NLP Program.t ittt ittt ittt te v ensnnanneens
4-2: Generated Phrase Structure Tree oo oot i i sttt i et e e
4-3:Exampleof NLP Rule i it i it it i e,

4-4:Exampleof NLPRule i i i i i e e e

4-5: The Generation Algorithm i it ittt it it ettt et et e e sae e
4-6: Cover Attributes for Example i i i i e e e e
4-T: NLPRecords for Example.o o ittt it ittt ettt et e e et e ee s e
4- 8 NLP RuleS for Example ittt e i e e e e e

4-9: Trace of Control Stack for Example. i i i i it e i

> 9
4-10: Crcated Records for Example Sentence. o oo oo it i e
B 4-11:TheGenerated Tree.o i i e e e
> 5-1: NLP Records for EXample SIOMY - . . .« v v v o vttt e et e et e e e eeieee e
"
~ 5-2: Example Story without Lexical Substitution. vt
F $-3: Example Story with Uncontrolled Pronoun Substitution
. 5-4: Example Story with Uncontrolled Superordinate Substitution. 79 ji}
B 5-5: The World in which the ExampleStory Exists.o o vt i v i 80 - ‘.- o
] ’ s 1
; S-6:Fxpected FocusList00 e e 82 T
; 5-7: Control Variables AREr First Sentence oo v vt vttt ettt neeeennenes e 83
; 5-8: Control Variables After Sccond SEntence v v v e vttt e 83 - o
: 5-9: Control Variables After Third SEntenceo ve v vie e nniieeeeaeenns 84 RIS
9 L. L _ :
: 5-10: Control Variables After FOurth Sentence v v v v v e v v ve v etie i eeannnnns 85 :
5-11: Control Variables AfterNinthSentence eeran~sa. 8
BRI
o
- E
i
K
]
. . N
i
.9 .
. R

P '
LI L Y

T — v h P S S S A S B Jhee i Pt e SN i Aol Al Al Sl e diN AR rel AR RS S ot st st st u e A AR S PR NG S

1. Introduction

' 1.1, Statement of the Problem -

e The need for computer systems to generate acceptable text in a natural language such as English is

[IEIETEIN
(T e,

constantly incrcasing. While computer text generation is an interesting problem in itsclf, other types of

e

systems have found a requirement for the ability to communicate in a natural language. This is cspecially true
B for computer systems that attempt to address human factor issucs, that is, systems that strive to make ®
computcrs easicr to use, or more "friendly,” especially for people outside the ficld of computer science. One
obvious way to enhance this "friendliness” is to have the computer communicate in a language that is casy for

the user to understand, her own natural language, rather than in a language that is casy for the machine to

m understand, a programming language, that requires an cffort on the user’s part to learn. If we hope to build @
systems that gain general acceptance and widespread usage, we must be willing to incorporate natural .
_i language communication into these systems. :
This report describes Paul, a computer text generation system designed to create cohesive text. The -@
device used to achicve this cohesion is lexical substitution. Through the use of syntactic and semantic
information, the system is able io determine which type of lexical substitution will provide the necessary
information to generate an understandable reference, while not providing so much information that the ,_,_,_,
reference is confusing or unnatural. ‘Q'f

Spccifically, Paul is designed to deterministically choose between pronominalization, superordinate

substitution, and dcfinite noun phrase reitcration. The system identifies a strength of antecedence recovery

for cach of the lexical substitutions, and matches them against the strength of potential antecedence of each
clement in the text to sclect the proper substitutions for these elements. There are five classes of potential
antecedence, based on the clement’s current and previous syntactic roles, secmantic case roles, and the current

focus of the discourse. Through the use of these lexical substitutions, Paul is able to generate a cohesive text

which exhibits the binding of sentences through presupposition dependencics, the marking of old information -
from new, and the avoidance of unnecessary and tedious repetitions. Sl :
In natural languagc gencration, there arc at least six criteria that computer output must meet before it SR

could be considered acceptable.

1. The gencrated text cannot be canned.

2. The gencrated text must be based on an arguably correct semantic representation, L

3. The gencrated text must exhibit cohesion.

YV r T YOV T T Y ¥ VYT Y ey PV TR T w

'.'. v ..‘:J' °. ..._

4, The gencrated text must be comprehensible.

5. The generated text must not have erroncous connotations.

6. The gencrated text must not violate the intended style and mood.

The use of previously prepared strings of text, known as canned text, is possibly the simplest and most
obvious way to have the computer respond in natural language. Having the computer mercly display the
appropriate stored text is adequate in many applications, such as in error messages. However, in addition to
being a relatively uninteresting approach, the use of canned messages has scvere limitations [30). All possibly
desired messages must be anticipated in advance, which is not always (indecd not usually) a feasible feat.
While the usc of slot filling, strategically placing variables in the text (such as the name and address of the
recipicnt of a form Ictter), allows an additional freedom, the general outline as well as the bulk of the text is
still dictated in advance, and therefore fixed. Each such invariant text must be composed by humans in
advance and permancntly stored on the system. The occurrence of a new situation, or cven just a new and
unexpected variation on an anticipated situation, would require the creation of an entircly new text.
Furthermore, the computer cannot aid in any meaningful way in the creation of these texts, and the complete
lack of generality in this method prevents an implementor from gaining any benefits from cconomy of scale.
Having written and entered a score of error messages will not case or affect the labor of writing and entering

an additional score.

The current alternative to canned text is to translate knowledge structures into a natural language. The
temptation here is to follow the expedient of developing knowledge structures and translation rules that are
adequate for a chosen domain. While proper use of constraining one’s domain is beneficial, and with the
current state of the art probably necessary, taking unduc advantage of the constraints and avoiding generality
for the sake of convenience will producc systems that apply only to their specific domains, and do nothing to

further knowledge of natural language systems in general. Rather than being merely adequate, systems
should be based on knowledge structurcs and translating rules that are general enough to adequatcly produce
text in several domains. In order to be able to achieve this goal, systemns must have knowledge structures and
translating rules that are linguistically justified [30]. The generated text must be based on an arguably correct

sermantic representation.

In order for a string of sentences to be considercd a text in natural language, those sentences must
exhibit cohesion, an interdependence between the sentences created by causing the interpretation of some

clements to be dependent on other clements [11).
Sam is upset. Ha can't go to Gertrude's party.

The interpretation of ke in the second scntence is dependent on Sam in the first.

P I)

12

Text without cohesion has the stilted and awkward fecl of an clementary school primer, and certainly
docsn’t sound intelligent. Such text would be unacceptable for most systems today that require a natural

language capability. The gencrated text must exhibit cohesion.

While cohesion is necessary for acceptable text generation, it is not sufficient. It is possible through the

injudicious use of certain cohesive devices (such as pronouns) to render a text completely unintelligible, If

elements appear whose interpretations depend on other clements that don't appear, either because the
program mistakenly neglected to put these clements in, or worse yet, replaced them with additional cohesive
devices, the resulting text will be ludicrous and scrve no useful purpose. (The classic example of carrying this
problem to an extreme is the verse "evidence” rcad by the White Rabbit in Chapter XI1 of Lewis Carroll's

Alice’s Adventures in lVonderIandl.) A computer generated text that no one can understand is simply not a . . o

text. The gencerated text must be comprehensible. TR :;'

Additionally, if the program has an option in word selection from its vocabulary, care must be taken in - ~';Z'~‘Ef-
this sclection process. In addition to meaning, most words in any natural language have connotations and Y
implications associated with them. For instance, consider the synonyms one would find in a standard
thesaurus for the word "smell.” The synonyms listed could be of a favorable nature, such as “emanation,”
"fragrance," or "aroma”; they could be of a neutral sense, as in "odor,” "smell," or "scent”; or they could
express distaste, as with "stench,” "stink,” or "foulness." All these words should be achievable from the
structure representing the concept SMELL, but clearly they are not interchangeable. The program must have
some mcans of sclecting words with the desired implications, or at least avoiding words that have blatantly

st
R

v
.

wrong implications. The gencrated text must not have erroncous connotations.

In the same vein as connotation, words have senses of style and mood that must be considered. Centain
vernacular phrases, terms of endearment, and other ways of expressing familiarity would be inappropriate in a
medical diagnosis or a formal business letter, but they would not only be acceptable but expected in a close
personal communication. A letter to a good, steady customer who has apparently forgotten a small bill should
not have the same tone as a letter to a person who is considerably behind in her accounts and has ignored

several communications to that cffect. Vocabulary sclection and grammatical constructions can have a large

impact on the mood and stylc the text is going to have, and this impact necds to be taken into account. The

generated text must not violate the intended style and mood.

l’mc text of this cvidence appears as an appendix.

B .
R

e e e T T . o g
WA AT AR AT e A e e e e e e e
Y RSP LT Sy B W YN YT ARSI, i, .

) TR IR e-r v

TSI

o O AR RS E R A i e e b M i

v e [N PP

13

1.2. Cohesion

A sct of sentences must exhibit cohesion to be considered a well-formed text. There are several
necessary functions that are provided by this cohesion. The first one, already mentioncd briefly in the
previous section, is that without cohcsion a text is awkward and appears unintelligent. An example might help
demonstrate this.

Ti.1: John went to the store.
John bought a kite,
John went home.

The sentences of T1.1 appear to be isolated. As spcakers of English, we want relationships between the
sentences, but there is nothing in T1.1 to make these relationships clear. The average reader would be

unhappy calling T1.1 well-formed text.

However, this is not the only cffect cohesion, or its lack, has on text. The spcaker2 wants her thoughts
understood, and the listener wants to understand the thoughts being conveyed. Cohesive devices can help
make this task easier by distinguishing old information from ncw [15, 16). Consider the following example,
which is T1.1 with a simple modification,

T1.2 A boy went to the store.
A boy bought a kite.
A boy went home.

T1.2 is even more objectionable to the average reader than was T1.1. Not only are the intersentential
relationships not explicit, but the text is ambiguous. Are we referring to one boy who performed all the
actions in the text, or three separate boys, one who went to the store, one who bought a kite, and one who
went home? T1.2 demonstrates that cohesion is more than a device to make text more clegant or pleasing. It is
necessary for marking old information from new, for distinguishing references to items and ideas that have
been alrcady mentioned from those that are being introduced for the first time. Since the speaker's goal in
most discourse is to cither claborate the details of a specific idea or item, or to explain the relationship
between an item or idca known by the spcaker 1o one that is new to the speaker [15, 17, 16], this ability to
distinguish new from old is cssential. Obviously, a computer system that gencrates text must also be able to

perform cohesion in order to generate understandable text.

zOr writer. For the larger part, we will not distinguish between written and oral toxt in this section.

.
L
]

- I T R P O i T I S R T .
N S T e e, X LSelerer .
-. .c.'.- SRR -_.' A ...‘_\‘ LI '_-_. -.\'. -__'\. .!.,\‘-.

oy \"\...:.'..\".-".‘: A e e e ‘.-"'. NI) o ¢ .-‘..."."‘ ‘."\ .
T T A A e N e N N NN N N N T v T T e

B A SA NSRS AE AR B A SR L TARSER AN,

-0 .

| AP AT Ir A EA S AR A AT CAETL I A e AL b SRR R ARl AN SR SR AT R . e RS R

L i R R R e T i e

14

1.3. Lexical Substitution

‘The cohesive devices that will be discussed in this report are collectively known as lexical substitution

[11]. Lexical substitution includcs general noun substitution, the replacement of a specific reference to an
entity with onc of the so-called general nouns [11] (such as man, woman, boy, girl for humans, creature, beast

for animals, matter, affair for inanimate abstracts), synonymous substitution, the use of synonyms, and

superordinate substitution, the replacement of specific references with words with a more general meaning (i.e. ,__ e
"vchicle" as a replacement for “car”). Pronominalization, the use of pronouns, is treated as a special form of ' -
lexical substitution, and is included in this report. Finally, definite noun phrases, using the definite article :
“the” as opposed to the indefinite article "a," can be used as a last resort when the four lexical substitutions h 'f,-:
listed above cannot be applied. Lo
. @

Particularly in superordinate substitution, the danger exists that the word selected could have more than -
one referent in the text. For example, if writing about a Volvo and a Ford, a reference to “the car” is _
ambiguous. One way to handle this problem is by disambiguating the superordinate selection as much as is NSRRI

necessary, but no more than is necessary [9). If we were writing about a green Volvo and a red Ford, while
“the car" would be unacceptably ambiguous, "the green car” or "the forcign-made car” would be clear.
However, "the green foreign-madc car” would be blocked because it gives more information than is necessary

to disambiguate the rcference.

Since the vocabulary hierarchy is semantically based, synonym substitution is fairly straightforward.
Care must be shown, though, in order that erroncous connotations are not crcated, nor style and mood

violated. Rather than simply having a list of words that express a concept and selecting from that list, the

words must be partitioned into distinct (and possibly disjoint) scts based on their connotations. Furthenmore,
each distinct set must be further partitioned by the style and mood effects the individual words exhibit. Such
a partitioning yields lists of words that are truly synonymous and can be readily substituted in the text without

incorrectly impacting style, mood, or connotative considerations. O

1.4. The Approach of This Report: Paul

Paul is a natural language generation program initially developed at IBM's Thomas J. Watson Research
Center this past sumner as part of the ongoing Epistle project [14, 20]). One of the ultimate goals of the Epistle
project is to generate business letters from a one or two sentence description of the topic, and access to a
knowlcdge base containing information about the recipient, the nature of the business, and related business
correspondence [14). Paul was designed as a first step to gencrate text from the appropriate knowledge

structures once these structures have been created. The system, written in NLP [13}, accepts knowledge

i’ 15

structures in the form of NIP records and translates them, through NLP rules, into multisentential text. Such
a natural language gencration system following the six critcria cxplained above has been achieved by

expanding and refining the Paul system.

All NLP programs manipulate, alter, and crcate NLP records as the basic primitive data structure. These

records are very similar to frames [36).

The NLP rules that make up the program that translates the records into English text are based on
augmented phrase structure grammar[l13, 45). Augmented phrase structure rules are very similar to the
concept of phrase structure rules [4] that linguists are familiar with. The chief difference is that specifications
can be placed on the structures being manipulated. Since these specifications are created by the user and can
contain any information desired, the rules need not be strictly syntactic, but can reflect scmantic and
pragmatic information as well. A subsct of NLP, that which is nccessary for natural language gencration, has
been implemented at MIT in MACLISP for Paul.

The emphasis of the Paul system is in research of discourse phenomena, the study of ccohesion and its
effects on multisentential texts [11, 38). Text generation can be divided into two distinct subtasks [30, 27, 35).
The first subtask is to create the knowledge structures that will be used, ensuring that these structures are
correctly ordered and contain the desired knowledge. In other words, this subtask is to determine what the
text is to say. This subtask will be called utrerance’ planning in this paper. The second subtask is to take the
created knowledge structures and translate them into the target natural language, taking care that the six
criteria discussed above, especially those concerning style and cohcsion and their effects, are met. In other

words, this subtask is to determine how to say it. This subtask will be called utterance realization in this paper.

Paul is an utterance realization system.

By the very nature of the fact that Paul translates knowlcdge structures into English, the system does not -Zj--' N :._7‘
make use of canncd text in any form. Therefore, the first criterion that the gencrated text not be canned is met °
by Paul. '

For a natural language generation system to be based on an arguably correct representation, its
knowledge structures must be linguistically motivated. In Paul. knowledge is represented in NLP records

through the usc of a case frame [6] formalism, where each case corresponds to an NLP record attribute.
Furthermore, records are used to set up a semantic hierarchy of vocabulary. Words are currently arranged in a :,:,' -

T e

superset hicrarchy, similar to AKO links [46). The refinement of Paul has a fairly extensive overhaul of this

3I)y utterance we again mean both spokcn and written natural language production, rather than that restricted to oral.

IRy

16

hicrarchy. Rather than having words as the main entries in the vocabulary data base, conceptual or primitive
structures [39, 25} contain the semantic information necessary for initial sclection of vocabulary. Separate
word entries contain morphological information, such as irrcgular plural or past tense formations. By keeping
conceptual information separate and distinct from morphological knowledge. two major advantages are
gained. First, the program is frec to make vocabulary selections to express the desired concepts, rather than
have these selections made explicity for the program. Sccond, by having morphological information separate,
gencralities can be captured that otherwisec might be missed. As an example, consider the word "have."
"Have" has at lcast three very distinct meanings: as an auxiliary verb ("1 have finished."), as a verb meaning to
possess ('] have it."), and as a verb meaning to cause somcone to do something ("1 have a maid come in twice
a weck.”). Each distinct meaning of "have" should have its own entry in the semantic hicrarchy. However,
the word "have™ has only onc conjugation, regardless of its current semantic use. This irregular conjugation
must be made explicitly known to an English language gencration system. If a morphological entry for "have”
did not exist distinct from the semantic entrics, the information would have to be repeated for each semantic

entry. Having a separate entry captures the necessary morphological generality.

Deciding when lexical substitution would be proper, and which of the several devices should be used is
a difficult task, although controiling such a choice is a very important requirement for the use of any cohcsive
device. Abusing the text by overusing cohesive devices will yield output suitable only for humorous purposes.

Intelligibility must be preserved. Furthermore, consideration must be given to the connotations behind any

M
‘-
“
.
"~

words selected to create cohesion, as well as their effects on the desired style and mood of the text.

» 8780

The problem in using these cohesive devices is that it is neccssary to guarantee that they are

understandable. That is, since these items refer anaphorically [38, 11] to a previously mentioned item, called
the anaphor’s antecedent [1,24), it is required that the anaphor can be unambiguously related back to its

antecedent. Otherwise, unintelligible text may be generated.

Investigation into anaphora resolution has been performed in the pursuit of natural language
undcrstanding [S. 10, 41). Many of these works propose using focus or theme[11] as a basis to restrict or
predict the cligible candidates for the antecedent of a given anaphor ([41] particularly). Informally, focus is
what a scntence is about, that is, the central point of the utterance. In [41], each noun phrasc in a sentence is
ranked for its potential as the focus. Then, when an anaphor occurs, the ranked list is tested in order for
syntactic, semantic, and pragmatic acceptance. The first item in the ranked list that passes these criteria is

assumed to be the antecedent for the anaphor, and is confirmed as the focus.

Focus was also used rather successfully in generation, notably by McKeown [35). Her TEXT system,

designed to address problems in utterance planning, uscs focus to restrict the system’s options in what should

17

be said next. Focus is used to eliminate choices that have no bearing on the current focus of the discourse, and
furthermore, focus is used and shified to determine which of the various reievant items will actually be

generated,

Unfortunatcly. a theory of anaphora gencration involving only focus is inadequate. While a sentence
has only one focus, every entity referred to within a sentence must be somehow marked as old information in

later sentences, not just the focus of the sentence. Consider the following example:

T1.3 1. John sent a letter to Mary. s
2a. He wanted to see her. R
2b. She was glad to receive it, e T
2c. He wrote it by hand. ST

]

.
N L
[ST

The focus of the sentence in T1.3-1 is a letter, as it is the object receiving the action of being written. A lexical r @
substitution theory which allows replacement of foci only would allow only the noun phrase a letter to be -l
pronominalized in a following sentence. But T1.3-2a, T1.3-2b, and T1.3-2¢ are all acccptable sentences to
follow T1.3-1, even though cach has a pronominalization of noun phrases other than the focus of T1.3-1. In
fact, T1.3 demonstrates each possible pair of noun phrases pronominalized. Clearly, a theory for lexical

substitution bascd on such a narrow view of focus is inadequate.

Paul controls lexical substitution through the use of minimal features. Each noun phrase that is a
candidate is identificd, and the minimal amount of information that is required to make an understandable
reference is calculated. Paul then determines which of the various forms of lexical substitution (including no

lexical substitution) provides the minimal fecatures to keep the text clear.

Rather than isolating one entity in a sentence and labcling that as the focus eligible for lexical
substitution, a/l entities mentioned in the sentence are labeled as focal points of the sentence and therefore
subject to lexical substitution. The distinction here is that the data base from which the semantic
representation is created has a good deal more information than is being expressed in the sentence. For
instance, for sentence T1.3-1, the data base could conceivably have knowledge about the size of John, his age,
the color of his hair, ctc., and of course, the same kinds of information would be stored in the entry for Mary.
However, most of these items were screened out during the utterance planning phase of generation. These
items are not eligible for lexical substitution, and references to them in future sentences must be explicit. The

points from previous sentences are cligible for lexical substitution,

The various forms of lexical substitution, howcver, are not intcrchangcable, because they offer differing
levels of difficulty in antecedence recovery. Pronouns are the most difficult to recover, because they convey the
least amount of information. The only knowledge explicitly given by a pronoun is number and gender (if

singular). General nouns offer little more exccept for the general class the antecedent belongs to.

'.
.

U

M
L TANA TSV

LAl i ol
D W .
plefn a0 !
RPN

L
*l

A

SR

R AT

18

Supcrordinate substitution is fairly explicit, especially with the proper choice of descriptive adjectives to
disambiguate the reference. Synonyms are the strongest reference, since they are not true cxamples of

anaphor, but merely a device to avoid unnccessary and tedious repetition. And of course, since definite noun

phrases arc not a form of substitution at all, there is no problem of antecedence recovery.

We can control the selection of lexical substitution devices by determining the minimal features

required to provide an understandable reference, and which lexical substitution will provide these minimal _
features. This is done by ranking the focal points of a sentence by their strength of potential antecedence. This T X
ranking is based on several factors, including both syntactic and semantic information. These factors are the
point’s position in an expected focus list, the number and gender of the item as well as the numbers and
genders of all previously mentioned items, the distance between the current mentioning of the item and the -@
last previous reference, the syntactic role the item played in the last reference as well as its current syntactic -
tole, and whether an item is a part of a previously mentioned item or a member of a previously mentioned set.

Thesc factors allow us to identify the various classes of strength of potential antecedence.

Paul identifies five classes of potential antecedence strength. These classes are:

Class I: 1. The solc referent of a given gender and number (singular or plural) last mentioned
within an acceptable distance, OR

2. The focus or the head of the expected focus list for the previous sentence.

Class I The last referent of a given gender and number last mentioned within an acceptable
distance.

Class I1I: A focal point that filled the same syntactic role in the previous sentence.

ClassIV: 1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned
within an acceptable distance.

Class V: A referent that is known to be a part of a previously mentioned item.

The current focus and the expected focus list can be found by using the algorithm developed and
reported by Sidner in [41]. That report specifies a focus algorithm in detail (this algorithm appcars in Figure
3-9 ahcad), and Paul uscs it to find the expected focus. The algorithm calls for the ordering of the various
noun phrascs in a scntence by their syntactic and scmantic roles, as well as the order in which they appear in
the sentence. As these semantic and syntactic roles are determined, Paul creates and modifics the expected
focus list as the sentence is being generated.

L R A 4 o e B i g g g e e e g —TT———

LI e i e

19

Distance is the number of clauses between the current one and the one which contains the most recent
reference to a specific item. To sce why this is important, consider the following example,

I T1.4 1. John sent a letter to Mary.

Fred found the letter and read it.
He told George about it.

. George gave it to Pete.

. Pete hid it.

. She never got it.

DO LN

The reader identifies that the subject she in T1.4-6 is Mary, after a moment's thought. But she has to refer to a
female, and in all of T1.4 the only female mentioned is Mary. Why, then, can't the reader immediately
associate this reference with its antecedent? The answer is distance. There are five clauses between sentences
: T1.4-1 and T1.4-6. With so many rcferents introduced between the anaphor she and its antecedent Mary, the
reader loscs track, and cannot make the immediate connection. While the reader is able to cventually trace
down the reference in this example, it might not be always possible since 20 or 200 or even 2000 clauses could
be between the anaphor and its antecedent,

YRR

Paul arbitrarily decides that a distance of two clauses is the maximum acceptable distance for natural
anaphor recovery. This is enforced by only keeping the relevant information about the focal points of the last
two clauses. The relevant information includes the gender and number of each focal point, as well as their

syntactic and semantic roles in the clauses they appear in.

Once the focal points have been classified as to their strength of potential antecedence, it is relatively

easy to determine which form of lexical substitution would be acceptable, based on these forms' strength of

antecedence recovery. The definite noun phrase has the strongest, because it is not really a lexical substitution.

-

It docs, however mark the item being referred to as old information, and therefore provides a useful function

when no form of lexical substitution is appropriate.

Synonym substitution is also relatively safe in that it too does not generate true anaphora. However, it
- docesn’t by itself distinguish new information from old. Of the two previously discussed tasks for cohesion,
N that of avoiding nccdless repetition, and that of marking new information from old, synonym substitution is
:: capable of obtaining only the first goal. Therefore, it is unsuitable as a means in creating anaphora to
. distinguish previously mentioned items from new ones, and Paul docsn't include synonyms in its options for - . R
- lexical substitution.
:fj That is not to say that synonyms have no placc in a text gencration system, nor that Pau! ignores them
! completcly. Synonyms that arc members of the same partitioned st are interchangeable. This is not true only
in unusual circumstances wherc there is a need to use an exact word in the text. The decision that a specific
- word must be used is onc of utterance planning, not of utterance realization. If an item is marked as having to
S
D.

N

Lt d RN A A i S A AT I N A T AT B S U S A A S S i SO A A YTV I I T T T TS =3
e R R T S L T e e T e T T L T T e e T T T T e T T T e e e e (S e A e

s
)

20

be expressed by a specific word, then Paul is capable of gencrating the text using that specific word.
Otherwise, Paul randomly selects from the sct of cquivalent synonyms, thereby achieving variation in the text

without fear of incorrectly affecting the intended style and mood.

The next casicst type of lexical substitution to recover is the superordinate substitution. This is true
because not all the specific information about the antecedent is lost. Furthermore, because Paul insures that
all supcrordinate substitutions will be made unambiguous by adding sufficicnt modifiers to make the

reference unique, recovery from a superordinate substitution is not difficult at all.

Pronouns and general class nouns are the most difficult to recover. Because they provide so little
information, they could in gencral refer to several possible antecedents. The only information directly
obtainable from them is gender and number. (And with pronouns, even gender is lost in English if the

pronoun is plural.) These forms of lexical substitution have the weakest strength of recovery.

There is an additional problem with gencral class noun substitution. General class nouns tend to be
very informal, extremely personal and familiar, and often derisive and abusive. Obviously, using general class
nouns would have a severe impact on the gencrated text. Controlling the overwhelming effects general class
nouns would have on the style and mood of text is beyond the scope of this work. Therefore, while Paul can
generate general class noun substitutions, unless a text is specifically marked as informal and familiar, a

pronoun substitution will be sclected.

After a focal point has been found and its class identified, Pau/ has make the appropriate substitution.
Deciding which lexical devices can be used on which classes of focal points under which circumstances is a
difficult problem. There are issues in addition to achieving understandable cohesion. It is always possible to
choose a lexical substitution that has a stronger anteccdence recovery than is required, and in fact this is
sometimes donc by natural speakers. The decision of how to map the various classes of focal points to the
lexical substitutions is affected by the desired style of the text to be generated. As the style can change within
a text to cmphasize something or make a specific idea clearer, this mapping decision must be modified.
Unfortunatcly, such an investigation into changing style and its cffects on the selection of lexical substitution

is beyond the scope of this work.

Paul makes an arbitrary sclection of style in choosing lexical substitution devices. Class 1 focal points are
replaced by pronouns, superordinate substitution is performed on Class 11 points, and thosc of Class IV and V
become definite noun phrases. Under most circumstances, Class 111 focal points are subject to superordinate
substitution. However, if the previous reference to the item is a Class 1 focal point, the Class 111 instance also

becomes a pronoun. Intuitively, in order to properly match an clement with a lexical substitution to replace it,

| AR V)

B IR

U R SN

ERA R M AP T R SE MM AT 4~ el A ol o ot et i S A A A el . Caiar s

21

as the strength of potential antecedence of the clement becomes weaker, the strength of antecedence recovery

must become stronger.

The significant difference of this work from others is that it addresses the problem of lexical
substitution, and cohesion in general, in a methodical manner. Through the use of syntactic and semantic
information, the strength of potential antecedence of each focal point is made to determinc the minimal
features required to generate an understandable reference. A lexical substitution is then selected, based on its
strength of antecedence recovery, to provide these minimal features. In this way, the dual tasks of cohesion,

the avoiding of repetition and the marking of new information from old, are both achieved.

A few words should be said on the limitations of Paul. First, and most obviously, Paul is strictly an
utterance rcalization system. There is no provision for utterance planning, and as a complete gencration
system, Paul cannot stand alone. A second limitation is that Paul performs only lexical substitution, which is
not the only cohesive device available in English. Other devices, such as cllipsis and conjunction, have not

been investigated to any depth in this work.

Another limitation is that while Paul addresses some of the issucs of intersentential relationships, these
are fairly local issues. There is no attempt to gencrate text of more than a paragraph at a time. The effects of
cohesion, and lexical substitution as a particular device to achieve cohesion, on paragraph structure, and
similarly the cffects of paragraph structure on cohcsion and lexical substitution are topics far beyond the
scope of this work. However, work on the paragraph, the level of text generation that Paul addresses, could
not be seriously attempted until isolated sentence generation had been mostly mastered. It is felt that work on
larger texts consisting of many paragraphs cannot be feasibly attempted without first addressing the issues of
single paragraph generation.

1.5. Outline of the Remaining Chapters

This chapter has served as a brief introduction to the problem of lexical substitution in computer text
gencration. The next chapter will provide a detailed discussion of cohesion in English, why it is necessary, and
various methods for achicving it. Chapter 3 describes lexical substitution as a cohesive device. In this chapter,
we will sec what is gained by the inclusion of lexical substitution, as well as what the limitations of such
devices are. We will also sce in detail how Pau/ incorporates lexical substitution into the gencrated text.
Chapter 4 gives an introduction to NLP, the language Paul is written in. Here we will also sce the general
algorithm used in NLP to gencrate text. The chapter concludes with a discussion of the generation paradigm
used in Paul. (Readers interested only in e linguistic results of Paul can skip most of this chapter. Except
for section 4.11, it is not nceded to understand the system’s undcrlying theory nor Paul’s achicvements.)
Chapter 5 presents an example text worked out in detail. The output will also be compared to "incorrect”

LTy '¢-‘--

'Af;.fd.,';i.w._-.__.g.ﬁi o o

-9
S

SRR
°

2

texts, that is, texts without any cohesion and with uncontrolled lexical substitution, in order to graphically
illustrate the necessity of controlled lexical substitution. In Chapter 6, current work related to Paul will be
discussed. And finally, Chapter 7 will conclude this work, describing limitations to the system and future arcas

of research, as well as presenting the achievements of Paul.

SERNREN

ST

- "4

_ X

v.'. ° . ‘.- "

- . R
=
=
[-
-
l.:'
.-

'
-

-y
4 o
.. e
PP W

,T—'* e
. BRI
s
.
ook

B .
. '
o

(]
At b d

[

o

.
o

A

23

2. Cohesion

2.1. Introduction

;. The purpose of communication is for one person (the speaker or writer) to express her thoughts and

E ideas so that another (the listener or reader) can understand them. There are many restrictions placed on the

>-ji: realization of these thoughts into language so that the listener may understand. The speaker must organize her

F idcas and present them in sentences that are complete and grammatical. The sentences must be arranged and

; realized in such a way that the thoughts naturally progress for the listcner in the way that the speaker

i' intended.)
Onc of the most important requirements for an utterance is that it scem to be unificd, that it form a rext. - Q4

Utterances that are not so unificd. that scem to consist of random sentences, are confusing and are usually RO

dismisscd as not being serious attempts at communication. Unfortunately, there are no codificd rules for what

¥
P
L, .

makes an utterance a unificd text, the way there is for deciding whether a given sentence is grammatical.

L]
P

While most people have little trouble identifying whether most passages are text or isolated sentences, there -
are many instances where the answer is not clcar. Text is a matter of degree, and what onc might be willing to
defend as intelligent text, another might insist on branding as a collection of isolated ramblings. However, we

are all sensitive to the presence---or lack---of text in an utterance, and we requirc it in our communications.

The theory of text and what distinguishes it from isolated sentences that is used in Paul is that of of

Halliday and Hasan[11]. We have already implied that text is not grammatical, and indeed it is not.

Sometimes text is seen as a kind of "meta-sentence” following grammatical rules. As a phrase is built from

. words along strict rules, as a clausc is built from phrases, as a sentence is built from clauses, so is a text built
from sentences. If this were true, there would be rules governing the order of the sentences and how they

appear within the text, but this is not the case [19]. The text is not a grammatical or syntactic unit, it is a

semantic unit. A text isn't constructed with sentences, it is realized by them. Thercfore, the understanding of

text will not be found by investigating their structure, - 1

2.2 The Goals of Cohesion R

If this unity found in text is not structural, there must be other factors that provide it. One of the items :
that enhances this unity is cohesion. Cohesion refers to the linguistic phenomena that cstablish relationships - ..‘ 4
between sentences, thereby tying them together. There are two major goals that are accomplished through
cohesion that cnhance a passage's quality of text. The first is the obvious desire to avoid unnecessary

repetition. A section that referred to an item using the same words with no varicty would soon become tedious

to read.

o~
3

(Y

F pL) -

The other goal is that new information must be distinguished from old in order that the listener can
fully undcerstand what is being said. One reason this is true is that it is necessary to avoid ambiguity. If the

speaker rcfers to an item a sccond time without clearly marking it as an clement that has been previously

2 .i"_:;'.m,l' " ‘.. “v ‘Tv ~
1
]

mentioned, the listener may interpret the reference as one to a completely new item.

T2.1 1. The room has a large window.
2. The room has a window facing east.
3. The room has a window overlooking the PR
backyard. . @
4, The room has a window through which
the sun shines in the morning.

]
I
.-
'
»

3
L
ke
Ll
e
[N
e
3
b
=
b

How many windows docs the room have, four or one? If the room has only one, the speaker of T2.1 would be

accused of trying to deccive the listener, although strictly speaking, T2.1 might be completely true. The -

L]
problem is that the listener will want an indication that the windows referred to in the four sentences are
actually all the same window. The way the speaker would provide this indication is through the use of
cohesion.
T2.2 1. The room has a large window. " e
2. It faces east. ’
3. It overlooks the backyard.
4. It is located so that the sun R
shines through it in the morning.
2.3. Cohesive Relations .

Cohesion is created when the interpretation of an clement is dependent on the meaning of another. The
clement in question cannot be fully understood until the element it is dependent on is identified. The first

presupposes[11] the second in that it requires for its understanding the existence of the second. As an

example, consider the sentence T2.3.
72.3: So he did.
Of course, by itsclf out of context, T2.3 is nonsensical. We know someone did somcthing, but we have no idea

who that someone was, or what it was he did. The problem is that the sentence has two items, he and did, that

presupposc the existence of previous information. Without this information, the reader cannot understand the -
sentence.
An clement of a sentence presupposes the existence of another when its interpretation requires reference e
. , . . N
to another. In T2.3, he refers to the someone we hypothesized, and did refers to that person’s action. If the e

sentence had been preceded by "John wanted to buy a kite,” we could casily sce that he now refers to John,
and that did refers to buying a kitc. Once we can trace these references to their sources, we can correctly

interpret these elements in T2.3.

. - - - . -~ D S ATt e et
- - . . . - Toa .
i e e e e e e e e e e e T e e e A A A DA AT I R AR
. . CE T N L T N I R S) EAL AT CRJRY B .-t .
- N S A A, T AP A AR S e SR IV L WA SoF Su Ry PRI ¥

- 25

‘The very same devices that create these dependencies for interpretation help distinguish old
3 information from new. If the usc of a cohesive element presupposes the existence of another reference of the

clement for its interpretation, then the listener can be assurcd that the other reference exists, and that the

“+

clement in question can be understood as old information. Therefore, the act of associating sentences through

s 'r %,

A A N I)

reference dependencies helps make the text unambiguous, and cohesion can be scen as a very important part

L4

Y A
/R ST ARA

) of text.
2.4. Cohesion vs. Coherence

We have seen how cohesion creates dependency relationships between sentences, allowing a passage
both to avoid tedious repetitions and to clearly distinguish old information from new, thercby enhancing the
quality of text that the passage exhibits. However, we would be very wrong to assume that this is not all that is

required for a passage to be considered a text. Consider T2.4.

- 72.4 1, Fred has a green car.
. 2. His elephant likes peanuts.
3. The car has whitewalls.

— > ~4
o This passage exhibits all the features of cohesion that have been thus far discussed. There are intersentence r’_’ A
. dependency relationships; his in T2.4-2 and the car in T2.4-3 refer back respectively to Fred and a green car of ::}_ S '..
sentence T2.4-1. There are no unnccessary repetitions; the passage does not say "Fred's elephant” in T2.4-2 j:;. '-._fAZ;'.-

L nor "Fred's green car” in T2.4-3. And old information is clearly marked; we know the person referred to in
» T2.4-2 is the same Fred of T2.4-1, and that the car of T2.4-3 is the same as the one in T2.4-1. But one would
v still be hard pressed to argue that T2.4 is a unified text.

;::: The reason this is true is that T2.4 lacks coherence [15, 16, 17). While the interpretations of the sentences
.- demonstrate the presupposition dependency of cohesion, the meanings of the sentences are unrelated,
eliminating any sensc of text. The distinction here is important. The interpretation of sentences can be viewed
as understanding sentences individually. Cohesion creates presupposition dependencies so that the
understanding of the individual sentence is dependent on the other sentences of the passage. The meanings of
sentences can be viewed as the understanding of the contents of the sentences as they relate to each other.
Coherence involves such factors as relevancy (the factor T2.4 violates), temporal relationships, and contrasting

or parallel relationships. These factors are uscd to determine which of the myriad facts available should be

-
W
4. a« s =

. O
A M AR
-

presented in the discourse, which order they should be presented in. and the manner in which they should be
. presented. These arc exactly the problems of utterance planning, while the problems addressed by cohesion,
N how to mark old information from new, how to avoid repetitions, and how to link sentences together once
their contents are known, are exactly the problems of utterance realization. Therefore, coherence is the
- phenomenon that enhances the quality of text at the utterance planning stage, while cohesion is the
- phenomenon that increases the quality of text at the level of utterance realization.

" .. ._ ._ .. .,_ - o W et e ._‘.._ e N N R T T T T T T e T T e e e e T e T T T

".r y ':f"l"f o

ot
PN

20

0 n.')

g T
' IR

2.5. Cohesive Devices

Several kinds of cohesive devices have been identified [11). A brief overview of these might prove
uscful. However, it should be remembered that these classes arc not strongly partitioned and that a good deal

of overlapping exists. The following discussions will usc the classifications defined by [11].

2.5.1 Reference

Perhaps the most general and widely used form of cohesion is that of reference. As we have seen,
cohesion is created when the interpretation of an clement is dependent on another. That is, the information
required to understand the current instance of the element must be obtained by retrieving the previous
instance. The class of devices known as reference are distinguished from other classes in that the information
being retrieved is the actual identity of the current clement. The cohesion occurs from the continuity of

reference. Reference can be further divided into three types, demonstrative, comparative, and personal.

The class of demonstratives is the demonstrative pronouns, this, that, here, now, today, etc.

This is my favorite song.
That 1s a mean thing to sayl

Here 1s your pen.

Now 1s the time for all good men to come to the
aid of their country.

Joday is the first day if the rest of your 11ife.

the general meaning of demonstratives is one of proximity (temporal proximity in the case of then, now, etc.).

This, these here, now imply a nearness, while that those, there, then imply a distance,

Demonstratives tend to be restricted to situational [38] or exophoric[11] contexts. That is, the
demonstrative refers to an item (or location or time) in the physical world, rather to elemcents specifically
mentioned in the text.

T2.5: When do you want to go?
Now!

The now of T2.5 refers to the moment when the person was speaking, not the present time in which this report
is being written or read. If this report is put down for a few days and then picked up again, the actual present
time has changed, but the now of T2.5 has remained constant. This is what is mcant by exophoric reference.

The opposite is endophoric reference [11], in which the referent is in the text. Of course, ultimately all
items refer to the physical world*, The words Fred, his elephant, and his car of 124 all refer to items in (some)
real world. However, they are not exophoric in that one does not have to consider the sitwation of that world

to understand the references, as one must do for T2.5. Demonstratives can be used in an endophoric role,

‘Or at least some hypothetical world. The distinction is irrclevant here,

'

'F s

,
T,

....... " "] —.—_.-qﬂ‘-*vTﬁvviv:', e T ——— L S S SRS AVl S Sa g St
e e T " e B - S P - - - DY

1] j .i

although it is less common. Generally, they occur when the demonstrative is used to refer to the discourse

itself. .
This 1s what is meant by endophoric. ®

Comparative references are those of similarity. Same, identical, equal, and their adverbial forms are
comparatives of identity, similar, additional, and their adverbial forms are of similarity, other, different, else,

arc differcnce, and better, more, less and all comparative adjectives and adverbs are for particular comparison.

Comparatives arc used to express the degree of likeness two items have (or lack). Particular comparatives are

uscd when the similarity with respect to a specific property is to be discussed.

That's the same thing I always say.
Other people like 1t. Sl
New York has more people than Boston. .9

The last kind of reference is the personal reference. This refers to the class of personal pronouns,
including subjective, he, she, it, they, objective, her, him, it, them, posscssive, ifs, his, hers, and reflexive,
herself, itself, himself, themselves. Personal pronouns are uscd to refer directly to a specific entity, cither . .-_ h
endophorically or exophorically. While the other types of refcrence expressed relationships of proximity or
similarity, personal refcrence expresses a relationship of identity. Personal pronouns simply refer to the

element in question without additional meaning.

2.5.2. Substitution e __

Substitution is the replacement of one item in the text with another. The distinction between

substitution and reference is subtle, but important. Both reference and substitution require the listener to find

another instance of the cohesive item in order to interpret it. The difference is in where that other instance can
be. With exophoric reference, we must look at the situational context, in the environment of the speaker.
Endophoric refercnce can be viewed the same way, if we accept the text as a special case of environment [11}.
Out of context, a listener cannot tcll if a specific usage of reference is exophoric or endophoric. Substitution,

on the other hand, can always be resolved within the text. -

The three types of substitution are nominal, verbal, and clausal. Nominal substitutes are one, ones, and

same. SRR
These kites are expensive, but I want one.]
The cherry pops are better than the orange gnes.
I'11 have the same.

Nominal substitutions can be made for only the head nouns [38. 23] of noun phrascs. Other elements of the
noun phrase, such as modifiers, can be replaced along with the hcad noun, but not without it.

T2.6 1. Mary has a blue dress with étripes.
2a. Susie has a red gne.
*2b. Cathy has a red dress with gnes.

P

Just as nominal substitutes can replace the head nouns of noun phrascs, verbal substitutes can replace

head verbs of verb phrascs. The only verbal substitution in English is do.

Who wants this? I do!
Jane 1ikes Wagner, and Vickie does, too.

As with the restrictions on nominal substitutions, verbal substitutions can be uscd only on the head verbs of

verb phrases. Modificrs can be replaced only along with the head verb.
*Sam 1ikes to walk the dog, and Anastasia likes to do. too.

Finally, clausal substitutions replace whole clauses. In English, the clausal substitutes are so and not.

George will be late. He told me so.
Will 1t rain? 1 hope not.

2.5.3. Ellipsis

Ellipsis, as with the other two types of cohesive devices, creates a presupposition dependency. Rather
than replacing an element with some device which conveys less meaning, ellipsis completely eliminates the
reference. Actually, this could be thought of as a special case of substitution, one in which the zero or null
element is used to replace the specific referent. However. separating the classes is uscful. Substitution uses a
variable (of sorts) for its replacement. This variable, while having less information than the actual referent,
still contains some, such as number for nominals, and tense for verbs. Ellipsis, on the other hand, by replacing
the rcferent with nothing, offers nothing in the way of information. The proper referent must be identified in

order to gain any information,

Since ellipsis is a special case of substitution, the two types of ellipsis bear strong parallels to their
counterparts in substitution, and the same restrictions that apply to these substitutions apply to ellipsis.
Nominal ellipsis allows the deletion of the head noun from a noun phrase.

John went to the store and {John ellipted} bought a kite.
I Yike this story. It's the best {swory ¢llipted} I've
ever read.

Itis important to note that while the head noun is cllipted, it still requires agreement with the verb when

in the nominative position.
Phyl1is goes to the store and (Phyllis e11ipted}

buys a cake.
Julie and Toni go to the store and (Julieand Toni e111pted)}

buy a cake.
In both of the second clauses of these sentences, the verbs must agree in number with the ellipted subjects.

Verbal ellipsis refers to ellipsis within the verb phrase. Again, the normal restriction is that the head
verb of the phrase must be ellipted, and other clements of the verb phrasc can be cllipted only with the head

A ARG N

verb.
Who broke this vase? Glenn. {brokethisvase 0111pted)
There are also elliptical operators which arc used to ellipt a verb. Thesc operators consist of the modals, can,

could, will, would, shall, should, may, might must.

Who will wash the car? I will. {washthecar e111pted)
Have you read this? You ghould. {readihis e11ipted}

Note that do is not included in this modal list. This is because do does not behave as a modal when used in
this context [38, 11, 1).

v
(R AN
2

In addition to allowing the head verb to be ellipted, English allows some of the operators of the verd - .~»f':_:jﬁzl

b phrasc, modals and auxiliaries specifically, to be ellipted. AP .j

John was laughing and {John e11ipted} {nas ellipted}
crying at the same time.

Fred should have been singing and Mary {should have becn 811ipted)
playing the plano when Kirk walked in.

; 2.5.4. Conjunction

Conjunction is the first kind of cohesive device that breaks away from the pattern of replacing some

clement and creating a presupposition dependency. For this reason, conjunctive elements are not cohesive in

themsclves, but indircctly. Conjunctions do not replace elements in the text, rather they connect them, and
this is where the dependencics arise. Since a conjunction spans the gap between two elements of a text, its use
creates the dependency that both the clement being spanned from and the element being spanned to exist.

It is difficult to cleanly partition the various types of conjunction into distinct sets. Not only are the

diffcrences subtle and the scts overlapping, but many words will fall into one category one time and another
the next, depending on their usage. However, four gencral categories for conjunction have been identified. ';'.j .:j'..lj'.':,

They are additive, adversative, causal, and temporal,

Additive conjunctions continue thoughts by explicitly linking them, by explicitly stating such a link
docsn’t exist, or by demonstrating possible alternatives. Simple additives include and, and also. Negative

additives, those which show that a link doesn't exist, consist of negatives like not, nor, etc. Additives can be

used for cmphasis, furthermore, in addition, besides, to de-cmphasize, incidently, by the way, to express

aliernatives, such as or, or else, alternatively, and many other functions.

Adversative conjunctions link clements in some way that is contrary to expectations or desires. These

expectations may come from general knowledge of the real world (so-called "common sense™) or from the

1l

d specific context of the passage. Some example of adversative conjunctions are yet, though, but for simple

adversatives, actually, on the other hand, in fact for contrastives, and in any case, anyhow, at any rate for

. "' ..'.." .

. . AR
. . PR e L Tt AT .M et " t.tTa® .4t w,®a ®.e S . W ta e e et
PRI S A I N T S TR TR UL N SN I T I CACRETUIT I I T T AL RP YL PO P I UL R RN R R A AT TS B SAPS SRS L N
.7 . BRI . AN . S .

e e "','.' Y e T e e ™ T At W, e e,
‘..4‘.}.‘4,-I,‘. ,'-'.~:‘ R . o O

dismissals. T2.7 has scveral exainples showing how adversative conjunctions violate expectations.

T2.7 1. It was raining. But we went out, anyway. e
2. We went out, though it was raining. R

ﬂ 3. We usually don't let the rain stop us. .o
However, this time we stayed in. SRR

T2.7-1 and T2.7-2 demonstrate the violation of “common sense” expectations. We expect people to be
intelligent enough to stay out of the rain. T2.7-3 violates expectations created by the previous two sentences.

After T2.7-1 and T2.7-2, the listener expcects the speaker and her group to be people who frequently go out in
the rain. This is confirmed by the first sentence of T2.7-3, but this situational expectation is then violated by

the second sentence of T2.7-3.

l

:

F Causal conjunctions express a causal relationship between clements. As with other forms of L
; conjunction, causal conjunctions serve many functions. They can be used to state a forward flow of causality

[with words like so, then, hence, consequenily. A reversed causal flow, where the sccond element is the cause of
f;‘ the first, is possible, for. because, it follows from being examples. Conditional causality makes use of then, in

L_ that case. in such an event and others. o

Finally, temporal conjunctions explicitly state the time sequence of tow elements. This temporal flow
can be sequential, then, next, after that, preceding, previously, before that, or simultancous, just then, at once, R

interrupted, soon, after a tinie, to name some of the possibilities.

1.5.5. Lexical Substitution

Lexical substitution is the final category of cohesive devices. Lexical substitution achicves cohesion R

through the proper selection of vocabulary, rather than through grammatical constructions, as did the -9 -4
previous cohesive devices, Cohesion is not created through reference, as it was with reference, substitution,
and cllipsis, nor through expressing links, as it was with conjunction, but through repetition. Chapter 3 '.‘_7.':-;."%:';--.,
. discusses lexical substitution at length, describing the various kinds of lexical substitution, and how they were : i

implemented in Paul, . -1

k)|

3. Lexical Substitution

3.1. Reiteration

With the cexception of conjunction, all the cohesive devices we have looked at so far involve multiple
references to the same item. Reference, substitution, and cllipsis replace these references with specific
"“variables” or “place holders” such as pronouns, or in the case of cllipsis, empty strings. The proper sclection

of these variables is based on grammatical rules, and not on semantic information concerning the items the

{ variables arc replacing. For instance, in choosing the correct personal pronoun, all we need to know is the
- gender, number, and case of the item to be replaced. We do not need pragmatic information, such as the
g general class to which the item in question belongs, what other kinds of things are similar to the item in
h question, or how is the item in question used. Nor do we need semantic information, how d-es the speaker or

the listener feel about this specific item, what overall role is the item playing in the text, what is its current role

- in this sentence.

&
r, Lexical substitution, on the other hand, makes usc of pragmatic and scmantic information to correctly
_ choose a replacement for the item. That is, rather than grammatically replacing an item to achicve cohesion,
- lexical substitution lexically replaces the item [11]. We can call this lexical replacement reiteration[11].
Because the sclection within grammatical cohesive devices is dictated by the grammar, there is no
- difficult decision process involved. This is unfortunately not true in the case of lexical substitution. The
- options are much more varied, and the decision process is consequently more difficult. An example will help
; demonstrate exactly what these options are.
SVEHICLE® e
*WATER-VEHICLE® *LAND-VEHICLE® *AIR-VEHICLE® S
- .. -
:f' *SHIP® *SUBMARINE® *CAR* °*TRUCK* *PLANE® -
o BOAT SHIP SUBMARINE CAR AUTO TRUCK PLANE R
). -9
. TN
% LEAKIN' LENA SRR
- SRR
- Figure 3-1: Fragmeat of a Semantic Hicrarchy -'_-;-;:',.}:.:i
-2 S ‘1
o
N -5 -
7 :

AR A

A

7]

Figure 3-1 shows a fragment of a possible scmantic hicrarchy. L.ct us assume that it is desired to make a
reference to the item BOAT If we want to use lexical substitution, we must find some semantic replacement
for BOAT. Given that our semantic structure is a two-dimensional hicrarchical tree, we have several options
in how to move through the tree to find a suitable replacement. The first, and obviously casicst, way is to not
move at all, but stay at the node in the tree for BOAT. Another is to move across to a sibling node, in this case
to SHIP. A third is to move to up the hicrarchy to a parent node. The immediate parent of BOAT is *SHIP®,
but we are not ruling out moving further up the hierarchy (at least for now), so we can also include
WATER-VEHICLE® and *VEHICLE® We can move down the hicrarchy to a child node, LEAKIN' LENA
in our example. Finally, we can movc ouf of the hicrarchy altogether, using some variable to mark the fact

that we've left the plane.

In fact, these very moves through the hicrarchical structure are what lexical substitution performs.
Synonymous substitution moves across the hicrarchy to a sibling. Superordinate substitution moves up the
hierarchy to an ancestor. General nouns and personal pronouns move us out of the plane of the hicrarchy. And
definite noun phrases keep us at the same node. The next few scctions will examine the various types of
lexical substitution, how they move through the hicrarchy, and how Paul incorporates them into the

generated text.
3.2. Synonyms

Synonymous substitution is the replacement of an item with another that has the same meaning. This
corresponds to the lateral movement across a hierarchy to a sibling. But not all the siblings in the tree in
Figure 3-1 are synonyms. For instance, *SHIP* and *SUBMARINE? are clearly not synonymous. In Paul,
the semantic hicrarchy can be divided into two levels, a conceptual level and a lexical level. Nodes in the
conceptual level represent concepts in the abstract, modeled after the so-called primitive actions [39) and
primitive objects [25]. In Figure 3-1, entrics in the conceptual level are marked with asterisks. Entries in the
lexical level represent actual words in English, These arc the words that can be used for the output. In Figure
3-1, thesc are the entries without asterisks. Only siblings of nodes in the lexical level are synonyms. Therefore,
SHIP and BOAT are synonyms, but *SHIP* and *SUBMARINE? are not.

Obtaining siblings in a trec is a fairly straightforward task, and mechanically gencrating synonyms
presents no problems. However, that docs not mean incorporating synonyms into a text gencration system is a
trivial task. The difficulty comes in the fact that true synonyms may not actually exist at all. Two words rarely
mean the exact same thing in every context. Even when the literal meanings are identical, words can convey
different moods and connotations. In addition to their meanings, words frequently have associated with them a

" e

sense of "goodness” or "badness,” "pleasantness” or "unpleasantness.” This is what is meant by connotation.

I e eu o e Nt SOui upes aewL Jue Sue aemc s an i qu g SN Yt Thu R S St S det St omi My
P w e T L TV A W e T T e L e T e e e e JTe T e e T g e T T e T e

.. A S S~ e S -t iR Y SIS TR S i e

3

As an cxamplc, if one were o look up "odor” in a thesaurus, onc might find the entrices in Figure 3-2. If
a system tricd to use these words interchangeably, ignoring their connotations, the sentences of Figure 3-3
could be erroncously gencerated as cquivalent. The problem is that while all the words of Figure 3-2 have the
same general meaning, they clearly have different connotations. One possible classification of these words by

connotation is shown in Figure 3-4.

Odor
aroma
emanation
foulness
fragrance
odor
scent
smell
stench
stink
Figure 3-2: Synonyms for Odor

‘The aroma of her perfume filled the room. -]
The emanation of her perfume filled the room. ‘

The foulness of her perfume filled the room. . —_—
The fragrance of her perfume filled the room.
The odor of her perfume filled the room,

The scent of her perfume filled the room.
The smell of her perfume filled the room.
The stench of her perfume filled the room.
The stink of her perfume filled the room,

Figure 3-3: Example of Uncontrolled Synonym Substitution

POSITIVE NEGATIVE NEUTRAL
aroma foulness odor
emanation stench scent
fragrance stink smell

Figure 3-4: Classification of Synonyms by Connotation

If the lexical dictionary is arranged in such a way that synonyms are partitioned into distinct scts based
on their connotative qualitics, then simple synonym substitution is possible. The decision to usc a word with a
particular connotation is one of utterance planning, while the specific choice is one of utterance realization.

Paul performs this sclection randomly from within the proper sct of synonyms. Since onc of the purposes of

.
W T et e %At e % " e "
IR T AL S S TSN S T IR S TRt e e S

EENE
LW

ES _'..'_'_-;f e e

T Y T g IS e g i o I I SR a R 0~ lua et mees e A e dnee abem SR Mo

L S e A S A

synonym substitution in the first place is o avoid unnecessary repetition, the random sclection process uses a
global memory variable to "remember” the words it has alrcady sclected. Given a list of words to randomly
choose from, the system will not repeat itsclf unless cvery item on the list has already been used. If the entire
list has previously appcared, then every member of the list is "forgotten” by being removed from the global

memory variable, and the whole process is begun again,

While we've been mostly discussing cohesive devices as they apply to substitutions for nouns, most of
these devices can also be used for verbs. This is especially true for synonyms. By setting up a hierarchy of
primitive actions [39)], Paul can choose from the correct list of verbs that mean the desired action that have the
required connotations. The same mechanisms used for selecting synonymous noun substitutions are used for
sclecting synonymous verb substitutions. In this way, Paul achieves a great deal of variety in the text it

gencerates without creating sentences with erroncous connotations.
3.3. Superordinates

Superordinate substitution is the replacement of an element with a noun or phrase that is a more
general term for the clement. For instance, in Figure 3-1, the superordinate of LEAKIN® LENA is BOAT,
that of BOAT is *SHIP* and again for *SHIP* the supcrordinate is *WATER-VEHICLE®, Finally, the
supcrordinate for *WATER-VEHICLE* is *VEHICLE®. Supcrordinatcs can continue for as long as the
hierarchical tree will support.

As with synonymous substitution, the mechanics for performing superordinate substitution is fairly
casy. All one needs to do is to create a list of superordinates by tracing up the hicrarchical tree, and randomly
choosing from this list. However, there are scveral issues that must be addressed to prevent superordinate
substitution from being ambiguous or making erroncous connotations. The erroncous connotations occur if
the list of superordinates is allowed to extend too long. An example will make this clear. Let us assume that
we have a hicrarchy in which there is an entry FRED. The supcrordinate of FRED is MAN, for MAN
HUMAN, ANIMAL for HUM AN, and THING for ANIMAL. Therefore, the supcrordinate list for FRED is
(MAN HUMAN ANIMAL THING). While referring to Fred as the man scems fine, calling him the human

scems a little strange. And furthermore, using the animal or the thing to refer to Fred is actually insulting.

‘The reason these superordinates have negative connotations, even though Fred is of course an animal
and a thing, is that there are cssential qualitics that humans possess that separate us from other animals.
Calling Fred "animal” implics that he lacks these qualities, and is therefore insulting. The reason "human”
sounds strange is that it is the highest entry in the scmantic hicrarchy that exhibits these qualities. Talking
about "the human” gives one the feeling that there arc other creatures in the discourse that are not human,

BRI DAY S A AT SO ST S G S an) S e M S S RS C I CI C ST I A SR A e ad ~ Al

i 35

Paul is sensitive to the connotations that are possible through supcrordinate substitution. The essential

quality identified for superordinate substitution is intelligence. The system first secs if the item to be reglaced

i with a superordinate substitution is intelligent, cither directly or by semantic inhcritance. If so, a
supcrordinate list is made only of those cntrics that have themsclves the quality of intelligence, again cither

. directly or through inheritance. If the item to be replaced doesn't have intelligence, the list is allowed to

extend as far as the hierarchical entries will allow. Once the proper list of supcrordinates is established, Paul

I randomly chooses one, preventing repetition the same way it did in the random selection of synonyms.

The other problem of superordinate substitution is that it may introduce ambiguity. Consider the
semantic hierarchy of Figure 3-5. If we wanted to perform a superordinate substitution for POGO, we would o
: have the superordinate list (POSSUM MAMMAL ANIMAL) to choose from. But HEPZIBAH is also a . .‘ . ‘
mammal, so the mammal could refer to either POGO or HEPZIBAH. And not only are both POGO and
HEPZIBAH animals, but so is CHURCHY, so the animal could be any onc of them. Thercfore, saying the _
mammal or the animal would form an ambiguous rcference which the listener or reader would have no way to PR

) understand. . @

Paul recognizes this ambiguity. Once the superordinate has been selected, Paul tests it against all the

other nouns mentioned so far in the text. If any other noun is a member of the superordinate set in question,

i if the superordinate is an ancestor to any of the other nouns, the reference is ambiguous. However, by using a -9
feature of the element to be replaced as a modifier. the refcrence can be disambiguated. For instance, Figure RN

3-5 tells us that possums are grey, and that POGO is a possum. Additionally, ncither HEPZIBAH nor

CHURCHY are grey. Therefore, while the mammal and the animal are ambiguous, the grey mammal and the

I grey animal are not. If the supcrordinate selection proves not to be ambiguous, such as if POSSUM were to be .o |
chosen in this example, a disambiguating modifier is not necessary, and none is chosen. S -]

The features that Paul recognizes for disambiguating superordinates in Pogo world are gender, size,
) color, and skin type (furry, scaled, feathered). As with synonym selection and superordinate selection, choice
of the disambiguating feature is random, using the same function to prevent repetition of a feature until the

. entire list has been exhausted. Once the feature is selected, the proper value of the feature for this element is

found through inheritance. st

- S
o However, there is the further complication that the disambiguating modifier docsn’t disambiguate. o ~'i~lgl-:;23
..‘ ".-.'..\.-.._-
R Since the feature is selected randomly, the one for our example could have been skin type. The furry animal is e]
e little better than the animal because both POGO and HEPZIBAH are furry, both being mammals. And the R R
) Surry mammal is uselessly redundant because a/f mammals are furry in this world. Similarly, if size had been - . 4
l.’: the feature sclected, the results would have been cither the small mammal or the small animal, and again the :
3

L.

'.'. -'.,'.".'.'.~ L.
- . o '-\-. ~.\

-~
" S Yy ‘—L‘.:A.‘*".A.:AM

. ANIMAL
. MAMMAL REPTILE

POSSUM SKUNK TURTLE
. POGO HEPZ IBAH CHURCHY R
s °

1. POGO IS A MALE POSSUM.
2. HEPZIBAH IS A FEMALE SKUNK.
3. CHURCHY IS A MALE TURTLE.

4. POSSUMS ARE SMALL, GREY MAMMALS. —

-,y -
y
X]
i

5. SKUNKS ARE SMALL, BLACK MAMMALS.

6. TURTLES ARE SMALL, GREEN REPTILES.

] 7. MAMMALS ARE FURRY ANIMALS. =g
8. REPTILES ARE SCALED ANIMALS.
Figure 3-5: Another Sample Hierarchy \
» o

phrase is as ambiguous as if no modification had occurred.

Paul avoids this problem by testing the selected modifier. When the chosen superordinate is found to be

) ambiguous, a list is made of all the problem nouns that it could refer to. After the disambiguating feature is

selected and the proper value determinced. this value is checked against the values cach of the problem nouns
on this list would inherit for the feature. If any onc of the problem nouns inherits the same value for the "»:'.:.-: i'-jﬁ‘-gl;

feature, the feature is rejected, and a different onc is randomly selected. This process continues until a feature

is found which truly disambiguates the superordinate reference.

3.4. General Nouns

General nouns are the first kind of Iexical substitution that move us out of the hicrarchy plane. That is,
rather than attempt to find a nodc in the hicrarchical tree that can be used as a substitute for the clement in

question, gencral nouns serve as "tokens” that replace the clement.

Gencral nouns consist of those nouns that can be used to replace the major noun classes. People, person,

man, woman, child, boy, girl are examples of general nouns for the human class. Creature, beast are

non-human animate general nouns. For inanimate concrete count nouns, we have thing, object, while for
inanimate concrete mass nouns we have s/l Inanimate abstract nouns can be replaced by business affair,
matter. Nouns representing actions have move for a gencral noun, while nouns of location have place, spot.

Finally fact nouns use guestion, idea for general nouns.

Tom doesn't look well. The old boy must be sick.
I just danced with Grandmother. The dear girl still has fit.
I just love Paris. This place 1s so alive.

These are very close to supcrordinates, and in fact originally derive from them. But they are not
identical. Superordinates are used only when the element to be replaced is an actual member of the
superordinate set. General nouns are not as strict in that closc approximations of the proper supcrordinate are
allowed. In the sccond pair of sentences of the above example, the speaker is not really stating that
Grandmother is a female child. Additionally, general nouns tend to have “empty” modifiers, adjectives that
are not meant to be taken litcrally. In the first pair of sentences above, we are not being told that Tom is old,

and it would be a mistake to assume so.

This idea of using "tokens” or "variables” to replace elements of a scntence is very similar to the
grammatical cohesive device of reference. With both, cohesion is formed because the interpretation of the

element is dependent on the successful retrieval of another element. The difference is in the type of "variable™

e e
PO R W R)

that is used. The selection of reference substitutes is purely grammatical. If one wants a personal pronoun for
Fred to serve in a subjective position, ke must be used. General nouns, on the other hand, derive from the

superordinates hicrarchy.

P
L e
lala a4

Another important difference between reference substitutes and general nouns is that general nouns
have connotations that reference substitutes do not. General nouns, especially those for the human class, give
a strong impression of familiarity. In business correspondence, one would probably not want to refer to a
client as “the old boy” or "the dcar girl.” Additionally, general nouns can be used epitheticaily to be insulting,

whereas reference substitutions are semantically ncutral. (Most expletives can be used as gencral nouns in this

way.)

.
LS N e UL L P ST P T R A T L AP UL AR AU AP L)

<
. LR A ST T N NIRRT BT
LY G I ST IR Ty PRI WP Y0 T W Tl Tl Ty S Ut Sl Sl S0 Sl YR 1

rv;v‘v“-'r‘*r'rf:'f;-f. e W Y Y T S T T T T T T T e

- - v -
[P AN

b
[
r
L

3.5. Personal Pronouns

As do general nouns, personal pronouns represent movement out of the plane of the hicrarchy by using
a "variable” to replace the clement. Strictly speaking, personal pronouns are not a device of lexical
substitution. They belong to the grammatical cohesion device of reference substitution. However, there were
several reasons for including pronouns in Paul. The first one, as explained above, is that reference substitution
is very close to general noun substitution, and the incorporation of gencral nouns while excluding personal
pronouns almost secems arbitrary. The second is that personal pronouns are probably the most widcly used of
any of the cohesive decvices used in English. Any attempt to approach natural text without the use of
pronominalization is almost doomed before it begins. For these reasons, Paul incorporatcs personal pronouns

in its lexical substitution devices.

Because the sclection of the personal pronoun is strictly grammatical, the mechanism to perform this
task is very straightforward. Once the syntactic case, the gender, and the number of the element in question

are detcrmined, the correct pronoun is dictated by the language.
3.6. Definite Noun Phrases

The final lexical substitution available in Paul is the definite noun phrase. A definite noun phrase is
simply created using a definite article, the in English, as opposed to an indefinite article, a or some. Of course,
definite articles are used with the other types of lexical substitutions, but they can also be used with a
repetition of the exact same word for the clement. This represents not moving at all in the hicrarchy. In its
simplest form, the definite article refers to a specific known clement. The way in which it is known can vary. It
could be exophoric, as in "the man over there,” or endophoric, as in "I had a balloon, but the balloon broke.”
When used endophorically, the definite article clearly marks an item as one that has been previously
mentioned, and is therefore old information. The indcfinite article similarly marks an item as not having been
previously mentioned, and therefore being new information. Because English has only one definite article,

the, the mechanism for definite article selection is not an issue.

The capacity of the definite article to mark an element as old information makes its use required with

superordinates and general nouns.

My sheepdog 1s smart. The dog fetches my newspaper every day.
*My sheepdog is smart. A dog fetches my newspaper every day.

George worries me. The poor boy works too hard.
*George worries me. A poor boy works too hard.

39

3.7. Controlling Lexical Substitution

While the mechanisms for performing the various lexical substitutions are conceptually straightforward,
they do solve the entire problem of using lexical substitution. So far, we've only discussed how to use these

cohesive devices once they've been selected. Nothing was said about how the system chooses which cohesive

PACAP S i SRR SLTANRFRRAS | | S Dt g

device to usc. This is a serious issue in that lexical substitution devices are not interchangeable. Consider the
. story in Figure 3-6. This story is unintelligible, and of course unacceptable as output for computer generated
text. The problem is that the cohesive devices were chosen randomly. If the selection of lexical substitution
devices is not carefully controlled, the resulting passage will not be understandable, and certainly will not be
acceptable text.

HE CARES FOR THE WOMAN. BETTY LIKES THE POLICEMAN, TOO. THE OLD BOY
GIVES ONE TO HER. THE NURSE LIKES THE RING.

Figure 3-6: Story with Uncontrolled Lexical Substitution

The reason why indiscriminately chosen lexical substitutions make a passage unintelligible is that lexical
substitutions, as do most cohesive devices, crcate text by using presupposed dependencies for their
interpretations, as we have seen. If thosc presupposed clements do not exist, or if it is not possible to correctly
identify which of the many possible elements is the onc presupposed, then it is impossible to correctly
interpret the cohesive element, and the only possible result is confusion. A computer text geﬁcration system

that incorporates lexical substitution in its output must insure that the presupposed element exists, and that it

can be readily identified by the reader.

Paul controls the selection of lexical substitution devices by conceptually dividing the problem into two
tasks. The first is to identify the strength of antecedence recovery of the lexical substitution devices. The second
is to identify the sirength of potential antecedence of each clement in the passage, and dctermine which if any

lexical substitution would be appropriate.

3.7.1 Strength of Antecedence Recovery

Each time a cohesive device is used, a presupposition dependency is created. In order to correctly
interpret the clement, the item that is being presupposed must be correctly identificd. The relative ease with
which onc can recover this presupposed item from the cohesive clement is called the strength of antecedence
recovery. The stronger an clement’s strength of antecedence recovery, the easier it is to identify the

presupposed clement.

- ~~~ ..u PRL I
DR AR A
S i e . R . .,
PR PP PAAL WAL AL WAL AR YL L AL v A WA WY WK VR WA WA WA W W T oAl P i i P R

R B T T T A L T T W v i, T T e, e L e .
S e - . . Tt T e e T N P T e e T -

&

The lexical substitution with the highest strength of antecedence recovery is the definite noun. This is

because the clement is actually a repetition of the original item, with a definite article o mark the fact that it is

a old information. There is no real nced to refer to the presupposed clement, since all the information is being S

repeated.

Lot S

The next highest is the synonym. Since properly partitioned synonyms are semantically cquivalent, they

-
-
-
-

can be treated as an extension of the repetition that occurs with the definite noun phrase. When used by

themsclves, synonyms do not create the presupposition dependency that ties sentences together. Therefore
synonyms arc not used by Paul to achiceve cohesion between sentences. They are used to prevent repetition,
but this task is independent of the intersentential cohesion being controlled here. Thercfore, synonymous

substitution is allowed to occur frecly whenever possible.

Superordinate substitution is the lexical substitution device with the next highest strength of
antecedence recovery. Presupposition dependency does genuincly exist with the use of superordinates, A
because some information is lost. When we move up the semantic hicrarchy, all the traits that are specific to -
the clement in question arc lost. The higher up we go, the more information is lost. To recover this, and fully
interpret the reference at hand, we must trace back to the original clement in the hierarchy. Fortunately, the

manner in which Paul performs supcrordinate substitution facilitates this recovery. By insuring that the

superordinate substitution will never be ambiguous, the system only gencrates superordinate substitutions . '. -

that are readily recoverable,

The lexical substitution device with the next strength of antecedence recovery is the general noun.
These items provide almost no information. Since they move us out of the plane of the semantic hicrarchy,

general nouns serve as little more than place holders for elecments in the sentence. As we have seen, general

nouns have a large impact on the style of a passage, making it much more familiar and informal, and possibly
adding a derisive tone to the text. Since such considerations of style are beyond the scope of this thesis, Paul
has been designed to not choose general nouns as a possible lexical substitution, although the mechanism for ' .' -

generating general nouns has been incorporated into the program. s

The final cohesion device used by Paul, personal pronouns, has the lowest strength of antecedence
recovery. Pronouns genuinely are nothing more than place holders, variables that maintain the positions of . . ‘
the clements they're replacing. A pronoun contains absolutely no scmantic information, only syntactic. The

only readily available pieces of information from a pronoun are the syntactic role in the current sentence, the

gender, and the number of the replaced item, For this rcason, pronouns arc the hardest to recover of the

substitutions discussed. ' B

o e e - . .
= ‘-. ..' o ~-. T .-\I. - P .
S R
AR A A)

T .
AP IR, AT

CERSTRR N D T P Y
T e ORI PR S L
PYLY S ROV T G LS W T TP NI W U T T DY ..‘:_‘:.‘_-A.AL.'_‘

N T L N T T T T T N T E T T TR T e T e TR T T e T

:
b 41

3.7.2. Strength of Powential Antecedence

r o S b A M g S N S ga gy

While the forms of lexical substitution provide clucs (to various degrees) that aid the rcader in
recovering the presupposcd element, the actual way in which the element is currently being used, how it was
previously used, its circumstances within the current sentence and within the cntire text, can provide
additional clucs. These factors combine to give the specific reference a strength of potential antecedence. Some

clements, by the nature of their current and previous usage, will be easier to recover independent of the

lexical substitution device selected.

o Strength of potential antccedence involves several factors. The syntactic role the element is playing in
b the current sentence, as well as the previous reference, the distance of the previous reference from the current,
and the current focus of the text all affect an clement's potential strength of antecedence. Paul identifies five

classes of potential antecedence strength, Class I being the strongest and Class V the weakest, as well as a sixth

o “non-class” for elements being mentioned for the first time. Thes five classes are shown in Figure 3-7.

Class I 1. The sole referent of a given gender and number (singular or plural) last mentioned .
within an acceptable distance, OR : !

2. The focus or the head of the expected focus list for the previous sentence.

Class I1: The last referent of a given gender and number last mentioned within an acceptable
distance.

Class III: A focal point that filled the same syntactic role in the previous sentence.

Class1V: 1. A referent that has been previously mentioned, OR

2. A referent that is a member of a previously mentioned set that has been mentioned
within an acceptable distance.

Class V: A referent that is known to be a part of a previously mentioned item.

Figure 3-7: The Five Classes of Potential Antecedence

Once an clement’s class of potential antecedence is identificd, the sclection of the proper lexical

substitution device is casy. The stronger an clement’s potential antecedence, the weaker the antecedence

recovery of the lexical substitution. Therefore, Class I elements, thosc with the highest strength of potential

antecedence, are replaced with personal pronouns, the substitution with the lowest strength of antecedence

recovery. Class I clements, with the next highest strength of potential antecedence, are replaced with

42

supcrordinates, the next lowest cohesive device, Class (11 elements are unusual in that the device used to
replace them can vary. If the previous instance of the element was of Class 1, if it was replaced with a
pronoun, then the current instance is replaced with a pronoun, too. Otherwisc, Class 111 elements are replaced - i«-——
with supcrordinates, the same as Class I1. Class IV and Class V clements are both replaced with definite noun o

phrases. These mappings from potential antccedence classes to lexical substitution devices is illustrated in

Figure 3-8.

ClassI.............. v, Pronoun Substitution
Classll, Supcrordinate Substitution '
Class 11 (previous reference Class 1) Pronoun Substitution — L 4
Classlll. Supcrordinate Substitution ‘
ClasslV............ Definite Noun Phrase

ClassVottt i Definite Noun Phrase

Figure 3-8:

Mapping of Potential Antecedence Classes to Lexical Substitutions

The decision on which lexical substitutions would be used to replace which potential antecedence
classes was made fairly arbitrarily. This mapping intuitively makes scnse. As the strength of potential
antecedence gets weaker by class, the strength of antecedence recovery gets stronger with the associated
lexical substitution. However, there is no formal justification to this exact mapping. The choice of which

lexical substitution to use for an element, once that element's class has been identified, is a question of style.

There is usually more than one type of lexical substitution that will serve the goals of cohesion. The
difference between them is that they will have different impacts on the style and mood, the “fceling ,” of the
text.

T3.1 1. Hank lost Robin's book.
2a. She was heartbroken.
2b. The girl was heartbroken,
2c. The poor girl was heartbroken,

Each of the responscs of 13.1-2 are acceptable following T3.1-1, but they have different impacts on the overall
style of T3.1. T3.1-2a has a more informal, conversational tone, while T3.1-2b is more formal. And T3.1-2c is
very informal, and implics sympathy on the speaker’s part. As was stated above, the investigation of style and

its impact on lexical substitution sclection and vice versa is beyond the scope of this report. Thercfore, an . ‘

arbitrary style was chosen for Paul, as reflected in Figure 3-8,

Onc of the most important factors used in determining the potential antecedence class of an clement is o

Jocus[41, 35,15, 16, 17). Focus is what a discoursc is about [38). It is the central idca around which the

PN S

sentence revolves,

LN Wiy S

In order to identify the current focus or expected focus list, Paul uses the detailed algorithm for focus
developed by Sidner [41]. Figure 3-9 shows this algorithm.

ol
‘.
i

Choose an expected focus as: SR

The subject of a sentence if the sentence is an is-aor a
there-insertion sentence.

The first clement of the default expected focus list, computed from
the semantic case relations of the verb as follows:

Order the set of phrases in the sentences using the following -9
preference schema:

afffected case unless the affected case is a verb complement in Coen
which case the affected case from the complement is used T

all other semantic case positions with the agent last

the verb phrase
Figure 3-9: Expected Focus Algorithm

3.7.4. Distance

Another important factor in determining an element’s class is distance. By this we mean the distance

between the current reference and the most recent previous reference for the same item. Distance affects our
ability to recover the antecedent for a lexical substitution. As the distance between the referent and its
antecedent increase, the number of possible referents is likely to increase, thus making the recovery a
confusing process. Additionally, as the distance increases, other elements are introduced and discussed. The
focus of these intermediate sentences is obviously not on the clement in question. When this clement is finally
brought back to the recader’s attention, it has to be re-introduced as something pertinent to the discussion.
Perhaps an example would help make this clear.

...................

73.2 1. John sent a letter to Mary.

2. Fred found the letter and read it.
3. He told George about it.

4. George gave it to Pete.

. Pete hid it.

6. She never got it.

>

- The she in T3.2:6 must be Mary, since Mary is the only female mentioned in all of T3.2. However, there are
five clauses between the initial reference of Mary in T3.2:1 and the pronoun in T3.2-6. With five sentences
consisting of six clauses, all of which have the letter as their focus, it seems strange to use the cohesive device
with the weakest antecedence recovery to refer to an element that was mentioned in passing (since Mary is not

the focus of T3.2-1) six clauses ago.

On the other hand, not allowing any distance is too restrictive.

73.3 1. John sent a letter to Mary.
2. The postman lost it,
3. She never got it.

Using the pronoun she in T3.3-3 scems perfectly natural and acceptable, even though the sentence it is in,
T3.3-3, does not immediately follow the sentence in which the first reference occurred, T3.3-1. There must be
some range in distance for which such pronominalization is acceptable, and beyond which it is not.
Unfortunately, linguists have not been able to determine the exact scope of this range. It seems that rather
than there being an exact cutoff line, there is a continuum of acceptability, as there is with most linguistic
features. An additional complication is that this continuum may be able to shift, extending the accepted range
for some contexts, and decreasing it for others. Unfortunately, investigation into this linguistic issue is beyond

the scope of this report. In Paul the acceptable distance was arbitrarily set at two clauses.

3.7.5. Endophoric Limitations

A limitation of this use of focus and distance is that it assumes endophoric references. The possibility of*
shifting focus by simply gesturing at an object, the definition of distance based on an object’s physical distance .
to a referent, rather than its distance in the text, have been ignored. To appreciate the significance of this, -

consider the following as the first scntence of an instruction manual.
First, loosen the top screw on the carburetor.

Neither screw nor carburetor have been mentioned before in the text, yet both are presented as definite noun

phrascs. This is correct because the references are meant to be cxophoric, not endophoric. It is assumed that - @
the reader of this sentence has the proper engine in front of her, and can readily identify the carburetor and its
top screw by sight. Since Paul assumes endophoric references, it would have incorrectly gencrated this ;’,:I-_j

sentence,
First, loosen a top screw on & carburetor,

This one says to loosen any screw found on any carburetor, and implics that there are more than one of each,

', e . ”, e w . s
RO I R AN AR

LIPS A)

45

a much different message from the first. While the definition of potential antecedence classes used in Paul is
adequate for strictly endophoric contexts such as children’s storics, it would have to be greatly modified
before exophoric contexts could be properly generated.

3.8. Comparison with Another System

'Ejﬁ' With all the claborate mechanisms developed for Pawl, and their theoretical justifications, as we have

been discussing, it may be difficult to judge just exactly what is gained by their inclusion. Therefore, this

chapter concludes with an example of a story gencrated by Paul and the same story as it would have been
generated with a much simpler algorithm for pronominalization. Figure 3-10 shows the sample story with no 3;14'. BN

form of lexical cohesion. (FFigure 3-5 contained the semantic hicrarchy for this world.)

- @ -
POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES
A ROSE TO HEPZ1BAH., WHICH PLEASES HEPZIBAH. HEPZIBAH DOES NOT
WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY PUNCHES POGO. S
CHURCHY GIVES A ROSE TO HEPZIBAH. PETALS DROP OFF. THIS UPSETS J—

HEPZIBAH. HEPZIBAH CRIES. ... ek
Figure 3-10: The Sample Story '

The simple pronominalization rule that will be compared with Paul is one that appearced in [22], and is
presented here in Figure 3-11. The rule only allows pronominalization if the last reference to the clement was
in the last sentence. (In other words, this rule uses a maximum acceptable distance of one sentence.) The

previous-pronouns-list refers to the pronouns that would be used to replace the nouns of the previaus

sentence. For instance, if the previous sentznce were "Both Fred and George like Mary,” the previous noun
list would be (Fred George Mary) and the previous-pronouns-list would be (he he she).

= Pronominglization Rule: A repetitive noun phrase in the ‘o a
— current sentence is replaced by its pronoun only if the pronoun is R
f'_ uniquec in the previous-pronouns-list (that is, no other noun NN
ﬁ:} phrases in the previous sentence has the same pronoun).

Figure 3-11; The Simple Pronominalization Rule

7. Let's see what thre pronominalization rule of Figure 3-11 would do with the sample story of Figure 3-10.
With the first sentence, the previous nouns list is empty, as well as the previous-pronouns-list, and no
pronominalization occurs. However, with the sccond sentence, the previous nouns list is (Pogo Hepzibah) and

the previous-pronouns-list is (he she). Since Churchy of the sccond sentence is male, the pronoun for Churchy

~

is he. With another ke on the previous-pronouns-list, pronominalization here is blocked. However, Hepzibah
has the only she on the previous-nouns-list, and the final sentence is Churchy likes her. 1oo. With the next
sentence, Pogo cannot be pronominalized because he is not on the list of previous nouns, and even if he were,
Churchy has a he on the previous-pronouns-list, and no pronotninalization would occur. Hepzibah is still on
the list of previous nouns, and is still the only she on the previous-pronouns-list, and the resulting sentence is
Pogo gives a rose 1o her, which pleases her. Similarly, the other sentences would be processed, and the final

story is in Figure 3-12.

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES

A ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S
ROSE. HE IS JEALOUS. HE PUNCHES POGO. CHURCHY GIVES A ROSETO
HEPZIBAH. PETALS DROP OFF. THIS UPSETS HEPZIBAH. SHE CRIES.

Figure 3-12: Results of Simple Pronominalization Rule

The sample story as generated by Paul is in Figure 3-13. (The details of the generation of this story are
discussed at length in Chapter 5.)

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES A
ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S ROSE.
HE IS JEALOUS. HE PUNCHES POGO. HE GIVES A ROSE TO HEPZIBAH.

THE PETALS DROP OFF. THIS UPSETS HER. SHE CRIES.

Figure 3-13: Paul’s Version of Sample Story

The differences between the two algorithms do not manifest until the seventh sentence, Churchy gives a rose
1o Hepzibah. Because the sixth sentence mentions both Churchy and Pogo, the previous-pronouns-list during
the seventh sentence is (he he), and the algorithm docs not allow Churchy to be pronominalized in this
sentence. With Paul, though, Churchy in the scventh sentence is Class IIT because the referent repeats the
syntactic role it had in the previous sentence, in this case subject. When the previous reference was realized as
a pronoun, Class I1I referents are also realized by pronouns, and the resulting sentence is He gives a rose to
Hepzibah.

-) ’ -
-®
.-_ ~.:‘.> A"
e
oot
-" R 1

LS Y e e e gt SUEIC R e aoen s diiagul tes LoUE AEC AR sel MU b R IS G e aete SUNL S JEL Syl g T -

e N N A N N A RS e oL A A
3 47

)

. The next difference is in the ninth sentence’. Because Hepzibah wasn't mentioned in the cighth
t'; sentence, and the simple pronominalization rule only allows a distance of one sentence for pronominalization,
l the clement is left untouched. Paul, on the other hand, uses a distance of two, and the referent is replaced

. .i

with the appropriate pronoun in Paul’s version.

s e e
v s

This brief example shows that Paul is much richer in creating pronominalization than the simple rule of

Figure 3-11. And of course, providing other forms of lexical substitution and carcfully controlling their use

allows Paul to gencrate a large varicty of quite natural text. Appendix III contains scveral examples of actual

texts generated by Paul
.
) ‘ > 1

> .

A 50!' course, the eighth sentence is also different in the two versions. But this difference is because Paul identifies parts of previously
:, mentioned elements, and classifics them as Class V., Since this is independent of pronominalization and the rule we are contrasting
o4 against Paul is one for only pronominalization, a comparison for the cighth sentence wouldn't be fair,

o

S

»
W

.

o S T it A 5 —
TR TSR T Lo S ettt S SR A N

A i At A henn e et AT Jun S St St e s e
LR P . A - B T A S A I - R A

4. NLP

| 4.1. Introduction

This chapter presents an introduction to NLP (for Narural Language Processor) as it was implemented
for Paul. The reader is introduced to the major constructs of the language, and the syntax and scmantics of

those constructs. A working knowledge of LISP is required to gain a complete comprehension of the

presented material, but programming expertise is not necessary---and the reader will certainly not be asked to
trace through lines of code. Additionally, after the description the algorithm uscd in NLP to generate

sentences will be discussed, and an example will be provided.

1t should be understood that this chapter is nof intended to serve as a manual or users' guide to NLP,
but simply an introduction to somc of the concepts central to the language’s use. Furthermore, opinions
expressed in this chapter arc solcly this author’s and do not necessarily have the agreement or the approval of

my colleagucs, nor of George Heidorn, the creator of NLP.

NLP is a language crcated by George Heidorn specifically for natural language processing. The
language allows the uscr to write and exccute production rules on frame-like data structurcs which Heidorn

calls records. Since Heidorn's original version of NLP as rcported in 1972 [13] was supported by a FORTRAN

program, it reflected many of the constraints and special propertics of a numerical computational language. -0 R
By using LISP, a subset of NLP was implemented---essentially the instructions necessary for language
gencration---without the artificial numerical orientation of Heidorn’s version. Consequently, the current
I version of NLP used for Paul is not completcly compatible with Heidorn’s, and the following descriptions.of

NLP, while agrecing with Heidorn’s for the most part, will be specifically based on Paul’s version.
4.2, NLP Records

The primitive data structure in NLP is the record. Records are entity-attribute-value elements, largely

’ borrowed from the realm of system simulation {8]. NLP records are based on the belief that objects in the .
' world, entities, can be adequately described by their distinguishing properties, attributes, and the specific -
values these properties have. In NLP, entitics are referred to as records, while attributes and values keep their

names.

This approach of entity-attribute-value data structure is very similar to the frame idea [36). Records are

analogous to frames, attributes correspond to slots, and the notion of values is the same for both. Just as a

given frame can have more than one slot, an NLP rzcord can have an arbitrary number of attributcs. And
because the value of a specific attribute for a given record can be another record with its own atiributes and -

values, it is possible to use NLP to implement the information retricval network speculated about in [36].

eI e

MR A

49

‘There are scveral ways to implement an entity-attribute-value data structure in LISP. In, Paul, property
lists were chosen because they seem most natural for this application. Therefore, cach record can be thought
of as a property list where the attributes arc propertics and the values are of course the corresponding
property valucs. Using property lists for records necessitates cach record to have a unique name, cither
supplicd by the user, in which casc the record is called a named record, or gencrated by the system when it
creates the record. This requirement would not be found in a version that might use another implementation
of records such as association lists. However, it was found that having a name for every record was more of a
benefit than a burden. In the act of dcbugging, both of the code for the NLP system and of subsequent NLP
programs, it has often been necessary to cxamine the contents of specific records, and these records always

having readily obtainable namecs have made them immediately accessible.
4.3. Augmented Phrase Structure Rules

As mentioned earlier, NLP uses production rules [46) to manipulate and gencrate text. In many ways,
this is a logical choice of methods. Many linguistic theorics of grammars, including transformational
grammars pionccred by Chomsky [4]. employ phrase structure rules, which are gencrally replacement rules. If
a specific sct of elements is encountered under the proper circumstances, the sct is replaced with another.
Production rules follow exactly the same format. If a certain situation exists, then a specific action is to be

performed. Therefore, production rules are a natural choice for implementing natural language.

To reflect this natural correspondence between production rules and linguistic grammars, the syntax of

NLP is very similar to the syntax of phrase structure rules [4]. A typical phrase structure rule might be
SENTENCE : : *NOUNPHRASE VERBPHRASE

which says that when a SENTENCE is encountered, replace it with a NOUNPHRASE foliowed by a

VERBPHRASE. The equivalent NLP rule might be
SENTENCE --> NOUNPHRASE VERBPHRASE;

This rule can be read as: "If a record associated with the segment typc6 SENTENCE is encountered, replace it
with a record of the segment type NOUNPHRASE followed by a rccord of the segment type
VERBPHRASE."

The syntax for NLP rules as explained up to this point is far too restricted to be useful. An example will
clearly demonstrate this, and help provide the motivation for the chosen solution in NLP. If we were to write
a set of rules for generating "The boy flics the kite.” we might try the following. Ignoring for the now the
problem of inserting the actual words into the structure, using the program fragment of Figure 4-1, we couid

casily construct the following tree.

6Segm¢‘nl ppcin N1 P corresponds to symbol in phrase structure rules. both terminal and nonterminal.

. —

SENT --> NOUNPHRASE VERBPHRASE . ;
n NOUNPHRASE --> DETR NOUN;
VERBPHRASE --> VERB NOUNPHRASE;

Figure 4-1: Fragment of an NLP Program

. SENT
H NOUNPHRASE VERBPHRASE
. DETR NOUN VERB NOUNPHRASE
DETR NOUN
THE BOY FLIES THE KITE

Figure 4-2: Generated Phrase Structure Tree

Now what happens if, instead of the example sentence, we wanted to say "John flies the kite."? Our
rules insist that every nounphrase consists of a determiner (DETR in the rules) and a noun. Therefore, if we
tried to generate this sentence, we would get "The John flies the kite.”, which is not at all what we want. A
possible solution would be to allow more than one rule for cach nonterminal, and adding the following rule to

our set.
NOUNPHRASE ~--> NOUN;

Now we could gencrate "John flies the kite." However, "The John flies the kite.” is still possible from our
rules, and now such sentences as “Boy flics kite." can be generated. Adding more rules by themsclves is not

the answer.

One might think that the problem comes from using the nonterminal symbol NOUNPHRASE for noun

phrases both with and without determiners, and that distinct nonterminal symbols for the two distinct
phenomena would provide a solution. In addition to losing significant genceralitics by using such a scheme, the ®
logical conclusion of this is to have a scparate nonterminal for every possible terminal string, an impossible .

feat since there are an infinite number of possible sentences. If onc restricts the number of sentences to those

T T Y T T T AT AT T T ST w W TN T WY T W ey v e T T YT T T e m gt e e s —a

51 e]

anticipated as needed, one is actually providing an claborate system of canned messages, which we have

alrcady dismissed in Chapter Once as impractical and linguistically uninteresting.]

Somechow, we must be able to choose from among the various rules for cach nonterminal symbol. N1.P]
docs this through the use of augmented phrase structure rules [13, 45]. A list of condition specifications is

allowed after the segment type to the left of the arrow, the one being replaced. The syntax for condition

specifications is quite rich, allowing the user to test for the presence or absence of specific attributes, whether

or not attributes have specific valucs, whether the attribute values of given records are the same or different
from the attribute values of other records, whether or not records can inherit specific properties, and just

about any other condition the uscr might care to test.

Furthermore, augmented phrase structure rules allow the user to specify how the records that will
replace the original will be created by using a list of creation specifications. Again, the syntax is rich, and the
options arc myriad. All this results in the fact that NLP rules are nor merely rewrite rules, changing the
labeling of a ecord from one scgment type to another, but that they create new records for the new segment L {
types. A more complete cxample (which we will begin to understand as cach syntactic option is explained)
might be

e 9 St

®

SENT(PASSIVE) --> NOUNPH(X%GOAL(SENT)) -
VERBPH(%SENT,NUMB : =NUMB(GOAL) , -GOAL) g

B Y NOUNPH(XAGENT(SENT)) . ;

Figure 4-3: Example of NLP Rule T e 4
4.4. Condition Specifications]
The condition specifications form a serics of tests which the current record must satisfy before the rule .

can be triggered. These tests are mostly variations on deterinining whether specific attributes have desired
values. The simplest test is whether an attribute has any value at all, which is specified by merely naming the
attribute to be tested. The example of Figurc 4-3 demonstrates this. If the SENT record has any non-false
value for the attribute PASSIVE. the rule will be triggered. To understand why the value has to be "non-
falsc” instead of simply "true,” we must recall how Boolean logic works in LISP. Rather than testing for true
or falsc. LISP conditional statements test for N71. (falsc) or non-NIL. Non-NIL values are nof restricted to T

(truc), but can have any value other than NIL. While the PASSIVE attribute could have a value of T, any

.'.—..,_.,,, A OIS RN ,T‘.'rl_. .fw.ft.“. MMARGS Raot
(I ST T A e e e LA L . .

non-NIL value is sufficient to trigger the rule. *RECORD* is a variable whose value will be the name of the

current record during exccution time. It is through this variable that the system accesses the current record to

>
.

——
“Tela e
RIS
Pt

— R R NN TN T W n————

52 ®
see if it has the appropriate attribute (by sccing if it has a non-NIL valuc for the appropriate property).

The NLP syntax also allows the uscr to specify tests on records other than the one currently on the stack.)
Recall that the value for an attribute of a given record might itself be a record with its own attributes and

valucs. The user is able to access this "nested” record and its attributes for tests, too. By following the test

attribute with a parenthesized pointer value (or PV) to another record, the user informs the system that an

indirect test is to be performed. For example ®
EXAMPLE(ALPHA(BETA))

mi~ht be read as: "If the current record has a segment type of EXAMPLE and the ALPHA value of the
record which is the BETA value of the current record is non-NIL, then trigger the rule.” In other words, the
BETA value of the current record will itsclf be a record, say RECORD?. If the ALPHA value of RECORD?2, »)
not the ALLPHA value of the current record, is non-NIL, then the rule is to be triggered. This is implemented

in LISP through nested GET statcments.
(GET (GET *RECORD* 'BETA) 'ALPHA)

The syntax is not limited to a single nesting of attributes. The user can specify as many levels as she

wants,
EXAMPLE(ALPHA(BETA(...(OMEGA)...)))

becomes
(GET (GET (...(GET *RECORD®* 'OMEGA)...) 'BETA) 'ALPHA)

Notice that the nested hierarchy has originated with the current record *RECORD* in all of the above
examples. This is not required by NLP, but is the default origin. The user can specify a named record by

following the attribute with the parenthesized name enclosed in single que.cs. Therefore the test -
EXAMPLE(ALPHA('LETTERS'))

is rcad as: "If the current record has a segment type EXAMPLE, and the named record LETTERS has a

non-NIL, ALPHA value, trigger the rule.” Nested attribute references are also allowed with specific named

records, such as .
EXAMPLE(ALPHA(BETA(...(OMEGA('LETTERS'))...))) '

Collectively, these attribute calls are known as attribute references.

v.v'vrv‘.r.'v'v_‘rrr‘v_ —w; 3 g
et . ST
e T S

In addition to determining whether an attribute reference has a non-NIL value, the user can test for a .
specific value. This is written by placing an equal sign between the attribute reference and the specific value,
which is cnclosed in single quotes. It doesn’t matter which precedes and which follows the cqual sign.

‘Therefore EERE
CXAMPLE(ALPHA='BETA"') B

and
EXAMPLE('BETA' =ALPHA)

po R W wgR W - w g S) - Zl - - - A Y - - Y - i . . S . ¥ e N . - v, - Pladi - Ve Pl v .
_________ T T T T T A i e B SEIME R SO ST S A K A S S T~

53

arc logically cquivalent. Any of the forms of attribute referencing discussed above are allowed in these

cquality tests. Additionally, the uscr can test if the values of two attribute references are equal.
EXAMPLE (GAMMA=DELTA)

Again, any legal attribute reference may be used here.

There is only onc standard attribute in NLP, the SUP attribute. Heidorn conceptually arranged his
records into SUPerscts, and cach record's SUP attribute spccifies the superset that record belongs to. A
superset is a more general class of entities to which a record belongs, and corresponds to the idea of
supcrordinates. For instance, a record representing "BRIDGET" could have a SUP attribute pointing to a
record for "FEMALE."” The FEMALE record might have "PERSON" for its SUP attribute, and so on. Such
a serics of SUP values is known as a SUP chain. This specific chain could be interpreted as saying BRIDGET
has FEMALE as a superordinate, FEMALE has a supcrordinate of PERSON, and so forth. The notion of
superscts and a specific attribute SUP to represent them is similar to the "AKO" or "a-kind-of” slot that has

been suggested for implementing frames [47].

Since the SUP attribute is so prevalent in record definitions, NILP has scveral conventions for
facilitating their use. In attribute tests, rather than explicitly specifying that a value is to be compared to the
current record’s SUP attribute by using the syntax described above, the user can simply give the value within

single quotes. NLP will assume the value is mcant for the SUP attribute by default. Therefore
EXAMPLE('ALPHA"')

is exactly cquivalent to
EXAMPLE (SUP="ALPHA')

In addition to nested attribute referencing, NLP allows indirect attribute referencing. Frequently, the
user may want to use the valuc of an attribute reference as part of another attribute reference. For example,
assume the value of the ALPHA attribute of the current record is either BETA or GAMMA. If the ALPHA
valuc is BETA, the user wants to test the BETA value of the current record. On the other hand, if the ALPHA

value is GAMMA, the user wants to test the current record’'s GAMMA value. In LISP this would be
(GET *RECORD® (GET *RECORD®* 'ALPHA))

The difference between this and the nesting discussed above is that before we were nesting the GET
statements along the first argument, the atom, while now we're nesting the GET statements along the second

argument, the property.

The user specifics this second kind of nesting by using the commercial at sign, “@". The @ symbo! tells
the system that the following attribute reference, enclosed in brackets, is an indirect reference. Returning to

our previous example, the NLP statement that would represent this test is
EXAMPLE(@Q[ALPHA])

..............
h ‘.. - -._--._ RGN ..\..‘._~ -*_. ._- o - o - o - . -\
oy a2

N .
PO WS IR A S I A S

54

Any legal attribute reference can be included between the brackets (including another indirect reference with
an @ symbol), and an indirect reference with an @ symbol may be used wherever an attribute is cxpected.

The @ symbol completes the syntax for attribute references.

Another potentially confusing but extremely important test is that of chaining. Recall that records are

conceptually arranged into supersets, with cach record’s SUP attribute specifying the superset that record

belongs to, and that a scries of SUP values forms a SUP chain. Frequently, it is necessary to determine if the
current record belongs to a specific superset, that is, if the name of the superset is anywhere on the current

record’s SUP chain,

A concrete example should clarify this. Returning to our record for BRIDGET, we remember that its @ .
SUP is FEMALE, and the SUP for FEMALE is PERSON. Assume that PERSON has a SUP of HUMAN, Lo
that the SUP for HUMAN is MAMMAL, and that the MAMMAL record’'s SUP is ANIMAL. In other
L words, we are saying that BRIDGET is a FEMALE, all FEMALES arc PERSONS, all PERSONS are Sl
é . HUMANS, all HUMANS are MAMMALS, and all MAMMALS are ANIMALS. We arc now ready to test _-'_. L
- along this SUP chain, R

H e
!
b
Al . A

The symbol for tests along chains is the dollar sign, "$". A test to sce if the current record is a member

of the MAMMAL superset of the MAMMAL superset might be
EXAMPLE($="'MAMMAL ')

When this test is executed, the SUP of the current record is compared to MAMMAL. If the} are cqual, the

test returns T. Otherwise, we move up one on the SUP chain, and test that record’s SUP with MAMMAL. If

that test fails, we again move up onc on the chain. This process continues until either a record is found on ﬂle
chain whose SUP is equal to MAMMAL, in which case the test succeeds, or until the end of the SUP chain is :l::

reached by encountering a record with no SUP value, in which case the test fails. Conceptually in LISP what

we want is RO

(OR (EQUAL (GET (*RECORD* 'SUP) 'MAMMAL) ra
(EQUAL (GET (GET *RECORD* 'SUP) 'SUP) 'MAMMAL) o
(EQUAL (GET (GET (GET *RECORD* 'SUP) 'SUP) 'SUP) 'MAMMAL)

As with any cquality test, the ordering of the chaining reference and the value being tested for is not

crucial. Therefore,
EXAMPLE($="'MAMMAL)

and
EXAMPLE('MAMMAL ' =§)

are equivalent. Furthermore, the value being tested for can take the form of any of the attribute references we

have already seen. Thus

55

EXAMPLE($=ALPHA(BETA('LETTER')))
is completely legal. Additionally, we can specify the search to start clsewhere than the current record. This is

donc by placing the desired attribute reference immediately before the $. An example might be . . . 7
EXAMPLE(ALPHA(BETA)$=0ONE(TWO0)) IR

In addition to sceing whether a record is a member of a superset, it is often necessary to test whether the

record or any member of its superset has a specific value for an attribute other than the SUP attribute. This e

brings in the notion of inkeritance [47). Returning to our BRIDGET SUP chain cxample, we know that o :-1_"[_:.:'.

mammals cxhibit certain traits that arc not generally found in every animal. For instance, mammals arc warm
blooded. Since Bridget is a mammal, she is also warm blooded. If we wanted to include this fact in our system,
p we could add a BLOOD attribute to the BRIDGET record with a value of WARM. However, we would then @ .

have 1o explicitly include this attribute and same value for every record that is a member of the MAMMAL

t superset. It would be much more general to give the MAMMAL record the BLOOD attribute and the
,-‘_; WARM value, Then every member of the MAMMAL superset could inherit this attribute and value. That is,
F_ cvery member of the superset is known to have the attributes and values of the superset, including the .‘*".ﬂ o

“f-_i BLOOD attribute with the WARM value, unless we are told explicitly otherwise.

In order to test if the current record can inherit the value for the WARM attribute, the following NLP

syntax is used.
EXAMPLE($['BLOOD']="'WARM')

The brackets inform the system that an argument is being given to the chaining function called for by the $. It

T
o
'
.

et
A
et
¢t

is important to think of this as a function with an argument. Notice that the BLOOD attribute in the example

is in single quotes. This is necessary because we want to use the literal BLOOD as the argument to the
chaining function. If BLOOD were not in quotes, the value of the current record’s BLOOD attribute would

be given as an argument to the chaining function. As always, any attribute reference can be used within the

brackets.
Actually, the chaining function always has this argument. When it isn’t supplicd explicitly by the user, - R
as we saw when the $ was first introduced, the argument defaults to SUP. Therefore :
EXAMPLE($="'MAMMAL ') o
and '._!

EXAMPLE(S['SUP']="'MAMMAL')

are identical. Again, ordering around the equal sign is unimportant. and any attribute reference can serve as

the value being tested as well as the starting point for the chaining test.

In addition to having chains along the SUP attribute, there's no reason why the records can't have

chains along other attributes, and there’s no reason why the chaining function can't use these other chains. By

...
A

N L eyt
x -‘ 3 *L.

wytate e
PN M NS

AT,

T T W TR Ar T AN A Sibes Nt JIRC tus SEuntaIERel St lueet SV arlh Bt aML SUES SR SREL Sl artl e

56

supplying the function with a second argument, the user can specify which autribute chain she wants to

cxploit. An example might be
EXAMPLE(S['ALPHA','BETA']='GAMMA')

This says to chain along the BETA attribute, looking for a record whose AI.PHA value is cqual to GAMMA,
Notice that the second argument is also in quotes for the same reasons that the first is (as cxplained above),

and that the arguments arc scparated by a comma.

As with the first argument, the second argument is required by the chaining function, and when it is not

explicitly supplicd, the argument defaults to SUP. Therefore,
EXAMPLE(S['BLOOD']='WARN')

and _ J_. o
EXAMPLE(S['BLOOD', *SUP']="WARN') RO

are cquivalent, as are
EXAMPLE(S$="WARN')

and
EXAMPLE(S['SUP','SUP']="WARN')

An important restriction on the second argument is that it can not be specified if the first argument is not. If

the user wants to specify the second argument, she must supply the first, even if it is to be SUP.

Finally, the user can specify the record the chain is to start with by giving the appropriate attribute
reference or literal before the dollar sign. As usual, if none is supplied, the system defaults to the current

record being tested.

This completes the syntax for chaining references. The first argument, whose value is the attribute being
tested for along the chain, is known as the fest attribute, while the second, whose value is the attribute being

chained along, is called the chain attribute.

Just as we could usc attribute references without equal signs to test if they had any non-NIL value, we . ®
can use chaining references without equal signs to test if they return any non-NIL values. In this case, the first : -
non-NIL value for the test attribute found along the chain specified by the chain attribute is returned. If none

is found, NIL is returncd and the test fails. If the BRIDGET record were the current record, exccution of the

test
EXAMPLE ($['BLOOD'])

would return WARM, assuming none of the records between BRIDGET and MAMMAL had a non-NIL

BLLOOD value. The same defaults and restrictions described above for chaining references apply for this use

of them. A good test to sce whether chaining references and their defaults arc understood would be to -

Ly v Aty (A B A I M e e i St i, e S S g PR e Sl Al IdE RS P P SN S N S S e s i S ol
DR I . N PN L Y R R T S e A P A

57

describe what is specified in the following test.”
EXAMPLE(S)

Finally, two chaining references may be used in the same equality test. An cxample could be
EXAMPLE(S['ALPHA', 'BETA']=$['ONE','TWO'])

This says that if the ALPHA value inherited along the BETA chain of the current record is equal to the ONE
valuc inherited along the TWO chain, the test succeeds.

So far we have only scen tests consisting of a single condition specification. NLP allows the user to
combine an arbitrary number of condition specifications into a single test. One way is to separate condition

specifications by commas. This has the effect of inserting logical ANDs between cach individual test.
EXAMPLE(ALPHA,BETA)

becomes in LISP

(AND (GET *RECORD® 'ALPHA)
(GET *RECORD* 'BETA))

Any of the types of condition specifications discussed above are allowed, as well as any number of condition

specifications in a single test.

By placing a vertical bar "|" between two condition specifications, the user states that either the first test

OR the second is sufficient to trigger the test.
EXAMPLE(ALPHA|BETA)

As with AND, any numbecr and type of condition specifications can be combined with OR.

Logical ANDs and ORs may be combined in the same test.
EXAMPLE (ALPHA,BETA]GAMMA)

becomes

(AND (GET *RECORD® ‘'ALPHA)
(OR (GET *RECORD* 'BETA)
(GET *RECORD® 'GAMMA)))

Notice that the vertical bar OR has precedence over the comma AND. This is true throughout condition

specifications in this NLP system. Heidorn's version did not explicitly address the question of precedence, and

N 7ANSWER: With the dcfaults, this test becomes

EXAMPLE(S['SUP','SUP'])

: and says 1o test the current record for a SUP value along the SUP chain. In other words, if the current record has any non-NIL SUP
value, the test succeeds. Otherwise go to the record specificd by the current record's SUP value and repeat the test, continuing until cither
arccord is found whose SUP value (as the test atinbute) is non-NIL, and the test succeeds, or until its SUP value (as the chain attribute) is
NIL and the test tails. Obviously, cither the current record has a non-NIL SUP value for the test attribute, in which case the test
immadiately succeeds wirhout chaining, or it has a NIL SUP valuc for the chain attribute, in which casc the test immediately fails because
it can’r chain. In cither case, no chaining is periormed. This test is therefore identical to

EXAMPLE (SUP)

......

9 58

his resulting Boolean operators have an ad hoc precedence. When the current version of NLP was developed,

it was felt that an cxplicit precedence would help create uniform rules. o :ff::ﬁ_'::

While an explicit precedence exists in this system, the user can override it through the standard use of

parcnthescs. Therefore,
EXAMPLE((ALPHA,BETA) | GAMMA)

becomes
(OR (AND (GET *RECORD® 'ALPHA)
(GET *RECORD® 'BETA)) R
(GET *RECORD* 'GAMMA)) c]
giving the comma AND precedence over the vertical bar OR. Superfluous parentheses are ignored, provided R

they are correctly balanced. . ® BN

Completing the Boolean entourage is the logical NOT. The current system allows two symbols, the
carct, "t", and the tilde, "~", to be used for NOT. Both the carect and the tilde perform the exact same ‘:':;
function. (In fact, the system converts all tildes to carets before processing rules.) The tilde was included to - . S,

accommodate users who were accustomed to the tilde as the symbol for logical NOT. A NOT symbol before

any condition specification states that the test is to succeed if and only if the condition specification fails.
EXAMPLE(+ALPHA)
EXAMPLE(*(ALPHA=BETA))
EXAMPLE(*S['ONE','TWO'])
NOT has precedence over AND and OR, but parentheses can again override this. So while
EXAMPLE(tALPHA,BETA)
becomes
(AND (NOT (GET °*RECORD®* 'ALPHA)) .
(GET *RECORD® 'BETA)) RN
the following test -
EXAMPLE(*(ALPHA,BETA)) S '.-T:'z
becomes . g

(NOT (AND (GET *RECORD® 'ALPHA)
(GET *RECORD® 'BETA)))

The Boolean opcrators complete the syntax for condition specifications as explained in the original report.

NLP has been extended since that report, however. Onc of the extensions included in Paul’s version of
NLP is the exclamation point, “!". When the system encounters an !, the clement immediately following it is

treated as a LISP s-cxpression, nor an NLP clement. Therefore
EXAMPLE(ALPHA, | (NUMBERP BETA))

becomes

(AND (GET *RECORD® 'ALPHA)
(NUMBERP BETA))

The s-expression is inscrted dircctly into the LISP code just as it appeared in the rule. B

Another addition that has been added is to allow explicit function calls in NLP rules. The system .o R
recognizes function calls by the parameter list enclosed in angle brackets "<" dircctly following the function o
name. The distinction between this kind of function call and the insertion of a LISP function dircctly into the

code through the use of ! is that the parameters in the angle bracket list are NLP attributes and are resolved in

the normal way. An cxample might help to make this clear,
EXAMPLE(! (NUMBERP ALPHA))

as we know, simply becomes
(NUMBERP ALPHA)

On the other hand. in our new function call, . v o
EXAMPLE (NUMBERP<ALPHAY) ,]
ALPHA is treated as an attribute, and the result is Tl
(NUMBERP (GET *RECORD* 'ALPHA))

This allows the uscr to use function calls with attribute values as parameters without requiring her to know

these values ahead of time.

The user is also allowed to have a segment type without condition specifications. In this case, any record

ﬁ of this scgment type would trigger the rule. The syntax for the condition part of NLP rules is now complete,
4.5. Creation Specilications

o In addition to specifying the conditions under which a rule is to be triggered, augmented phrase

structure rules allow the user to designate the specifications for creating a new record. The first clement of this

part of an NLP rule is a segment type. This is the segment type that will be associated with the new recdrd

when it is placed on the control stack, and will be used when it’s that record’s turn to trigger rules.

Following the scgment type is an optional list of creation specifications which spell out in detail how the

new record is to be crcated. The syntax for many of the creation specifications is similar to that for condition .o y
specifications, but the meaning is slightly diffcrent. The simplest creation specification is once again the name o ’
of an attribute. ”'

EXAMPLE(ALPHA) . o
However, rather than testing to scc if the current record has a non-NIL value for the ALPHA attribute, here - @ o 1

we want to assign a non-NIL value to the new record’s ALLPHA attribute. In other words, instcad of retrieving

a property value with a GET statement, we want to assign a property valuc with a PUTPROP statement. Since

the user hasn't specified the value to be assigned, only that it be non-NIL, the system uses the simplest

non-NIL value available, namely T. As with condition specifications, pointer values may be used.
EXAMPLE(ALPHA(BETA))

is legal and is read as "Create a new record of segment type EXAMPLE whose ALLPHA value of the record

...................
..
....................................

g ¥ ¥R OV
IR

B

' B’ S ar B

Wy "y
(3t Bl

e’

. -.' L

— T

which is this new record’s BETA value is 1." In other words, the BETA value of the new record is obtained,

and rhat record’s ALLPHA valucis set to T. The LISP code to do this is
(PUTPROP (GET *RECORD® 'BETA) T 'ALPHA)

Of course, if the new record does not yet have a BETA value, the nested GET will return NIL and the
command will put the value T and the property ALPHA on the property list of NIL, which is probably not
what the user intended. Notice that whether or not the new record has a BETA value, the property list of the

new record is not affected in any way. This means the rule would have no direct effect on the new record.

Since this kind of specification is usable on all types of attribute references, it can be uscd on those for
specifically named record, and with indirect referencing.
EXAMPLE(ALPHA('LETTERS'))

EXAMPLE(@[ALPHA])

There is one convention in creation specification attributes that is not found in those of condition
specifications. In condition specifications, the default record was the current one being tested. In creation
specifications, the default is the record being created. In order to use attributes of the record that caused the
rule to trigger, NLP has the convention of using the scgment type of that record, the condition segment type,
for the name of this triggering record. As an example, if we had a rule whose condition secgment type were

SENT, then
EXAMPLE (Q[ALPHA({SENT)])

would become
(PUTPROP *RECORD®* T (GET *OLD-RECORD*®* 'ALPHA))

At the time of execution, the LISP variable *RECORD* will still contain the name of the record being
created, and *OLD-RECORD* will contain the name of the record that triggered this rule.

Just as NLP allows the testing of attribute references for specific values, the system allows the
assignment of specific values in creation specifications. The operator for assignment, ":=," immediately
follows the attribute reference that is to reccive a value, and the actual value to be assigned next appears. For

instance,
EXAMPLE(ALPHA:='BETA')

says o create a new record of segment type EXAMPLE with an ALPHA attribute whose value is BETA. In

addition to literals, attribute references may be used, since they cventually return values.
EXAMPLE(ALPHA:=BETA)

Any legal attribute references, including arbitrary nesting, indircct references through the use of the

@ symbol, and using explicitly named records arc allowed, and these attribute references use the same syntax

that condition spccifications use.

D T B B ER

LR

61

One significant difterence, though, is that order around the assignment operator is crucial. Unlike
cquality tests, where, as in all tests, no record is actually being altered, assignment clearly changes the value of
an attribute for some record. The left part of an assignment designates where a new value is to be stored, and
the right part states what that value is. The two parts serve very different purposes, and the assignment
operator, unlike the cquality operator, is thercfore nor symmetric. Furthermore, the left part of an assignment
must be able to reccive a value. In other words, it must be an attribute reference, not a literal in single quotes,

a chaining reference, or an explicit function call.

As there was a simplificd syntax for testing a rccord’s SUP value, there is a simplified syntax for
assigning a value to a record’s SUP attribute. The syntax is the same, the literal value simply appearing within

single quotes.
EXAMPLE('ALPHA')

is equivalent to
EXAMPLE(SUP:='ALPHA')

Chaining can also occur in creation specifications. The same symbol, the dollar sign, is used for
chaining, and the same syntax, defaults, and restrictions for chaining references in condition specifications
apply to their use in creation specifications. Additionally, since chaining references can only obtain values,
they can not receive values; they can only appear on the right side of assignments (unless they are being used

as an indirect reference within an @).

The exclamation point extension discussed above may be used in creation specifications as well as in
condition specifications. The LISP s-expression immediately following the ! is read in as such and is placed as
is directly into the LISP code being gencrated. The NLP system does not attempt to convert the s-cxpression

into LISP (it already is in LISP), nor is the s-expression evaluated at this time.

There is an additional creation specification operator that has no corresponding condition operator, the
per cent sign, “%". Frequently, the user will want to give a new record afl the attributes and values of some
other record. Listing each attribute assignment individually is too cumbersome, and there is no reason to
assume that the uscr will know at the time the rule is being written every attribute the record being copicd will
have at the time of execution. The % solves this problem. The % followed by any legal attribute reference tells
the system to copy into the new record all the attributes and corresponding values of the record pointed to by

the attribute reference. For instance,
EXAMPLE(XALPHA('LETTERS'))

copics the entire record found at
(GET 'LETTERS ‘'ALPHA)

into the new record. That is, cach property found on the plist of the item returned by (GET "LETTERS

o

- N
AR
S |
L.
SRR
S .-t' - 4

®

" .
-9 4

P ———— - e S P e Sy, T

62

‘ALPHA) is put onto the plist of *RIECORD* with the same property value.

There is also an automatic use of the copying function. If the secgment type of the record being newly
created is the same as the segment type of the record that triggered this rule, the triggering record is
automatically copicd into the newly created record as the first action of the creation specification. The only
time this doesn’t occur is when the creation specification of the new record has an explicit command to copy

some record (signified by the usc of the % operator).

More than one creation specification may be included in the same list by separating them with commas.
The actions designated by the creation specifications are performed sequentially from left to right. As an

cxample,
EXAMPLE('ALPHA' ,BETA:=BETA('LETTERS'))

says the following: "Crcate a new record of segment type EXAMPLE, assign the valuc ALPHA to the SUP
attribute of this new record, and assign to its BETA attribute the BETA value of the named record
LETTERS.”

After copying an cxisting record into the new one, the user has no problem adding or reassigning

attributes to the new record.
| EXAMPLE(%'LETTERS' ,ALPHA:='0NE"')

copics the attributes of the record LETTERS into the new record, then changes the new record's ALPHA
value to ONE. However, the uscr will frequently want to eliminate or "turn off" some attribute after copying

arecord. She can do this by using the minus sign or hyphen, "-". A hyphen followed by an attribute reference

tells NLP to remove that attribute reference, giving it a NIL value. Therefore
EXAMPLE(-ALPHA)

becomes
(REMPROP *RECORD® 'ALPHA)

The hyphen can be used with any legal attribute reference.
' EXAMPLE(-ALPHA(BETA))

EXAMPLE (-ALPHA(' LETTERS'))

Earlier it was said that the list of creation specifications following the segment type is optional. If no list
of creation specifications is given, the scgment type is pushed onto the control stack without creating a new
record to be associated with this segment type. When such a segment type is encountered, the system treats it as

a terminal symbol, and the segment type is placed directly into the output stream.

4.6. The Complete NLP Rule

Now that we know the syntax for the individual parts of an NLP rule, let's sce what the format is for

I putting these parts together. An NLP rule is made up of the condition part (consisting of a segment type
fullowed by an optional list of condition spccifications), followed by an arrow and then once or more creation

parts (cach consisting of a scgment type followed by an optional list of creation specifications). A nev ccord

l is created for each creation part that calls for it (by having a list of creation specifications), and these records
are pushed onto the control stack with the first one being created on top. The arrow consists of a greater-than
symbol ">" preceded by at least one hyphen "-". This arrow is not strictly nccessary, since in a rule the only
thing allowed on the condition side after the segment type is at most onc list of condition specifications

enclosed in parentheses, and the first element of the creation side of a rule must be another segment type,

there can be no ambiguity as to where the condition part stops and the creation part starts. However, the
arrow improves rcadability of rules, cspecially complicated ones in which both condition and creation
specifications take up scveral lines, and the arrow helps make the analogy between NLP rules and phrase

) structure rules more apparent.

The exact nur ber of hyphens in the arrow is not important, as long as there is at least one. This allows
the user to line up her rules as she wants them, in effect permitting so-called "pretty printing.” Additionally,

spaccs, line feeds, and returns are ignored by the input system, further enhancing the user's capability to

pretty print. In fact, spaces, line feeds, and returns are ignored throughout the NLP system. Consequently, the
user must tell NLP when a rule (or any input scgment) is finished. She does this by ending ecach input
segment with a scmi-colon. Ending a rule with an empty bracket list "[J" tells NLP that not only is the rule
finished, but this is in fact the last rule to be processed.

R P ALEUMI

NLP also allows the user to put comments in her rules. These comments are delimited by braces "{}"
and may appear anywhere within or between rules. Everything within the braces will be ignored by the

) system.

Let’s return to our first example of a complete NLP rule.

> SENT(PASSIVE) --> NOUNPH(XGOAL(SENT))
VERBPH(%SENT, NUMB: =NUMB (GOAL) , -GOAL)
B Y NOUNPH(XAGENT(SENT)) . ;

Figure 4-4: Example of NLP Rule

-'. l..-l. : .

This says: "If the current record (call it TRIGGER) has a segment type of SENT and a non-NIL PASSIVE

PRACRAFRArI A L S She S Bui Sha APl SR e S I Ao hr St dah Sl A e PULADER SN STl S i ARSI AR R B - AR SRR S S i S S

value, do the following. Create a new record (call it RECORDI) which is a copy of the record found in the
GOAL. attribute of TRIGGER (recall that in the creation part the condition scgment type (SEN'T in this casc)
is the convention for referring to the record that triggered the rule), and associate this record with a segment
type of NOUNPH. Create a second record (call it RECORD2) by copying TRIGGER, assigning to the
NUMSB attribute of RECORD2 the NUMB value of the GOAL of RECORD2, next removing the GOAL
attribute from RECORD?2 (note that the order in which these operations are performed is critical), and
associate RECORD? with the scgment type VERBPH. Insert each of the segment typcs, #% B, and Y onto
the stack without creating records for them. Create a last record (call it RECORD3) by copying the AGENT
valuc of TRIGGER, and give RECORD?3 a segment type of NOUNPH. Finally, insert a period onto the stack

without a rccord " If the control stack consisted of
((SENT TRIGGER))

before executing this rule, it would be

((NOUNPH RECORD1) (VERBPH RECORD2)
(#) (B) (Y) (NOUNPH RECORD3) (.))

after execution.
4.7. Named Records

In aduition to writing rules to test, create, and manipulate records, NLP allows the user to explicitly

define named records for her program to use. Since this action is in reality the creation of records, it is

virtually the same as the creation part of an NLP rule. Therefore the syntax for creating records is nearly
identical to that of the creation part of NLP rules. The main difference is that the record definition starts with j-.;j'-lzj ii."‘
the name for the record rather than an associated segment type. Therefore if the following were a record ' l;:::j’ .j:. g

definition
EXAMPLE('ALPHA' ,BETA:='GAMMA');

the named record EXAMPLE would be created with a SUP value of ALPHA and a BETA value of GAMMA.

The specifications for a record definition are identical to creation specifications. As with rules, record

definitions must end in cither a semi-colon or an empty bracket list.
4.8. Cover Attributes

Finally, the user is allowed to define what are called cover attributes. Frequently a set of attributes can
be logically grouped together. For instance, the attributes MALE, FEMALE, and NEUTER all refer to

e
AT .
‘. P el
VPRI L
PPN PR TN

_ GENDER. While specifications could be cxplicitly written to deal with cach of these, it would be more s
:;:'.'_‘ convenicnt when the same action is to be performed on cach of these attributes if we could write one SRR
- specification to perform all these operations, Additionally, it would make clear the fact that these attributes o :

arc associated in some way.

':‘_- 8l\s we shall sce later, NLI uses this symbol in the output stream to represent a space.

h " .«

b

] By defining cover attributes, the user can associate attributes this way. The user defines cover attributes

b

1 by giving the name of the cover attribute followed by a list of the attributces to be grouped together under this ;
n "cover.” Again, cach definition ends with a semi-colon cxcept the last, which ends with an empty bracket list. . L

Any attribute name is allowed in this list, including another cover attribute. N
GENDER (MALE FEMALE NEUTER); R
PRONOUNS (GENDER NUMBER CASE);
COVER1 (ALPHA BETA GAMMA); o
COVER2 (ONE TWO THREE)[] L4

When NLP encounters a cover attribute in cither a rule or a record definition, the specification is replaced by

LI '
PP I 2

T— o 2l 2 4
PAOMEACAEA
Lo L

specifications containing cach of the attributes being covered. For instance, using the COVERI and COVER2

cxamples from above, -
F EXAMPLE (COVER1) °

Dbt A

. as a creation specification becomes
:'.-_. EXAMPLE(ALPHA,BETA,GAMMA)

That is, in the newly created record, the attributes ALPHA, BETA, and GAMMA will cach have a valuc of T. S
EXAMPLE(COVER2:='NUMBER"') " 9

would become
EXAMPLE(ONE:="'NUMBER',TWO:="'NUMBER' ,THREE:='NUMBER')

In condition specifications, cover attributes arc handled slightly differently. A creation specification test

involving a cover attribute will succecd if the specified test succeeds for any one member of the cover S

attribute. That is, B ._:;:;

EXAMPLE(COVER1) S
will succeed if ALPHA is non-NIL, or if BETA is non-NIL, or if GAMMA is non-NIL. Instcad of replacing .________‘

COVER]1 with its member attributes separated by commas, which signifies ANDS, COVERI1 is replaced by - -4

these attributes scparated by vertical bar ORS.
EXAMPLE(ALPHA|BETA|GAMMA)

If the cover attributes appear on both sides of an equality test or an assignment, first onc cover attribute, ®

then the other is expanded, resulting in every possible pairing of the attributes.
EXAMPLE(COVER1=COVER2)

would be expanded into nine tests, and
EXAMPLE(COVER1:=COVER2)

would become nine scparate assignments. An exception to this is when the same cover attribute is used on

both sidcs. Then, rather than expanding to every possible combination, only the pairings of the same attribute

\ A

Y
,

IR S PPN

on both sides are used.
EXAMPLE(COVER1:=COVER1('LETTERS'))

becomes

TEY_ AT XYY Ja M PR a1 S S Mibas JRPue S 4 AANER AN Sras aeTaans saas Sagc w PaARruiin- ol et i i N Lad T T Ty T

66 °

EXAMPLE (ALPHA: =ALPHA('LETTERS'),
BETA:=BETA('LETTERS'),
GAMMA : =GAMMA(' LETTERS')) .

Note that in the above example the sccond use of the cover attribute referred to a named record. Cover

attributes can be used wherever a regular attribute name is allowed.

Because cover attributes affect the meaning of rules and record definitions that they appear in, any

cover attributes to be used must be defined before rules or records.
4.9. Record Definitions

NLP allows the user to create records very casily . Each record definition consists merely of the name of
the record followed by a list of attributes and their values in parenthescs. Since we are creating records, which N B

is exactly the same function performed by creation specifications of rules, we would want record definitions to

have the same syntax and meaning as creation specifications. This is precisely the case. All the syntax for

creation specifications, including assignment of attributes, default assignment for SUP, use of %, @, $, !, and

cover attributes, is allowed in record definitions with exactly the same meaning. L

As an example, suppose we wanted an record to represent our friend Bridget. We might want to note

that she is female, that she has blond hair, that her age is four, and that she is alive. The following record

definition would accomplish this: .9
BRIDGET ('FEMALE',HAIRCOLOR:='BLOND',AGE:="4',ALIVE); .

This definition would create a record BRIDGET with a SUP attribute whose value is FEMALE, a
o HAIRCOI.OR with a value of BLOND, an AGE attribute with a value of 4, and an ALIVE attribute whose

H valueis T. XS

A typical program first defines the cover attributes to be used. Next the actual rules to be executed are

given. Then any named records the user wants are defined. The control stack is initialized with record(s) and

their associated segment types. Finally, the user invokes her NLP program to encode or gencrate text. The PY
command BYE then leaves the NP system and returns the user to the host environment. Appendix 1V

contains a BNF for NLP, and Appendix V contains the complete NLP program for Paul.
4.10. The Generation Algorithm

Now that we know how to write NILP rules, we can sce how the system exccutes these rules, and

examine the control mechanisms which determine the order in which the actions of the rules will be

performed. The central control mechanism for NLP is a stack of scgment types and associated records. As the
generation process proceeds, the stack is popped onc item at a time. The appropriate action based on the . -
specific item is taken, and the results are cither pushed back unto the stack or inscrted into the output stream.

When the stack is finally empty, the process is finished.

.............................

67

The gencration algorithm used in Paul is the one found in the original NLP report [13]. This algorithm

is repeated here in Figure 4-S.

1. Put a segment type name and a record on the stack to begin.

2. Take the top segment type name and associated record (if
there 1s one) off the stack, and examine the segment type:

a. if it is a terminal segment type (known by there not
being an associated record), put its name into the
output stream.

b. if 1t 1s one of the special OUTPUT segment types,
perform the specified output operation.

c. otherwise, examine each rule that has this segment type
on the left as the condition segment type until either
a rule is found for which the conditions specified 1in
parentheses are met, or until the 1ist of rules 1s
exhausted:

1. if a rule 1is found, create segment records
according to the specifications given 1in
parentheses on the right side, and put the segment
type names, along with their newly created
associated records, onto the stack.

i11. otherwise, put into the output stream the value of
the SUP attribute of the record which was taken
off the stack.

3. Repeat step 2 until the stack 1s empty.
Figure 4-5: The Generation Algorithm

As is readily apparent, the control algorithm is conceptually simple. The system basically searches

through the ordered rules sequentially until it either finds one to use (determined by the condition
specification tests applied to the segment record). or the list of rules is exhausted. The associated segment type
is uscd to restrict this search by limiting the rules that are considered to only those that have the correct
condition segment typc. The first rule of the correct segment type whose conditions are satisfied by the

segment record is applied.

SON0 MM
LIl [P AR

L 4
2

LA A
PSR
.

It is important to rcalize that these rules are nof merely rewrite rules. The significant difference is that

this algorithm uscs augmented phrase structure grammar, which deals with segment records in addition to the
scgment types, instead of just manipulating and replacing nonterminal and terminal symbols. The difference

between augmented phrase structurc rules and context free phrase structure rules is similar to the difference

Malt]
s

1 6.8

L)
P

T ——— v " " — T AL S S it et A e e S

68

between A'T'Ns and R'YNs [45]. Just as an ATN has fearure registers associated with the nodes of the tree it is
building, an augmented phrase structure system has records associated with the nodes of the tree it is
building. ATNs have conditions and actions associated with their arcs which can test and modify the contents
of feature registers, and augmented phrase structure rules have condition and creation specifications which
can modify the contents of the records. ‘These characteristics, which are the chief propertics that distinguish
ATNs from RTNs, are similarly the main propertics that distinguish augmented phrase structure rules from

context frec phrase structure rules.

In (2b) of the algorithm, special OUTPUT segment types are mentioned. Currently, Paul has three such
scgment types. The first one, also appearing in the original NLP report, is the sharp sign "#". This is used in
rules to represent a space in the output. Recall that the NLP system ignores spaces, linefeeds, and returns in
its input. If thc user wants to have a space inserted into the output strcam, she cannot simply put a space in
the appropriate place in the rule; it will be ignored. Instead, she should put a # there. When this symbol is
popped off the control stack by Paul, section (2b) of the generation algorithm applics, and a blank is inserted
into the output stream. Similarly, if the user wants a lincfeed in her text (if she wants to start on a new line, for
instance), she again nceds a special output segment type, ILINE. This will insert a linefeed into the output
when encountered. Finally, the special output segment type NULL inserts a NULL string into the output.
This is used for rules for "zeroing out” some item, that is, replacing some nonterminal symbol (a scgment type

and its associated record) with nothing,
4.11. The Generation Paradigm

Itis important to distinguish the generation algorithm from the generation paradigm. The former is the
control mechanism behind the selection of the rules, and as such, is an integral part of NLP. But NLP is only
a programming language, and as with all programming languages, it can be uscd in many different ways to
perform many different tasks. While an understanding of the language of NLP and the control mechanism
that drives it is important, it is not a goal onto itself, but a means for seeing how the language is used. The
generation paradigm, on the other hand, is the theoretical base from which Paul converts conceptual

representations into surface language.

Paul uses augmented phrase structure grammar to construct a syntactic tree in a strict left-right top

down fashion. Perhaps the best way to proceed is to present an example, then discuss the various aspects of

the paradigm.

LR IR R

- . N - . - L)
A I AN A A A S T A..~.‘.'._ .
! atatlalatlattaralata atatatslalalala

A o2’ e e

.
e

A
OO D N S

69

COVER ATTR; "o

NUMB (SING PLUR);

PERS (PERS1 PERS2 PERS3);
TENSE (PAST PRESENT FUTURE);
DET (DEF INDEF DEM POSSESS);
ENDING (ED ING)[]

Figure 4-6: Cover Attributes for Example

<
RECORDS ;
{vocabulary records)
BUY1 ('ACQUIRE',WORD:='BUY'); ol .““
JOHN ('BOY',GENDER:='MALE',PROPER); =¥
KITE ('TOY'); SR
TOY ('THING'); L
THING (GENDER:='NEUTER');
BOY ('HUMAN'); REKRANR
BUY (PAST:='BOUGHT'); ry

{sentence records)

Al ('BUY1' ,AGNT:='A2' AFF:='A3');
A2 ("JOHN');
A3 (KITE)[]

Figure 4-7: NLP Records for Example “o ":

Figures 4-6 through 4-8 contain a small NLP program to generate the sentence "John buys a kite.” One
thing that we notice right away about the rules of Figure 4-8 is that they are recursive. That is, some rules ‘o

replace scgment types with the same segment types. For instance, rule {5},
VP(tNUMB) --> VP(SING);

replaces a VP (verb phrasc) with a VP. The thing that prevents this rule from endlessly looping is the fact that

it is augmented with both condition and creation specifications. It is not allowed to apply to any record that

has a VP scgment type. The record must also not have a non-NIL valuc for cither of the attributes that are
members of the NUMB cover attribute (SING and PLUR). If this is true, then a new record is created and

associated with the VP segment type. This new record, in addition to having all the attributes of the triggering
record (recall that when a scgment type on the creation side is the same as the scgment type from the -9

condition side, an automatic copy is performed), has the additional attribute of SING with the value T.

70

RULES FOR ENCODING;

{SENT 1is Sentence}
{1} SENT --c-vcoc--ococcono- > NP(XAGNT(SENT))
VP(X%SENT,
NUMB : =NUMB(AGNT),
-AGNT) . ;

{NP is Noun Phrase}
{2} NP(+DET,+S$['PROPER']) --> NP(INDEF);

{3} NP(DET,tDETR) ----v----- > DETR(%NP) NP(DETR); :
{4} NP ==--ccc-cmcmcmce—ono > NOUN(XNP); -
- @

{VP is Verb Phrase} o
{6} VP(tNUMB) --=-=--==c--=-- > VP(SING);
{6} VP(tPERS) =--======~--=-- > VP(PERS3);
{7} VP(*TENSE) =-=====---=-- > VP(PRESENT); e
{8) VP(AFF) =--=-=cc-coccmcow~ > VP(-AFF) R

NP(XAFF(VP)); .0

{AFF 1s for the AFFECTED case role} :

{9) VP --=s-emcmmmmocoeconno > VERB(%VP);

{DETR 1s Determiner}

{10} DETR(INDEF,PLUR) =------- > NULL; -
{11} DETR(INDEF) ---=-=------ > WORD('A'); ~RTT
{12} DETR(DEF) ~-=---=-=-nn=-- > WORD('THE'); Ry
{13} NOUN =--m-ooooocceoeeen- > NOUNP(XNOUN); R
{14} VERB =-=-==c-eceemcecmnan > VERBP(XVERB,SUP:=NORD(SUP)); fjrfff:

o {NOUNP is Noun Part} "

- - {16} NOUNP(PLUR) ========n==-= > WORD(XNOUNP) S;

- {16} NOUNP ------mcmceeamanne > WORD(XNOUNP);

= {VERBP 1s Verb Part) o

> {17} VERBP(PLUR|PERS2) =------ > WORD(XVERBP); - T

5 (18} VERBP(PERS1) =----===---- > WORD(XVERBP); L

g {19} VERBP ~-----e-ceccccmeaa- > WORD(XVERBP) §;

2 {20} WORD('NULL') =---===e=-- > NULL; RO
{21} WORD(E(SUP),*ENDING) ---> # OUTPUT(%WORD) E; o

{22} WORD =-=-----ccommoooaee- > # OUTPUT(%WORD)[]

Figure 4-8: NLP Rules for Example

T T T e e T R L — T 3 ——— p——— T Ty

7 e

‘Therefore, Rule {5} is not truly recursive. In fact, nonce of the rules of Figure 4-8 arc, nor arc they in Paul (as

can be scen in Appendix V).

That is not to say that augmented phrasc structure rules can't be recursive. Consider the following rule.
SENT --> I # AM # VERY # LONG # SENT;

If this were the first rule of scgment type SENT and a record of scgment type SENT cver entered the stack, : ;
this rule would be executed without cver halting, resulting in the output, / AM VERY ILONG I AM VERY .8 : .
LONG I AM VERY LONG I AM VERY... Itis only because the rules of Paul are carcfully defined that such B o

types of recursion, and subtler versions where the recursion loops through several rules, are avoided.?

h Figure 4-9 is a trace of the stack and rules that would be used in running this program. The stack is ’ ® B
) intialized with the segment type SENT and the associated record Al. Al is the deep case structure for the .
sentence, and contains all the scmantic information nceded for gencration. Figure 4-10 shows the contents

L_ (plists) of the records that would be created.

9As a consequence of this restriction, certain left-branching sentences cannot be generated by Paul. An example of such a sentence is
"John's cousin’s fricnd's brother's ncighbor knows Manin Minsky.”

T P DI I UL DI I I
.t e -, B ST SR - . PR o P R L T

RSO IR N e AL SR Nk A Sl T T S T L
A e R e e D e

T
s r

N RULE OUTPUT STACK
g ((SENT A1)
1 ((NP A2) (VP *1*) ()
4 ((NOUN A2) (VP *1*)) (\))
5 13 ((NOUNP A2) (VP *1*) (.))
X 16 ((WORD A2) (VP *1*)(.))
.‘ 2 ((#) (OUTPUT A2) (VP *1*)())
. # ((OUTPUT A2) (VP *1%)())
: JOHN ((VP*1%)())
: 5 (VP *2%) ()]
6 (VP *3%)() M
5 7 (VP *4*%) ()] .
7 8 (VP *5*) (NP A3) ()) o |
9 ((VERB *5*) (NP A3)(.))]
- 14 ((VERBP *6*) (NP A3) (.))
19 ((WORD *6*) (S) (NP A3) ()
2 ((#)(OUTPUT *6*) (S) (NP A3) () - :
((OUTPUT *6*)(S) (NP A3) (.)) "o |
BUY ((S) (NP A3) () : ‘
S ((NPA3)()) : ‘
2 ((NP*7*) ()
3 ((DETR *8*) (NP *9*)(.))
11 ((WORD *10*%) (NP *9%) (.)) 1
p2) ((#)(OUTPUT *10*) (NP *9*) () -9
((OUTPUT *10*) (NP *9*)(.))]
A ((NP*9%)(.)) O
4 ((NOUN *9%)(.)) T
13 ((NOUNP *9*) (.)) S
16 ((WORD *9%) ()) -—-.--—-4
2 ((#) (OUTPUT *9%)())) - 1
((OUTPUT *9*)(.)
KITE (@)
Figure 4-9: Trace of Control Stack for Example P
: ‘: :t . .;1
®

..........

'''''''''''''''''
o -

rFrrerowv
4z

............................

13

1 (SUP BUY1 AFF A3)
*2¢ (SUP BUY1 AFF A3 SING T)

e3¢ (SUP BUY1 AFF A3 SING T PERS3 T)

4 (SUP BUY1 AFF A3 SING T PERS3 T PRESENT T)
6 (SUP BUY1 SING T PERS3 T PRESENT T)

6 (SUP BUY SING T PERS3 T PRESENT T)

*7¢ (SUP KITE INDEF T)

8 (SUP KITE INDEF T)

g (SUP KITE INDEF T DETR T)

10 (SUP A)

Figure 4-10: Created Records for Example Sentence

These rules can be thought of as building a tree from the top down to achieve the proper syntactic

surface structure. Figure 4-11 shows the tree for our example sentence.

Because the gencrated tree has records containing additional information associated with the
appropriate nodes, augmented phrase structure rule systems are able to achieve indelibiliry [32, 34]. That is,
once a decision has been made and a node is incorporated into the tree, it cannot be taken back. When a
dcecision point is arrived at and not enough information is available at the time to choose the proper path, one
of two approaches is commonly taken. The first is to arbitrarily choose onc path over the others and proceed.
If this decision proves later on to be wrong, the steps taken since then are retraced to that decision point, and
another path is sclected. This is known as backtracking. The other alternative is to cxplore a/l the paths
simultancously, abandoning only those which prove to be dead ends, until finally one is discovered as the true
way. An indelible system is onc that avoids both backtracking and parallel expansion by insuring that all the

necessary information is availablc at the time the decision has to be made.

Computationally, an indclible system is to be preferred. In memory considerations, an indelible system
is obviously more efficient than one that runs choices in parallel because competing paths do not have to be
maintained until the correct one is found. Indelible systems are also superior to backtracking systems in this
respect. Backtracking systems typically need to remember decision points and the options available at each
onc. Furthermore, they need to remember the sfate they were in at cach decision point, and must undo all
actions after the decision point when backtracking. The solutions to these problems require both memory and

computational time, while indclible systems avoid the problems altogether,

There are two chief reasons why Pau/ is able to maintain indelibility. The first is that its augmented
phrase structurc rules gencrate trees augmented with records associated with cach node. These records

contain important semantic information that can be used during the decision process. Furthermore, since

'
1
WSS DTN

ettt N
. .- .l K . ..
M Caatpias

Loy

14

(SENT A1) . -1
.
(NP A2) (VP *1%) (.) S
(NOUN A2) (VP *2%)

(NOUNP A2) (VP *3%) B
: - 4
(WORD A2) (VP *a*) f ‘NJ
‘.
(#) (OUTPUT A2) (VP *5%) (NP A3) L
JOHN (VERB *5%) (NP *7%) e 2
o]

(VERBP *6%) (DETR *8*) (NP *9*)

(WORD *6%) () (WORD *10*) (NOUN *9°)

(#) (OUTPUT *6%*) S (#) (OUTPUT *10*) (NOUNP *9e)

BUY ” A (WORD *9¢)

(#) (OUTPUT +9°)

KITE ORI

- Figure 4-11: The Generated Tree

Paul is an utterance realization system, most of the difficult decisions are not of issue here. Paul does not have

to try to find a tree structure that will fit a given sentence, as do parsing systems, nor docs it have to attempt

the selection and ordering of scntences to convey a desired message, as do utterance planning systems, and

o thesc are where the difficult decisions tend to lie,

Additionally, Paul cxhibits the constraint of locality {32, 34]. Each dccision can only make reference to

information which is local to it. The system is not allowed to scarch through the cxisting tree for desired

bR ..

15

information. Relevant information must be cxplicitly passed on through local variables. A distinction between
the use of locality here and its use in the MUMBLE system [32] is that in MUMBLLE, physical locality was
uscd, whercas in Paul, conceptual locality is uscd. Rather than using a node’s position in a tree to determine
what information is local to it, Paul uscs the records associated with the tree nodes. ‘These records contain the
information local to their nodes. Nodes that represent more general structures have a wider scope of locality.
For instance, the root node (representing the entire sentence) has all the semantic information known about
the sentence local to it. As an example, assumc we wanted to have a rule for sentences starting with
subordinate clauses such that if the subject of the subordinate clause is the same as that for the main clause,

the clement should be pronominalized in the subordinate clause,
Because hg doesn't 1ike dogs, Bi11 kicked Carol's puppy.

Because MUMBLE depends on physical locality, it could not perform this rule unless it was explicitly
stated to do so in the message. At the time the first reference to Bill is to be made in the subordinate clause,
only those items that arc physically located ncar this node in the tree are accessible. The subject of the main
clause is not, and the decision whether to pronominalize based on this rule cannot be made. The only way
MUMBLE could perform this task would be if the message cxplicitly stated that the subject of the
subordinate clausc were available for pronominalization. This would mean that the decision were no longer in

the utterance rcalization stage, but forced upon the utterance planning stage,

Paul, on the other hand, uses conceptual locality. Before the tree is split up into the subordinate clause
and the main clause, all the information that is local to the abstract node representing the sentence is
available. This is true because the record representing the entire semantic information for the sentence
alrcady exists and is associated with this sentence node. (This would also be true with MUMBLE's message if
it weren't processed strictly sequentially.) Therefore, it is an casy matter to check the element that will become
the subject of the subordinate clause and compare it with that of the main clause. If they are the same, the
subordinate clause can be marked to pronominalize its subject, and the desired sentence will be generated.

Thus Paulis able to kecp the decision within the realin of utterance realization.

The fact that Paul has semantic records associated with each of its nodes as it builds the tree allows the
system to avoid the necessity for the constraint-precedes stipulation that is required for MUMBLE. The
constraint-precedes stipulation dictates that the cnumeration order of a sentence must be such that any
clement that causcs constraints on other elements must be realized first. Paul doesn’t require this because the
information that such constraints cxist is conceptually local to the node at the levei where the decision has to

be made. Thus, the concept of indclibility is maintained without adding the burden of the constraint-precedes

stipulation.

. . . S e K X
R TN L T e e e T T e T e e et T
P | L. TP TRy Al bt ol el ok PR TRV SREPYRIY Y0 S

EAE R P L R

) 76

By following the constraints of indelibility and locality, Paul also has the feature of running in bounded
time between cach output token. The number of operations required on a record before it is realized by
surface output is fixed, and bears no relationship to the final length of the output sentence. In our above . o

cxample, cach rule can be applied only once to a record or its direct descendants. No looping occurs because

P
o

the rules were carefully defined to avoid recursion. Therefore, there is a maximum of 22 rules that can be

L.
)

- applied to any given record before it is realized into surface output. This time bound, which is stronger than a 5

B
{
]
A

lincar time constraint,'° reflects the intuition that the generation process should proceed at a constant rate,

In summary, the generation paradigm for Paul is a bounded time, left-right, top down gencrator using

an augmented phrasce structure grammar. A surface structure tree is created of syntactic nodes with associated ' 'A" 4

: records. These records provide conceptually Jocal semantic information, and allow the process to be indelible -0
X without the constraint of the constraint-precedes stipulation. This allows the process to proceed with a]
. bounded number of opcerations between cach entry into the output stream that is independent of the length of :.{' e ;lg

the final sentence.

-
.
e
"'v
e A‘.

s

..
v

l_ . T _ y
‘. ,-_‘.‘ ..'..'4
- - '_ h .'_. J
e R
)
)

9
=X
> L |

- 1 B
°1hc lincar time constraint states that the entire sentence must be processed within a time propontional to the lenpth of the sentence. . "-1
J Other than this. there is no restriction to the amount of time spent between the output of cach token. The duTerence beiween linear time . |
and bounded time between cach token is most evident on stiuctures like left-branching sentences The lincar time system would have a e C]
::-. long period outputting nothing. and then it would output the entire left-branching structure at once. The bounded time system would A J
- output each token at a relatively sicady rate. e
D- -.' ‘- ‘
‘_' LN .- ..‘_V 1

i Lt .]

.-, : I

3)]
J..‘ A '-:...- -. - _-.. --_ L S .: -.': : .-~ o . AP

SRR K AN Sk" s T, DR T I I SIS R oo

PR AL DA R PSR, Y O PR AT WA s N A A A P P P S PR

adih St It T A It e Ciui Tt i S B A A A Al Al et AES T T T T T T, A\ i S

n

5. An Example

To help make the ideas discussed so far more concrete, an example is provided. The following is an
actual example of text generated by Paul In order to clearly demonstrate the system’s ability at lexical
substitution, the text to be generated should contain numerous references to various entitics, both animate

and inanimate. Therefore, Paul generates so-called children’s stories, rather than somcthing of more S

i .mediate applicability, such as cxplanation gencration for an cxpert system or business letter generation, as
was the original intention for Epistle. Unfortunatcly, these media generally do not offer the wealth of

references to entities that is desired. Business Ietters typically refer to only the author of the letter, the

ALag ol

recipient, the companics they respectively represent, and possibly some items sold by one or the other

company. Justifications for cxpert systems arc obviously restricted 1o the domain of expertise for the system,]

The explanations basically consist of causal links that form the knowledge of the system. Neither form of text
offers the opportunity to describe several entities in varying manners, the way children’s stories do. Therefore,

the children’s story is the most appropriate form of text for Paul to gencrate in order to demonstrate the full

extent of its capabilitics in lexical substitution. o 1

The example discussed here is one about characters from Walt Kelly's Pogo comic strips. Of the . A»’.;-';
characters mentioned in this example, Pogo is a male possum, Churchy is a male turtle, and Hepzibah is a R -j
female skunk. -®

Figure 5-1 contains the semantic representation for the example story to be generated, in the syntax of

NLP records. After this comes Figure 5-2, showing the cxample story generated by Paul without any lexical

substitution. While the version of the story in Figure 5-2 would be unacceptable as the final product of a text
generator, it is shown here so that the reader can more casily understand the story represented semantically in

Figure 5-1.

Even though this story is without lexical substitution, some simple forms of cohcsion are exhibited. L
Because synonym substitution is not one of Paul’s options for lexical substitution, the system uses synonyms

throughout gencration. This is demonstrated in the first two sentences. Note in Figure 5-1 that while the first

two scntences of the story have the same primitive action as their heads ('like’ in records al and bl), they are f'.f:::l
rcalized by different words, "cares for” in the first sentence, and “likes” in the second sentence. This also
shows that Paul takes advantage of the fact that synonyms exist in all parts of spceech, not just for nouns,
Additionally, when two consecutive sentences have the same primitive action as their heads, the system checks
to sce if any of the thematic roles, agent, affected, recipient, and autribute, arc filled by the same entity. If any

are, the word "too" is appended to the end of the second sentence, as the example demonstrates.

P T . S

. B et e et et . . e « e e e e . .« . . P S
‘..._._\.- e e L e e e e e TN S) R I S T S ,.__,."...'._.....
. . - - - . - . -) - . - . . - . 4 . . . - . . ~, . . - ~ . - -
A L U R T N I TP ST at e T P R I SR I L e IR SR R I e AP L .

W R I R IS Sl T, J A St TR Y S Ul T Wi TV S WP YRS PNy 1P Y. WY PR S R S Y YR WP S R S Bl Sl Sl S ok el S S O

YTy Ty T G ACEE Ar e Ari i M Bt h S S aadere orae e T T R St S e St Juis S SN e dule s st A R I D P et A

p ’ 78

L al (like,exp: = a2’ recip: ="a3" stative);
a2 (‘pogo’);
a3 (Chepzibah’);

bl (like’,exp: ='b2’,recip: ="a3’ stative);
b2 ('churchy’);

cl (‘give’,agnt: ="a2’ aff: =’c2" recip: ='a¥ active,effect: ="c3’),
c2 (rose’);
¢3 (enjoy\',recip: ='a3d’ stative);

dl (want\’,exp: =’ad recip: ='d2’,neg, stative);
d2 (‘rose’,possess: ='b2’);

¢l ('b2’ char: =’jealous’ entity);

f1 Chit\’,agnt: ="b2’,aff: ='a2’,active);

gl (‘give’,agnt: ='b2’,aff: ="g2’ recip: ='a¥’,active);
82 (‘rose’);

' hl ('drop\’.exp: ='h2’ stative);
F h2 ('petal’,partof: ="g2’ plur);

il Cupset\',recip: =’a3’ cause: ="hl’ stative);

j1 Cery\’,agnt: ="a3’,active){]

Figure 5-1: NLP Records for Example Story

POGO CARES FOR HEPZIBAH. CHURCHY LIKES HEPZIBAH, TOO. POGO GIVES
A ROSE TO HEPZIBAH, WHICH PLEASES HEPZIBAH. HEPZIBAH DOES NOT
WANT CHURCHY'S ROSE. CHURCHY IS JEALOUS. CHURCHY HITS POGO. - o
CHURCHY GIVES A ROSE TO HEPZIBAH. PETALS DROP OFF. THIS UPSETS Lo
HEPZIBAH. HEPZIBAH CRIES.

Figure 5-2: Example Story without L.exical Substitution

Figure 5-3 is the story generated with pronoun substitution indiscriminately performed, and Figure 5-4
is the same with superordinate substitution. Just as with Figure 5-2, these versions arc not acceptable text, and
should not be mistaken to be the final output of Pawl. Rather, they arc presented here to dramatize the effects

uncontrolled lexical substitution can have.

POGO LIKES HEPZIBAH. CHURCHY CARES FOR HER, TOO. HE GIVES A ROSE
‘TO HER, WHICH PLEASES HER. SHE DOES NOT WANT HIS ROSE. HE IS
JEALOUS. HE SLLUGS HIM. HE GIVES A ROSE TO HER. PETALS DROP OFF,
THIS UPSETS HER. SHE CRIES.

Figure 5-3: Example Story with Uncontrolled Pronoun Substitution

..........

POGO LIKES HEPZIBAH. CHURCHY CARES FOR THE FEMALE ANIMAL, TOO.
THE POSSUM GIVES A ROSE TO THE SKUNK, WHICH PLEASES THE BLLACK
MAMMAL. THE BLLACK ANIMAL DOES NOT WANT THE REPTILE'S ROSE. THE
TURTLEIS JEALOUS. THE SCALED ANIMAL. PUNCHES THE MALE MAMMAL.,
THE REPTILE GIVES A ROSE TO THE SKUNK. PETALS FALL OFF. THIS
UPSETS THE FEMALE MAMMAL.. THE BLACK ANIMAL WEEPS.

Figure 5-4: Example Story with Uncontrolled Supcrordinate Substitution

For supcrordinate substitution, Paul assumes that its hierarchical database about the characters is
common knowledge. Since this might not be true for all readers in this case, Figure 5-5 gives the pertinent

information.

Once the system has determined that a superordinate substitution is to be made, several tasks must be
accomplished. First of all, the superordinate must be selected for the referent. Paul/ scarches up the
hierarchical chain from the original record, making a list of all the records that are encountered along the way.
For most types of entities, the chain stops with the record THING. However, this is not always the
appropriate place to stop. Often going that far will produce superordinate substitutions that will sound
insulting. For instance, referring to one’s brother as "the boy" is not the same as referring to him as "the
animal” or "the thing." The distinction seems to be that important attributes are lost with the last two, leaving
the reader with the impression that these attributes are not to be found in the brother. The distinguishing
attribute in the Pogo World is intelligence, and it is assumed that all animals in this world are indced
intelligent. Therefore, when going through the hicrarchical chain, Paul will not go past the last attribute that

has or can inherit the intclligence attribute.

After the list of acceptable supcrordinates has been created, onc is sclected randomly. Now Paul checks
this supcrordinatc against the other entities that have been used to date in the text. If none of the other

entitics arc members of this supcrordinate set, or superset [13), the reference is unambiguous as it stands, and

.........

4 .
'tr" 80 °
b
i,
B ANIMAL
{ o
2
o MAMMAL REPTILE
P .
POSSUM SKUNK TURTLE
B POGO HEPZIBAH CHURCHY °
1
r
{
L 1. POGO IS A MALE POSSUM.
L
2. HEPZIBAH IS A FEMALE SKUNK.
p
: 3. CHURCHY IS A MALE TURTLE.
p S
E 4. POSSUMS ARE SMALL, GREY MAMMALS. o
t 5. SKUNKS ARE SMALL, BLACK MAMMALS.
b
E 6. TURTLES ARE SMALL, GREEN REPTILES.)
p 7. MAMMALS AREFURRY ANIMALS. . .
- 8. REPTILES ARE SCALED ANIMALS.
a Figure 5-5: The World in which the Example Story Exists -
ﬁ- .. .
b
E it is gencrated without modification. The first clause in the third sentence of Figure 5-4, THE POSSUM :
g GIVIES A ROSE TO THE SKUNK..., is an example of this. Since this world contains only onc possum, Pogo, .-f'.-:ﬁ -
> and only onc skunk, Hepzibah, these supcrordinates can only refer to them, and Paul has gencrated them R
F with no attempt to further disambiguate them. *
& e
{ However, if it turns out that entities other than the focal point being replaced are members of the ORCh
b rat e
; choscn superset, the substitution must be modified 1o disambiguate the reference. Paul achieves this by
'. sclecting a physical attribute of the cntity to be used as a modifier of the superordinate. The physical .
:". attributes that Paul looks for in the Pogo World are gender, color, size, and skin (furry, scaled. or feathered). _j: - :'.:_j
» - ::::
- ' -

.....................................
...............................

-8

L\

e I

R RN,

~~~~~~

81

Onc of these auributes is randomly selected, and the focal point's inherited value for .. auribute is
generated as an adjective before the superordinate. The second phrase of the third sentence in Figure 5-4,
WWHICH PLEASES THE BLACK MAMAIAL. is an example of this. After MAMMAL has been selected
as a supcrordinate substitution for Hepzibah, the system checked the remaining entitics mentioned in the
discourse so far. These were Pogo, Churchy, and a rose. Of the three, Pogo is a member of the Mammal
superset, so the reference must be made unambiguous. The color attribute is randomly sclected, and
Hepzibah inherits the value black for this attribute. The system then gencrates the modified, and now

unambiguous, noun phrase.

There is a problem, though, in that the attribute sclected may not disambiguate the superordinate, For
instance, what would have happened if, instead of selecting color as the disambiguating attribute, the system
had chosen size? Rather than gencerating THE BLACK MAMMAL, the phrase THE SMALL MAMMAL
would have been produced. Since Pogo is small, he is also a small mammal, and the modifying attribute has
donc nothing to disambiguate the superordinate. Similarly, a choice of skin as the modifying attribute would
have led to the generation of THE FURRY MAMMAL, which is not only still ambiguous, but redundant,
since in this world al/f mammals are furry. Paul avoids this problem by testing the inherited value for the
sclected attribute before gencrating it. If any of the previously mentioned entities that are members of the
superset have the same value, this attribute is rejected, and another one is selected. This insures that the final

result will be an unambiguous superordinate substitution.

Figure 5-6 is the cxample story without any lexical substitution again, but with each sentence’s focus or
expected focus list, obtained through the usc of the Sidner algorithm. Now we are ready to follow Paul in the

generation of this story with lexical substitution.

We start by initializing all the control variables to NIL. Then the first sentence is generated, Because
there are no previously generated references, there can be no focal points, and the sentence Pogo cares for

Hepzibah. is out put. Additionally. the relevant facts about these references are stored, as shown in Figure 5-7.

When the next sentence is generated, the first noun phrase encountered is Churchy. Since this is not a
member of the list of noun phrases mentioned in the text, it is not a focal point, and not subject to lexical
substitution. When the system comes to Hepzibah, however, we do have a focal point, since Hepzibah is a
member of the MENTIONED IN THE TEXT list, and Paul must determine the class of this focal point.
Since Hepzibah is the last female to have been mentioned within an acceptable distance, the focal point is
Class 1. (Note that because Hepzibah was also the focus of the previous sentence. this would also make it a

Class | focal point.) Therefore, a pronoun substitution is required.

13
JP

4

K

4

e y

1

-9

-9

R

.\

y

. @ 4

N

T

B re——re——
@

P PR WA WA Y T




‘P % = ._- o

1. POGO LIKES HEPZIBAH.

expected focus list: “Hepzibah", "Pogo” 'Y
2. CHURCHY LIKES HEPZIBAH, TOO. s
expected focus list: "Hepzibah®, "Churchy” :Ij
3.POGO GIVES A ROSE TO HEPZIBAH, ‘o ]
expected focus list: “a rose”, “Hepzibah”, "Pogo” i
4. WHICH PLEASES HEPZIBAH. L
expected focus list: "Hepzibah", "Pogo gives a rose to Hepzibah" L ;
)
5. HEPZIBAH DOES NOT WANT CHURCHY'S ROSE. . f
' cxpected focus list: "Churchy’s rose”, "Hepziban” i
P e

- 6. CHURCHY IS JEALOUS. -
kF. focus: “"Churchy” ’ o :
7. CHURCHY HITS POGO., SRS
1 expected focus list: “Pogo”, “"Churchy"” Lo I;;:
8. CHURCHY GIVES A ROSE TO HEPZIBAH. S
expected focus list: "a rose”, “"Hepzibah", "Churchy” T m’j

9. PETALS FALL OFF.

focus: "petals”

10. THIS UPSETS HEPZIBAH. -®
cxpected focus list: “Hepzibah", "Petals fall off." T
11. HEPZIBAH CRIES. e
focus: "Hepzibah" ' . -

Figure 5-6: Expected Focus Lists

With the third sentence, we have have three entitics, Pogo, Hepzibah, and a rose, which we will refer to

as rosel. Of these, Pogo and Mepzibah arc focal points. Hepzibah is still the only female mentioned within two

sentences, and is still the focal point of the previous sentence, so it is still a Class I focal point, subject to

pronominalization. Pogo, howevcr, is ncither of these, and is not Class 1. Nor was it the last male mentioned,
so the focal point is not Class I1. Similarly, Pogo fails the criteria for Class 11, leaving us with Class IV. and -

allowing only a definite noun phrase to be generated. In the case of proper nouns, they already are definite

............
e
.

o .
‘e e At et ,4'4'.‘». SR UTS P




A - e — aan; ron o A SN aa e ) ot S e e S madie St e Bt ess Ao Shute Snh Jhu i S STt

83 - .h—j

SENTENCE GENERATED: POGO CARES FOR HEPZIBAH.

- . : E
LAST MALES: POGO NIL LAST FEMALES: HEPZIBAH NIL i
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL BRCEERN
AGENT: POGO AFFECTED: NIL ®
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL
FOCUS: HEPZIBAH : ‘
]
MENTIONED LAST SENTENCE: NIL
MENTIONED THIS SENTENCE: POGO HEPZIBAH
: MENTIONED IN THE TEXT: POGO HEPZIBAH : . ]
Figure 5-7: Control Variables After First Sentence T
3
h SENTENCE GENERATED: CHURCHY LIKES HER, TOO.
LAST MALES: CHURCHY POGO LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL
5 AGENT: CHURCHY AFFECTED: NIL ) 3
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL
FOCUS: I"EPZIBAH W
MENTIONED LAST SENTENCE: POGO HEPZIBAH

MENTIONED THIS SENTENCE: CHURCHY HEPZIBAH

MENTIONED IN THE T¥ ¢YT: POGO HEPZIBAH CHURCHY A 0 .
Figure 5-8: Control Variables After Sccond Sentence

............................
........................
......................................
.............
...............................
...............................




Ay
' .

ety

LAl e

RIS

noun phrascs, so "Pogo” is simply generated.

SENTENCE GENERATED: POGO GIVES A ROSE TO HER,

LAST FEMALES: HEPZIBAH HEPZIBAH
LASTPLURALS: NIL NIL

LAST MALES: POGO CHURCHY
LAST NEUTERS: ROSE1 NIL

AGENT: POGO
RECIPIENT: HEPZIBAH

AFFECTED: ROSE!
ATTRIBUTE: NIL

FOCUS: ROSE!

MENTIONED LAST SENTENCE: CHURCHY HEPZIBAH
MENTIONED THIS SENTENCE: POGO ROSEI HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSEI
Figure 5-9: Control Variables After Third Sentence

The second clause of this sentence (which for our purposes constitutes a distinct sentence) starts with a
relative pronoun. When a record has an effect attribute (such as cl in Figure 5-1) which is itself another clause

(such as ¢3 in Figure 5-1), the sccond clause is generated as a relative clause, and the result is in Figure 5-10.

The details of the next few sentences are similar enough that it would be worth our while to skip
forward a bit to the ninth sentence. The only entity mentioned in this sentcnce is petals, which have not yet
been mentioned in the discourse. However, if we look at record h2 in Figure 5-1, we see that these petals are
part of the rose from sentence 8. Therefore, we are not really referring to a new entity, but rather a part of an
old one. and our generated text should make this clear. We actually do have a focal point, even though the
entity is not on the MENTIONED IN THE TEXT list after the previous sentence. In order to determine if an
entity is a Class V focal point, Paul checks cach member of the MENTIONED IN THE TEXT list. If the item
is a part of onc of the members, we genuinely do have a Class V focal point. If not, then we simply have an
item that is being mentioned for the first time, and it can be treated in the usual fashion. Figure S-11

demonstrates how the Class V focal point was handled in this specific example.

.............................................................................
......................

a
R AL AT JRPE SR I TS T e it St St R Tl S ST Sl ] AP AR

o 3
. - 4
ol ]
o
: .
C e
®

................

s

........




pa bl B A S et P Arh it M At S P A EAOEACRAAMAAERCRA R S i e S A ‘1
85 "o ]
SENTENCE GENERATED: WHICH PLEASES HER. - j
® |
LAST MALES: NIL POGO LAST FEMALES: HEPZIBAH HEPZIBAH e
LAST NEUTERS: NIL ROSEI LAST PLURALS: NIL NIL S
» R 4
AGENT: NIL AFFECTED: NIL * .
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL :
FOCUS: HEPZIBAH ]
[ )
MENTIONED LAST SENTENCE: POGO ROSEI HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH
MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSEI . o
4

Figure 5-10: Control Variablcs After Fourth Sentence

SENTENCE GENERATED: THE PETALS DROP OFF.

LAST MALES: NIL CHURCHY LAST FEMALES: N/L HEPZIBAH

LAST NEUTERS: NIL ROSE3 LAST PLURALS: PETALS NIL

AGENT: PETALS AFFECTED: NIL

RECIPIENT: NIL ATTRIBUTE: NIL
FOCUS: PETALS o

MENTIONED LAST SENTENCE: CHURCHY ROSE3 HEPZIBAH
MENTIONED THIS SENTENCE: PETALS

MENTIONED IN THE TEXT: ST
POGO HEPZIBAH CHURCHY ROSE! ROSE2 ROSE3 PETALS ° ‘

Figure 5-11: Control Variables After Ninth Sentence

.t . v % R ) o T te T . -
e at PRI I R TP et RPN S S, TR N e a8 T p .'.A_L‘_:_-JA_AA_-_._._:_LA_A)~_14.44.4_LAA~4




’ 86 |
o
This should be sutficient to provide the reader with an understanding of how lexical substitution is ?
: controlied in Paul. The "snapshots” of the control variables after cach sentence can be found in Appendix 11. j
ﬂ The final complete text for this story is: Te
& POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER, TOO. POGO GIVES A
ROSE 10 HEER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S ROSE.
HE IS JEALOUS. HE PUNCHES POGO. HE GIVES A ROSE TO HEPZIBAH.
THE PETALS FALL OFF. THIS UPSETS HER. SHE CRIES.
. Appendix 1] contains additional examples of text generated by Paul, -

3 -
" o
- B
S - .
L ) |
- » L
9
9
4

e el L AL e e ate A el e e e e taw m T at 4T at
.............................

.......................

A a e .
ORI, WSS A 'A'l{'l'.'l' e e R e,




87

6. Related Work

While natural language processing has been a subject of investigation for decades, text generation has
only recently enjoyed serious rescarch endcavors [30]. That is not to say that work in text gencration did not
exist before a few years ago. In 1969, Harper and Su reported a system that composed paragraphs in Russian
on topics in the domain of physics [12]. The system was designed to demonstrate the development of the
chosen theme and exhibit cohesion between the generated sentences. All this was achieved with the random

selection of constituents.

The system first randomly chooses a syntactic scntence pattern which has restrictions as to what can
appear in cach of its slots. Then based on those restrictions, words of the proper syntactic categories are
randomly sclected to fill the slots and create a sentence. The weights of clements for future random selections
(both sentence patterns and words) are altcred based on previous sclections. This way, the system favors
constructions that the authors feel reflect development of theme and cohesion between the sentences. The
words for this system are arranged into syntactic classes. Additionally, some semantic information is stored in

that each word entry has pointers to other words that are synonyms, antonyms, and supcrordinatcs.

An important shortcoming of this system is that it has no semantic represcntation of what has been or
should be said. After randomly sclecting a sentence pattern, words are randomly selected and fitted into this
pattern. Cohesion is attempted by weighting random sclections to favor those words and constructions that
seem to provide reference preference, and style isn’t considered at all. While the system’s dictionary is
arranged in a superordinate hierarchy, the semantic information the dictionary contains is very limited and
inadequate. The entries consist of the words themselves, rather than the conceptual actions and objects these
words represent. This approach violates almost all of the six criteria for natural language generation. While it

is an important first step in the field, it is impractical for further development.

The HAM-RPM system [44] is an interesting advance in natural language generation. HAM-RPM was
designed to be a question-answer system about visible scenes. Given an appropriate internal representation of
some sceng, its objects, and their spatial relationships to each other, HAM-RPM will answer questions about
this scenc. For its generation component, the rescarch emphasis was on noun phrase generation, specifically,

the generation of noun phrascs that would not be ambiguous to a human witnessing the scene.

HAM-RPM was designed to give single sentence responses to querics. Therefore, most of the issues of
cohesion generally don’t apply to the problem the system addresses. What cohesion it did express was only for
noun phrascs, and was heavily based on spatial relationships, which is part of exophoric reference. However,

exophoric reference can only be used ir conversational applications, where both parties are present and




88

witnessing the same scenc. In a context such as business letters or medical diagnosis based on test results,
exophoric reference cannot be used, and endophoric reference [11] must be used to achieve cohesion. HAM-
RPM is an interesting system, but it addressed a problem that is significantly different from the problem Paul

attempts to address, and the approach of HAM-RPM is incompatible with Paul.

Since HAM-RPM, Jameson and Wahister have reported the development of HAM-ANS[18], a
dialogue system designed to employ a user model in anaphora generation. The system is a question/answering
system in which the program plays the part of a hotel clerk answering questions about available rooms. In
order to make the responses seem more natural, a capability for anaphora in the form of ellipsis and definite
description has been incorporated into the system. Before an elliptic response is generated, the proposed
answer is passcd back to the system's parser by what is known as an anticipation fecdback loop. If the response
can be unambiguously parsed, it is actually given as output. If, however, the responsc proves to be ambiguous,
a less clliptic response is created and fed to the feedback loop. This way, the system ensures that the user will
not be confused by ambiguous answers. The generation of definite description is based on both the
occurrence of previous references to the object in question, and a desire of the system (in its role as hotel
clerk) to describe the available room to the user (in her role as potential customer) in a manner designed to

maximize the apparent desirability of the room, based on the system’s model of the particular user.

HAM-ANS is once again a strictly conversational language generator. The ellipsis it employs is not one
designed to avoid tedious repetition, as is proposed by the syntactic transformation of Equi NP Delction [1]).
Rather, this ellipsis reflects the natural tendency of people to use incomplete, though acceptable and
unambiguous, sentences. The use of definite description that the system demonstrates also does not have
cohesion as its main goal. The user model gives the system a basis in order to describe hotel rooms in the best
possible light according to a specific user model. Instead of trying to be completely clear and unambiguous,
the system will often use a definite description where one isn’t appropriate or deliberately not use one where
it should be so that the user can be misled without the system actually lying. Of course, this is not a linguistic

phenomenon, but a psychological one that employs language.

CES{26] is another system that attempted some cohesion in generation. CES recognized that text
gencration consists of the two subtasks mentioned above, and the authors chose to concentrate mainly on the
first onc of utterance planning. The system works very hard at determining the minimum that is required to
be said and still be unambiguously clear. This is achicved by giving the system a representation of the context
in which a single sentence is to be generated. While only single sentences are being gencrated. by being in a

context the sentences can exhibit cohesion suitable for that context.

N o .
"IIIIL'L: i IR

P
- S SR

f .
- PRI




. g —— v W e gve Jh W Jeven Bn Jban boub Ben M oven Jwe SNEL See Sems Juan D Sren gn
M . S . e - S e S A R R .

89

Unfortunately, the only cohesive devices that were explored at all were pronominalization and cllipsis.
While context is used to achicve some cohesion, no stylistic considerations arc made. Furthermore, the system

has been only partially implemented.

The GEN system [22] divides text generation into three subtasks. The first is to create the knowledge
structures representing what is to be said. (Katz calls these structures kernel phrase markers.) The sccond is to
determine which linguistic transformations [1] are to be performed on the kernels, based on syntactic and
thematic considerations. The final step, which is the one GEN is designed to perform, is to perform the
transformations specified in the sccond step and translate the transformed kernel phrase markers into the
target natural language. It is assumed that all semantic and pragmatic knowledge is represented as a set of

frames.

Because GEN is heavily based on the syntactic aspects of transformational grammar, it exhibits all the
limitations of this approach to linguistics. Transformational grammar is designed to take as input a syntactic
tree, representing the deep structure of a sentence, to perform syntactic transformations on this tree, and
translate the transformed tree into a surface sentence. This is exactly the approach GEN takes. Therefore,
little semantic knowledge is incorporated. Cohesion is shown only through the use of pronouns, and only one

«slle of pronominalization is employed.

Another system based on transformational grammar is the transformational generator described in [2].
Designed to generate examples of good English as an aid in teaching the deaf and learners of English as a
second language, the generator is divided into three parts. First, a set of context free rules, called the base
component, creates a tree structure. A transformer then applies transformational rules to the trees to derive a
surface tree. A multilevel control mechanism helps constrain the tasks of the other two components. A
dictionary and semantic network prevent the generation of syntactically correct but semantically meaningless

sentences, such as "Colorless green ideas slecp furiously.”

As with GEN, the transformational gencrator has scvere limitations in semantic applications. The
cmpbhasis on this work is in generating grammatically correct English sentences, and the scmantic meaning
behind those sentences is completely ignored. Furthermore, isolated scntences are once again being
generated, so the problems of cohesion and style, which are more important for multisentential wext, have not

been addressed.

The XPLAIN system [43] proposed a solution to a significant problent to text generation as it is applied
to expert systems. It has long been recognized that expert systems must be able to explain their conclusions

and how these conclusions were derived. However, XPLAIN rcalized that in addition, cxpert systems need o

N R

.
IR B S NG I N

°
- 1
.
R
- --.‘ ..' "
-

PSP R WD

o
)‘.JA -t A

lia Ll




L gt a4
LI VI

T

28 + SSGNS MO

%0

justify their methods for arriving at their conclusions, rather than merely giving these methods as an
explanation. This was achieved by having the system generate its own rules and then applying those rules to
specific cascs. In essence, in addition to knowing what to do in a given siation, XPLAIN knows why it
should be done.

Swartout states that the focus of XPLAIN is in utterance planning basced on the information the system
has behind its rule base creation, although some cohesive devices are used in the system. Relative clauses can
be created to describe causal chains. However, these devices are used only in specific circumstances in a very
ad hoc manner. Style is addressed to some extent in that the system is ablc to generate cxplanations at
different levels of complexity. But this is done strictly by first gencrating different knowledge structures at
different levels of complexity. Once the structures are created, no further consideration is given to the impact

of vocabulary selection on style,

KDS [28, 29] is a recent system that proposes a new paradigm for natural language generation. This
approach, called the fragment-and-composc paradigm, takes a semantic data structure, fragments it into little
pieces, cach of which could represent a simple sentence, and composes full sentences and paragraphs from
these pieces. The system selects from all the myriad ways of expressing a concept by creating each of the
possible abstract representations (which the authors call protosentences), and evaluating each onc. Eventually,
a final sct of protosentences is created and fed 1o a generator. The generator produces scatences one at a titme
with very little consideration of the previously produced sentences.

Obviously, the center of rescarch for KDS is utteiance planning, and once again the authors admit little
work in utterance realization. Some cohcesion is achieved through pronouns and incomplete descriptions, but
the possibilitics have not been fully explored. While one of the modules of KDS is responsible for sclecuny a
text presentation style and organizing the fragmented pieces into a text content consistent with the sclected

style, no consideration is given to style during the actual generation.

One system that addressed the problems of utterance realization is the MUMBLE system [32, 34].
MUMBLE again divides the natural language task into two scparate subtasks, An expert program, known as
the speaker, performs the subtask of utterance planning by creating messages represcnting what necds to be
said, and the generator, consisting of a dictionary and a linguistic compo - 1, turns these sentences into surface
English. The representation of these messages should be determined by the speaker, nor the linguistic
componcent. The linguistic component should he able to accept and process messages in the represcntation
that is most natural for the domain of the spcaker, rather than dictating an arbitrary representation for all
speakers in all domains. The dictionary is the component that contains the knowledge for translating the

domain spcecific representation into English, and therefore cach representation must have its own compiled

Lo - - . e e .
ERNEE

SANER RO

-
Sttt St . ta
PRI W % & O AW, PR

PRSAN
oAt
s

T s AP Bhte Seas Aons 3 ~ T—— . " - AR Jiniis mauts Secth anedh Se iR e an - - WP ——y

. T
i N e d

EAR P
S




s .

Ty vy
PN

1“—

e Pt O O [ T T B A @ B Boa 2 o ooy s

91

dictionary. ‘This scheme allows the gencrator to be driven by the goals of the speaker, rather than by the
structure of the grammar. The speaker is able to state explicit goals (such as cmphasizing a specific point or
contrasting two items) in its messages, and the linguistic component is driven to achieve these goals.
Additionally, MUMBLE cxhibits scveral constraints included to provide both cfficiency in gencration and a
theory that was grounded on psycholinguistically plausible hypotheses. These constraints include indelibility,

locality, and running in bounded time, as they have been discussed in Chapter 4.

The chief emphasis of MUMBLE was the idea of driving the linguistic component by the explicitly
stated goals of the expert system speaker. Cohcsive devices were used as one of the means for achieving these
goals, but they were not the central issue of the work. Nor were they used to specifically perform the two
major tasks of cohesive devices, the avoidance of boring redundancy and the distinction of new information
from old. Furthcrmore, no theory was offered to provide control over the use of cohesive devices such as

lexical substitution.

The differences between MUMBLE and Paul concerning their uses of computational constraints have
alrcady been discussed in Chapter 4. To bricfly recap, by using an augmented phrase rule gramiar, Paul is
able to maintain the constraints of indeclibility and locality. Furthermore, the notion of locality has been
cxtended to define locality as conceptual instead of physical. This, with the proper use of augmented phrase
structure rules, frees Paul from some of the limitations exhibited in MUMBLE, such as the constraint-

precedes stipulation,

A recent system that made significant progress towards fulfilling the six criteria for natural language
generation is TEXT [35]. In this work, the language generation process is again divided into the utterance
planning and the utterance realization tasks. TEXT addresses the problems of what to say and how to
organize it cffectively, using the principles of discourse structure, discourse coherency, and relevancy criteria.
The system was developed to respond to data base querics. Once a question is reccived, a relevant knowledge
pool is constructed. This is a subsct of the data base and contains alt the information that can be included in
the response. Next a schema is selected, based on the type of question and the information in the relevant
knowledge pool. The schema dictates the structure of the response, and is used to detenmine the ‘order in
which the sentences are to be generated. Finally, focus is used to obtain an overall coherency in the generated

text.

A significant difference between TEXT and Paud is their use of foct .. TEXT uses focus for coherency in
text, making the text scem to have a logical flow in it. Paul uses focus with other factors to achieve
cohesiveness in the text, making the sentences of the text to be interconnected and part of a larger unit.

Furthermore, the emphasis on TEXT" is again in utterance planning and the problems of that realm. Cohesive

TR AT S B

R

. 1

SRR

]

PRI
®

1

9

. <

B

. 4

.o |

P ———

L

e
AR
R
.

RN




TN CRNECIu et Seee R shanC auser JM Sens S inciui S-S Jnas Jhae — T T M S -Shhn e St ~Shien e gaa. hius Shancies Jant tmn meanc]

L AT eT T T

92

devices such as lexical substitution are uscd to achicve the goals of the specific schema and the general ones of
controlling focus. The utterance realization aspects of cohesion, of avoiding redundancy and marking of new

information through the controlled use of lexical substitution, are not discussed.

In conclusion, none of the above systems addresses all six of the criteria necessary for good natural

language generation. This is true because for the most part these systems have focused on utterance planning

rather than on utterance realization and the problems associated with this task. In particular, nonc of these
systems address the problem of cohcesion in a methodical manner. As we have seen, Paul is a system that

specifically addresses the utterance realization problem of cohesion by presenting an orderly approach to

lexical substitution. S
- ]
L ]
- X
. {
i
o

P S e S~
. 'p'-.".'..'-.'.'. -~ - .‘\'.“- "o et e e T e e N
atartalaltal sl el aAns il as.a’ PSRN S S . Y A




Cabih ciiE SR amns sres e ot v I ZR A S PR e i v LIl A Il Sud G BA e Sua S S Srus s o o

7. Conclusions

7.1. Contributions of Paul .

Paul is onc of the few text gencration systems designed specifically to address issues of utterance

rcalization, As such, scveral advances in the ficld were made with this work. ST

1. This is the first system to perform a full range of lexical substitutions. No other existing system Sl
offers synonymous substitution. superordinate substitution, pronominalization, and definite noun . )
phrascs. This was achieved by identifying the minimal features of the elements, and determining
the least amount of information required to gencrate unambiguous references.

2. Paul is the first system that offers a theory for controlling the sclection of lexical substitutions.
This theory identifies five classes of potential antecedence, and associates a strength of
anteccdence recovery with cach type of lexical substitution. Paul is capable of determining the [
potential antecedence class for cach clement in the discourse, and selecting the appropriate lexical
substitution based on this class.

3. Paul is able to usc these lexical substitutions to gencrate cohesive text. Specifically, Paul avoids
unnccessary repetition and marks old information from ncw hy the judicious application of lexical ‘ °
substitutions. These functions arc required before a passage can be recognized as text,

4. Paul uses augmented phrase structure rules to achieve indelibility in generation. By associating
records of semantic information with cach node in the syntactic structurc trec as it is being
created, decisions can be confidently made that would otherwise require backtracking or ]
expansion in parallel. . e

5. Augmented phrase structure rules are also used in Paul to fulfill the constraint of conceptual
locality. In order to avoid scarches throughout the entire syntactic structure tree (which might not
completely exist at the time of the search), the locality constraint dictates that a decision at a node

F can only use information local to that node. But rather than defining local information as that o
# physically near in the trce. Paul defines local information conceptually, through the use of the '

b semantic records associated with each node. This way, locality is achieved without further

-2 constraints.

6. Paul is able to run in bounded time. There arc a fixed number of steps that will be taken before
the next word is gencrated. This was achieved because Paul is indclible and follows the locality [ )
constraint, while avoiding recursive rules through careful application of condition and creation
specifications.

7.2, Limitations of Paul
No program can do cverything, and Paul is certainly no exception to this rule. There are several .
limitations exhibited in Paul

1. Paul performs utterance realization only. It is completely incapable of performing utterance L
planning tasks. The system takes semantic records of what to say as input. Currently these records -
have to be created by hand. ®

PSRN .o P L.t P e e e
PSRRI TN W PN PN DY dadaldala s st ar gty o




2. Of the many cohesive devices discussed in this report, Paw/ only performs those of lexical
substitution. Ellipsis, conjunction, reference and substitution are beyond the ken of this system,

3. Paul assumes an endophoric context when sclecting cohesi /e devices. The system cannot correctly
gencrate exophoric references. It cannot talk about its world.

4. The system does not have a user modecl of the reader's knowledge and beliefs. Paul currently
assumes that the user kiiows what it knows, that the facts in its data basc arc common knowledge.

7.3. Future Research

1. Onc important issue not addressed in Paul is the question of style, Especially when the
applications of text generators move toward more scrious fields, such as cxpert systems
explanations and justifications, and busincss correspondence, it will be necessary to be able to vary
the style and mood of the text being generated. As we have scen with general nouns, lexical
substitution can have a very great impact on the style, and maintaining a specific style will add
uncxplored constraints on the lexical substitution selection process.

2. As we have stated above, the theory used for controlling lexical substitution in Puul has been
applied only to lexical substitution. It remains to be seen if this theory can be extended to control
the sclection of other cohesive devices. and whether a general theory can be found to control all
cohesive devices. This extension would hopefully include exophoric reference. This would require
the program having a sensc of the "world” it "exists” in.

3. Paul only generates texts of single paragraph size, and the cohesive devices discussed apply to
binding sentences together within that paragraph. The issues of multi-paragraph text generation
remain to be rescarched. Are the cohesive devices that tie sentences together be used to associate
paragraphs? Are there other cohesive devices that are used only to bind paragraphs? Do
paragraphs have an ordered surface structure, the way sentences have? These questions remain to
be answered.

In conclusion, the field of text gencration, and especially the branch dealing with utterance realization,
is rich with intercsting topics to explore. With the growing necessity for expert systems to be able to explain
themselves, and the increasing demand for programs with human factor considerations, the need for good text

generators is onc of the most dynamically expanding ficlds of artificial intelligence.




COHESION IN COMPUTER TEXT GENERATION: LEXICAL
SUBSTITUTION(U) HHSSRCHUSETTS INST OF TECH CRHBRIDGE
LAB FOR COMPUTER SCIENC GRHNVILLE

UNCLASSIFIED MIT/LCS/TR-310 Nepel4- 80 C—

D-A148 990 2/2







"

| FFEEE.
S EEE 4%

|

|o

a
1
2

K EEFFEEER

2l

Om————

s

s
e Men

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Iz

I
l




i ads
. DAY R
CE I Sl AL I f . ' *,"

«1.11.44.1\1.1.1\ e
. - e

;

-

~ i~

P -

I

DI MR

95
APPENDIX [
from Alice’s Adventures in Wonderland by Lewis Carroll

R T v...........-n..........- v w--- Pd _... Ty m, ....... . ...... . . S A / A...... ...... o ... - ....--.-....... u.. " v .,. K ....-n-.c.- K ... ......‘..-.... .-. o Lt W .-h' A I..-_|



...........

T e T
A

B
1y

A

9%

»

ey Y

‘The White Rabbit put on his spectacles. "Where shall 1 begin, please your Majesty?' he asked.
*Begin at the beginning,” the King said, very gravely, "and go on till you come to the cnd: then stop.’

There was a dead silence in the court, whilst the White rabbit read out these verses:

*They told me you had been to her,
And mentioned me to him:

She gave me a good character,
But said [ could not swim.

He sent them word 1 had not gone

{We know it to be true): ST
If she should push the matter on, .
What would become of you? J ®. .

1 gave her onc, they gave him two, e
You gave us three or more; ceeem T

They all returned from him to you, ST
Though they were mine before. ::.“':

If 1 or she should chance to be
Involved in this affair,

He trusts to you to set them free,
Exactly as we were.

My notion was that you had bee..
{Before she had this fit)

An obstacle that came between
Him, and ourselves, and it.

Don’t let him know she liked them best,
For this must ever be

A secret. kept from all the rest,
Between yoursclf and me.’

*That’s the most important picce of evidence we've heard yet,’ said the King, rubbing his hands...




.

Py T——"

n
Appendix 11
Trace of Control Variables for the Example Story




TSRO IA A D N S N SR .l- _I- _I. l_l. PR —— B e A T S Tt A e o ot

e’ a%e ' e e e ' s'ea"atetata"a"s"a w2 2P s DR A

SENTENCE GENERATED: POGO CARES FOR HEPZIBAH.

LLAST MALES: POGO NIL LAST FEMALES: HEPZIBAH NIL
LASTNEUTERS: NIL NIL LAST PLURALS: NIL NIL
AGENT: POGO AFFECTED: NIL

RECIPIENT: HEPZIBAH ATTRIBUTE: NIL

% FOCUS: HEPZIBAH

h MENTIONED LAST SENTENCE: NIL
: MENTIONED THIS SENTENCE: POGO HEPZIBAH
;; MENTIONED IN THE TEXT: POGO HEPZIBAH
E Control Variables After First Sentence
3
; SENTENCE GENERATED: CHURCHY LIKES HER, TOO.
3
LAST MALES: CHURCHY POGO LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL
AGENT: CHURCHY AFFECTED: NIL
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL
FOCUS: HEPZIBAH N

MENTIONED LAST SENTENCE: POGO HEPZIBAH S
MENTIONED THIS SENTENCE: CHURCHY HEPZIBAH o

il

Sad o lae 4

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY
Control Variables After Second Sentence

%

¢
P -

Appendix 11



SENTENCE GENERATED: POGO GIVES A ROSE TO HER,

& LAST MALES: POGO CHURCHY LLAST FEMALES: HEPZIBAH HEPZIBAH
‘- LAST NEUTERS: ROSE!I NIL LAST PLURALS: NIL NiL
-
AGENT: POGO AFFECTED: ROSE!
RECIPIENT: HEPZIBAH ATIRIBUTE: NIL
FOCUS: ROSE!

MENTIONED LAST SENTENCE: CHURCHY HEPZIBAH
MENTIONED THIS SENTENCE: POGO ROSE! HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSEI
Control Variables After Third Sentence

SENTENCE GENERATED: WHICH PLEASES HER.

LAST MALES: NIL POGO LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: NIL ROSE! LAST PLURALS: NIL NIL

AGENT: NIL AFFECTED: NIL
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL

FOCUS: HEPZIBAH

MENTIONED LAST SENTENCE: POGO ROSE! HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE!
Control Variables After Fourth Sentence

Appendix 11

- )
......




N SRR e g
38

A
by

b
A
"
e
b
b
-
»',.:

P e
TR AT T NN

SENTENCE GENERATED: SHE DOFS NOT WANT CHURCHY'S ROSE.

LAST MALES: CHURCHY NIL LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: ROSE2 NI LAST PLURALS: NIL NIL

AGENT: HEPZIBAH AFFECTED: NIL

RECIPIENT: ROSE2 ATTRIBUTE: NIL

FOCUS: ROSE2

MENTIONED LAST SENTENCE: HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH ROSE2 CHURCHY

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE! ROSE?
Control Variables After Fifth Sentence

SENTENCE GENERATED: HE IS JEALOUS.

LAST MALES: CHURCHY CHURCHY LAST FEMALES: NIL HEPZIBAH

LAST NEUTERS: NIL ROSE2 LAST PLURALS: N/L NIL
AGENT: CHURCHY AFFECTED: NIL
RECIPIENT: NIL ATTRIBUTE: NIL

FOCUS: CHURCHY

MENTIONED LAST SENTENCE: HEPZIBAH ROSE2 CHURCHY
MENTIONED THIS SENTENCE: CHURCHY

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSEI ROSE2
Control Variables After Sixth Sentence

L]
L Nl Py




_. ‘:"‘

”
M)

BN AN

-~ —— L N N SN e eae Syt S DG eAn e Rl o gt g

101

SENTENCE GENERATED: HE PUNCHES POGO.

LAST MALES: POGO CHURCHY LAST FEMALES: NIL NIL
LAST NEUTERS: NIL NIL LAST PLURALS: NIL NIL
AGENT: CHURCHY AFFECTED: POGO
RECIPIENT: NIL ATTRIBUTE: NIL
FOCUS: POGO

MENTIONED LAST SENTENCE: CHURCHY
MENTIONED THIS SENTENCE: CHURCHY POGO

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE! ROSE2
Control Variables After Seventh Sentence

SENTENCE GENERATED: HE GIVES A ROSE TO HEPZIBAH.

LAST MALES: CHURCHY POGO LAST FEMALES: HEPZIBAH NIL
LAST NEUTERS: ROSE3 NIL LASTPLURALS: NIL NIL

AGENT: CHURCHY AFFECTED: ROSE3
RECIPIENT: HEPZIBAH ATTRIBUTE: NIL

FOCUS: ROSE3
MENTIONED LAST SENTENCE: CHURCHY POGO

MENTIONED THIS SENTENCE: CHURCHY ROSE3 HEPZIBAH

MENTIONED IN THE TEXT: POGO HEPZIBAH CHURCHY ROSE! ROSE2 ROSE3
Control Variables After Eighth Scntence

Appendix If

e s S B S Seegh bt
. s e e T Tw wom e




........
.

i 102 . “ _:
SENTENCE GENERATED: THE, PETALS FALL OFF.

i, LLAST MALES: NIL CHURCHY LAST FEMALES: NIl. HEPZIBAH

K LAST NEUTERS: NiL ROSE3 LAST PLURALS: PETALS NIL

N AGENT: PETALS AFFECTED: NIL

I RECIPIENT: NIL ATTRIBUTE: NIL o]
FOCUS: PETALS JJ

! MENTIONED LAST SENTENCE: CHURCHY ROSE3 HEPZIBAH . ¢ ]
MENTIONED THIS SENTENCE: PETALS

8 MENTIONED INTHETEXT: e

. POGO HEPZIBAH CHURCHY ROSEI ROSE2 ROSE3 PETALS

! Control Variables After Ninth Sentence

SENTENCE GENERATED: THIS UPSETS HER.

' LAST MALES: NIL NIL LAST FEMALES: HEPZIBAH NIL

- LAST NEUTERS: N/L NIL LAST PLURALS: N/L PETALS

' AGENT: NIL : AFFECTED: NIL

. RECIPIENT: HEPZIBAH ATTRIBUTE: NIL
FOCUS: HEPZIBAH

»i MENTIONED LAST SENTENCE: PETALS

5 MENTIONED THIS SENTENCE: HEPZIBAH

P-

y MENTIONED IN THE TEXT:

" POGO HEPZIBAH CHURCHY ROSE! ROSE2 ROSE3 PETALS

! Control Variables After Tenth Sentence

.

’i Appendix 11

e L e T A A e T R R R

B e o N O i e e el T z




....................

103
SENTENCE GENERATED: SHE CRIFS.
LAST MALES: NIL NIL LAST FEMALES: HEPZIBAH HEPZIBAH
LAST NEUTERS: NIL NIL LLAST PLURALS: NIL NIL
AGENT: HEPZIBAH AFFECTED: NIL
RECIPIENT: NIL ATTRIBUTE: NIL

FOCUS: HEPZIBAH

MENTIONED LAST SENTENCE: HEPZIBAH
MENTIONED THIS SENTENCE: HEPZIBAH

MENTIONED IN THE TEXT:
POGO HEPZIBAH CHURCHY ROSE! ROSE2 ROSE3 PETALS

Control Variables After Eleventh Sentence

Appendix 11




104

AL S

Appendix II

S R

Additional Eramples of Generated Storics

Y SIE

PR I e I
UL

N NERT LR AN P

VAT B Y BV )

R
o v B

PR




POGO CARES FOR HEPZIBAH. CHURCHY LIKES HER. TOO. POGO GIVES A
ROSE TO HER, WHICH PLEASES HER. SHE DOES NOT WANT CHURCHY'S ROSE.
HE IS JEALOUS. HE PUNCHES POGO. HE GIVES A ROSE TO HEPZIBAH.

THE PETALS DROP OFF. THiS UPSETS HER. SHE CRIES.

CHURCHY LIKES HEPZIBAH. SHE DOES NOT CARE FOR HIM. THIS UPSETS
HIM. HE KISSES HER. SHE WEEPS. THIS ANGERS POGO. HE HITS CHURCHY.

POGO AND CHURCHY GO TO THE STORE. CHURCHY PURCHASES A KITE. HE
GIVES IT'TO POGO. THE POSSUM GIVES I'T TO HEPZIBAH, WHICH PLEASES
HER. SHE KISSES HIM. THIS UPSETS CHURCHY. HE WEEPS.

CHURCHY AND POGO GO TO THE STORE. HEPZIBAH GOES, TOO. POGO BUYS
A KITE. HE GIVES IT TO HER, WHICH PLEASES HER. SHE KISSES HIM.

THIS ANGERS CHURCHY. HE TAKES THE KITE. HE BREAKS IT. THIS UPSETS
HEPZIBAH. SHE CRIES. POGO SLUGS CHURCHY.

Appendix 111




Appendix IV

BNF for NLP




<COMMAND> ::= <LEFT> --> <RIGHT> <END>

CLEFTY> ::= <SEG-TYPE> | <SEG-TYPE> ( <TEST> )
(SEG-TYPE> ::= CIDENTIFIER>
CTEST> ::= CATTR-CONDITION> | CTEST> , CTEST> | <TEST> COR> CTEST> |

( CTEST> ) | * <TEST>

CATTR-CONDITIONY ::= CATTRIBUTE> <PV> | <VALUE> = CVALUED |
! <S-EXPRESSION> | <FUNCTION-CALL) |

<SREFERENCE> | ' <IDENTIFIER> '
CATTRIBUTE> ::= CIDENTIFIER> | @[ <ATTRIBUTE> <PV> ] | @[ <SREFERENCE
CPV> ::= <0> | ( <VALUED> )
CVALUE> ::= ' CIDENTIFIER> ' | <ATTRIBUTE> <PV> | <SREFERENCE>
CRIGHT> ::= <SEG-TYPE> | <SEG-TYPE> ( <CREATION> ) | <RIGHT> <RIGHT>
CCREATION> ::= CATTR-CREATION> | <CREATION> , <CREATION>
CATTR-CREATION> ::= CATTRIBUTE> <PV> | CATTRIBUTE> <PV> := CVALUED |

CSREFERENCE> | % CATTRIBUTE> <PV> |

- CATTRIBUTE> <PV> | ' CIDENTIFIER> * |

CATTRIBUTE> <PV> := <SREFERENCE> |

CATTRIBUTE> <PV> := CFUNCTION-CALL) |

! <S-EXPRESSION>
CSREFERENCED> ::= CSLEFT-PART> $ <SRIGHT-PART>

CSLEFT-PARTD> ::= <0> | <ATTRIBUTE> <PV>
CSRIGHT-PART> ::= <0> | [ <VALUE> ] | [ <VALUE> , <VALUE> ]

CFUNCTION-CALLY ::= CIDENTIFIER> < <PARAMETERS> >

(PARAMETERS)> ::= <VALUE> | <(PARAMETERS> , <VALUE>

CIDENTIFIERD> ::

any LISP atom not containing a <DELIMETER>
<S-EXPRESSION> ::= any legal LISP s-expression

CDELIMETER> ::= | | @ [ # | § | % | + | (

LR Do e
<OR> ::= the vertical bar "|"

¢BLANK> ::= the blank space " "

<0> ::= the empty string, a zeroing out

CRECORD> ::= CRECORD-NAME> ( <CREATION> )

Appendix IV




e e Bk <
Lt LIRS L I

(]

R
a0

(RECORD-NAME> ::= CIDENTIFIER>

r
> - e

Appendix IV

e
RTCIRRRTETIRR: .
. O Ny W ey

RPCNIACT . DN




- DSty g Y Ty T — T T
| NI I IR API R S 2/ WAt A S Jaret 4t SC B it S IO I At - e Y B N B
ooy Te T T s,

109

| Appendix V

NLP Program for Paul




28 TP B B Bads S s g Sin g iy

COVER ATTR;

viorm (main auxil);

main (numb nonfinite pers tense neg);
numb (sing plur);

nonfinite (inf prespart pastpart);
pers (persl pers2 persd);

tense (past present future):

auxil (passive prog perfect);

det (def indef dem possess);

case (common genitive);

common (subjective objective):

roles (agnt aff recip attr dest);
syntaxroles (subject dobject iobject prepobject genitive):
mode (active stative entity):;

ending (ed ing):

sub (relative submark)[]

RULES FOR ENCODING;
{agnt is "agent,” aff is "affected." recip is "recipient,”
and attr is "attribute”)

story(para) --> paragraph(%top<para(story)>) line story(para:=rest<parad);
story --> null;

paragraph(concepts) --> concept(%top<concepts(paragraph)>,
ref:=top<{concepts(paragraph)>) .
paragraph(concepts:=restl{concepts>);
paragraph --> null;

concept(tprocessed) -->
concept(processed,
focus('previous'):=focus('current’'),-focus('current’),
male('previous’'):=
list<male('current’'),top<male(‘'previous’')>>,
-male('current’),
female('previous'):=
list<female('current'),top<female( 'previous')>>,
-female('current’),
neuter('previous'):=
list<neuter('current'),neuter(’'previous’')>>,
-neuter('current'),
plur('previous'):=
1ist<plur('current'),top<plur(’'previous’')>>,
-plur(‘current’),
syntaxroles{'previous’):=syntaxroles( 'current’),
-syntaxroles('current'),
pronoun{‘'previous'):=pronoun(‘'current’'),
-pronoun(‘current’'));

concept(tsub) -->
concept(submark,idea('previous'):=idea('current'),idea( 'current'):=ref);
concept{sup=sup(idea( 'previous')).rolessroles(idea( 'previous')),
neg=neg( idea('previous')),teffect,tmarked) -->

L L S R T

..........

. W
- v . - ..I
- -.' -' .7 .
A e s
- 9
- .- ‘.-. ‘\. N
- R .
e -
- - *
. . "
el e
e
ittt
RINCUEEE .'._-
et
.'.'.‘ .
PR R
-0
. e Tt
- LT s




111

concept(marked) , word('too’');
concept(stative,stative(sup)) -->
clause(%concept,sup:=myrandom<stative(sup(concept))>):
concept(stative) --> clause(%concept,sup:=myrandom{active(sup)>,passive);
concept(entity) --> clause(%concept,'bel’ subject:=sup(concept),
focus('current'):=sup(concept)):
concept --> clause(%concept,sup:=myrandom<active(sup)>,active);

clause(cause,cause=idea('previous')) --> pronoun({sentential) vp(%clause); s
clause(relative) --> , pronoun(relative) vp(%clause); =
clause(subject) --> np(%subject(clause),ref:=subject(clause), A
subject('current'):=ref,subject,subjective)
vp(%clause,numb:=numb({subject),
pers:=pers(subject)):

clause(passive,recip) --> clause(subject:=recip,-recip): .
clause(passive) --> clause(subject:=aff,-aff); - :
clause(stative,cause) --> clause(subject:=cause,-cause); .. @ 1
clause(stative,exp) --> clause(subject:=exp,-exp): . ..
clause(stative) --> clause(subject:=recip,-recip); ST
clause --> clause(subject:=agnt,-agnt);: R
np(tclass) --> np(class:=classify<refd); - 4
np(tremembered,plur) --> np(remembered,plur(’'current’'):=ref); _— 1
np(tremembered) --> np(remembered,@[ref$['gender’']]('current'):=ref); '

np(mode) --> concept(%np.prespart,sub);
np( tmember<ref ,nouns('said')>,tflagged) -->
np(nouns('said'):=cons<ref,nouns('said')>,flagged); ) AP
np(and,greaterp<length<and>,12 >) --> np(%top<and(np)>,remembered) , —ed
np(and:=rest<and(np)>); BN
np(and) --> np(%top<and(np)>,remembered,class:=class(np)) el
word('and’)
np(%bottom<and(np)>, remembered,class:=class(np)):
np(class='I') --> pronoun(%np,pronoun(’'current’'):=ref);
np(class='I1II' ,pronoun('previous’')=ref) -->
pronoun(%np,pronoun( ‘current’):=ref);
np(tdet,t$['proper'],tclass="NONE') --> np(def);
np(tdet.*$['proper’']) --> np(indef);
np(det,tdetr) --> detr(%np) np(detr);
np(class='I1'|class="III',$['intelligent’'],¢+flagged) -->
np(sup:=randomchain<sup{sup),'intelligent'>, def, flagged,subst);
np(class='1I'|class="1I1',tflagged) --> L
np(sup:=randomchain<sup(sup),!nil>, def, flagged,subst); - !
np(subst,ambiguous&superordinate&test{sup,ref>) --> NI
adj(sup:=disambiguate<ref(np),sup(np)>) np(-subst); NI
np --> noun(%np,-flagged,-remembered); T e

vp(aff,tfocus('current')) --> vp(focus('current'):=aff); e
vp(recip,tfocus('current’')) --> vp(focus('current'):=recip); .
vp(agnt,tfocus('current’')) --> vp(focus('current'):=agnt);

vp(exp,tfocus('current')) --> vp(focus('current'):=exp);

vp(subject,tfocus(‘'current')) --> vp(focus('current'):=subject);

vp(tnumb,tnonfinite) --> wvp(sing):

vp(tpers,tnonfinite) --> vp(persld);

vp(ttense,tnonfinite) --> vp(present);

vp(neg,tauxil,*'dol') --> wvp('dol’',-auxil,-roles) vp(-main,inf);




vp(perfect) --> vp('havel’, -auxil,-roles) vp(-main,-perfect,pastpart);
vp(prog) --> vp('bel’',-auxil,-roles) vp(-main,-prog,-prespart):;
vp(passive) --> vp('bel’',-auxil,-roles) vp(-main,-passive,pastpart);
vp(char) --> vp(-char) adj(sup:=char(vp)):
vp(effect) --> wvp(-effect) concept(Xeffect(vp),relative):
vp(agnt,agntprep(sup)) --> vp(-agnt)
pp(Xagnt(vp),ref:=agnt(vp),
prep:=agntprep(sup(vp))):
vp(agnt) --> vp(-agnt) pp(%agnt(vp),ref:=agnt(vp).prep:a'by'):
vp(recip.recipprep(sup)) --> vp(-recip)
pp(%recip(vp),ref:=recip(vp),
prep:=recipprep(sup{vp)),dobject);
vp(recip,active) --> vp(-recip)
pp(%recip(vp),ref:srecip(vp).
prep:='to’,iobject);
vp(recip) --> vp(-recip)
np(%recip(vp),ref:=recip(vp).,
objective,dobject('current’'):=ref);
vp(dest dest=dest(idea('previous'))) --> vp(-dest):
vp(dest) --> vp(-dest)
pp(Xdest(vp).ref:=dest(vp).prep:='to’,dest);
vp(aff) --> vp(-aff)
np(%aff(vp).ref:=aff(vp),objective,
dobject(‘'current’'):=ref);
vp(phrasalprep(sup),tmarked) --> vp(marked)
prep(sup:=phrasalprep(sup(vp))):
vp(neg,.$="'auxiliary’') --> vp(-neg) word('not');
vp --> verb(ivp):

pp(dobject) --> prep(sup:=prep(pp)): .
np(%Xpp.-prep,objective,dobject('current’'):=ref);
pp(iobject) ~--> prep(sup:=prep(pp))
np(%pp.-prep,objective, fobject( 'current'):=ref);
pp --> prep(sup:=prep(pp)) np(Xpp.-prep,objective);

noun{word(sup)) --> nounp{%noun,sup:=word(sup(noun))):
noun --> nounp(%noun);
verb --> verbp(%verb,sup:=word(sup(verb))):
adj(det) --> detr(Xadj) adj(-det):
adj --> word(%adj):
detr(possess,tclass) --> detr(class:=classify<sup>);
detr{possess,class='[') -->
pronoun(sup:=possess(detr),genitive,
genitive('current'):=sup,
@[ sup${'gender']]('current’'):=sup,
pronoun(‘'current'):sref);
detr(possess) --> np(sup:=sup(possess(detr)),ref:=possess(detr),
genitive,genitive( 'current'):=ref)
morpheme(’'possess’);
detr(indef ,plur) --> null;
detr(indef,vowel(sup)|(tconsonant(sup),.vowel<sup>)) --> word('an’');
detr(indef) --> word('a'):
detr(def) --> word('the’');
prep --> word(%prep):

SRS S I Shu St S ie I Sy

g
. .Y
. - - ':1

.9 ]
- .IA .- - .-

N
St
Q..'
.




)

i 2

i

T
. w3 . B
I AP
& o Py e

LA
2

.........

13

pronoun{relative) --> word('which');
pronoun(sentential) --> word('this’);
pronoun{pers2,.common) --> word('you');
pronoun(pers2) =-> word('your');

pronoun(persl,plur,subjective) --> word('we');
pronoun{persl,plur,objective) --> word('us'):
pronoun(persi,plur) -> word('our');
pronoun{persl,subjective) --> word('i');
pronoun(persi,objective} --> word('me’);
pronoun(persl) --> word('my’');

pronoun(plur,subjective) --> word('they’'):;
pronoun(plur,objective) --> word('them');

pronoun(plur) =--> word('their');

pronoun(subjective) --> word(sup:=@[S$['yender']]('subjective’));
pronoun(objective) --> word(sup:=@[$[‘'gender’']]('objective’'));
pronoun --> word(sup:=@[$['gender’']]('genitive’'));

nounp(plur,plur{sup)) --> word(%nounp,sup:=plur(sup));
nounp(plur) --> word(%nounp) s;
nounp --> word(%nounp);

verbp(inf) --> word(%verbp):

verbp(past.plur,pastplur{sup)) --> word(%verbp,sup:=pastplur(sup)):
verbp(past,past(sup)) --> word(%verbp,sup:=past(sup));
verbp(pastpart,pastpart(sup)) --> word(%verbp,sup:=pastpart(sup)):
verbp(past|pastpart) --> word(%verbp,ed) ed;

verbp(prespart) --> word{%verbp,ing) ing:
verbp(plur|pers2,plur(sup)) --> word(%verbp,sup:=plur(sup));
verbp(plur|pers2) =--> word(Xverbp);

verbp(persi,persi(sup)) --> word(%verbp,sup:=persi(sup));
verbp(persl) --> word(%verbp);

verbp(pers3,pers3(sup)) --> word(%verbp,sup:=paers3(sup));
verbp(pers3,es(sup)) --> word(%verbp) es;

verbp --> word(%verbp) s:

word('null') --> null;

word(ending,fincon(sup)) --> # word(-ending)
output(sup:=doublelsup(word)>):

{FINCON and DOUBLE are for doubling the final consonant}

word{e(sup),tending) --> # output(%word) e:

word --> # output(%word);

morpheme('possess’') --> ' s(]

RECORDS ;

{verbs)

anger\ (’'feelbad’,stative:=list{'angerl’'>);
angeri ('anger\’',word:='anger');

bel ('auxiliary',word:='be');

break\ ('destroy'.active:=1ist<'breakl’>);
breakl ('break\’',word:='break);

AR A AR A A e A IR C I Rt Thon UL g S N It TR R SR Rt AT Rt




>
“
-~

T v v~
Te sce, e s
Sl Nt e

<
9t
s d @« ¢

St

§ o
'. -‘...‘. -.. - v - ' . !

PR ".".’.-‘-' T

Sl

buy\ ('acquire',active:s1ist{'purchasel’, 'buyl'>);
buyl (‘'buy\’',word:='buy');

carel ('like',word:='car’,recipprep:=‘'for');

cryl ('cry\',word:='cry’);

cry\ ('selfexpress’,active:=1ist<'cryl’, 'weepl'd);

dot (‘'auxiliary‘',word:='do');

dropl ('drop\’',word:='drop’',phrasalprep:='off’');

drop\ ('tumble’,stative:=1ist<'dropl’,'falll’d);

enjoyl (‘'enjoy\',word:='enjoy'):

enjoy\ ('feel+',active:=1ist{'enjoyl’'>,stative:=1ist<'pleasel’'d);
falll (‘drop\’',word:='fall’', ,phrasalprep:='off’');

give ('transfer'.,active:=list<'givel’'>,stative:=1ist('receivel’);
givel (‘'give’.,word:="'giv');

go\ ('move’,active:=1ist{'gol’'>);

gol ('go\’'.word:='go');

havel ('auxiliary',word:='hav’');

hitl ('hit\',word:='hit');

hit\ ('phys\abuse’',active:=1ist<'hitl’, 'punchl’, 'slugl‘>);
kiss\ ('phys\love',active:=1ist<'kiss1'>);

kissl ('kiss\',word:='kiss');

like ('feel+’' stative:=1ist<'1ikel’', 'carel’'d);

likel ('like',word:='14k");

pleasel ('enjoy\',word:='pleas’);

punchl ('hit\' ,word:='punch');

purchasel ('buy\',word:='purchas’);

receivel ('give' ,word:='receiv’' agntprep:='from');

slugl ("hit\' word:='slug’);

take ('acquire’',active:=1ist<'takel’>);

takel (‘'take',word:='tak’');

upsetl (‘'upset\',word:='upset’);

upset\ ('feelbad’',stative:=list<'upsetl’d);

want\ ('desire\',stative:slist{'want1'> active:=Tist<('lustl’'d);
wantl ('want\',word:='want’');

weepl ('cry\',word:='weep’');

{nouns}

animal ('1iving’,intelligent,animate);

bird ('animal’,skin:='feathered’' ,blood:="'warm’);

boombah ('chicken’,size:='large’',color:='red’',gender:='female’, proper);
chicken ('bird’,color:='brown’,size:='small"’);

churchy ('turtle’,gender:='male’,proper);

hepzibah ('skunk',gender:='female’,proper);

howland ('owl’',gender:='male’,proper):

kite ('toy'):

1iving ('thing’');

mammal ('animal’,skin:='furry’',blood:='warm');

owl ('bird',color:="brown’,size:="small’);

petal ('living’',partof:='rose’'):

place ('thing’);

plant ('1iving'):

pogo ('possum’,gender:='male’,proper);

possum ( ‘'mammal’,color:='grey’',size:='small’);

reptile ('animal’, skin:='scaled’,blood:='cold’);

rose (‘plant’);

skunk ('mammal’,color:='black’',feature:='whitestriped’',size:='small’);




115

store ('place’);

thing (gender:='neuter');

toy ('thing’):

turtle (‘'reptile’,color:='green’', feature:="'hardshelled’',size:="small’');

{morphological entries)

be ('bel’' . past:='was’', pastplur:=‘'were’',persi:='am’',persd:="is’,
plur:s'are’' ,pastpart:='been’');

break (past:='broke’'.pastpart:='broken’');

buy (past:='bought’,pastpart:=‘bought');

car (e);

cry (past:='cried’,pastpart:='cried’',pers3:='cries');

do (past:='did’',pastpart:='did’',pers3:="'does');

drop (fincon);

fall (past:='fell’ pastpart:='fallen’);

giv (e.past:='gave',pastpart:='given’);

go (es,past:='went',pastpart:='gone');

hav (e.,past:='had’',pastpart:='had’',pers3:='has');

hit (past:s'hit’, pastpart:='hit');

kiss (os);

1ik (e):

pleas (eo):

punch (es);

purchas (e);

receiv (e);

slug (fincon);

tak (e,past:="took',pastpart:='taken’);

upset (past:='upset',pastpart:='upset’,fincon);

weep (past:='wept’,pastpart:='wept');

{pronominal knowledge}

subjective ('pronoun’'.male:='he’,female:="'she’,neuter:='it');
objective ('pronoun',female:='her', neuter:='it’' ,male:='him’');
genitive ('pronoun’,neuter:='its',male:='his',female:='her')[]

CLOSE IN[]




ot
K
2

LGN IR A

SRR o ST

116

References

1. Akmajian, Adrian, and Frank W. Heny. An Introduction to the Principles of Transformational Syntax. The
MIT Press, Cambridge, 1975.

2. Bates, Madeline, and Robert Ingria. Controlled Transformational Sentence Generation. Technical Report,
Bolt Beranck and Newman, Inc., and Department of Linguistics, MIT, Cambridge.

3. Charniak, Fugene, Christopher K. Riesbeck, and Drew V. McDermott.
Programming. Lawrence Erlbaum Associates, Inc., Hillsdale, N.J., 1980.

Artificial Intelligence

4. Chomsky, Noam. Syntactic Structures. Mouton & Co., The Hague, 1957.

S. Fhrlich, Kate. Search and Inference Strategies in Pronoun Resolution: An Experimental Study. Technical
Report, Department of Psychology, University of Massachusetts, Amherst.

6. Fillmore, Charles J. The Case for Case. In Universals in Linguistic Theory, Emmon Bach and Robert
T. Harms, Ed., Holt, Rinehart and Winston, Inc., New York, 1968.

7. Fromkin, Victoria, and Robert Rodman. An Introduction to Language. Holt, Rinchart and Winston, Inc.,
New York, 1978.

8. Gordon, Geoffrey. System Simulation. Prentice-Hall, Inc., Englewood Cliffs, N.J,, 1978.

9. Grice, H. P. Logic and Conversation. In Syntax and Semantics: Speech Acts, Volume 3, P. Cole and J. L.
Morgan, Ed., Academic Press, New York, 1975.

10. Grishman, Ralph, and Ngo Thanh Nhan. Resolution of Noun Phrase Anaphora. Technical Report,
Courant Institute of Mathematical Sciences, New York University, New York.

11. Halliday, M. A. K., and Ruquaiya Hasan. Cohesion in English. Longman Group Limited, London, 1976.

12. Harper, Kenneth E.,, and Stanley Y. W, Su. A Directed Random Paragraph Generator. Tech. Rep.
Mcmorandum RM-6053-PR, The Rand Corporation, Santa Monica, Cal., 1969.

13. Heidorn, George E. Natural Language Inputs to a Simulation Programming System. Tech. Rep.
NPS-55HD72101A, Naval Postgraduate School, Monterey, Cal., 1972

14. Heidorn, G. E., K. Jensen, L. A. Miller, R. J. Byrd, and M. S. Chodorow. The Epistle Text-Critiquing
System. 1BM Systems Journal 21, 3 (1982).

’ 15. Hobbs, Jerry R. Cohercnce and Coreference. Tech. Rep. 168, SRI International, August 4, 1978.

16. Hobbs, Jerry R. Why Is Discourse Coherent? Tech. Rep. 176, SRI International, November 30, 1978.

17. Hobbs, Jerry R., and Jane J. Robinson. Why Ask? Tech. Rep. 169, SR1 International, October 6, 1978.

;: 18. Jameson, Anthony and Wolfgang Wahister. User Modelling in Anaphora Generation: Ellipsis and
N Definite Description. Germanisches Seminar der Universitat Hamburg, Hamburg, 1981.

t'.', 19. Jensen, K., R. Ambrosio, R. Granville, M. Kluger, and A. Zwarico. Computer Generation of Topic
'_Zj Paragraphs: Structure and Style. Proccedings of the 19th Annual Meecting of the Association for
" Computational Linguistics, Association for Computational Linguistics, 1981,

)

.

;

-

D

’.‘

e N e T T e e e A L
RN \/ fea f"/;. q_f‘_lj_ TN AL .-"l.r"‘-';-.; el ..":.' e '_ A N N N AN




AT ¥ T .0,

. 3

117

20. Jensen, Karen, and George E. Heidorn. The Fitted Parse: 100% Parsing Capability in a Syntactic
Grammar of English. Tech. Rep. RC 9729 (#42958), IBM Thomas J. Watson Rescarch Center, 1982,

21. Kaplan, Ronald M., and Joan W.Bresnan. Lexical Functional Grammar: A Formal System for
Grammatical Representation. In The Mental Representation of Grammatical Relations, J. W. Bresnan, Ed.,
The MIT Press, Cambridge, to be published.

22. Katz, Boris. A Three-Step Proccdure for Language Generation. Tech. Rep. Artificial Intelligence Memo
No. 599, MIT, Cambridge, 1980.

23. Langacker, Ronald W. Fundamentals of Linguistic Analysis. Harcourt Brace Jovanovich, Inc., New York,
1972

2. Leggett, Glenn, C. David Mead, and William Charvat. Prentice-Hall }Handbook for Writers. Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1965.

25. Lehnert, Wendy G. The Process of Question Answering. Erlbaum Associates, Hillsdale, N.J., 1978.

26. Levin, James A., and Necil M. Goldman. Process Models of Reference in Context. Tech. Rep.
ISI/RR-78-72, Information Scicnces Institute, Marina del Rey, Cal., 1978.

27. Luria, Marc. Dividing Up the Question Answering Process. Proccedings of the National Conference on
Artificial Intelligence, National Conference on Artificial Intelligence, 1982.

28. Mann, William C. Two Discourse Generators. Proceedings of the 15th Annual Mceting of the
Association for Computational Linguistics, Association for Computational Linguistics, 1981.

29. Mann, William C., and James A. Moore. Computer Generation of Multiparagraph English Text.
American Journal of Computational Linguistics 7, 1 (January-March 1981).

30. Mann, William C., Madcline Bates, Barbara J. Grosz, David D. McDonald, Kathleen R. McKeown, and
William R. Swartout. Text Generation: The State of the Art and the Literature. Tech. Rep. ISI/RR-81-101,
Information Scienccs Institute, Marina del Rey, Cal., 1981. Also University of Pennsylvania MS-CIS-81-9.

31. Matthiessen, Christian M. I. M. A Grammar and a Lexicon for a Text-Production System. Proceedings
of the 19th Annual Meeting of the Association for Computational Linguistics, Association for Computational
Linguistics, 1981.

32, McDonald, David Daniel. Natural Language Production as a Process of Decision Making Under
Constraints. Ph.D. Th., Massachusctts Institute of Technology, 1980,

33. McDonald, David D. Language Production: The Source of the Dictionary. Procecdings of the 19th
Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics,
1981.

34. McDonald, David D. Natural Language Generation as a Computational Problem: An Introduction.
Tech. Rep. COINS Technical Report 81-33, University of Massachusetts at Amherst, 1981,

35. McKcown, Kathlecn Rose. Generating Natural Language Text in Response to Questions about Database
Structure. Ph.DD. Th., University of Pennsylvania, 1982.

36. Minsky, Marvin. A Framework for Representing Knowledge. Tech. Rep. Artificial Intclligence Memo
No. 306, MIT, Cambridge, 1974,

.....
-




B"“.“\-_“W"‘-‘.ﬁ_.'f_.w_\"..:'.‘:'.. LA It B SR SRC ML b S PR A e ——— o TR,

o
‘~l
. 118

37. Patil, Ramesh S. Causal Representation of Patient Ilincss for Electrolyte and Acid-Base Diagnosis. Tech.
Rep. MIT/LCS/TR-267, MIT, Cambridge, 1981.

: 38. Quirk, Randolph, Sidncy Greenbaum, Geoffrey Leech, and Jan Svartik. 4 Grammar of Contemporary
English. Longman Group Limited, London, 1972

'.\‘ p_' N

39. Schank, Roger C. Identification of Conceptualizations Underlying Natural Language. In Computer
Models of Thought and Language, Roger C. Schank and Kenneth Mark Colby, Ed., W. H. Freeman and
Company, San Francisco, 1973.

a8, e
. a2

)

40. Sherman, Donald. A Scmantic Index to Verb Definitions in Webster's Seventh New Collegiate
Dictionary. Department of Linguistics, Stanford University, 1979,

41. Sidner, Candace Lce. Towards a Computational Theory of Definite Anaphora Comprchension in
English Discourse. Tech. Rep. AI-TR 537, MIT, Cambridge, 1979.

: 42. Smith, Brian Cantwell, How Is a Knowledge Representation Like a Piano? Tech. Rep. Artificial
- Intelligence Laboratory Working Paper 174, MIT, Cambridge, 1978.

43. Swartout, William R. Producing Explanations and Justifications of Expert Consulting Programs. Tech.
Rep. MIT/LCS/TR-267, MIT, Cambridge, 1981.

44. Wahlster, W., A. Jamcson, and W. Hoeppner. Glancing, Refering and Explaining in the Dialogue System
HAM-RPM. Gemanisches Seminar der Universitat Hamburg, Hamburg, 1978,

48. Winograd, Terry. Language as a Cognitive Process, Vol. 1: Syntax. Addison-Wcsley Publishing
Company, Recading, Mass., 1983,

46. Winston, Patrick Henry. Artificial Intelligence. Addison-Wesley Publishing Company, Reading, Mass.,
1977. » .

47. Winston, Patrick Henry, and Berthold Klaus Paul Horn. LISP. Addison-Wesley Publishing Company,
Reading, Mass., 1981.




A aaSa"ata’

& ",
S



















