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normalized converges in distribution to the ratio of two dependent stable
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stable variables. Proofs rely heavily on point process techniques. We also

consider the case when the sample correlations are asymptotically normal and

extend slightly the classical result.
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Function of Moving Averages

1. Introduction

- Suppose {Zt, ~= < t < »} ig an independent, identically distributed (iid)
sequence of random variables with regularly varying tail probabilities. More
specifically assume
(1.1) P2} > 0 = xL(x)
with a > 0 and L a slowly varying function at » and also assume the tail bal-
ancing condition

P(Z, x) P(Z < -x)

| @2 _(Tz—l_>_x) P ool 5TE TS )

as x * 2, 0 <p<landq=1-p.

Given a sequence of real numbers {c j -~ < j < =} gatisfying mild conditions

(which for instance are always satisfied for ARMA processes) the moving averages

b (1.3) {X, = <t<=}= {jz_n ey Zygr = < t <)

exist as a strictly stationary sequence. The sample correlations of {Xt}
defined by
n-h

(1.4) o(h) = Z X, xt+h/2 X2, h> 0
are the objects of study in this paper.

In two previous papers (Davis and Resnick, 1984a, b) the weak limit be-
havior of functionals of {xt}, including the gample covariance function, was
discussed. In Davis and Resnick (1984b) the asymptotic limit distribution for

;(h) vas derived under the assumption that El21|cl = gand 0 < @< 2 and in
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particular it was shown that there exists a slowly varying function Ll(t) such

that if p(h):= 2 cj °J+h/j§_, c§, then

j:—m

a/® L @ Gm - om)

converges in distribution to the ratio of two independent stable random variables
with indices a and a/2 respectively. Joint limit behavior of p(h) at various
lags was also given. The asymptotic behavior of o (h) was found to depend on

n

the weak limit behavior of the vector ( 2 Zt Zt+2’ £ =0, ..., h). This vector
t=1

converged to a vector of independent, non-normal stable random variables.

In contrast to the above case when Ellea = o« we suppose in the present
paper that Elleu < » and in section 3 we obtain the surprising result that s(h)
suitably normalized converges to a ratio of dependent stable random variables.
Joint limit behavior of (5(2), 1 <2 <h) is also given and as before depends on

n
the behavior of ( Z z
t=1

¢ Zt+z’ 2 =0, ..., h). Again there is a clear distinction

between the case where the a-moment is finite or infinite since in the case
E[21|° < » we find this vector of sums of products converges weakly to a vector
of dependent stable random variables. Both the results and the methods of proof
are very different depending on whether Eilea is finite or not.

Section 3 discusses these results which depend on point process methods.
In addition we discuss some necessary results about tail behavior of products
of random variables which is a class of problems which has received significant
attention in analytic probability research. See Breiman (1965), Embrechts and
Goldie (1980, 1982), Cline (1983). Also in section 2 we establish the asymptotic

normality of p(h) under the assumption E Zi 1[|z is slowly varying at =«.

2]

Our results and methods unify and extend classical results where a finite

variance for Z1 is assumed.
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2. Sample correlations in the normal case

Let {Zt} be an 1id sequence of random variables. Assume Z1 belongs to
the domain of attraction of a normal distribution which is equivalent to (cf.
Feller, 1971, p. 313) the slow variation at infinity of the truncated second

- 2
moment L(t) E Z1 l[lzllfﬁl. This in turn is equivalent to

2
t P(lzll>t)

(2.1) Lo)

+0ast+ o,

Moreover if the sequence of constants e 2 0 is chosen so that

-2
(2.2) na, L(an) -1,
then
-1 2
o tZl (Zt - E Zt) » N(0, 1)

(= denotes convergence in distribution). If o2 = Var(zl) < » then we may

k .

choose @ =no otherwise we have o t(n) where I is slowly varying with

t(t) > ® a5 t + ™,

The goal of this section is to derive the limit distribution of the sample

correlation function of the process Xt = 2 cj zt-j'
j--m
the weak limit of the sample correlation function can be determined via the
n n
limit distribution of the vector of partial sums ( Z Z Z ., eeney 2
t=] °© t+l t=1

As will be shown below,

z, zt+h)'

First we note that Zl Z2 also belongs to the domain of attraction of a
normal distribution (Maller, 1981) which is obvious only if Var(Zl) < o, Now

let Bn > 0 be chosen so that

-2 2
(2.3) B, n Elz1 22| 1[Izl zzlfﬁnl +1

and observe that if Var(Zl) < = and E Zl = 0 then we may take Bn = n%cz. On

the other hand 1if Var(Zl) = o, then (Maller, 1981)

(2.4) an/Bn + 0.
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Proposition 2.1. Let {Zt} be 1id with zero mean and assume L(t) = E Zi 1

s n
-1
CH Y Z, Z,» 1S L <h) = (N, N,y e,
! t=1
hi where Nl’ Nz, ceny Nh are 1id N(0O, 1) random variables.
4
[~ Proof. First we show that thekh dimensional vector
.
b,
-z (2, 2, ,4» 122 <h, 1<t <k
3

it suffices to show for s # t or 1 ¢ ¢

_ -2
- (2.5) n8 - E(Z_ 2 1
n t “t+e [Izt Zotg

1f Zt Zt+2 and Zs Zs+i

the assumption E Zt = 0, On the other hand if Zt zt+l
independent, then (2.5) is equal to

-2
an E(Z1

-2
=ng " E(Z, 2, 1 2, 2,1
n 1 %2 7lz) z,|<8 x] "2 %3 “C]z,

-2
+ an E(Z1 Z
= A + B.

We have

-2
|A] < m8_ Bg(xVy)P(lzzl >a)

- (xV&)nP(IZZI >a)+0

by (2.1) and (2.2). As for B, we have

T
............

is slowly varying. Then for any fixed positive integer h

z z .1 )
|<8x] “s “s+ [z, z ,,1<8 y]

"> 0asn-+=for all x>0 and y > 0.

Z, 1 Z, 2.1 )
2 [lz1 z,1<8 x1 “2 3 [Iz2 Z,|<8 y1
<6 y1 [z, [>a ]
—-n? 2 n

1 z,2,1
2 7z, z,]<8 x] "2 %3 (]2, 2

[llef_t]

belongs to the domain of attraction of a multivariate normal distribution with

independent components. By Theorem 3.2 in de Haan, Omey, and Resnick (1984)

are independent, then (2.5) is automatic by (2.3) and

and Zs zs+i are not

)

<6 y1']z,]<a P

-2 anz .
|8| = ns_ £ t2(E 2, 1[|21|:an/t] EZ, 1[l23|:pny/t])r(lzzledt).




A

-2
If Var(Z,) < =, then by the dominated convergence theorem, (note n " > ),

|B| + 0. 1f Var(z ) = =, then
t

2 _o=2
|B] 5_(E|zll) 8 “E z 1[|z |<a j

2 2
(E]z,)2(a /8)) 222 1[|z |<a 3

+ 0
by (2.2) and (2.4), which establishes (2.5).
Now for a fixed A e'RP, define the h-dependent sequence by

Yo =) 2y 2oy YA % Lt e P 20 2oy

For each fixed integer k > 2h, we have

Py - o1
Y U, + Vg + (Y, + ... +Y)
t=1 1=1 i i=1 rk-h+l n
where U = (Y (1- 1)k+1 ve. + Yik—h)’ Vi = (Yik-h+1 + ...+ Yik) and r = [n/k].

The Ui are iid and by applying the first part of the proof, we have

2 U, =N, (k-h)(A2 + ... +22))

fr i=1

-3
and since Br/Bn + k

-12[]

- 2 2
n L = N(0, (1 h/k)(k ces + lh)).

i

The same reasoning also gives

Z v, =N, /) (A2 + o +22)).
R 31

The piece (Y + ... + Yn) is a sum of at most 2h terms and hence is op(Bn)

tk-h

so that for every e > 0

n 9
1im limsup P(B 1Y, -1 yl>e)=o0.
ko noo t=1 i=1
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Finally, we have N(O, (l-h/k)(Ai + ...+ xg)) = N(O, xi + ...+ xg) as k + =

8o that by Theorem 4.2 in Billingsley (1968),

B Y = A, B 2,2 .. *NO, 22 + ... +12)
noa t i=1 i n tel t t+i 1 h
which completes the proof by an appeal to the Cramér-Wold device. []

We now consider the moving average process

Xt = jz_@ cj Zt—j

where the Zt's satisfy the assumptions of Proposition 2.1. The coefficients
are assumed to satisfy

(2.6) z lcjl < « and 2

ja—m ja..m

leyI"l3] < =

where y = 2 if Var(Zl) < o, otherwise 0 < y < 2, Define for h > 0 the sample

correlation function

o(h) = C(h)/C(q)

where C(h) = % Xt Xt+h' Set p(h) = E cj cj+h/ E cg which is the correlation
t=1 ju—oo jm—co
function for {Xc} 1f Var(z;) < =.
We first show that
2.7) a;z c(o) § ii—m ci.
This will be accomplished by establishing
(2.8) a2 (c(0) - tZ‘ ‘f c222_) %o,
n tel {o—e 1 t-1
2.9y o723 T ez - 7o § 22) X o
T I CEL L Y T

and
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(2.10) 2 ¥ 22 3 1.
t=1

The difference in (2.8) is a_ 2 ) ¢
t=1 1,
2 D i#j
n/ag + 0 so that E]un ) N cj
t=1 1,3
i#3
proving (2.8). 1If Var(Zl) < «» then it is easy to show that the variance of the

i cj zt-i zt—j and 1if Var(Zl) = o then

e-1 Ze-gl < n/e Z lcil) Elzy 2, » 0

difference in (2.8) goes to zero. The difference in (2.9) is a;z z ci Un 1
4

{o—co

where Un { = 2 z2 - 2 Z% is a sum of at most 21 random variables. Since
’ =1-1i t=1

Elle'Y < » where y is defined in (2.6), we have

-2 2 -y ¢
oy I v A A N LU N

giving (2.9). Finally the weak law of large numbers yields (2.10) (cf. Theorem 2,
p. 236, Feller, 1971).

For a fixed 2> 1, set wi j = ci(c p(R)), 41 =0, 1, *2, ...,
*

1-3+2 = C1-4
j=¢%1, #2, ... . Then

-]

-1 L4
(2.11)  o? (o(z) - p(2) - [C(0)] Z z _, 2 )+ 0
ol jgo 1Z.a i,j “t-1i “t-i+j

and for each j > O

( L ( Z by 2
t=1 is-m

R T iz_mwi,—jzt-i zt-i—j)

(2.13)

Gy o +¥, DY 2 2.0 ¥o.
iL i,] i,-] tzl t+]j

These two results together with Proposition 2.1 and the continuous mapping

theorem suggest that




-8-

-1." T v y
aZB_“(o(2) - 0 (1) '121‘12., Wiy * %.-ﬁ“j’ié.ﬁ

2]

= Y (p(a+)) + p(2-§) - 20(3)p (1)IN,
j=1

where Nl, N2’ ... are iid N(0O, 1) random variables. This is in fact the
content of the following theorem. The proof of this theorem as well as (2.11)
and (2.12) are only slight modifications (take 8§ = y) of the arguments given

for Proposition 4.1, Proposition 4.3(i) and Theorem 4.4 of Davis and Resnick

(1984b) and hence are omitted.

®

Theorem 2.2. Suppose X = Z c, Z vhere {c,} satisfies (2.6) and {Z } is
I t jo—o J -] 3 t

an iid sequence with zero mean and L(t) = E Zi 1 is slowly varying.

[IZl!i t]

If a and Bn are chosen to satisfy (2.2) and (2.3) respectively, then for any

h»>1

0281 (o (2) = p(L), 1 <2< h) = (] (p(24) + p(2-3) - 20()o (RN, 1 < L < h)
j=1

j’

where N N

1° No» . are iid N(0, 1).
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3. Sample correlations and regularly varying tail probabilities

n
In this section we examine the weak limit behavior of ( Z Zt Zt+2’ 0<2<h)
t=1

under the assumptions that {Zt} is 1id satisfying (1.1), (1.2) with 0 <a < 2

and also that 21211“ < » and

p(lz; z,| > ©)
P([ZlT > t)

(3.1) 1lim

£

a
= 2E[zll .

Thus the distribution of loglzll is in the class Sa studied by several authors
(Chover,'Ney, Wainger, 1973; Embrechts and Goldie, 1980, 1982). If a finite

limit in (3.1) exists, it must be of the form 2E|leu (Chover, et al, 1973). 1In

n
studying the behavior of Z Zt Zt+l it becomes clear a limit distibution does not
t=1

exist when Ellea < = without (3.1). It is interesting that the class Sa achieves
interest from an additional perspective. See also Cline (1983).
It is difficult to get a decent characterization of when (3.1) holds but
the following needed fact can be gleaned quickly. (Cf. Embrechts and Goldie,
1982 and Cline, 1983.,) Suppose (1.1) holds and we write for t > s > 0

P(lz, 2,] > t) = P(lz1 Z,| > t, [z)]<®)
+ P([z1 22| >t, s < |22| < t/s)
+ P(lz1 Z,l > t, |z, > t/s) =1 + 11 + 111,

Now III may be written as
P(]Zl 2l A l2,8] > 1)
-2((lzlAlsl)iz,l > ©.
Since lleA 8 1s bounded, a result of Breiman (1965) (a simple dominated

convergence argument; see also Cline, 1983) gives the above asymptotic to

e S e I N S I I C i SR A A T A A Al A SR S B e o o orat Pl ol
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. 1
3 " E(]ZlA-sl )P(!Zzl > t)
'i as t -~ =, For I we have
¥ ' s P(|21| > t/y)
\ Urdz)] > 0 = | srrso PUZl edn
o 1
ii and so by regular variation and dominated convergence we get as t + « i
J
s |
! I~ [y P(|22| &dy)P(lle > t). |
- o !
ji (By letting s + », we see that liminf P(}Zl 22| > t)/P(Ile > t) 3_25121|°.)
-
{
i Since we know by the Chover, Ney, Wainger (1973) result that the only possible
finite limit in (3.1) is 2E(|21|a) we obtain the following result.
¢

Proposition 3.1. Suppose (1.1) holds and E(Ilea) < ©», Then (3.1) holds iff

E—— Y
A}

(3.2) lim limsup P(|Z, Z,| > t, s < |Z.] < t/s)/P(|Z,] > t) =
) 1 72 1' - 1
. ft/s P(Ile > tly) 2] g
lim limsup P(|Z,| € dy) = O.

n
We now commence a study of the weak 1limit behavior of ( z Zt YA
t=1

tﬂ,of_m:h).

The method of attack uses point processes and useful background on this subject
and its relevance to limit theory is contained in Neveu (1976), Kallenberg (1976),
Resnick (1984), Davis and Resnick (1984a, b). We set Mp(E) equal to the space

)

of point measures on the Euclidean space E and metrize MP(E) by the vague metric.

MM /aaEFA T W R N
RN P SAREAAC ) SRR

A point measure on E is a Radon measure on E of the form z ex where x, € E and

»; i X 1 '
J for a Borel subset B C E we have éx(B) = ] if x ¢ B; O otherwise. A Poisson

2 process on E with mean or intensity measure u will be denoted PRM(u); 1.e.

1‘ Poisson random measure with mean measure yu.

Ei We begin by supposing i;:-[—w, 0)J (0, =] is topologized so that neighbor-

hoods of = are compact sets; i.e. on the positive half axis the usual roles of 0
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3
2n -
and = are interchanged and similarly for the negative half axis. Set E = IRO x R X
g
and suppose Z €, is PRM on R_ with mean measure X (dx) = (pax_u-l 1 (x) + ~
k=1 Jk ° (0, =] 7
qn(-x)-a-l 1(_@ 0](x))dx. Lastly define a to satisfy
14
(3.3) a_ = inf{x: P(|2,] > x) < n 1}, -
n 1 - X
- Proposition 3.2. Suppose (1.1) and (1.2) hold and set B
-1 .
'ék,n (an zk’ zk-h’ cece Zk-l’ Zk+l’ st Zk+h) _4
and suppose further that -
&)y _ gz k) (k) (k) (k) }
(27 =@ s 2205 20, ey 20)) :
2h (k) '
is an iid sequence of R valued random elements and the components in Z .
are iid and distributed as Zl' The sequence {g(k)} is assumed independent of 1
.
the point process - z éj . Then the following weak convergence result in Mp(E) . ]
k=1 “k 2
holds as n +» = R
Fe, |
> € .
k=1 ,m k=1 (jk' %(k)) B
A
Remark. The limit point process is PRM on E with mean measure yu(dx, dx_h, “]
.'4
dx_h+1, cees dx_l, dxl, veesdn ) oS k(dx)F(dx_h)F(dx_h_'_l)...F(dx_l)F(dxl)... .
.
F(d )0
*h -4
Proof. It suffices by Theorem 4.7 in Kallenberg (1976) to show as n =+ = "]
2h 2h
(3.4) nP(,él’néA x B") » u(A x B") ]
where A = (x, =] or (=, -x], x > 0 and BZh is a bounded 2h dimensional rectangle -
M
and also 3
n o s
(3.5) P( ) eé (R) =0) »P(] € . (R) =0
kel 4k,n kel (3 2) )
-9
where R is a finite union of bounded rectangles in E. Since in case A = (x, =] '
ul’(%1 n" Ax BZh) = nP(a;I Zl > x)F‘Zh(Bzh) (F‘Zh is product measure), we obtain
’
‘_1
- N

e ~
............ < A

P .. .t s e T e .. “ . M
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(3.4) immediately from (1.1), (1.2) and (3.3) so we focus on (3.5). Since the

sequence {Zi nt < i < =} is 2h + 1 dependent a standard argument (cf. Lead-

better, Lindgren and Rootzen, 1983, chapters 3, 5) yields

n
(3.6) P( ) € (R) =0) -P() €

(R) =0) ~ 0,
121 £i,n 1=1 £i,n

for any k as n + . Furthermore by a Bonferroni inequality

[n/k] :
[n/kIP(Zz, ~€R) - [n/k] | P €R, 2. _€R)
’ i=2 ’ 1]
: [n/k] [nfk]
' <P( U [z €R]) = P( € (R) > 0)
_ T gep bm i1 %i,n
L;_ < [n/k]P(,%l’neR).
g
o - Since P(él ne R, éi n€ R) can be dominated by a probability based only on
| _ ’ _ ’
} anl z, and au1 Z, it readily follows that
(1 [x1§k]
i limsup [n/k] P( ER, ER) = o(1/k)
4 o {=2 %l,n %i,n

an! hence applying the natural generalization of (3.4) to finite unions of

pep———

disjoint rectangles we obtain

-1 [n/k]
1 - k "u(R) < liminf P( € (R) = 0)
o 1=1 £i,n
[n/k]
< limsup P( ) € (R) = 0)
n-e i=1 %i,n
< (- KR + o(L/k)
3 for any k. Raising all sides of this inequality to the kth power, letting
P»
f' k + » and then applying (3.4) gives the desired conclusion (3.5) since we
E obtain from (3.6)
e
S -u(R) b
- P(Y € (R) = 0) »e "™ wp(y €, y(R) = 0). B
- 1=1 éi,n k=1 k® Ek
- -
[
T S Ay o PR DR ..'.‘iff’ -

- - - - . R N R B . e W, T e T . A “ s
T S L e T Tt T e e O N RO R
P - P - I AR R S - . K A, e e T R . N .~

R R U T R VP S P U0 VI WL ST Sy J R S PR . . WV L TR U T T WY PRIV RS WY A

ol el Sl el Al A h b Ie L Tl IO TR R
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Corollary 3.3. If (1.1) and (1.2) hold then

n n
(Ze 2.24— , ) e ,2=1, ..., h)
k=1 an 4 k=1 (‘ Ly Zkz) k=1 “ Zer Zeny)

»(Ze .Ze € 2 =1, ..., h)

’ z ’
el 32 kel (4 20D e gy, 2

in Mp&o) x (Mp(ﬁo ><R))2h where the last factor is the 2h-fold Cartesian product

of Mpcio x R).

Proof. First restrict the state space in Proposition 3.2 to the compact set

K = {z: |z| > s 11 [-s, %" to obtain

n
€ KN = € (KN °).
kzl £x,n kzl A

Because the state space is compact we get by a variant of the continuous mapping

theorem (Resnick, 1984, Proposition 1.1) that

n n
(] € , 2 € » L e . 1 .
k=1 a;z 22 k=l (a Zes Zegy t'%k R (anl Zes Zeagy (2, n €Kg!

L =1, ..., h)
()] € , ] e 1 » L€ 1
- 2 1 (k) (k) - (k) : (k)
k=1 35 k=1 (3, 2,7) [, 2 )€K k=l (5, 2°,7) [, g )€K,
l = 1, ev ey h)'
Since the right side above converges to the desired limit as s + = an application

of Billingsley, 1968, Theorem 4.2 yields the result provided we show for any n > 0

n n
lim limsup Plo( ] € _; ] € 1 )>n) =0
§7e = k=1 (an k’ Zk+u) k=1 (a zk Zk-!-u L%k,ne l(s]

for any u¢{-h, ..., ~1, 1, ..., h} where p is the vague metric on Hpc_ﬁox R).
Let f be non-negative and continuous with compact support on io x R; we take the
support contained in {z: |z| > a-ll x [-a, a] for some a > 0. Because of the

definition of p (Kallenberg, 1976, page 95) it suffices to check

-ty -
.....
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“14=

lim limsup P[] z f(a z 2 f(a zZ.)1 [ > nl
sw  no k=1 fe Bud T4 B g ek
n
-1
= lim limsup P[ Z f(a s 2. . )1 c >n} =0.
§>®© o k=1 n Zk ktu [ék ,N € Ks:l

The above probability is bounded by

-1

P(L) [la >a -, ]Zk+u] <a g gKD

2, |
o1 k

which by subadditivity and stationarity is

A

-1 -
nP['an Zol > a

A
=
d
—
'V]

v -1 -1
+ ]% nP[]an ZOI >a , |Zu] < a, IZEI > s].

The first term is zero if s > a and the second piece with the summation is
< 2h P[Ia'1 z | > a'llp[lz | > 8]
- n o o

- 2ha°P[lz°! > s)

as n > », Since this last term goes to zero as s + « the desired result is
obtained. D
We now study a collection of point processes of products.

Proposition 3.4. Suppose (1.1), (1.2), (3.1) hold and E[lea < ®, Then

n
(3.7) ( 2 €., e , =1, ..., h) =
k=1 a_” 22 k=l (a~ 2, Z,.,)

[- -]

( Z € ) (€& ), £ =1, ... h)
k=1 jk k=1 4,2 (k) jk ék)

— — h
x
in MP(RO) x MpaRo R) .

. .. .« AN PRI A SO S I N o o - L
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e

Mot e e s

Remark. For each ¢ € (-h, ..., -1, 1, ..., h) we have ) ¢ (k
=13,z

is PRM(v)

on io and for x> 0

@ = o
vOn ) = xR 1y gy + Bl M1 g,

a0 - = a
v(-=, -x) = [x|* (qEz [z 01 * PElZ] 1[zl <01

lz] > x} = x“aE|21|u.

Proof. Making restrictions to the compact sets Ks v {z: |=]| > s-l} x [=y, v] we

get from Corollary 3.3

n n
(Z €. 1 € _ X N, ¥ € _ (X, _n-),
k=1 a4 ? k k-l (anl Zk’ Zk-k) o k=1 (anl Zk’ Zk+l) '
£=1, ..., h)
=(le , 1 e & N, ] € ® N,
k=1 jlf k=1 (jk, (k)) Y k=1 (jk, ék))

2=1, ..., h).
The map (x, y) + xy applied to the points of a point measure with compact state
space induces a continuous map on the space of point measures with common compact

state space (Resnick, 1984, Proposition 1.1) and hence

(3.8) (Z € o )j €, 1, ,
k=1 oay I k=loag L By Uay 2 3 ) €K L)
n
1€ 1, ,2=1, ..., h)
k=1 8 “k Zk+£ [(an zk' Zk+2) € Kﬁ,s]
~le . Ie 2% Ty, 200 '
187 k=13 200 TG 20 ek )
€ (k) , 2 =1, ..., h)

k=1 (G, z%ex 3

jk Y,8
in Mp((o, ®]) x Mpdﬁ?)Zh. We now remove y from the relation (3.8) by first noting

that as y - » the right side converges weakly to the corresponding expression

with vy = = and in order to apply Theorem 4.2 in Billingsley (1968) we must check




s
. -16~
!
for f non-negative and continuous with compact support onfig and for ¢ =1, ..., h
e o
i 3. 1i P f Z =
- -9 ii: ;Tzup [k£1 @ % Zk"l)ltla'1 2| >st |z, | > Y;n] °
- n 'k 1 Tk=2
-  and
= n -1
k (3.100  lim limsup P[ ) f(a ' 2, 2,01 _ _1 >nl = 0
” Yoo N k=1 Cla® z, ] < v, 2,1 < s]

P
et
A

PP oy
._ .

for any n > 0. Supposing the support of f is {z: |zl > a} we have the probability
in (3.9) is bounded by
p -1 -1 -1
nP[\an Zk Zk-tl > a, Ian Zkl > s 7, IZk—Q‘ > v]
-1 -1
j_nP[lan Zk[ > 8 ]P[[Zk_£| > v]

- saP[!le > v]

i h 4
N B

which goes to zero as y + =, The probability in (3.10) is bounded by

-1

-1 -1
nP[lan > a, lan 2| <y ,]z, . ] < s]

"
and for s/y < a this probability is zero. We ﬁay thus rewrite (3.8) with vy = «

}
Zy Ly k+2

as follows:

MMM et
SRR e [ AR AR

n n
(3.11) (] € - 1 .
- -1 ,2° .= -1 -1 -1
k=1 a " 22 k=1 a2 2 , [|an zl>s7]
B
:--'. n
[ e 1 ,L=1, ..., h)
. kL a7 By gl <o)
}‘ o -] ©
h
. =() €., ] & 1 ) e 1 ,
L €, L (k) -1.%. L (k) “py, (k)
g k=1 3, k=1 § Z7 [|jk| >s 1k=l 3 2,0 [lz,] < 8]
[ ]
S
: 2-1, ceey h).
F" On the left side of (3.11) take the process corresponding to-f as subscript,
‘ change variables to k' = k - &, and add the result to the process corresponding
[ .
[ - to +2. After adjusting for op(l) terms we get from (3.11)
yf
@
> .
P R L S S L R TR
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) ‘z’
(3.12) () € _ €. (1 +1 1)
k=1 a 2 k=1 an1 Zk Zk+2 [Izk+l| < 8] []anl Zk+£| > g 1]
2 =1, ..., h)
)
= ( , (€ 1 D
k=l 32 k=l 3, 209 [Izék)| <51 3, 2% Tl > 87
v g =1, ..., h)

As s + = the right side of (3.12) converges weakly to the right side of (3.7).

The desired result (3.7) will be proved via Billingsley (1968) Theorem 4.2 if we

show for f > 0, continuous with compact support in {z: |z| > &) that for n > 0 and
L 2 = 1, s 00y h
y (3.13) lim 1imsup P[ Z f(a zZ )1 > n] = 0.
* - k k+2. -1 -1li.¢
) g e k=1 {IZk+£| < s]U[an |Zk+2l >s ]}
; The probability in (3.13) is bounded by
L -1
' nela “|z, z | > 8, s < 17,0 <a/s]
and the desired result thus follows from (3.2). l]

We now sum the points in Proposition 3.4.

Theorem 3.5. Suppose (1.1), (1.2), (3.1) hold, EIleOI <o, 0 <a < 2 and set

h b= EZ 2,1 . Then in R™"

: [|Z1 22| <a]l

L -

: (1) For 0 < a <1

b

3 n

b —2 2 _1 =

I @2, a2, 2,41 .cs )
b

5

= (kfl iz, Z jk(z“‘) + z(k)), =1, ..., h)

(S,» €y +Egr £ =1y sees W)

=: (So, s,, =1, ..., h)

2’

v YTy
L}

v-

-
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(11) For 1 < a < 2

§ "2 22, a7z z b ), &
k=l(an Kk’ an ( k “k+2 - n)’ = 1) erey h)
N ('3
= (] 3%, (] 3, 271
=l ¢ k=1 * P )y 2®)s
+un (] 3 2% ®© - ag|z,|*™ D - 1)/@ - 1))
§% k=1 Cl3, 2,71 € (s, 17

{1 3, z(t) 1

k=1 [l3, z{| > 13

+

+ ln( ] 3 28 s~ (@-1)

£ - 1)/ (@~ 1))}, 2=1,...,h)
§+0 k=1

a
- aE|Z (
iy, 28 e 6, 11 %

(8,0 E_y +Eg» 2 =1, «.0y h)

=: (So’ SR’ £ =1, ..., h).

(For a = 1, interpret the above formulas in the obvious way; for instance by

letting a + 1.)

Remark: The variables (So, E_z, 51, £ =1, ..., h) are dependent due to the
presence of the ng in each. Each of the variables So, E-E’ Ez, Sg, £2=1, ..., h)
is stable; So is stable with index a/2 and the rest are stable with index a. The
representation of 5—2 or 62 given above is the Ito representation of an infinitely

divisible random variable, cf. Ito (1969).

Proof. Based on Proposition 3.4, it 18 clear how to proceed; cf. Davis (1983),

Resnick (1984). Continuously map the points which in absolute value are bigger
than § of the point processes in Proposition 3.4 into the sum of the points.

Adding a centering for the case 1 < a < 2 we obtain

q
-

¥

-vr~
i . “ ‘l .‘I'.

d .
-
e, . »
S teyte, . . LRI T DR L 2! . . .
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-2 -1
1 @221 a Z -
oy Nk 2 n k k+2 -1
k=1 Cla,~ 22| > &3 Cla ™ 2,2y, > 4]
Eatz z ., 1 L =1 h)
n k k¥R [Ia-l IC(G 1]]’ 9 ey
n k k+£
-1 321 ,1oa, 2% 0 +3, 291 o D
) k=1 Cl3, ] > 61 k=1 tls, 22’1 > 6] i, 2z, | > 6]
? - zazlzl|°(s"‘“'1) - 1)/@-1), =1, ..., h).
| 3
- As § > 0, the right side above converges weakly to the desired limit in (ii).

The result will be proved via Billingsley's (1968) Theorem 4.2 if we prove for

., any n > 0
' lim 1i Pl E "l 2 b) E '1(2k z .1
im nsup a - - a
n k “k+g n n k+2 -1
§+0 o k=1 k=1 [lan zZ, zk+£l > 8]
Z, Z 1 Y1 > n]
Kk “k+2 -1
la "z, 2zl (s, 113
n _l
= 1im limsup P[| ) a_ (2, 2,,, 1 -
n k "k+2 -1
§+0 noe k=1 [Ian z, zk+ll < §]
-E2Z Z,, 1“3_1 2 |« 53) >nl = 0.
n k “k+2' —

Since {Zk Zk+l —o < k < ®} ig f-dependent, this is handled as in Davis (1983),
;]

pages 265, 266.

y The case 0 < a < 1 is handled similarly without the need for centering. []

p We now consider the weak limit behavior of the sample correlation function

- 2]

! of moving averages of the Z_'s. Define as before X = z c, Z where {7 }
r t LI j "t-) t

satisfies (1.1), (1.2), (3.1), E|z1|° <®,0<a <2 and

8 (3.13) 2 k |u|Jl <o if0<ac<l

< j--o

?

‘

9

F . . . e
T s T S T PO, FUSL N
.“ e R PN N N R Ve T e, . . . o, (.-.‘-‘\ .
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(- -]
) ch|1°€lj| <w for some 0 <€ <1, if a = 1
jn—m

! Ilea 3] <= and ] Jc

| <> 1f1<a < 2.
js—m j--o j

These assumptions on the coefficients {c,6}, guarantee that {Xt} exists as a

3

stationary process since

E|} oy Zt_jla.i ZlcjlaElzll° <™ for 0 < a < 1
3 h|
and

E]} c, 2 .| <Vle,lElz.| <= for 1 < o < 2.
j j t-] j h| 1

Recall the sample correlation function is
p(h) = C(h)/C(0), h>0
where

n
cth) = } X X
syt Tthh

and as before we set p(h) = ) cy cj+h/2 ci. In Davis and Resnick (1984a) it was
~ j j ~

shown that p(h) B p(h). Here, we shall show that an(p(h) - p(h)) converges in

distribution where {an} is defined in (3.3).

The first step is to verify that

..2 pos 2 n 2 P
(3.14) a_“(c(o) - jz-m c§ tzl 22) 5 0
and

-2 ®
(3.15) a (C(o»»j.zm c§ S,

where S, is defined in Theorem 3.5. If we set ¥, p (L)) for

g =Sy gey T oy
1i=0, %1, 2, ..., J = %1, #2, ... then we get for every positive integer 2%,

. 4 B =
(3.16) & () - o) - (€O L Jo bt et Zeosay Yo
t= m—co 7

and for each j > 0
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3.17 z  Zo .. Y W 2 2 )
( ) (czl (1Z—m wi’j t=4 t=i+j - Yi,-j Te-i Te-i-j

n
ST 7 Z £ o.

is—w

The proofs of (3.14) - (3.17) are practically identical to the proofs of the cor-
responding results given in Propositions 4.1 - 4.3 of Davis and Resnick (1984b)
(by either setting § =aor § = 1), and hence are omitted. Our main result on
limit distributions for sample correlation functions is now stated.

Theorem 3.6. Suppose X = Z c, where {c.} satisfies (3.13) and {Zt}

Ze- h j
satisfies (1.1), (1.2), (3. 1) Elzll" <wand 0 < a < 2. Let a_ be given by (3.3)

and set bn = E Z Z 1 O for « < 1. Define for

[lZ | < a J if a > 1 and bn

£>0,d _=2n Z (o (2+3) + o (2-3) = 20 (3)0 (2))( z c¢})b and Y =
’ j=1 i=-e

7 (@+3) + 0(-j) - 20(j)p(2)) S, /S where (S , S., 3 =1, 2, ...) is defined
j:l J o o J
in Theorem 3.5. Then in th,

(i) For 0 <a <1,

(3.18) (a (p(l) -p(®),1 <2 <h)= (Y Y, )

2, cees YD
(ii) For 1 < a < 2,

(3.19) (an(c;(l) @) - d L /€0), 122 <h) = (g5 Yy ones Yh).

If either 1 < a < 2 and E Z1 = (0 or if a = 1 and Z1 is symmetric about zero then

(3.19) holds with dl,n =0, 2=1, ..., h and a location change in the Yj's

Proof. The proof follows the proof of Theorem 4.4 in Davis and Resnick (1984b).
First, from Theorem 3.5 and (3.14), (3.16) and (3.17) we have for any fixed
positive integer m,

n o

-2 -1
.20 2, .12 -b
(3.20)  (a_“c(0), a_ O<%jl§p tzl(iz_m Vi3 Ceni Zeogay T P
{m—co 10 jl‘-:l {maxm i’j i’ j j

--------------

P P
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=

b )

ij The next step in the proof is to show that (3.20) remains valid with m replaced

by « and then use (3.16) to determine the weak limit of an(p(h) - p(h)).
The limit in (3.20) is true with m replaced by = provided (cf. Theorem 4.2,

Billingsley, 1968) that

G2 lw timsur Pea] ) Z v, (2 . 2 ~b)| >y)=0
mre e n Ijl’m t=1 iz—m 1, “t-1 “t-i+j o

for every y > 0 and

il (3.22) Z 2 STRPI S PR L ) =>2 2 (&

.t )S,.
1 i—'"‘°° 1’3 _l i=-‘” i’J i

s_j j
The verification of (3.21) is the same as in the proof of Theorem 4.4 in Davis

*i and Resnick (1984b) and hence is omitted. As for (3.22) we consider three

g separate cases. For 0 <a <1, ) ) Wy ; +¥

p j=1 oo

{ 2
: with Lévy measure (cf. Resnick, 1984) given by E z Z

F j=1 iz—w

where recall A(dx) is the mean measure of the PRM Z Ej . Now since
k “k

.)S. .uas a stable distribution
i"‘J J

" a
Wy 5+ ¥y 27 1@

<]

jzl iz_w(lwi,jl + oy IMElZ)|% < =, the Lévy

a
N S PN Y P
j=1 i;_m(lrlyJ wla_J J)

measures converge and hence the corresponding characteristic functions in (3.22)

converge as desired. Also, fora =1

o

Z ) Wy g+ ¥

I A i S N e A L

j=1 i=-w T o1 fmeo
éif and for 1 < a < 2
i
el Zl 1Z-m(wi’j * wi"j)sjl = 21 1Z_m(|w1,j| ¥ Iwi,-il)nlsll <"

so that we have a.s. convergence in (3.22) for 1 < a < 2.

T ——
e,

To complete the proof, observe that d =n 2 W, H ), and hence
2,n 190 {=-o i1, "1,

ey

)

TRy T
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by (3.14) - (3.17) and the continuous mapping theorem

(2

n o
-, - _ e a2 -1 -1
a () = p(2) - dy /C(0)) = aZ(C(0) a_ D) Vi@t Zeling

- b )+o (1)
t=1 j#0 i=-o nop

[+ ] @

2
-»jzl iz_m Wy 5+ wi,-i)sjl(iz_m cZs))

= YQ.
The proof of joint convergence is a straightforward extension of the above
argument. D

Following Davis and Resnick (1984b) we can also derive the limit laws of the

mean corrected version of the sample correlation function defined by

n

n
N _ _ _
o) = J (X -XE& _ , -X)/] (X -X)?2
=1 t t+2 =1 t

n
where X = z Xt/n. For 1 < a < 2 we have
t=1

(@, ((2) = p(®), 1< 2 <h) = (¥), 1 <2 <n)

and for 0 < a < 1

n
@) -po(®)), 1 <2 <h)= (@) -1), 1 <L <h) (T ¢.)282/¢ T ocZs)
0o i:_m i i—ﬂb
h =
where S z jk'

k=1
'
1
L*i'», o T R S S T S T R R S R i
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Q: . 1

N Remark. Define a = inf{x: P(]Zl ZZI >X) <n }. We now show that (3.1) is

.: - n

ﬁl necessary in order for gnl 2 Zt Zt+1 to have a limit distribution. Suppose for

3] t=1

[ the sake of this argument that Z1 has a symmetric distribution satisfying (1.1)

vj' - n

{ and F Z IQ < ©» and that a 1 Y z 2 converges in distribution. It follows that
1 vn i t t+l

Zl 22 also has a symmetric distribution, that IZl 22| has regularly varying tail

probabilities (Embrechts and Goldie, 1980) and therefore that Zl 22 belongs to the

domain of attraction of a symmetric a-~stable distribution. We first note that

P([le > t)

G323 507, 7,50

converges as t + ©

if and only if

N
- P(lZlI > an) N
! “on P(lzll > an) converges as n -+ ®,

p(2, 2,]>3)

From the argument given at the beginning of Section 3, we know that

' 1ming 202 %120 o : n
;‘ tve P15 0 Z,1> g 2 2 E\le . Thus, suppose n P(]le >4 ,) > 6 for some sub-

- sequence n' »> @ where 0 < © 5_(2E|21|°)-1. We shall show

n|

E? (3.24) Z;} :Zl Z, Zoyy ® s(gen’®

; where S is the symmetric a-stable random variable with characteristic function

E; e_itla and ;; > 0 is a 1-1 function of 6. Once this is established, then clearly

F the convergence in distribution of E Zt Zt+l/;n will preclude the two distinct

- limit values in (3.23). =

o If 6 = 0 then with a defined as in (3.3) it is easy to show that Zn'/an' +> o,

: The argument in Section 3 of Davis and Resnick (1984b) can now be easily adapted to ]
r

show that (3.24) is valid with g(0) = 1. So now suppose 8 > 0 and for a fixed k >3

g k-1
» - ] . - {0}
] let W (Z:l Zyy Zy Zgy wovs Zk_1 Zk) We first show tt'xat for A €BQR ),

‘i (3.25) n'P(Z;} X €A) + v(A) for all A with v(3A) = 0 and v(A) < =

! . « . NN
. . - - 4. h - L Y
' PRI C e Lo [ . . . . O . . . .
LA L . B S P R R o e L.
e T e e® el T RIS R SN . e RIS cer TS
R T S . - Mt .. R . . Lo ., , e e
RN ALY SR 5o SR S L 00 SR PR IR Uy S D UV AN 5 Bu S S IR IV B o
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where v 1is a Lévy measure defined as follows: First define measures Vl’ Vos v3

on R? - {0} such that for a set A = (x, =) x (y, ») in the interior of the first

quadrant

lz,| plz,|
-1 1 A'%2
V(A = vy () =vy(a) = 48 B <)%, x>0,y >0

and then extend the measures symmetrically to the interiors of the other three

quadrants. On the axes define for x > 0

]
n

v ((x, =) x {0}) = v ({0} x (x, =) % %1 - 0 E|z,[%)

W ¥ OV

vl({o} x (x, ®)) vz((X. ) x {0})

v, ({0} % (x, ®)) = v ((x, =) x {0}) = bx U(1 - 26 Elzll“)

H with a symmetric definition on the negative side of the axes. Now for a set
f Ac B(le—1 - {0}), v(A) is defined to be
k-3 A k=2
v(a) = v (P NA) + I v, (R,AA) + v (P _,NA) - ) v,(e;NA)
i=2 i=2
where Pi is the plane formed by the Xy and X, ., axes and the intersection Pif)A

is interpreted as a two-dimensional set. The set eif\A is meant to represent

the two dimensional get (R X {O})O(Pin A), and the v, measure of these sets are

subtracted off since Pin Pi+l is equal to the X, axis and hence should only

+1

contribute once in the sum.

B o o

k-2

-1
3 It is easy to see that if A is not a subset of (J Pi’ then n'P(an, EGA) -
¥ i=]1
. v(A) = 0 since the non-consecutive components of H are independent. On the
* other hand if A = {}: u; < x,, u, :_x1+1} with u, > 0 and u, > O, then

-1 N
n'P(an, HEZA) n'P(Z1 22 > uy a 1, 22 23 > u, :n')

which by symmetry

-1 n n
4 n'P(|Zl 22| > uja |z2 -z3l > uya )

- |z, |
4 ln'P(lZZI(-u—lA
1

Iz,
Y2

)>gn|)
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f‘

- l2,] Iz,

. -1 = (» B v

A ~ b E( A 2) nP(lzll > a )

Y1
+ v (Qug, =) x (uy, ®)) = v(A)

2 where the asymptotic equivalence line follows from Breiman (1965) since

A lzll/\lzzl E
F E(-~——=— —— ) < = for some § > a. AlsoifA={,§:u<x}andu>0,thenit
- ul u2 i

is easy to check that

? v ((u, =) x R) 1=1

! v(A) = sz((u, ©) x R) - vz({O} x (u, =)) i=2, ..., k-2

b

! VR x (u, =)) i=k-1

§ =l 0

l‘ 1 N

3 Ny

[ and hence n'P(an, Wea-= n'P(Zl z, >an,u) > v(A). Using symmetry and the fact

—
L

that the support of v is contained in Pi’ i=1, ..., k-2, (3.25) follows.

For each fixed integer k > 3, we have

; v

z 2 U+ DV Y

TR SN i=1

where Uy =20y 1yre1 2a-Dk+2 7 o0 F 201 20 Vi T 2 Ziesr Y

Z_. zrk+l o2, Zn'+l) and r = [n'/k]. The Ui s are iid and since U1

has a symmetric distribution, we have from (3 25)

n P(lU | > I » z) + v ({5 e R - {0} :| z il > z})
i=1

PN SAADCHS IRt

(e 1T x| > 1)
=2z v({x: x| > 1})
VL™

Yy

‘ -a
. z (v1(|x+y| > 1) + u3(|x+y| > 1)
+ (k-4)v2(|x+y| > 1) - (k-3)v2(|x| > 1, y=0)).
. Setting g, (8) = v1(|x+y! > 1) + v3(|x+y| > 1) + (k=b)v,(|xty| > 1) - (k=3)v, (|x| > 1,

y = 0), we have

N s i e ae At aut s N i g e e e
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n—-1
a
r

r 1/a
Y U, »5S(g (8))
1=1 i k

where S is the symmetric stable distribution with index a (cf. de Haan and Resnick,

1/a

1984). Since Zr/Zn. + k /%, we then obtain

vl & 1l/a
a . 121 Ui "S(gk(e)/k)

and as k + », gk(e)/k + vz(lx+y| > 1) - vz(lxl >1, y=20) =: g(6) so that

$(g, (/101 = 5(2(0)M®.  Also since the v

' =
4 8 are iid and Yr Op(l), it

follows that

]

lin limsup P(|3 7] § Z 24 - f
kv n'ow t=]1 i=]1

Uil >e) =0

and hence by Theorem 4.2 in Billingsley (1968), we obtain

n

]z, z,,, *s@&O)
t=1

V-1
a

/a‘

The va:ue of g(8) is computed from the following lemma

Lemma. I1f for some sequence of numbers tj +> o,

P(lz, z,] > t,)
P(Z.] > £t & 7, 0 <8 :.(2E|21| ) 7, then
1 J
P(|z,(z, + Z Y| > t.)
2" 1 3 1 -1 a _ a
P(IZ,] > £ ~ 267" + Elz, + 2,]" - 2E{z,|°.

It follows from the lemma that

n
n'P(|2,(2, + 29| > & ,) » 2 +6(E|z, + z3|“ - 25[z1|°)

whose limit using (3.25) with k = 4 must also be equal to v(A), where
A= {x e R} - {0}: |x1 + x2| > 1}. But v(A) = vl((x, y): |xty| > 1) +
v3((x, y): |x| > 1) - vz((x, y): [xl > 1, y = 0) which from the definition of
a
Vys V, and v, 1s equal to v2(|x +y|l>1) +e Elzll + v2(|x| > 1) - vz(lxl > 1,

y=0) = vz(lx +y|>1) +0 nlzllu +0 Elzll°, so that v2(|x +y]>1) =

2 +6(E|z, + 2,]% - 4 E|z1|°), Hence g(8) = v,(|x +y| > 1) - v (Ix| > 1, y = 0) =

1+ e(slzl + 2310 -2 E|21|a) which 1s a 1-1 positive function of 6 on
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[0, (2 E|2)|®)7"] as asserted in (3.24).

Proof of lemma. Let G(t) = P(|Zl + Z3| > t) and F(t) = P(lZl| > t). Then by

Feller (1971), p. 278, and Cline (1983), Lemma 1.2, G(t)/F(t) - 2. For s > 0,

we have
P(]2,(z) + 2| > ) = P(|2,(2; + 29| > ¢, |2,] < t/s)
+ P(IZ?_(Zl + 23)] > t, Izl + 23[ <s) + P(|ZZ| > t/s, lz1 + 23] > )

t/s s _ _ _
[ G(t/y)F(dy) + [ TF(t/y)G(dy) + F(t/s)G(s).
0 0

Similarly,
t/s s _ _ _
P(j2; 2,] > t) = [ F(t/y)F(dy) + [ F(t/y)F(dy) + F(t/s)F(s).
0 0
Thus,

[p(lz,(2) + 2| > &) - 2p([Z; Z,] > &) - F(e)(E|z  + z3|“ - 2Elzll°)|/F(t)
t/s _ _ _ o s _ _
<[ [e/y) - F@/y|/F(FEy) + [E|z) + 2,17 - [ Fe/y)/F()6@y)|
0 0
s — o—
+ 2|E|21|°l - fo F(t/y) /F(t)F(dy)|

+ (G(8)+2F(s))F(t/s) /f(\t) .
On the set 0 <y < t/s, t/y > s so that for s sufficiently large |2 - E(t/y)/f-‘-(t/y)l < ¢
for all 0 <y < t/s. Hence letting t+ » through the sequence t’j’ the above inequality
is bounded by

P(|z, z |>t,) s s
e p([%lethJ +1Elz) + 21" - [ yPewenl+ 2|El2)|* - [ yPFaay)]
0

0

t oo

+ 8% (G(s) 4 2F(s))

and now letting s + », the bound becomes ¢ e"l since E|21|°' is assumed finite. D

L A
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4. Summary Lo
We now summarize;the_réthe; complete fesults describing the limit laws for
yF opre B A bt
the sample correlation function'A The process under consideration is Xt = 2 cj Zt-j’
j:-oo

where {Zt} is 1id with Z_ belonging to the domain of attraction of a stable

1

distribution with index a, 0 < a < 2. For simplicity assume E Z, = 0 if 1 < a < 2

1
and for o = 1 assume Z1 has a symmetric distribution.
Case 1. o = 2, Choose o and Bn so that
ne~2 E(z, 2,02 1 +> 1
n 1727 ]z z,]<8 ]
and
na 2 E 22 1 + 1.
n 1 [llejgn]
Then for h > 1, we have
n n n
-2 -1 -1
(@ “ Y 22,8 ) 2z Z_ ..y ..., B ) Z Z )
n ., t-n -, t t+1 n ., t t+h
» (1, Sl, SZ’ ey Sh)
where Sl’ SZ’ .. are iid N(0, 1). From this result, we obtain
-1 2
(4.1) (B, o (p(2) - p(2)), 1 <2 <h)=> (Y, 1< <h
where
Y, = T (o(2+3) + p(2-3) - 20(3)p(2))S,.
L b
j=1
1 -
If 02 = Var(Zt) < », then we may take a = n*o and Bn = n20? so that Bnl ai = n%.

In this case, (4.1) is the same as Theorem 8.4.6 of Anderson (1971) by noting

that (Y . Yh) has a multivariate normal distribution with covariance matrix

1’ * e
given by Bartlett's formula

rge = L O@E) +0G1) - 206G + o (ed) = 20(0 ()
j-

(-3

= T (p(g+3)o (k+3) + p(g=3)o(k+3) = 20(3)p (g)p (k+])

j-.—m

- 20(3)o (K)o (g+)) + 202(3)o(g)p (K)).

Mt et . NEES - e e L., . A et e . T e et T e T e e T .
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Case 2. 0 <a < 2 and EIlea = @, Define the sequences gn and a_ by
:n = inf{x: P(IZ1 22| > x) f_n-l} and a_ = inf{x: P(Ile > x) jhn-ll. Then for
h>1,

n

-2 , w1 § nvel @
(an 2 Zt' a Zl Zt Zt+1, cees B Z z

) > (S, S,, «cep S
t=1 t t=1 o’ "1’

t Zesn Y

where So’ Sl, vees Sh are independent; So is stable with index a/2 and Sl, oo Sh
are identically distributed withan g-stable distribution. It was then shown in
Davis and Resnick (1984b) that

(';;1 afl(r;(l)-o(z)),l <t<h) = (Y,1<2<h
where

Y, = 1 (o)) +0(-1) - 20 (0))S, /S .
3=1

1/

The scaling 2;1 ai can be written as n “Llﬁﬂ for some slowly varying function

Ll(°)-

Case 3. 0 <a < 2 and Elelu < @, Further assume (3.1) and define a by

a_ = inflx: P(lzll > x) < n"l}. Then for h >1

(-2‘2‘ -13:‘ -1‘2‘
a Z, a Z 2, .., ess, 8 Z Z ..) ® (S, S,y eses S;)
no5 t’> "n t=1 t t+l n oA t “t+h o’ 1 h

where So’ Sl, cees Sh are given in the statement of Theorem 3.5. Although So
is a/2-stable, and Sl’ eeey Sh-are a-stable, they are no longer independent as

was the situation in the above cases. Nevertheless, we still have

(a,(6(8) - p(2)), 1L <h) » (¥, 1<2<h)
where

Y, = 1 @) +o0-1) - 20(3)p(£))S, /S,
=1
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