
,AD-A148 975 MORE LIMIT THEORY FOR THE SAIIPLE CORRELATION FUNCTION i/i
OF MOVING AVERAGES..(U) NORTH CAROLINA UNIV AT CHAPEL
HILL DEPT OF STATISTICS R DAVIS ET AL. SEP 84 TR-72

UNLSIIDAORT-4i~ F92-2C08 / 21 N



Z' kr'v' W.- '-' b1 tf1..b T 'U~b ~ a b. * 3 .

0 128 12
W6 111-2

L 1& -

= 11111 1.8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

• '. . " , - " - ' , . . l . - . " i " ".*. . I - I - .



CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

Lfl

I *1A,C
00 0

More Limit Theory for the Sample Correlation

Function of Moving Averages

by

Richard Davis

and
~~1 Sidney Resnick .. ,

Technical Report #72 -- , 5

September 1984

84 12 13 024
. .. . -... .

t , .- -..-: . .-.- . , , - .L



REPRODUCED AT GOVERNMENT EXPENSE
U14CLASSIFIED

.ECURA'r CLASS-FICATIO% OF THIS PAGE

* REPORT DOCUMENTATION PAGE
t RPORT SECURITY CLASSIFICATION 11b. RESTRICTIVE MARKINGS

* UNCLASSIFIED_______________________
2a SECLRITY CLASSIFICATION A4UTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

Approved for public release; distribution
2t, DE Z-,ASSIFICAT ION. DOWNGRADING SCHEDULE unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSE RkSi

TR #72 AFOSR-TR. -'5
.a NAME OP PERFORMING ORGANIZATION b. OF FICE SYM50OL 74. NAME OF MONITORING ORGANIZATION
University of North fIfapdcable.

CarolinaAir Force Office of Scientific Research
6z ADDRESS IC61). State and ZIP Code, 7b. ADDRESS (City. State and ZIP Code)
Statistics Department, Phillips Hall, Directorate of Mathematical & Information
039-A, Chapel Hill NC 27514 Sciences, Bollinig AFB DC 20332-6448

fia NAME OF FUNDINGISPONSORiNG lbi. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM4BER
ORGANIZATION fit applicabjel

AF-CR NMF49620-82-C-0009
SC ADDRESS eCtf. State and ZIP Code, 10. SOURCE Or- F UNDING NOS

PROGRAM PROJECT TASK WORK UNIT
IELE ME NT NO. NO NO NO,

BcIing AFB DC 20332--6448 61102F 2304 A5
i I TITLE JAC6,Mac ecu t Classifcation#

MORE LIMIT THEORY FOR THE SAMPLE CORRELATION FUNCTION OF MOVING AVERAGES
2 PERSONAL AUTHORISI

Richard Davis and Sidney Resnick

'8. SUPPLEMENTARY NOTATION

'7 ~COSATi CODES is SUBJECT TERMS ICOntinuefri reverie ifflecessam' 0 adentityv ~hnmr
* P~ELD GROUP SUB OR Sample correlation unction; regu ar var a ion;-s abl as

moving averages; point processes; ARMS models; central limit
theorem.

* 'B3 ABSTRACT -Continue on reverse Ijfnecsrsa a nd identify by bioc
t 

number,

Let X c Z .be a moving average process where (Z tI is iid with common distribution
t j- j t-j a

in the domain of attraction of a stable law with index a, O<a<2. If O~cE<2, EIz 1i < -and

the distribution of 1Z11 and 1Z1Z2 I are tail equivalent then the sample correlation func-

tion of {X t} suitably normalized converges in distribution to the ratio of two dependent

stable random variables with indices a and a/2. This is in sharp contrast to the case

*EIZ 1 1a = . where the limit distribution is that of the ratio of two independent stable

variables. Proofs rely heavily on point process techniques. The authors also consider

the case when the sample correlations are asymptotically normal and extend slightly the

classical result.

* :2 DIS.lBILTIC.NYAVAILABILITY OP ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION

* ~CLASSIFIED UNLIMITED rSAME AS APT. -_ TIC USERS C3 UI4ThASSIr1ED
:2& NAMEi OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 2 2c OFFICE SYMBOLIMAJ Brian W. Woodruff (0)77 07N

00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. .- UNCL.ASSIFIED

84 12 13 02 SELURTY CLASS~rICATION f'c THIS DAO

84101 2



Tlii:. t

For

More Limit Theory for the Sample Correlation Function of Moving Averages

By

* ** 'T :: .

Richard Davis and Sidney Resnick
. " " ' :' Co,3s

Colorado State University G r

Abstract

Let X c Zt-j be a moving average process where {Zt) is iid with

common distribution in the domain of attraction of a stable law with index a,

0 < a < 2. If 0 < a < 2, EIZ 1I < - and the distribution of IZ11 and 1Z1 Z21

are tail equivalent then the sample correlation function of {Xt I suitably

* normalized converges in distribution to the ratio of two dependent stable

random variables with indices a and a/2. This is in sharp contrast to the case

EIZ 1 ja = - where the limit distribution is that of the ratio of two independent

stable variables. Proofs rely heavily on point process techniques. We also

consider the case when the sample correlations are asymptotically normal and

extend slightly the classical result.

r0 Short title: Limit Theory for Moving Averages
6
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Keywords: Sample correlation function, regular variation, stable laws, moving
averages; point processes, ARMA models, central limit theorem.
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More Limit Theory for the Sample Correlation

Function of Moving Averages

1. Introduction

Suppose {Zt , - < t < -} is an independent, identically distributed (iid)

sequence of random variables with regularly varying tail probabilities. More

specifically assume

(1.1) P(1Z11 > x) - x-a L(x)

with a > 0 and L a slowly varying function at - and also assume the tail bal-

ancing condition

(1.2) P(Z1 > x) P(Z1 < -x)
P(1Z11 > X) *

+ p and p(>z11 > x) q

as x +, 0 < p 1 1 and q - 1 - p.

Given a sequence of real numbers {cj, -< < j < m} satisfying mild conditions

(which for instance are always satisfied for ARMA processes) the moving averages

(1.3) {xt' - < t < W) W ( 1. cj Zt_ j , - < t < -
i-- i

exist as a strictly stationary sequence. The sample correlations of {Xt }

defined by

n-h n
(1.4) p(h) I X X~ I X2, h > 0

tm- thtl t

are the objects of study in this paper.

In two previous papers (Davis and Resnick, 1984a, b) the weak limit be-

havior of functionals of {X.}, including the sample covariance function, was

discussed. In Davis and Resnick (1984b) the asymptotic limit distribution for

p(h) was derived under the assumption that EIZ 1 ' -* and 0 < < 2 and in

. . .. -. . . . . - .. -, .: :: -: . . .- . : : -. , . . . ...: . . . . . , . . :. ..-. . .- ..- . . . : - - . -. . -



particular it was shown that there exists a slowly varying function L(t) such

I.c

that if p(h):- X Cj c +h/ c2  then

V JJ_
n / LI(n)(p(h) - p(h))

converges in distribution to the ratio of two independent stable random variables

with indices a and a/2 respectively. Joint limit behavior of P(h) at various

lags was also given. The asymptotic behavior of P(h) was found to depend on

n
the weak limit behavior of the vector ( I Zt Zt+t, I = 0, ..., h). This vector

tal

converged to a vector of independent, non-normal stable random variables.

In contrast to the above case when EIZI = we suppose in the present

paper that EIZ 1 1
a < - and in section 3 we obtain the surprising result that p(h)

suitably normalized converges to a ratio of dependent stable random variables.

Joint limit behavior of (p(Z), I < I < h) is also given and as before depends on

n
the behavior of ( Zt Zt+ = 0, ... , h). Again there is a clear distinction

t=l

between the case where the a-moment is finite or infinite since in the case

EIZ~la < - we find this vector of sums of products converges weakly to a vector

of dependent stable random variables. Both the results and the methods of proof

are very different depending on whether E Zl a is finite or not.

Section 3 discusses these results which depend on point process methods.

" In addition we discuss some necessary results about tail behavior of products

of random variables which is a class of problems which has received significant

attention in analytic probability research. See Breiman (1965), Embrechts and

Goldie (1980, 1982), Cline (1983). Also in section 2 we establish the asymptotic

* normality of p(h) under the assumption E Z2 1 < t, is slowly varying at

Our results and methods unify and extend classical results where a finite

variance for Z is assumed.

• . * . .. .
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2. Sample correlations in the normal case

Let {Zt I be an iid sequence of random variables. Assume Z belongs to

* the domain of attraction of a normal distribution which is equivalent to (cf.

Feller, 1971, p. 313) the slow variation at infinity of the truncated second

| moment L(t) - E Z2 1 lt]. This in turn is equivalent to
1 E1Z11t

t 2p(I Z11>t)
(2.1) L(t)

Moreover if the sequence of constants a > 0 is chosen so that

(2.2) n a 2 L(an) . 1,

n n

then
n

. -l - (Zt - E Zt ) .N(0, 1)
n t t

(.denotes convergence in distribution). If c2 - Var(Z1) < - then we may

choose a - no otherwise we have a U- n' (n) where I is slowly varying with

L(t) - as t 4 -.

The goal of this section is to derive the limit distribution of the sample

correlation function of the process X - cj Zt- J . As will be shown below,

the weak limit of the sample correlation function can be determined via the
n n

limit distribution of the vector of partial sums ( Zt Zt 1 , ... , Zt Zt).
t-l t-l

I
First we note that Z1 Z2 also belongs to the domain of attraction of ai12

. normal distribution (Maller, 1981) which is obvious only if Var(Z I) < -. Now

let n > 0 be chosen so that

(2.3) 0-2n Elz Z21 21rZ 1 Z2 I_ n3

and observe that if Var(Z) < and E Z 0 then we may take Bnm n 2. On

* the other hand if Var(Z 1 ) -- , then (Maller, 1981)

(2.4) n/n - 0.
n n

ili . . .. : ::: . .: . . , . . -... . .. . . . ...
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* Proposition 2.1. Let {Zt } be iid with zero mean and assume L(t) = E Z2 1

is slowly varying. Then for any fixed positive integer h

(8in

n -IZ t Z t+ , 1 < k < h) w (NI , N2 ' ..., Nh )
t-l

where Ni, N2, ..., Nh are iid N(O, 1) random variables.

Proof. First we show that thekh dimensional vector

(Z t z t+ 1, I < h, 1 <t < k)

belongs to the domain of attraction of a multivariate normal distribution with

independent components. By Theorem 3.2 in de Haan, Omey, and Resnick (1984)

it suffices to show for s # t or i
I

(2.5) nB-2 E(Zt Zt+2  1 [Izt Zt+2. <8nX Z Zs l[JZs Z+i<BnY] )

- 0 as n - for all x > 0 and y > 0.

If Zt Zt+ £ and Z Z are independent, then (2.5) is automatic by (2.3) and

the assumption E Zt M 0. On the other hand if Zt Z t+ and Zs ZS+i are not

independent, then (2.5) is equal to

n8n 2 E(Z1 z2 
1riz I z2

1<BnX] z2 Z3 
1[jz2 zIl<_Y)

n 1  2 Z 1Zlz 1 z2i<3x] 2 3 
11z2 z31<-Bny] 1[Iz 2 1>c]

n-2 2 Z 3 1 I ~ ~ ](Z1caii+nn E(1 Z2 1[Jz 1z 21<_n x ] z2 z3 1[Iz 2 z 31<_ny]l[1z 21<_a]

+ n13 E(Z1 Z2 I[Z ZZ8 Z [IZ
A,,. A+ B. I

4 We have

IAI < nB 2 82 (xVy)p(jZ2J •

[ (xVy)nP(IZ 21 > an ) -0 0

by (2.1) and (2.2). As for B, we have

-2 n t2 (E Z  E Z y/t)(z 2Icdt).
JB O12

L--.,,'~~~~~ 0- .. .. ."[< :iJ,. . ",> -- J!',i .O n '"'" 3-" -i- "i- 3'- .i "- 'in --/t".3-
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, n-2 -4)

If Var(Z ) < -, then by the dominated convergence theorem, (note n - a ,
t n

IBI +0. If Var(Zt) = , then

ID! (EI11)2 U-2:. I~BI <_(EZzl> ESz  Z' 1czin
E 1 [1Z11<cJ

-2i . (,+lz, l11 2(an S > -2 P, Z2 1E z I_ n
- (E IZ n / 0 n) n n E Z O 1 1z 1 a n_

0

by (2.2) and (2.4), which establishes (2.5).

Now for a fixed k c Ih, define the h-dependent sequence by

Yt = X1 Zt Zt+l + X2 zt zt+2 + ... + Xh zt zt+h"

For each fixed integer k > 2h, we have

I
n r r-l

Yt I U 1 + I V + (Yrk-h+ + ... + )
tl i=1 i1 n

-where Ui - Y(i-l)k+l + "'" + Yik-h)' Vi i (Yik-h+l + "" + Yik) and r - [n/k].

The Ui are id and by applying the first part of the proof, we have

ir
81 1 U eN(O, (k-h)(X2 + + X2))

r i h.
. I=1

and since 8 /a -

r n

81 ~ U N(0, (-h/k)(X 2 + ... + X2 ).

n h

The same reasoning also gives

-n 1 
v  N(O,(h/k)(A2 + ... + X)).

The piece (Yrkh + ... + Yn) is a sum of at most 2h terms and hence is op(8 n )

so that for every c > 0

1 ln-8 - o c- o.
.. k n °  t1 £ii

I,

2,I
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KFinally, we have N(O, (1-h/k) (X2 + ... + X~2)) N(O, X2 + +1)a
1 h h .+)akeso that by Theorem 4.2 in Billngsley (1968),

1- n h n

- i- 'i h z zt a +N(O, X2 + + h)

which completes the proof by an appeal to the Cramdr-Wold device.

We now consider the moving average process

xt X zJ t-J

where the Zt 's satisfy the assumptions of Proposition 2.1. The coefficients

are assumed to satisfy

" 0 OD

* (2.6) IC I < - and cj IJ[ <

where y - 2 if Var(ZI) < otherwise 0 < y < 2. Define for h > 0 the sample

correlation function

p(h) - C(h)/C(O)
+n
"n o c

w ere C(h) X  X Set p(h) , c which is the correlation

• [,[function for {X ) if Var(Z) < -
.jU-.

-2 P C2* 2.7) at C(O-+ i ~

nn-2 n t
n twl ix--w

•n OD n

:::i:-i :i i:: ni!  :i I  I .;i t; .i -. : : i ..t :

0

• K . *.• +



I.I

" -2
" (2.10) 2 Z z2 £ 1.

n t

The difference in (2.8) is a2 n C Z Z and if Var(Z thenntil I tJi -

n/a - 0 so that EIcLn 2  iJ ci czt~ ztj < n/Ci(. Il) lz 2 Z 0
tail ij i

i~j

proving (2.8). If Var(Z1 ) < - then it is easy to show that the variance of the

difference in (2.8) goes to zero. The difference in (2.9) is a2 c2
cn i=-

n-i n
where U = Z- Z2 is a sum of at most 21 random variables. Since

t=l-i t-l

EIZ 1 Y < - where y is defined in (2.6), we have

OGo

EIa 2  cC2 c lU1 V" < 2z-Y 1c1 il EIZ 1IY 0 0
i n-n

giving (2.9). Finally the weak law of large numbers yields (2.10) (cf. Theorem 2,

p. 236, Feller, 1971).

For a fixed X>1, set i i(c j+2  c p()),i -0, ±1, ±2, ... ,

j =I 2 .. Then

2a'^- n Z(2.11) 1 -(() n n - P(M) - [C(0) ] - 1  I I 1ij Zt-i Zt-i+j) 0

t=l J#0 i=-r

and for each j > 0

2s , n o0 Ca

a ( " ( I ', , zt.zi j + . Z ZtiJ)
t=l i=-0=

(2.13)
n

- + (i + ,-j t ZtJ) ) 0.
ii -  tuj

These two results together with Proposition 2.1 and the continuous mapping

theorem suggest that

[

I

t, .° t": .. ? : . . ? - " " ".
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S

m C

OL2 (P9) P 01*, N C,:."--l; n n -°) °  ( (i•+ i•-J)j/ .
J=l i-- jm-

= (p(Z+j) + p(k-j) -2(J)p(Z))N

j=l

where NV, N2 , ... are lid N(O, 1) random variables. This is in fact the

content of the following theorem. The proof of this theorem as well as (2.11)

and (2.12) are only slight modifications (take 6 - y) of the arguments given

for Proposition 4.1, Proposition 4.3(i) and Theorem 4.4 of Davis and Resnick

(1984b) and hence are omitted.

Theorem 2.2. Suppose Xt = c Zt -j where {c ) satisfies (2.6) and {Zt ) is

an lid sequence with zero mean and L(t) - E Z2 lI < t] is slowly varying.

If a and 8 are chosen to satisfy (2.2) and (2.3) respectively, then for any

n n

h> 1

n2n-(p(R) - (9) , I < k< h) * ( ((£+j) + p(9-j) -2(j)p(-))Nj I < h)
j=l

where N1 2 ... are lid N(O, 1).
1'

.- ' .'0
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3. Sample correlations and regularly varying tall probabilities

n
In this section we examine the weak limit behavior of( I Z Z 0 < I < h)

t=l

under the assumptions that {Zt I is iid satisfying (1.1), (1.2) with 0 < a < 2

and also that EIZI1 V < - and

(1l P(Z 1 Z2 1 > t)
(3.1) lim p(IZI > t) 2EIZIa.

Thus the distribution of logIZ 1 1 is in the class S studied by several authors

(Chover, Ney, Wainger, 1973; Embrechts and Goldie, 1980, 1982). If a finite

limit in (3.1) exists, it must be of the form 2EIZ 1
1 (Chover, et al, 1973). In

n
studying the behavior of I Zt Z t+ it becomes clear a limit distibution does not

t=l

exist when EIZ 1Ia < - without (3.1). It is interesting that the class S achieves

interest from an additional perspective. See also Cline (1983).

It is difficult to get a decent characterization of when (3.1) holds but

the following needed fact can be gleaned quickly. (Cf. Embrechts and Goldie,

1982 and Cline, 1983.) Suppose (1.1) holds and we write for t > s > 0

e(jz1 Z2 1 > t) = P(1Z I Z2 1 > t, IZ2 _ s)

+ P(IZ I Z2 1 > t, s < IZ21 < t/s)

+ P(1Z 1 z21 t, IZ2 1 > t/s) - I + II + In.

Now III may be written as

P(IZ I Z21 A IZ2sI > t)

.F((IZ^IA51)Z 2 1 > t).

Since lZ1 A a is bounded, a result of Breiman (1965) (a simple dominated

convergence argument; see also Cline, 1983) gives the above asymptotic to

" I: 
: : i
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i.-. n, E(JZIA sl4)P(IZ2 t)

1 21

as t-.o For I we have

SP(1z11 > t/y)
d/P(sZob > t) f P(dZmI > t) P(zge we dy)

and so by regular variation and dominated convergence we get as t

s
': I f y, p(Iz 21 6 dy)p(Iz1 ] > t).

(By letting s - . we see that liminf P(IZ I Z21 > t)/P(1Zl1 > t) > 2EIZ 1 [.)

Since we know by the Chover, Ney, Wainger (1973) result that the only possible

finite limit in (3.1) is 2E(IZ 1 a) we obtain the following result.

Proposition 3.1. Suppose (1.1) holds and E(IZI[) < -. Then (3.1) holds iff

(3.2) lim limsup P(jZ1 Z2 1 > t, s < 1ZlI < t/s)/P(IZI > t)

t/s P(1zl > t/y)
lim limsup f P([Zlt > t P(ZI[ e dy) = 0.
s-M t-+M

n
* We now commence a study of the weak limit behavior of ( Z 0 < z < h).

The method of attack uses point processes and useful background on this subject

and its relevance to limit theory is contained in Neveu (1976), Kallenberg (1976),

_* Resnick (1984), Davis and Resnick (1984a, b). We set M (E) equal to the space
p

of point measures on the Euclidean space E and metrize M (E) by the vague metric.
p

A point measure on E is a Radon measure on E of the form C x where c E andI XlI

for a Borel subset B C E we have x(B) 1 1 if x c B; 0 otherwise. A Poisson

process on E with mean or intensity measure V will be denoted PRM(G); i.e.

Poisson random measure with mean measure p.

". We begin by supposing R :-[- , 0)J(0, ®] is topologized so that neighbor-
0

hoods of - are compact sets; i.e. on the positive half axis the usual roles of 0

0

, ' "' ". ' ""*' .".- ." .'" " -. '"" .. ". .." ""'. . .. .' .'-.'.". " .. "".. .". " "" " " ""



and - are interchanged and similarly for the negative half axis. Set E -R x It
md

and suppose is PRM onR with mean measure ).(dx) = (pax - - 1 (0 .](x) +

qa(-x) I(., 01(x))dx. Lastly define an to satisfy

(3.3) an - inf{x: P(1Z11 > x) < n-l.

Proposition 3.2. Suppose (1.1) and (1.2) hold and set

'kn n (a Zk, Zh, ... , ,Zk+ , ... ,

and suppose further that

q(k)} ,(Z(k) z (k) z k) (k)
{Z ) = {t-zh, ... , L~, zk,.., )-

is an lid sequence of 1R2h valued random elements and the components 
in (k)

are lid and distributed as Z . The sequence {Q I is assumed independent of

the point process " 6k Then the following weak convergence result in M (E)

k=1 Jk p

holds as n

n . I (k)"
k ,n k=l Q k' )"

Remark. The limit point process is PRM on E with mean measure V(dx, dxh,

dX~~ , .. dx i', dXil' "''dxh) : X(dx)F(dx h)Fdx h+l) ... F(dxl)F(dXl) ...

F(dxh ).

Proof. It suffices by Theorem 4.7 in Kallenberg (1976) to show as n -

2h )  2h(3.4) nP e nA x "B (A x .B.

where A - (x, -] or (-a, -x], x > 0 and B2h is a bounded 2h dimensional rectangle

and also
n

(3.5) P( k (R) - 0) -o P k (R) -0)k-1 Z,n k-1 (Jk' )

where R is a finite union of bounded rectangles in E. Since in case A - (x, -]

lnA A x B2 h - nP(a I Z1 > x)F 2h(B 2h) (82h is product measure), we obtain

-_-l~ n. . 1.. . . -. . .. .
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(3.4) immediately from (1.1), (1.2) and (3.3) so we focus on (3.5). Since the

sequence Z. -0 < i < -} is 2h + 1 dependent a standard argument (cf. Lead-

* better, Lindgren and Rootzen, 1983, chapters 3, 5) yields

(6k [n/k] )

(3.6) p (R) =0) - P( I E (R) 0) 0ill Zi,n i=1 Zi,n

-* for any k as n - . Furthermore by a Bonferroni inequality

[n/k]
[n/k]P( ineR) - [n/k] P(%ln R, Zi,neR)

i=2

[n/k] rn/k]
< P( U [Z1  eR]) =P( I C (R) > O)

-I= n i=l i,n
< [n/k]P(Zl,n eR).

* Since P(l,ne R, Zi,nG R) can be dominated by a probability based only on

a Z and a-I Z. it readily follows thatn- an n 1

[n/k]
limsup [n/k] I P(Zl,n & R, inR) - o(1/k)

and hence applying the natural generalization of (3.4) to finite unions of

disjoint rectangles we obtain

En k]

1 k-li(R) < liminf P( f &- (R) - 0)
n-), i- i i,n

* [n/k]
<limsup P( I e (R) =O)

i-l Zi,n

< (1 k P(R) + o(l/k))

for any k. Raising all sides of this inequality to the kth power, letting

k - ® and then applying (3.4) gives the desired conclusion (3.5) since we

obtain from (3.6)
6

n C
n -v R )  k-i ek' 'kP( (R) 0) 6 - p( (R) 0)i'=1 Zi,n 1a (Jk ) "
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Corollary 3.3. If (1.1) and (1.2) hold then

n n n

Ie -2  2' & 1 , I e a I ,-1- 1, .. )
k-i an Z k-i (a Z. I_,i) k-i (a Zk, Zk+

([ X ,n e e Z-1, ... ,

k=l j2' k-l (jk z(k))kl 1 Jk (k))

ki k i k -t k- J~k' Z

in M O) x (H o x]R))2h where the last factor is the 2h-fold Cartesian product
p 0 .

ofM OR° x).
p 0

Proof. First restrict the state space in Proposition 3.2 to the compact set

K - {z: IzI > s x [-s to obtain
s

n c
k-l k n(Ks(I) w 1 6 (k) (Ksh ").

1k- (Jk' 'k

" Because the state space is compact we get by a variant of the continuous mapping

theorem (Resnick, 1984, Proposition 1.1) that

n n n

* -2  2' e 1l *K] 1 -l [ K I'
- k=l a z3 k-i (a- Z, 1 [k,n s k1i ( Z Z z  [Zk,n s

.' Zk-t) k' k+n)

"i £ =1, .. ,b)

k=l j2 ' k-i j (k) 10 () CK I k-i ( z (k)) 0( (k) f;K 1
~'~6k ~ k'Z ) -t k ) sk' X. 'ks h)

I' t~l ...,b).

. Since the right side above converges to the desired limit as s ® an application

" of Billingsley, 1968, Theorem 4.2 yields the result provided we show for any n > 0

n n

lim limsup P[P( - , e - 1 )> n] - 0

k-i (an zk, k-i (an Z Zk+u) [ &,n 6 K]

for any uG{-h, ... , -1, 1, ... , h} where p is the vague metric on M p O x3R).

Let f be non-negative and continuous with compact support on 0 o x R; we take the

support contained in {z: IzI > a- 1) x [-a, a] for some a > 0. Because of the

definition of p (Kallenberg, 1976, page 95) it suffices to check

. ... .. .. . **. . . •* * . . -. . . i - . •
-" .' " . . . - i .' . * " ' .'- " "* "" " " "" . .. .. .
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urn limsup P[ r f(a , Z. Zk Q [ f( Z Z I
s-, n-bm k 1 k=i 1k, Z ) [k,nLKs)

n
-lim limsup [I f(a 1 k Zki+ lr nK]C -n1]KO.

ns- -n- k.

,m The above probability is bounded by

P(L) an Z - I a k Ks )
'L n L -k+u< a' Zk,n K
k-i

which by subadditivity and stationarity is

< nP[Ia -  Z I > a-, z I < a, # K]
n 0 u _ Zon s

< nP[an1  a < a,-1

1 n a _ n

nP[Ian Z I > a- , IZ < a, IZRI > s].

The first term is zero if s > a and the second piece with the summation is

< 2h P[jan 1 Z > a-1 ]P[IZ I > s]
nI 00

- 2haCP[IZ I > S]

as n - . Since this last term goes to zero as s - - the desired result is

obtained.

We now study a collection of point processes of products.

roposition 3.4. Suppose (1.1), (1.2), (3.1) hold and EIZ 1Ia <. Then

n n(3.7) 1 i' £ "i , h) =

k=l an Z k- (an Zk Zk+)

"" [e [£+ . ) , h)
k-1 2 k-1 j Z(k) k)

k k I kt
-o h

M po p h

" M 4 O R 0 - - .

• '• . ."- , • _ " • -' -. " . ..**• - ,,. * * > $. •% . ' t. • .& '
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Remark. For each I E (-h, ... , -1, 1, ... , h) we have 6 (k) is PRM(v)
k-i Jk Zt

onR and for x > 0
0

v(x, a.) = xa(pEZ 1IZ 1 > O + qEIZl~Q1Z <1

--a, -x) Ix - 1 1
-x)Z -[Z 0] + PEIZI 1

1 [Z1 p l[ Z 0]'

V{z: IzI > x) = X-aEIZ Ia.

Proof. Making restrictions to the compact sets K = {Z: In > s-1  [-y, y] weB,Y

get from Corollary 3.3

n n n
(Ks,-( '), E (K A),

k 1 : anz k . k=l (a z Zkkd k I (a n Zk, Zk+k)

9 = 1, ... , h)

k-l j2 = ( k-1 Z )

S 1, .. ,h).

The map (x, y) - xy applied to the points of a point measure with compact state

space induces a continuous map on the space of point measures with common compact

state space (Resnick, 1984, Proposition 1.1) and hence

n n

k.8) a 6 ,2 Z2 ' a_ [(a Zk=l kan ki a n Z -k k-C n k ki)f K s

n
I a - [ , 9 1, ... , h)k=l a z z [(a 1 zk, 6

n Zk k+. n Zkk+ Ky, s

0 .
1 1~ f j2 I C- (k1()

k-1 k-l Jk Z-t k Z )& K s,

k -l I (E [ k, - 1, .. , h)

k k' 9. ) ,s

in p((0, -]) x Mp0o ) 2 h . We now remove y from the relation (3.8) by first noting

that as y - - the right side converges weakly to the corresponding expression

with y = - and in order to apply Theorem 4.2 in Billingsley (1968) we must check

.":" " . - . i . .
S . . . . ... . . . *. . . . . .. .* .
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for f non-negative and continuous with compact support on]R and for L 1, ... , h
0

(3.9) lim limsup PE 1 k k- )1 0

n-- k=l a[I. Z ki > s1 , IZk_ >

and

(3.10) lim limsup P[ I f(a 1 Z Z )l[ 0

y-w n-* k=1 n k k+isa Z1 _ Z s 0

for any n > 0. Supposing the support of f is {z: IzI > a) we have the probability

in (3.9) is bounded by1-1 -1, I • Y]
nP[!a n  Zk Zkzl > a, la'n Zk > s I Zk_, >

< nP[Ia n Z k > S-l]P[JZ k-;, > y]

a scP[ZI > Y]

-*- which goes to zero as y - . The probability in (3.10) is bounded by

nP[Ian1 Zk Zk+Zi > a, lan Z kl < y1,IZk+tI < s]

and for s/y < a this probability is zero. We may thus rewrite (3.8) with y

as follows:

nl n

(3.11) ( -1 -
k=l a Z2  k=l a Z Z [la-l • s-1

n k n k k-t k
• n

-1 1 , , 1, ... , h)
k=l an Zk Zk+Z [IZk+tl z s]

2' 1_> ] k ,i jz>k) 1
k=l jk k=l Jk Z-1 E [k] I s kil J k Z Z I <

- ' £ l, ... h).

On the left side of (3.11) take the process corresponding to-t as subscript,

*,[ change variables to k' - k - L, and add the result to the process corresponding

" to +Z. After adjusting for o p(1) terms we get from (3.11)

| - p

[6
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II n

(3.12) k- a z k (1+ 1

k- n ~k i an Zk Zk+1 [Ik+tI a 1 nZk4l s]

k -j k-1 E k) I z~kl" s]-lz(k

9 = 1, ... , h).

As s - the right side of (3.12) converges weakly to the right side of (3.7).

The desired result (3.7) will be proved via Billingsley (1968) Theorem 4.2 if we

show for f > 0, continuous with compact support in fz: Izj > al that for n > 0 and

1 = 1, ... , h
-1

(3.13) lira limsup P[E f(an Zk Zk+) 1 -1 > s-l]}c >  0.

- ~ k=iZ k {lZk+, s]U[anIZk-t,

The probability in (3.13) is bounded by

np[a-llz k ZR+tI , , l ZR+tl <_ a/s
n KK+L

and the desired result thus follows from (3.2).

We now sum the points in Proposition 3.4.

Theorem 3.5. Suppose (1.1), (1.2), (3.1) hold, EIZ1 1 < , 0 < a < 2 and set

b n E Z1 Z2 1 
. Then in-R h + l

(i) For 0 < c1 < 1

n

I (a -- Z a Z Z - 1, ... , h)
k=l n k"n k k+t.

j2' I j (z + ... ) h)
k-i k klki

=: (S , 59. + U hh

• " si t Z_ -1 , h
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0

(ii) For 1 < a < 2

1 (a- Z2 , a-(Z Z -b I h)
k n n k k+ n

j2' jz(k) 1
k=l k=l k - Eli (k)l1

+ lir ( L z  1 - aEIZlIa(6 - 1)/( - 1)))
\6 -*0 k=lk - k  z(k) I (6, 1

k -

+ I j k z 1 1 O

lim( z (kZk ) 1 - aElZ lla(6- (a-1) -1)/(- 1))), £1..h
@.6-0 k-l [k z (k ) l C (6, 1]

(So, 0 + 9. = 1, ... , h)

=: (So , Sp, 9, = 1, ... , h).

(For ai i, interpret the above formulas in the obvious way; for instance by

-. letting a + 1.)

Remark: The variables (Sop _ , , - 1, ... , h) are depefident due to the

"- presence of the j's in each. Each of the variables S .£, E9, S, - ,... h)

is stable; S is stable with index a/2 and the rest are stable with index a. The
0

. representation of C_, or C. given above is the Ito representation of an infinitely

divisible random variable, cf. Ito (1969).F-' Proof. Based on Proposition 3.4, it is clear how to proceed; cf. Davis (1983),

*• Resnick (1984). Continuously map the points which in absolute value are bigger

than 6 of the point processes in Proposition 3.4 into the sum of the points.

[* Adding a centering for the case 1 < a < 2 we obtain
i

4[. .
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=Z (a: 2 Z2 1 ,a ZZ 1 -
k-i n k [la 2 Z2  6] n Zk k+t [Ia- ZkZ > 6]

n kl n k k+.

Ea -n Zk i ,c(6 = ... h)

. J 2  1 (1 z (k ( ) 1 + Jk z (k) 1Ik

k~l > 1* ~l -kz () k I (k),>6k-- ClJkl > 6] k-ik Z( "_ [dk Z 1

(a1

- 2aElZil"t(6 - (l) - 1)/(a - 1), t - 1, ... , h).

As 6 - 0, the right side above converges weakly to the desired limit in (ii).

The result will be proved via Billingsley's (1968) Theorem 4.2 if we prove for

any n > 0

n 1n n _ 1
lim limsup P[ I a (Zk Zk+i - bn) - an(Zk Zk+ 1
6-0 n-  k-1 k- [Ia n 1 Z Zk+ > 63

-E Zk Zk+Z 1 [ja1 Zk Zk+t c(6, 113 >]

n 1
= llm limsup P[ I a ( Zk+ 1

6-0 n- k-i n k la- 1 Z +<6]

[ ~~ kI zk k+[ <
E EZk Zk+t I [I.-' zk z I <. 6)1 > o.

Since {Zk Zk+i,-- < k < w) is i-dependent, this is handled as in Davis (1983),

pages 265, 266.

The case 0 < a < 1 is handled similarly without the need for centering. 1
We now consider the weak limit behavior of the sample correlation function

of moving averages of the Z t's. Define as before Xt - cj Zt- where {)

satisfies (1.1), (1.2), (3.1), E -IZ 1 
0  ( , 0 < < 2 and

(3.13) Ica~li < O if 0' a < 1

. "-. ' " . -....- .- .' . '. . .-- "..- .".--'-."-. *.. ... i " " ." . - '- . - . '''" - ' ' "•-
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J1 fcil-ci <1I W for some 0 < c < 1, if a-1

j! Ic 1c, l I < and j'I I < if 1 < a < 2.
j ,

c i cIEZl <  for a E .1 < if 1 < a 2.

i.._ J=-J

Recall the sample correlation function is

ao p(h) C(h)/C(), h > 0

where
n

C(h) - X~ Xt~
t- 

t

* and as before we set p(h) c1 Ci~ c2. In Davis and Resnick (1984a) it was
P 1

* shown that p (h) p, p(h). Here, we shall show that a n(p (h) p p(h)) converges in

* distribution where la Iis defined in (3.3).

nn

(3.14) a2n (C(0)- C c 0

[..1

and

E|n

(3.15) a- 2 (C (0))' c2 S
n

where S0is defined in Theorem 3.5. If we set i' - ci(c ...1+.t c i..j P(0)) for

i - 0, ±1, ±2, ... , j - ±1, ±2, ... then we get for every positive integer

R1 s lnn

(3-16)eac a n(0(L) - o - (C(O)) tij z t -. i z t 4 1~) 0 - *

an forea h) = )C) > 0
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1*
n 0n

(3.17) a- Z Z )-Z-i.-. n tjZ t-i j + i i,-j Zt-i Z--

CI n
jw(*ii + * i  ) t zt +j

* The proofs of (3.14) - (3.17) are practically identical to the proofs of the cor-

responding results given in Propositions 4.1 - 4.3 of Davis and Resnick (1984b)

- (by either setting 6 =aor 6 1 1), and hence are omitted. Our main result on

limit distributions for sample correlation functions is now stated.

Theorem 3.6. Suppose Xt = c.Z where {c.I satisfies (3.13) and {Z I~tJ
satisfies (1.1), (1.2), (3.1), EIZ < and 0 < a < 2. Let an be given by (3.3)

and set b = E Z1 Z2 1[ l Z 2 < an] if a > 1 and b = 0 for a < 1. Define for

:" 2 > 0, d = 2n (p(+j) + p(-j) - 2p(j)p())( c c.)b and Y =

(p(Z+j) + p(i-j) - 2p(j)p ()) S. /S O where (So, S., j = 1, 2, ... ) is defined
J=l

h
in Theorem 3.5. Then in]Rh ,

(i) For 0 < a < 1,

(3.18) (an (p() - p(2)),l < . < h) * 9Y, Y2 1 ".' Yh ) .

(ii) For 1 < a < 2,

" (3.19) (an (p(Z) - p(Z) - d, n /C(O)), 1 < R < h) ; (Y1 9 Y2 9 ... Y )

If either 1 < a < 2 and E Z 0 or if a = 1 and Z is symmetric about zero then

- (3.19) holds with d ,n = 0, Z = 1, ..., h and a location change in the Y 's.

Proof. The proof follows the proof of Theorem 4.4 in Davis and Resnick (1984b).

First, from Theorem 3.5 and (3.14), (3.16) and (3.17) we have for any fixed

positive integer m,

I ~ ~(3.20) (a 2C(0),a <Jl_ ~ = '

n

r c* -;1:.. m - - *C2 S-- jl-% (* i ' j + 'i-J)

J. i.
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The next step in the proof is to show that (3.20) remains valid with m replaced

by and then use (3.16) to determine the weak limit of an (p(h) - p(h)).

The limit in (3.20) is true with m replaced by provided (cf. Theorem 4.2,

Billingsley, 1968) that

(3.21) lim limsup P(anl n . i(Zt-i - b 0
n-- n-- n i z>m tii - dbnl > ') =0

for every y > 0 and

m co 
co Go

(3.22) 1 (4,. + -  .s. I J( + )S.1=1 i=- -3 j=l i=- 'i i,-j j*

The verification of (3.21) is the same as in the proof of Theorem 4.4 in Davis

and Resnick (1984b) and hence is omitted. As for (3.22) we consider three
m 00

"" separate cases. For 0 < a < 1, - (iPj + Pi, )S. .,as a stable distribution
J=l i -

with Levy measure (cf. Resnick, 1984) given by E I (1,,j + *i,-j)Z a X(dx)
~J.1 "=---jl o

* where recall X(dx) is the mean measure of the PRM Sk Now since

Y0 ( -Mi'i + i Z. - I L(IIi,j!0 + I, 1,jl)EIZl < the L~vyJ= 1i -  'J -J J  -j=l fc

measures converge and hence the corresponding characteristic functions in (3.22)

converge as desired. Also, for a 1 i

I ! * .J+  1)s -C , I .l-C I 1%_l-C) l- 1 -
•j i=-o '-j -j li--

and for 1 < a < 2
' -i

El I X (I', +  I1S I 1 (l' I+ I* llElsl
J-l if-- i,-J -1 i-i +J i,-J

so that we have a.s. convergence in (3.22) for 1 < a < 2.

4

- To complete the proof, observe that dn - n0 -( FJ+ i,-)i and hence

..... .... -........................ .,.. .............................
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by (3.14) -(3.17) and the continuous mapping theorem

n 00

I I % + ~i~)Sj I C? S)
J=1li= i=-001

The proof of joint convergence is a straightforward extension of the above

argument.

Following Davis and Resnick (1984b) we can also derive the limit laws of the

mean corrected version of the sample correlation function defined by

n
n

O =z) (X t - X)XX + - X)/~ (X t- X)2

t=l t-l
n

where X X X/n. For 1 < a < 2 we have
t~

(a n(P(2M~ - P(2M, 1 < k <h) (Y, I. < £ < h)

* and forO0< a < 1

(n -, p (e)), 1 < Z. < h) ((p(.)-1,1_ < h( c) 2S2/( cS)

j=-CO1 0

*where S= I
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4

- Remark. Define a= inf{x: P(jZ 1 Z2! > x) < n-}. We now show that (3.1) is
n- 1- 21

necessary in order for an  t Z t+I to have a limit distribution. Suppose for

the sake of this argument that Z has a symmetric distribution satisfying (1.1)
n

and E:z1 L < - and that an  Zt Zt+l converges in distribution. It follows that

Z I Z2 also has a symmetric distribution, that IZ1 Z21 has regularly varying tail

probabilities (Embrechts and Goldie, 1980) and therefore that Z1 Z2 belongs to the

domain of attraction of a symmetric a-stable distribution. We first note that
~p(1Z 11 > t)

(3.23) P(Iz Z21>t) converges as t -

if and only if

[- ~p(Izll>
*i" P(1Z1 Z>A " n P(IZI > an  converges as n -.

From the argument given at the beginning of Section 3, we know that

liminf P(Z Il Z2 1>t) a I
* t- T(Z 1 l > ) > 2 EIZ 1 I . Thus, suppose n'P(jzlj > a,) 0 8 for some sub-

I sequence n' - where 0 < e < (2EZ 1 1a)-. We shall show

(3.24) a, I Z z S(g(e))l
n t=l t+l

* where S is the symmetric a-stable random variable with characteristic function

eit1 and ;; > 0 is a 1-1 function of e. Once this is established, then clearly
*n

the convergence in distribution of I Z Z /a will preclude the two distinct
tl t+l nt-l

limit values in (3.23).

If 8 - 0 then with a defined as in (3.3) it is easy to show that an,/an, CI n

The argument in Section 3 of Davis and Resnick (1984b) can now be easily adapted to

- show that (3.24) is valid with g(0) - 1. So now suppose e > 0 and for a fixed k >3

let W - Z Z Z ... ,Zk_ Zk). We first show that for A &M k - I

* (Z1 Z2 9 2 Z3 ' .lZ)

. (3.25) n'P(an, -EA) v(A) for all A with v(aA) - 0 and v(A) <

6n

. ,* . .. . ~ . . . .. *Q - ,. - -. . .- ...

.',, ., , *.., -.- .'. " .. . . . -* . .. -. . . ...* >.-.;+,,*> - .. .. . ~ = * * *
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where v is a Ldvy measure defined as follows: First define measures vi, v2  I3

on] J 2 _ {o} such that for a set A - (x, -) x (y, -) in the interior of the first

quadrant

v (A)v (A) = 4- 1 e E( A2 )Q, x > o, y > o
1 v2( v3(A)

and then extend the measures symmetrically to the interiors of the other three

quadrants. On the axes define for x > 0

S1((X ' ) x {0}) = 3 ([0} x (x, s)) = x-° (1 - e EIZla)

V 1 ({O} x (x, on)) = v2 ((x, oX) , {0))

= v 2 ({O1} x (x, V)) = 3 ((x, o) x {0}) ( x -20 EIZ1 1)

with a symmetric definition on the negative side of the axes. Now for a set

Bk-i
A c BCR - {O, v (A) is defined to be

k-3 k-2
v(A) = v((PIn A) + I v 2 (PiAA) + v3 (Pk_2 /A) - v 2 (ei/AA)

i=2 i=2

where P is the plane formed by the xi and xi+ 1 axes and the intersection P /1A

is interpreted as a two-dimensional set. The set ei t1A is meant to represent

the two dimensional set (JR x {0})/ (Pi /)A), and the v2 measure of these sets are

subtracted off since P i1 P is equal to the x,+, axis and hence should only

contribute once in the sum.
k-2

It is easy to see that if A is not a subset of U Pi, then n'P(an n jGA)
i-l

v(A) - 0 since the non-consecutive components of t are independent. On the

other hand if A = { 1: u- < x, u2 < xi+1 } with uI > 0 and u2 > 0, then

nP(a, Wc A) - n'P(ZI Z2  z ua , Z Z > u a

nnA.Z 1 Z 2  u1 an~ 2 3 u2 a,)

which by symmetry

- 4-n'p( z 21 > ua IZ2 z31 > u2 a,)

-.1Z1  !Z3 1
.4- 1n'P( Z2 1 ( A-)> a

21 u I U 2 n
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; 1 UnPE(" u2 n > an,

-* Vl((ul, =) C (u2, =)) v(A)

. where the asymptotic equivalence line follows from Breiman (1965) since

E( ) < = for some 6 > a. Also if A ={c: u < x } and u > 0, then itr-u I  u2  hni

U1  U 2

is easy to check that

V1((u ,  x 1R) i 1-

v(A) - 2v2((u, C) x1 ) - v2 ({01 x (u, =)) i = 2, ... , k - 2

IV3OR x (u, ))i = k- 1

= lU-a

and hence n'P(an, W E A) = n'P(Z 1 Z2 >a ,u) - v(A). Using symmetry and the fact

that the support of v is contained in P., i = 1, ... , k - 2, (3.25) follows.

For each fixed integer k > 3, we have

r r r-Zt Zt+l =  Ui + Vi + Y r

til i=l ir
where U i =.(Z(i-l)k+l Z(il)k+2 + + Zik-l Zik), Vi = Z Zik+l Yr

(Zrk Zrk+l + ... + Zn , Zn,+l) and r = [n'/kJ. The Ui's are iid and since U1

has a symmetric distribution, we have from (3.25)
k- k-i

n'P(1ul > an z) -* v (1 kc -- {0):, x i > zi)

k-1
= ~ Z xij > 11)

-a
M Zci('jv 1 x+yI > 1) + '13 (IX+yI > 1)

+ (k-4) V2(lx+yI > 1) - (k-3)v 2(IXI >1, y - 0)).

* Setting 9k (e) V v1 (x+y! > 1) + V 3 (x+yIl > 1) + (k-4)v 2 (x+yI > 1) -(k-3)v 2 (IxI > 1

y -y0), we have

+-22
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a r IU I-S(gk(e)) 1/
iU1

where S is the symmetric stable distribution with index a (cf. de Haan and Resnick,
,. k-l/c,

1984). Since a /%, -1 k P we then obtain

M.-1 r ui()/I/a
a n, I UI S(gk e)kt1/c

and as k - gk(e)/k + v2 (lx+yl > 1) - v2 (Ixl > 1, y - 0) -: g(e) so that
/ 1 / CL 1~~e) / 0 . -0()

S(9k(0k )  W Also since the V 's are iid andY r 0 (1), it

follows that

nii-r
im limup P(lan II z t z t+l C

and hence by Theorem 4.2 in Billingsley (1968), we obtain

n Zt t+l
t-i

The va..ue of g(O) Is computed from the following Imma

Lemma. If for some sequence of numbers t * -,

P(Z 1 z2 1 > t.) , < 0 < (2EIZll) -l, then

P(z2z >tz) I + t8) ' oz+EIz+1' E

P(1Z2 (Z 1 + z 3)1 > t.) 1a
P~~j 14 >t201 z1+ z 3 1c 2EIZ .P(iZI t.)

It follows from the lemma that

n'p(1z2(Z1 + z3 )I a an,) 2 + O(ElZ 1 + Z3 j a - 2EIZ1Im)

whose limit using (3.25) with k - 4 must also be equal to v(A), where

A - {£ C 1R3 - {0}: Ix 1 + x2 1 > 11. But v(A) - v((x, y): Ix+yI > 1) +

v3 ((x, y): IxI > ') - V2 ((x, y): lxj > 1, y 0) which from the definition of

V11 V2 and v 3 is equal to v2 (Ix + yI > 1) + 8 EIZ lc + v2 (lx > 1) - v2 (IxI > 1,

y - 0) - V2 (Ix + yl > 1) + 8 EIZ ,Ilu + e EIZ , so that V2 (Ix + y > 1) -

2 + e(Elz1 + Z3 Ia - 4 EIZiu). Hence g(O) - v2 (Ix + Y1 > 1) - v2 (Ixl 1, y 0 0) -

1 + e(Ezz I + z3Ica - 2 EIZI') which is a 1-1 positive function of 6 on
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[0, (2 EIZI) as asserted in (3.24).

Proof of lemma. Let G(t) - P(IZ 1 + Z31 > t) and F(t) = P(1ZlI > t). Then by

=. Feller (1971), p. 278, and Cline (1983), Lemma 1.2, G(t)/F(t) - 2. For s > 0,

*i we have

P(IZ (Z 1+ Z3)1 > t) - P(IZ 2 (Z1 + z3)I > t, Iz2 1 < t/s)

+ P(Iz2(z1 + z 3 )J • t, + Z3 1 < s) + P(IZ 2 1 > t/s, 1Z1 + Z31 > s)

t/s s
- G(t/y)F(dy) + f F(t/y)G(dy) + f(t/s)-G(s).
0 0

Similarly,

t/s s
*f P(IZ1 Z2J • t = f F(t/y)F(dy) + f F(t/y)F(dy) + F(t/s)F(s).

0 0

Thus,

IP(IZ 2 (ZI + Z3)I > t) - 2P(IZ 1 Z2 1 > t) - F(t)(EjZ I + Z3'- 2EIZI)I/F(t)

• .t/s s_ (t/y) - 2F(t/y)I/F(t)F(dy) + z+ z3j - fF(t/y) F(t)G(dy)I

o. 0
s

+ 21EIZ I" - f F(t/y)/F(t)F(dy)l
0

+ (G(s) + 2F(s))F(t/s)/F(t).

, On the set 0 < y < t/s, t/y > s so that for s sufficiently large 12 -G(t/y)/F(t/y) i <

. for all 0 < y < t/s. Hence letting t- pa through the sequence ti, the above inequality

is bounded by

-iM E P(jZ1 z2j>tJ  + z L - s
Slim p(zl>t + IEZl + z2E - f yG(dy)I+ l

tj 00

+ sa(G(s)+ 27(s))

and now letting s - ®, the bound becomes c 6- 1 since ElZlIo is assumed finite. [
6e

6'

... ..
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4. Summary

We now saulmarize~the rather complete results describing the limit laws for

the sample correlation function The process under consideration is Xt  - jZ ,

where {Z t  is iid with Z1 belonging to the domain.of attraction of a stable

distribution with index a, 0 < a < 2. For simplicity assume E Z = 0 if I < a < 2

and for a = I assume Z has a symmetric distribution.

Case 1. a -2. Choose a and 8 so that

-2 )nB n E(Z 2 -[Zl z2l_n]

and

-2 E Z2 1n 1 [Z 1 I<% ]

Then for h > 1, we have

2  Z2, n +1
( nt n t Z t+1' On Zt z t+h)
t=l t=l t-l

w (1, S19 S21 ...' S h )

where Sl, S2' ... are iid N(O, 1). From this result, we obtain

(4.1) (8:12 ^
_

n (p(k) - p(t)), 1 < k < h) ' (yl, 1 < I < h)

where
00

¥Z =I[ (p(i+J) + p(E-J) - 2p(J)p(k))S
j=l

If a2 = Var(Z < -, then we may take an  n n n

In this case, (4.1) is the same as Theorem 8.4.6 of Anderson (1971) by noting

that (Y' """' Yh ) has a multivariate normal distribution with covariance matrix

given by Bartlett's formula

OD

rgk I (p(g+j) + p(g-J) - 2p(J)p(g))(p(k+j) + p(k-J) - 2p(J)p(k))
J -1

(p(g+j)p(k+j) + p(g-j)o(k+j) - 2p(J)p(g)p(k+j)

- 2p(J)p(k)p(g+j) + 2p2 (j)p(g)p(k)).
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Case 2. 0 < ai < 2 and E -( . Define the sequences a and a by
,n n

a - inf{x: P(jZI Z21 > x) < n } and a - inf{x: P(>ZII > x) < -. Then for

S h> 1,

(a n -a n, a n z z t+h) "-(SO, Sig Sh)
t=ult. t=l t

where SO , SI , ..., Sh are independent; S is stable with index a/2 and SI, ... , Sh

are identically distributed withan a-stable distribution. It was then shown in

Davis and Resnick (1984b) that

(a a(p()-p(1)),l < Z < h) -(Y, 1 < Z <h)
n n

where

Y = II (p( -+j) + p (-J) - 2p(J)p(k))Sjlso -

The scaling a 2 can be written as nl/LL(n) for some slowly varying function
n n

L LI("-).

Case 3. 0 < a < 2 and ElZhl a < . Further assume (3.1) and define an by

a n = inf{x: P(1ZI1 > x) < n 1}. Then for h > 1

n nnn

(a_2  ZZ, a 1  I Z Z a 1 1 Z z (So, Sr .. , Sh
a t= t'gvel tei t+h 0 h

where So, Si g ..., Sh are given in the statement of Theorem 3.5. Although S°

is a/2-stable, and Si g ... , S hare a-stable, they are no longer independent as

was the situation in the above cases. Nevertheless, we still have

(an(P() - p(O)), 1 < I < h) so (Y, I < I < h)

where

- (p(L+J) + p(Z-J) - 2p(J)p(t))S /S o .
j-l
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