
AD-A148 963 AN OBJECT-ORIENTED SIGNAL PROCESSING ENVIRONMENT: THE L/I
KNOkEDGE-BASED 510 .(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE RESEARCH LAB OF ELECTRON. W P DOVE ET AL.

UNLSIIDOCT 84 TR-502 NOBSi4-8i-K-0742 F/G 1712 N

1EEEEmhhmhhhhl
EhEEEmohhhhhomhI
EEmhhhhohhEmhI
mhhhmhEmhEEmhE
mhmhhhrnom

-7 -

1111.0 U. Ll LL

1.8

-. 5 L 18 6

MICROCOPY RESOLUTION TEST CHART

NATIONAl. BUREAU Of SIANOARDS 1964 A

%* %

* -. s, mo . . o - •

000

An Object-Oriented Signal Processing Environment: The
Knowledge-Based Signal Processing Package

Q

Software authors.
Webster P. Dove and Cory Myers

Document author:

Evangelos E. Milios

Technical Report 502

October 1984

Massachusetts Institute of Technology fbELECTE

Cambridge, Massachusetts 02139 0?.9

84 12 27 £38

-. =, =.b "-'' -. . .

An Object-Oriented Signal Processing Environment: The
Knowledge-Based Signal Processing Package

Soft ware authors:
Webster P. Dove and Cory Myers

Document author:
Evangelos E. Milos

Technical Report 502

October 1984 w.~~

Massachusetts Institute of Technology2
Research Laboratory of Electronics

Cambridge, Massachusetts 02139

This work has been supported in part by the Advanced Research Projects Agency monitored by
ONR under contract N0001 4-81 XK.0742 NR-049-506, in part by Sanders Associates Inc., and in part
by an Amoco Foundation Fellowship.

J F

UNCLASSIFIED

SECURITY CLASSIFICATION Of TwIS PAGE

REPORT DOCUMENTATION PAGE
I&. REPORT SECURITY CL.ASSIFICATION JIa RESTRICTIVE MARKINGS

2&. SECURITY CLAUBIPiCATION AUTIIORITV 3. OISTIIUTION/AVAILASILITV OF REPORT

________________________________ Approved for public release; distribution
ft OECLASSIFICATI~t4IOOWNtGRAOING ScHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) L. MONITORING ORGANIZATION REPORT NUMBER(II

4&G NAME OF PERFORMING ORGANIZATIO ~l OFFICE SYMBOL. 7*. NAME OF MONITORING ORGANIZATION

Research Laboratory of Elec tofltuuuiebda Office of Naval Research
Massachusetts Institute of Tefihnology Mathematical and Information Scien. DIV.

6c. AOGRESS (City. Stae and ZIP Caddo ftb AOGRESS (City. SIGN and ZIP C0101

77 Massachusetts Avenue 800 North Quincy Street
Cambridge, MA 02 139 Arlington. Virginia 22217

ft2* NAME OF FUNOINGiBPONSORIING OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IOENTIPICATION NUMBER

ORGANIZATION fi algeobt)

Advanced Research Projects gency N00014-81-K-0742
SC.* ACORESS lCity. Stage andZIP Cadet 10. SOURCE OF FUNDING NOB.

1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, Virginia 22217 ELEMENT NO. 14O. No.NO

____ ____ ____ ___ ____ ____ ___NR

11. TI T LE ,Inciade Secusnty ClaufationIAn jQjbi~ejt-Oriet d049-506
*Signal Processing Evr nt alRage

12. PERSONAL AUTNORtSI

W.P. Dove, C. Myers, E. E. Milios
I3. TYPE OF REPORT 13b. TIME COVERED 14. OATE OF REPORT (Yr.. .Va.. Dui' 1S. PAGE COUNT

*Technical PROM ____TO ____ October 19842
IS SUPPLEMENTARY NOTATION

This is M.I.T., R.L.E. Technical Report No. 502

19. AISTRIACT 1COMIaaue oft ore if necemr.f and Identify 67 block PII~ambrp

- LISP-based signal processing package for integrated numeric and symboli
manipulation of discrete-time signals is described. The package is based
on the concept of "signal abstraction" in which a signal is defined by
its non-zero domain and by a method for computing its samples. Most
common signal processing operations are defined in the package and the
package provides simple methods for the definition of new operators.
The package provides facilities for the manipulation of infinite duration
signals and periodic signals, for the efficient computation of signals
over intervals, and for the caching of signal values. The package is
currently being expanded to provide for manipulation of continuous-time
signals and symbolic signal transformations, such as the Fourier trans-
form, to form the basis of knowledge-based signal processing systemsf

2&0. OITRIGUTIONIAVAILABILITV OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEOIUNLIMITEO 3SAME AS aRT oTC icUSS Unclassified

228.0NAME OF RE11SPONSIGLE 0NOiviDuaL 2211. TELEPMONE MBER0011 22. OFFICE SYMBOL

K raM all

00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OGSOLETE._______________

SECURITY CLASSIFICATION O0 T0406 PACE

...

TABLE OF CONTENTS

NTRODUCTION ..
. AN EXAMPLE SSION WSA THE KBEP SOFWARE 3

2. LISP, ABSTRA4CTION AND oBJECTr M PROGRAMMINGM.
2.1 THE o M uSP ... ToRI I.10.
2.2 ABSTRACTION IN PROGRAMMING ... 11
2.3 OBIECT-ORIENTD ENVIRONMEOT .. 16
2.4 LEVELS OF USER TnERACIION I THE yM, PACKAGE........... is
2.SUMMARY ... 19

3. THE BASIC SIGNAL PROCESSING SOFIWARE ... 20 J
3.1 SETS AND INTERVALS ... 20
3.2 BASIC FUNCTIONS FOR DEALING WITH SEQUENCES, 25
3.3 SIMPLE SEQUENCE OPERATIONS29
3.4 CONVOLUTION AND RELATED OPERATIONS 33
3.5 DISCRETE FOURIER TRANSFORM COMPUTATIONS 34
3.6 FILE INPUT/OU YI T ... 36
3.7 FILTERING .. 36
3.8 FUNCTIONS OERATING ON SEQUENCES 37
3.9 NoAo .. .39
3.10 .. .40

4. THE KBSP IMPLEM]iNTATION .. 41
4.1 INTRODUCTION ... 41

4.2 SEOUENCES AS ABSTRACT DATA TYPES 42
4.3 SYSTEM IMPLEMENTATION ... 47
4.4 ARRAY MEMORY MANAGEMENT54

5. THE K S GRAPHICS FACILITIES ... 61
BIBLIOGRAPHY ... 63
INDEX ... 64

Accession For

NTIS GRA&I
DTIC TAB
Unannounced '" ":

Just ifi ea rtion" -'":

Distribut ion/

Availability Codes
Avail and/or

Dist Special

Cap.. ...

'Iva% V

.
- ,oi

INTRODUCTION

Ti's, document presents the phlosophy and usag of the Knowledip-Elsed Sgnal Pro ng

Packge (KBP.

The purpose of the KM? moftwar is to provide a mold and easfy-tO-we signal processing

software fiity on the M.I.T. lisp muacine, in the form of a very-high-level language for pro-

vrm ingvga Proesig operatioeuL It was depged to support the Knowledgebused Signal

P1o mng projects at the M.I.T. Digital Signal Pracemng Group. TIS is the femoni why its name

includes the words 1knowledge-based, in spite of the fac that the KBU? package is not a

* Knowledge-based system in the usal 1 eme of the term.

The KMS package is a growing system. Ths document describes the system as of July 1984.L

New sigal processng operations for one-dimeional spgals awe being continuously addto the

system. Future expansions of the system will inc6d multidimensional signal processing, treatment

of analog signals through a comibination of numeric and symbolic procemog and digital filter

design. Theme expansions may make it necessary to revise some of the original design decisions of

the KBSP package. Thus, this document may no completely apply to fuur versions of the KBSP

pakg.

The philosophy of the system is loosely based on [Kopec), which pioneered the use of the

concept of data abstraction as sutable for siga representation in prograim The advent of the

M.L.T. Lisp machine made posible an efficient implementation of theme ides.

The experience from uing the KBSP moftwar on the Lisp machine so far hime demoostrated

that the combination of data abstraction idesa in signal pioeall and the unique programming

environment of the Lisp machine can indeed give a powerflul signal proccmng facility supporting--

incremental programnming and powerful graphics all in one and the -m machine.

Chae I entitled -An example seson with the KBU? software-, atepato give an idea of

the signal processing environment that KBU? offers Chapter 1 serves me the motivation of the

reae for learning about the KBSP system However, the best motivation would be a live demons-

tration, so on with acess to a Lisp macuine we wged to try the example ueMon.

Chapter 2 entitled IUmp, Abaimtlo. and Object-orlented Programming gives -n overview

of tMcnet in .mdem ~pianmh Isg p tha are ~.usfl in living an overall perquectve

of tdo KWS envirouunenL The expautlo, Is intended for peopl with programming experience,

but no previous conat with Lap.

Chapter 3 entitled "rbe base igmal proamig software" presents modt of the available KBSP -

operators that ae provided with the KBSP system A short explanation is given with each opera-

tor, which is enough to enable the reader to no it Very few references to the underlying imple-

mentation are made in this chapter. The chapter servin as the uners manual if used together with

the alphabetical index of the KBSP operators.

Chapter 4 entitled -Ibe KBSP imlmntto is an explanation of the bade dmign decisiomu

in the implementation of KDSP. This chapter is useful to the vars who wish to extend or modify

KBSP for their own se.

Chapter 5 entitled *th KBS? Graphies" offes a brief explanation of the KDSP graphics win-

dow and screen frame. T7he reader with minimal background in the UVi Machine Window syee.

should be able to make Ample modificatiomn to the LUp code in order to generate different simple

oogatOmN of KBSP windows.

1. AN EXAMPLE SESSION WITH THE KBSP SOFT WARE.

The following sesson is -n example seson in which the interaction with the KBSP piackag

is shown at the Lisp command leveL. A sequen corresponding to a Hamming window of lengt

p 32 is created, -ad, its values over an interval are computed and eder returned to th e or

placed into an array. The Hamming window is plotted over a speifid interval and then its Fff

* and cepstnam are computed and plotted. An example with a signal gtored in a file is also dhown. A

I sequence is created from a file and plotted, and then a section of it is plotted together with the

log-magnitude of its FPT and its real epstrum

* - in reading through the sesson, the following points are important

- A * denotes the moat recently created object (an array, a sequence etc.). Thus the Ise

object is referred to with a 0instead of the ful command that created it.

-An indented comment is written above each command that the user types, explaining the

command that fil~oim Whatever is between a command and the next comment as something

that was printed by the system me a respone to the command.

- - The memg "mouse a window is printed by the system n a respoose to a plot command and

pompts the user topac the moum anirsr inside a desired KBSP graphics window and dick

left. Then the window is selected and the plot command plots the object in this window.

- The default KBSP sawen configuration, which is used in this sesson, consists of 4 KBSP

grae windows and a KDSP Lisp Liatene, where the commands are typed. If a usmer wants

his ow KBSP sumee configuration, he can either use the Edit Screen facility of the Lasp

machine or defin his configuration in a Lisp file, in the sme way the default KBSP screen

wa defined.

- <somethiog> is the Lisp object that is returned by the corresponding command. IU "soe-

thing" nuats with ART, the object is; an array. Anything else is the name of a flavor type.

z. *1

-4"

* - ~The ee copies tdot follow give an idea bow the actual display looks like. Note that doe

dealt XDSP displa contains 4 KDSP Saphta windows and a KDSP Lisp keer Each-

KDSP window conatains three panes, the top label, the bottom label and the raphics pane.

The top label pane contains the range of the z-axis of the plot and the bottom label pane

contain the name of doe window (KDSP-WDOWO,1,2 or 3), the range of the y-axis of the

plot (minimum and maxmm value) and the name of the plotted object (or the command

that generated it). If the object is a complen sequence, the graphis pane is split into two,

with a label pane in the middle and another one on the bottom.

- ~ The example sussion with KSF

,take ahamming window of length 32

(hamming 32)

#<HAMMAIG 27732413>

* name ittest

(eq-4ttet

- #<HAMMING 27732413>

fetch its values over the interval [0 101

(fetch-interval ten [0 1OJ)

- #<ART-Q-10 2772542> ;result is an array of length 10

Heg the values of the array

- (listarray

* (1.0 0-99058384 0.96272063 0.9175512 0.85M948 0.78332347 0.69976044
0.60965675 0.5167014 0.42469984)

(sutq arra (make-array 20))

#<ART-Q-20 27732653>

fonda the values of tes over 10 201 and place tm Into array"

(fetch-interval tes [0 201 arra)

16

......................................

#<ARTQ-20 27732653>

S tista th ara

(1.0 0.9905M380.96272063 0.91755120.8592480.8323470.69960445 0.60965675 0.5167014 0.42469984 0.33741866 0.25843123 0.19097129 0.1378005
0.101095915 0.06236012 0. 0. 0. 0.)

find the domain of test

(domain test)

(INERVAL -16 16)

* ; find all ICBSP functions containing the string "W in their names

(kbq,.aprqo Wft)

USER:SEQ-FFr-CONVOLVE - Function (X H), Flavor
USER:[FFF - Function (SEQUENCE &OMTONAL (LENGTH (NEX-POWER-OF-2

($LENGTH SEQUENCE)))), Flavor
USER:FFF-COMPlLEJX - Function (SEQUENCE LENGTH), Flavor
USER:FFFr-REAL - Function (SEQUENCE LENGTH), Flavor
USER:FFT - Function (SEQ &OPTIONAL

(LENGTH (NEXT-POWER-OF-2 (SLENGTH SEQ)))), Flavor
(FFT FFT-REAL FFr-COMPLEX IFFF SEO-FFT-CONVOLVE)

plot "test" over its domain (wee scen copy 1, window 0)

(plot teat ni)

mouse a window
#<HAMMING 27732413>

* . ; plot test over the interval 1-30 301 (see mceen copy 1, window 1)

(plot test ni 1-30 30)

mouse a window

#<HANMING 27732413>

take the ift of ts

ft test)

#<FFT 27743544>

0 plot it (see scren copy 1, window 2)

(plot 0nil)

moise a window
#<FFF 27743544>

take the real cepstun of test

(cepanwn tea)

#<CEflrRUM 30031337>

plot it (st macen copy 1, window 3)

(plot n)

mouse a window
#<CEPSrRUM 30031337>

take the logarithm of the magnitude of the fft of test over the positive
frequenes.

(log-mag (ft tea))

#<LOG-MAG 30201376>

plot it. (we mcen ay 2, window 2)

*(plot an)

mouse a window
* #<LOG-MAG 30201376>

take the log-mag of the ift of size 512

* (log-mag (fit tast 512))

#<LOG-MAG 30201757>

plot it (wee scen cMp 2, window 3)

(Plot nil)

mouse a window

#<LOO-MAG 30201757>

define a sequee corresponding to the preemphaized version of
;a speech file gored on another computer

* (seq-metq eyes (prcemphair (file "dWJ/wl/li/ech/datteyeaLJ2")))

* Enter user name flor host DSPO:
Pasword for loging in to DO a eem (or Escape to change usner id):
#PREEMPHASlZE 30211126>

.7-

plot the preemphaind speech file (see scen opy 3, window 0)

(plotey "ail)

oiea window
#<PREEMPHASJE 30211126>

plot eyes over 1850 103001 (wee screen aWp 3, window 1)

(plot eye ai [8500 10500)

mois a window
#<PREEMPHASIZE 30211126>

name the section over the interval [8500 10500)

(seq-setq pice (section eyes 18500 105001))

#<SECIION 31164662>

plot the log-mag of the fft of piece (see screeni cpy 3, window 2)

(plot (log-mag (fft piece)) nil)

mous a window
* . #<LOG-MAG 31165021>

; ;plot the real cepsr=mof piecewith fft sze 2049
; over the interval 1-64 641 (see screen copy 3, window 3)

* (plot (cepatnim piece 2048) nil [-64 64))

mots a window
#<CEPSTRUM 31175243>

The reader should notice that the graphics windows are mouse-senative. Clicking on a par-

ticular point in the waveform pane gives a vertical line at this point, while the coordinates of the

intersection of corresponding point on the waveform are shown on the top label pane of the win-

dow. See aree Pn opy 3.

The bottom pane of a kbop graphics window is also mowe-senitive. Uf one dicks left on It,

the history of computations that led to the waveform in the window is shown on the kbop lis win-

dow. Thle example on screen opy 3 shows the resuilt of clicking left on kbqp windows 0, 2 and 3.

T7his example sesson reveals only a part of the uefulnes of the KBSP package. It shows

nothing abcut the caw with which new operators can be programmed, a topic which is explained

46

in Chapter 4 on the KBSP implemnentation.

%-

- -

S

S

49 A
49

I.

49 49

C C
I.. 6.

L
a'.

Au
* * N 0

I..

w
S..

IL

IA.

0

49
'S.

N

0

49
N
N

C

49
S

49
.4

49
.4

.9
*5

'I
6. .4 0

6.A-

N 2
2
C
Cz U

2
* I

0.
U,

* S 1'
* Y

~

.V *.. **~.* .* .- . .* -. . . *-.*~~.* .*

___ ___ S

0

GD a
GD - :5

I I
GD GD

* I

C 9

E 0

* I

all

8
z

~i.
3-

0

GD

GD GD

I I b =0
.4 U

2
C C 0..
L I.

2

S

I I 0

.p.

.' Ce......
.% ...

I In

I N
14S

CD
S In -k

j
-.

K
10

40 L

% In

% S0
u CL

C *

a

* U S
* ,mS

%I
% S

* S. V S
.4 h

acS

U ..

UA

S. IL09
N .Df

2, S

.97.

2. UISP, ABSTRACTION AND

OBJECT-ORIENTED PROGRAMMING.

This section attempts to convey some of the concepts of modern progrmmiang languages ao

they were incorporated in Zeta Lisp, the LUp dialect runnin on the MITr Lisp machine [Wasn-

reb). and used by the deigners of the KBSP software. It does no attempt to be complete or

detailed in any scme. The interested reader is reedo to the bibliography for further study.

Zeta Lisp historically evolved from the MrIT Maclisp. It combines features of the original

* Lisp of the 60's, ides aibout data abstraction in programming languages and characteristics of the

Smaitalk object-orleri poaumng environment. Familiarity with these concepts wigi prove

very helpful in the understanding and use of the signal pfocemdng software an the Lisp Machinem

* and of the Lisp machine in general.

From a broad perspective, the Lisp Machine prograimming environment represents one effort

to improve software productivity by providing advanced facilities to support incremental and

interactive programming. The importance of such efforts derives from the fact that conventional '.

pprogrmng languages have shortcomings that make them inadequate for buiding and maintain-

ing large software system [Barstow, Chapter 251. John Backuas states [Backus]:

Conventional Programmg languages are growing ever more enornous. but not stronger.

Inherent defects ai the most basic level came them, to be both fat and weA: their primitve

word-ar-a-tim style of programming inherited from their comon ancestor. the Von Neumann

conputer. their close coupling of semantics to swae transltloes. their division of programming

into a world of eqressonu and a world of staements, their Inabilky to effectively use poweejie

coNmiin formns for buiding new program from eAWAin ones. and their lasck of useia

mathemiatical properties for reasoning about progim..

Whether the Lisp machine environent in general and the KOO package in particular are a

* ~step in the right direction will be proven by experience. T1hey certa~wy are a step away frown some

of the problem that Bhckus attributes to mventional programming.

THE ORIGINAL LISP

Thi original Lisp, developed at M.L.T. by John McWArthy in the early 60's [MCCarthyj is

beat described by the term ..AusculerwI or epplnuve lamuage [Bia'i] Progrtamig in a funk-

tiomal language consists of writig procedures or function. which rasmble the concept of

mathematical functions (mappings) more than that of programming language procedures (the term

mappng will be used for mathematical functions, because the term lfunction" means "procedure" in

certain programming hoguales. Under a mapping f over a domain D, the imAge of an element X in

D is denoted by (f x), ung the Lisp prefix notation). Lisp functions can be viewed an mappange of

the domain of definition of their arguments. For specific values of their arguments, they return the

image of these values under the mapping they define. In general, for pure Lisp functions the

returned values (1) depend on the values of the arguments only (2) are new copies r ther than

modified versions of the arguments and (3) more generally, Lisp functions are not supposed to

have side effects, i.e. they are not supposed to modify their arguments or other existing data.

In a functional language like Lisp, the programmer does not think in terms of variables and

their side-effects through execution of procedures but thinks in terms of mappings. A program in

Lisp is a mapping obtained from simpler mappings by uinag certain simple composition rules.

As an example of how operators are composed in a functional language consider the real cop-

srum operation. Asuming that we have already defne Lsp function~ for omputing the loga-

rithm of the magnitude of a omplex sequence, the Discete Fourier Trandorm of a sequenc and

the real part of a couple.sequence, we can write another Lisp function to compt the real cep.

* insum of the sequence by applying the previous three Lisp functions on the inpu sequence in the

right order pretty much like the composition of mappings in mathematics.

O1rigial Lisp wan basically an interprete programmning language, in which the programmer

interacts with a Limp environment, asnopposed to traditional compiled languages, in which the

progrmmng actvity coniats of the Edit-Lon un-Lebug mop. Lisp anowe nremena

progammngin which the programmer incrementally builds his program as functions made of 9

simpler functioaL m. viomly defined functions are "remembered" by the Lisp environmnt The

programmer can either apply them to arguments or combine them in order to create new Lis

functions, which are in turn remembered by the Uip environment. Because the programmer con

apply the intermediate functions easily, debugiog is nicely integrated into the prgrmmn

activity, as oipposd to the conventional Edit-Compile-Debug loop, where three very different pro-

pwm munt be used: the operating system interpreter, the compiler and the debugger.

An important feature that Lisp introduced is that of treating progralna like data. This derive.

from the interpreted nature of Lasp and allows Lisp prograum to ezamine, generate or modify

other Lisp prop==im

One may wonder of couirse why Lisp has not had much appeal to the programming commun-

* ity at large. There are many reasons, one being that the programming concept it introduced was

not easily implementable efficiently on conventional von Neumann architectres Memory manage-

*ment is implicit in the Lisp environment. Onot an object, is not accssble anymore, it is dedared

garbage, and a special, complicated and costly program, calledi the garbage collecior, is needed to

identify and free the storage garbage occupies (Stce.L

* ABSTRACTION IN PROGRAMMING

The motivation behind the work in very-high-level languages is to ecue fth programming task

by providing the programmer with a language; containing primitives or abstractions suitable to his

problem area. The programmer is then able to spend his effort in the right place; he conotrates

on solving his problem, and the resulting programs will be more reliable a a result (Lskovi.

Fumctions in Lisp and procedures in conventional high-level languages are extremely helpful

in progruning, because they allow the partitioning of the task into different evels of abstraction.

* One builds the nepsrumn Lisp function not out of additions and multiplication% of numbers but out

-11-

o higher levpe d which w in turn lemeted in term of arithmetic operations. T"is

pro es- is known a Prece J abwtim. Ia th mid-70's, however, itw realzed that another

kind of abstraction, dAs dburacuon, could improve the productivity of programmers by allowing

the partitioning of the compl xity of programs in a direction orthogonal t that of procedural

abstraction. Pasal r arI and C structures ae examples of attempts to oat in data abstractiom:

Related pieces of data are packaged together and in many instances the package is treated a a

whole. As an example, consider a piece of digitized spec data. An array of umbers can he used

to hold the actual numerical values. However, additional information needs to be stored together L

with the data, such as the sampling rate, the age and nex of the speaker, the duration of the seg-

mert, day, time and place of the recording. Thus one could imagine a data strcture for speech

signals with the following components: a floating precision array for storing the data, an alphabetic

string for storing the age and sex of the speaker and so on.

A key issue with data structures s described above is whether the user is allowed to ace

the components in any way he wants. For example, is he allowed to aces the array storing the

data and take it apart usng the ordinary array operations? Accessng the internal implementation

of a data structure may not be deIrable, because the whole program must change if the implemen-

tation changes. Hence a discipline is useful aerding to which usage of the data structure is

separated from its internal implementation by means of a dean interface defined in terms of the

problem area. The next question is whether such disciplineduwe of datastrutures is left to the

good will of the programmer or whether is enforced by the programming language itself. Pscal

aid C, for example, encourage the disciplined use of data structures but they do not enforce it.

A language supports data abstraction if it has the following features:-

1. It allows definition of data types by packaging together conceptually related pieces of data,

ialed elements of the data type.

~i ~2. It automatically provides a set of functions that allow certain primitive operations on the dasta

type without directly acssng the internal representation. Such functions are functiomn for

~J... .

~ I S *..- ** -.- *

.13.

-cusn the -enat moift the elemeaft ad imdala the elements wheM the daba

typ is instailamed (fr examle, wreal inuber is a &fa type. Red waiable x is -n insamce

of the dita type "rea inumbe. Defnlag the real variable x is equivalent to lewtating the

data type "real munber' a... Of emu, "real nmaber is a vivid data type with a ihgi dos-

3. It provides two distint viem of a data type: the ceacsv (far implementing the data type as

a package of relatd plea. of data) and di abaimc (for uinag the doe type). The abstact

view eoAso iofadclssof objeci (Al possile ilane of the dabatype) and aset of opeua-

doces that ca he performed on these objef

4. ft provides facilities for defining new operations on the objecls as part of the Abstract view of

the dettype. -

S. It provides facilities for building a aew data type by combining old on, where the abstract

view of the component types bowues n part of the mew data type automatically by inheritance.

Examples of abstract data types

(1) A sack con he viewed as a data type on which two operations can be perfiormed: push and

pop. TIs is the Abstract view of the tack: push(xy) pushes the value x onto the tack y.

Pop(y) returns the value las pushed into the stack and removes the value from the tack.

Pbp(y) asias "error if the tack is empty. A tack can be implemented in different ways:

a. As a pair of -n array and an index variable, where the index variable contaiins the index of

the top of the tack, pumhx,y) increases the index variable by I and tores x in the

correqaondng array index and pop(y) returns the value of the array index equal to the index .-

variable and decreae the index variable by 1. If the index variable is 0, an eror is sig-

b. As a linked Bet, i.e. a set of cells with two entries, the first being the value tored in the

cell and the seonad being the pointer to the next cell. A pointer points to the cell containing

the top of the gtac, while the pointer of the It cell points to "error". Push(x,y) rabs a free

L

cel, se i value to x and i pointer to th currnttop of d st , and ms the ponter to

Iithe stock to pointwthe newlyallocatednelL Pbp(x) retumthevalue of the topof the

sack, deallocates the corresponding all and sets the pointer to the stack to point to the cel

pointed to y the celd jug dealoLac"e

A ho level progpr that tue the st ck data type is independent of which of the two t

gip tations is actually ued and is written in tam of push and pop, which are meaning-

Ad operations to the se, a opI d to operadom on with indeM o amays or pointers of

linked lidts.

(2) A basic signal can be viewed as a data type with two operatio: getting the domain of de.n-

ition and fetching the value at a point of the domain [Kopec). A speed aignal can be viewed

as another data type with omponents other abstract data types: a basic ignal, time and date

of romodng, mmpling rate and age and sex of the speaker. Notie that mechaniam for

defining new abstract data types by combining already defined abstract data types is a Useful

feature of a programming language.

In an abstract data type, the operations of its abstract view are the only means of usng the

data type and serve as the "contract" for its ue. In the previous example, if the user wants to know

the sex of the speaker, he should not be able to directly ac the string that stores this informa-

tion. He munt use the operation that gets the sex of the speaker, which is part of the abstract view

of the data type. It is this operation that wil aess the string, not the user. Thus the top level

program and the implementation of the data structure ae totally separated from each other. ThIs

has several advantages the top level program is mot meaningud and independent o the data

structure implementation. he programmer of the top level only needs to look at the "coutract"

and he will be able to write his program. If the implementor of the data structure wants to change

the data structure implementation, he can do so without the need for changes at the top level, as

long as his new iontract is compatible with the old one (i.e. it provides at least the functios prom-

*in byedhte old one).

LL

-"w. ,-;., ,-,',-'.','..'.-;/.'.',''.',%''.'.'. ".'.'.',',''.'-'.. .'..,'..-..-.".....-..".-.".".-'-.-".-..'".-.".'".."-'. "

aM LAWp provid.M te y fades for defining abstact dat typw and opertios as

them. The concepts ofatract datyM= In Zeta Lmp are bodsialy as explained above, but the

PC minology is diferao. Ine term flaow is equivalent to the team 'absract data type ter

objecs denotes a flavor ismc (thme term lmantWe is used In the own sene that a redl variable z

is urn instance of the type real unber". A flvor oxreqmoda to "real wuber", a favor intance

(object) confespoods to the memory ced holding the value of x, and the name of the object

COCApou .to z) and am operation on a flavor zs called methwd. The act of invoking a method on a

flavor instance (in general rith arguments like a Lisp function) is called sendin or passing a me:s-

sge to a oje0a.

The concept of procedural and data abstraction is central to the sina processing software on

the Lisp machine. Procedural abstraction is achieved by extending the Lisp function mechanism to

include systems. Systemi are a generalization of Ounctiotn and deal with sequences, which is the

abstract data type for signals The basic abstract operatiotn on a sequence are finding the domain

of its definition and computing its numerical values over a specified interval which is a subset of its

* domain. Sequences are implemented usng flavors Sequences are immutable objects, i.e. no opera-

tion modifies its input sequences, but imstead it returns a modified copy. Thus, systenm implement

ide-effect-free operations. Each sysem has a flavor type asociated with it and all objects that it

outputs are instances of this flavor type. The suensequence mechanism is part of Lisp. Concep-

tually, systerns can be treated just like Limp functions, which accpt sequences as inputs. They work

like Limp functions, except for the extra bookkeeping they perform related to the output sequence.

A central design deciion was the idea of delayed or lazy evoluwon [Kopec]. Applying a sys-

tern to its arguments does not cause any computation to happen. The mechanism for the computa-

j tion is set up (the output flavor is defined and instantiated and the function that perform the comn-

putation are set up - remember that Limp can tret program a data). Only when a request is

iuuied such asplotting the sequence or getting the numerical values ove an interval does real comn-

putation happen. Moreover, the minimum amount of computation ocurs For example, only the

-16l

v'alu over the specified interval are computed, not the valuesn over the full domain of the

I - sequence. An elaborate mechaniun for achieving delayed evaluation eists as pant of the underlying

signal processig langage

The idea of delayed evaluation reflects a shif of focu in signal represntation. a signal is not

viewed a the collection of its numeric values, but asa symbolic entity, described by the sequence

of operations that were applied to generate it. Mw view of a signal as a symbolic entity has eno-

moms potential for operating on infinite-duration discrete signals and on analog signals and for rea-

soning about signals based on their symbolic description.

* OBJECT-ORIENTED ENVIRONMENT

L

The concept of abstract data type as a programnming language feature wa introduced in the -

previous section. Languages like Modula-2 or ADA uipport abstract data type in the context of a

strongly-typed programming language, which performu type checking at compile-time. In

* ~knowledge-based programming, however, axmpile-time type checking is not always possible,.

because of the existenmz of dynamic data types, whose type is determined at run time [Barstow].

An Object-orienaed environment supports dynamic abstract data types [Barstow Ch. 8, Byte]. The

central theme in an Object-oriented environment is the concept of object asinstance of an abstract

data type. Accrding to this view, an object has operations which belong to its abstract view or its

Interface, "private memory" for storing information, which can only be manipulated by operations

in the object's interface.

In a pure object-oriented environment, objects are the only strxcturing mechanism, around

which the software is built. 11e concept of procedurie is replaced by the concept of nmessage,

accrding to which an object carries out one of its operatiors when another object sende it a 0ms

up to do so. mis is the only way that action can cana in an object-oriented environment and it is

called object commuancation thowgh message passing. Thu the programming activity in an object-

oriented environment is centered around choosing the appropriate data abstractions and providing

6 % .

*them with mutable operations (memqes). Program "ezecution' conshlgs of memp ewdn

I between objects.

En Zta Lisp, data abstraction and the existene of object and message pamng is viewed as

axuleuatay to prowdura absration, heem it is not the only structiain medumisn. Zeta

Lppod the faclities mpfna wide rang of pogramming styles, indding funxtonal 0

program-Mg,object-oricated programming and combinations of them in variousways

LEVELS OF USER INTERACTION IN THE KBSP PACKAGE

The user can interact with the KBSP package at three different levels:.

1. The top level, where the usr does not define new operations that generate signals, but isa

only the existing ones. The top level of the KBSP packa is the mine as that of Lisp. The

Lisp language has been enriched with one more abstrac data type corresponding to a signal,

that of a sequence. The Lisp functions that have sequences as outputs are called syssenu. Sys-

tems ae extended Lisp functions that take the burden of bookeeping aocated with

sequences off the user. A mechanism is provided for abstractly combining existing systems to

define new systems (SYS-ALIAS). Chapter 3 presents the top level view of the KBSP pack-

age, namely all sgnal operations (Lisp functions and systems) that constitute the core of the

KBSP package. Chapter 5 explains the KBSP graphics facilities at the top level.

2. the system defluldo level, where the user not only uses the existing systems at the top level

or combines them abstractly, but also uses them as building blocks for creating his own sys-

tems by operating on the internal representation of sequences. At the system definition level, .

* * %the user comes in touch with the undelying object-oriented philosophy of the package, which

has been used at the implementation level. A system definition expands into an abstract data

type definition and instantiation. The various forms in a system definition translate into

method definitions for the sequence type being defined. This viewpoint is explained in Sec-

tion 4.3.

3. the XKS maintenance and modlnidom lewd, where the user changes the undelying KBSP

language, namely the Lisp facilities that enable the definition of sequences and sials easily

at the top level. A user may want to change the internals of KBSP, if he finds that the

current KBSP is inadequate for his specialized needs However, this requires a thorough

understanding of the implementation that can only be acquired through detailed study of the

code.

...-.............. L.
_::... .,. .:.......,.,,. .,.,- .- .. ,.....-....... . .,

* -. - ..-.- mrr

-19- ".

2.5 SUMMARY

The ideas mentioned in this chapter are an outcome of the research activity in the area of

programmng languages and software methodologies during the 70'L, They am gradually becoming

practice during our decade mainly the conept are now befe undertood -nd
p

also because advances in the VLSI technology and computer architectures have made possble effi-

cient implementations of the ideas. One such example is the M.I.T. Lisp machine [Weinreb],

which provides an integrated programming environment induding facilities supporting the previous

ideas together with an integration of the programming language with the operating system (not

only is most of the Lisp machine operating system written in Lisp, but it is also part of Lisp).

The top level view that the KBSP package offers to the user is that of a functional program-

ming environment, in which systems are treated like mappings (functions) and sequences are primi-

tive objects. Systems can thus be considered as generalized Lisp functions and sequences as primi-

tive data types in the KBSP environment.

The lower level implementation view of the KBSP package approximates that of an object-

oriented implementation in that most operations arc translated into messages that are passed

between objects. However, the top-level user is not required to use message sending, because most

mesage sending operations have been repackaged as Lisp function calls to provide a uniform

Lisp-function-oriented top-level view (message sending in Zeta Lisp has different, and for some

people, confusing syntax).

.,-.S .

3. THE BASIC SIGNAL PROCESSING SOFTWARE

3.1 SETS AND INTERVALS

Intervals are a simple and very important concept in the KBSP software and the user should

beomie familiar with the way intervals are represented and used. The notation [a bJ denotes an

interval starting at "a" and ending at Vb. "a" is included in the interval but Vb is not, i.e. the inter-

val is dosed on the left but open on the right (in fact, the notation [a hi is equivalent to a LUs

function that creates an interval and it can be typed in instead of (MERVAL a b)). A variety of

functions is provided for uinug intervals, sucas mconstructing an interval from its bounds, finding

an interval's ftart and end, testing whether an interval is empty and finding overs and intersec-

tions of intervals. In the context of the previous chapter, intervals can be viewed as an abstract

data type (although it has not been implemented ;s a flavor, but as a Lisp structure).

Supports are wsed to describe possbly noncontiguous regions of the number line. Each sup-

port contains one or moore intervals. Each interval describes a contiguous region of the nuber line

dosed on the left and open on the right.

T'his section presents generic operations on numbers introduced to acwmmodate infinite

values as well and basic operations on intervals and sets. The prefix "S" indicates a generic opera-

tor, i.e. an operator that applies to extended numbers, or, more generally, to objects of a variety

of types. Note that the Zeta Liap notation for function arguments is being wed throughout. The

notation is valid for systems, a well, and has the following form:

FOO (Al A2 ... An &OMTONAL 0102 ... On &REST RESFAROLYSI
F00 is the name of the function or system. Al, A2, ... , An are the required arguments, 01,
02, ... , On are the optional arguments and RESrAROLIST is a list bound to the reet argu-
ments. See [Weirbj for more explanation of this format.

Extended nmber system

.4

The extended number sstm contains the real numbers and ± M Te basic operations and

predicates on numbers are extended to take into amount the can in which one of the arguments

may be± 0

INM INI contants

Thesw contants have symbolic values 4Fwin-FP and -MINUINFIMY, respectively
and their mathematical properties are taken into aont when they appear in generic arith-
metic operatioms.

EXTEDEDNUMBER? (X)
Predicate for testing whether object X is an extended numnber.

S(A &REST anwER)
Predicate for testing whether its arguments are all equal (eq if they are not real numbers) (In
Lisp, there are two kinds of equality: Two variables are equal if they are names for two
objects that look the same, but may occupy different pieces of storage. Two variables are eq
if they are two different names, i.e. aliases, for the same object).

S>,<,>-S<= (A B)
Two-argument predicates for extended numbers

$MAX, $MIN (&REST AROLIST)

Return the maximum or minimum of a list of extended numbers.

SMINUS (A)
Returns the negative of an extended number A.

S+,SS/ (A B)
Return the sum, product, difference, quotient of A and B, where A and B are extended
numbers.

$1, I- (X)
Increase or decrease the extended number X by I.

* Intevals

Intervals are implemented as ijsp structures. The interval has two components, START and

END. The functions that acces the components ame provided automatically by the Lisp structure

and they are INTERVAL-START and INTRVAL-END. They take an interval instance as an

argument and return the corresponding component. In addition, there are generic operations

$START and SEND, that apply to intervals as well as to other objects with a start and an end

-22- p.

* (such as signals). A predicate function is also provided, INTERVAL-?, for testing whether an arhi-

trary object is an interval. The contant NULL-InTERVAL is the undefined interval [nil. nil].

INTERVAL (START END)

INTERVAL (START END)

Create and return an interval from START up to, but not including, END. If START is
peater than or equal to END, NULL-INTERVAL is returned.

[START END }
Shorthand notation for (INTERVAL START END) which can be typed in instead of the
longer expreson.

NULL-INTERVAL-P (INTERVAL)

NON-EMPTY-INTERVAL-P (INTERVAL)

Returns the start of the interval if the interval is nonempty, otherwise it returns nil.

INTERVAL-LENGTH (INTERVAL)

Returns the length covered by this interval.

FINITE-INTERVAL-P (INTERVAL)

Returns T if the length interval is greater than or equal to 0 and icm than infinity.

INTERVAL-INTERSECT (&REST INTERVALS)

*.- Returns the interval which is the intersection of INTERVALS. If INTERVALS do not
intersect, NULL-INTERVAL is returned.

INTERVAL-ADJOINING-P (&REST INTERVALS)

Predicate testing whether all the intervals are neighbors of at least one point. For example,

(interval-adjoining-p 10 3) [4 51) -> nil
(interval-adjoining-p [0 3] [0 51) -> T
(interval-adjoining-p 10 3113 51) -> T

INTERVAL-COVER (&REST INTERVALS)
. ,Returns the smallest interval that completely covers INTERVALS For example,

(interval-cover 10 21 1131) -> 10 31
(interval-cover [0 2113 41) ->0 41

INTERVAL-COVERS-P (A B)

Predicate testing whether interval A completely covers B. B can be a number or an interval.

INTERVAL-EQ (A B)
Predicate testing whether intervals A and B are identical.

.°. - . .

-23-p

INTERVAINVTERSECT-P (&REST MNERVALS)
Returns the inteueciom of the intervab. Uf INERVALS do not intersect, it returns Nfl.
Compare with DJTEVAL-INTESECIr.

INTEVAL-DELAY (INTERVAL DELAY)
Returns RTERVAL shifted to the right by DELAY.

INTIERVAL-ANML (INMTVAL SAMPLING-RATE)
Return a new interval by nazupting INERVAL at the sampling rate. It bsically divides
start and end of INTERVAL by the samping rate and returms the resulting interval.

Generic operations laoviabg laervals

IGET-INTERVAL, SSTART, SEND, SLENGTR (OBJECI)
Returns the intierval, the start, the end and the liength of the intrvassociated with OB-
JECT. Uf no interval is assocated, reurn NIL Theme operations apply to-may object types,
such nis and intervals.

Supports

Supports are Lisp lists containing nonadjoinMn non-empty intervals in asending order. The

first element of the list is the atom ': support. NULL-SUPPORT is a lie with only one elemnent,-

the atom ': support. Supports have not been used in the existing KBSP software, so the rest of this

section can be sipped at first reading without I=m of continuity.

SUPPORT-P (OBJECI)-
Predicate for testing whether OBJECT is a support.

SUPPORT (&REST AROLIS)
The su1ppoart which completely covers all elements of ARGLKSF. ARGLISF is a Edt of inter-
vals and/or supports.

NULL-SUPPORT-P (SUPPORT)
Predicate testing whether SUPPORT is empty.

FINIE-UPPORT-P, NON-EMPTY-SUPPORT (SUPPORT)
Predicate teting whethe SUPPORT has at least one interal.

SUPPORT-COVERS-P (A B).

Predicate testing whether support A completely covers B. B is an interval, support or
number.

Gmrl set Operations

$NUL (ORWE(C)
Prdct tesin whether OBJECr is nill. OBIECF is interval or aart.

$COVER"P (A B)
Predcate for tesing, whether A completely covrs EL A and B are seunbes, intervals or sup-

SINTERSECT (&REST ARGS)

Return. the uqmot which is the intersection of the arguments (which awe intervals or mp

$COVER (&REST AROLISO
Returns the interval which completely oveus ARGLMS. AROLISF is a fin of intervals, mp
ports or numbers. Note that $COVER returns an iterval, aopposed to $DNTERSECr,
which returns a support.

SCOMPLEMENT (SET UNIVERSE)
Returns the support which is the complement of SET (an interval) with respec to
UNIVERSE (an interval or mipport).

SINTRSECT-P (&REST ARGLSI)__
IU the intersection of arguments is non-empty, it is returned. Otherwise return NTL.

-25-.

3.2 BASIC FUNCTIONS FOR DEALING WITH SEQUENCES.

3.2.1 FETCHING SEQUENCE INTERVALS

The following functios enable the ~unr to fetch the values of a sequence ovar a given inter-

vaL If the value of CACHED? is '.NO, the fetched values wre just returned. Otherwise, the values

are saved mwy in a buffer, which is purt of the sequence data sructure (a flavor intance). The

buffer ai - array that uses space, unle. steps are take to prevent it. In the case of caching, if a

fetch operation is performed later, requesting some of these- values, they will not be computed

spin (this is the default behavior of the "yem). It shoul be noted that the FECH operations

do cause computation to happen, in cotast to the application of a system to its arguments. For

more explanation of buffering (caching) of sequences the reader is referred to the chapter on the

underlying implementation mechanisms. The readier should be cautioned that the caching plos-

* play just mentioned and more fully described in section 4.4 my change in future implmtatin...

FETCH-INTERVAL (SEQ INTERV AL &OM~ONAL OU ITT-ARRAY CACHED?) t .
Fetch a sequence over an interval. Return an array, if OUFPUr-ARRAY is not provided,
or return the values into the OUFPU~r-ARRAY. If CACHED? is given and it is equal to
':NO, then the resulting sequence values are not saved away and the buffer of SEQ does not
change. Otherwise, the resulting values are saved (in the buffer of SEQ).

FETCH-IMAGINARY-INTERVAL
(SEQ INTERVAL &OMTONAL O~rPUr-ARRAY CACHED?)

Fetch the imaginary part of a sequence over an interval. Return an array, if OUTFUr-
ARRAY is no provided, or return the values into the OLTTPIJF-ARRAY.

FETCH-COMPLEX-INTERVAL
(SEQ INTERVAL &OMIO1NAL OUIMT-REAL-ARRAY OUTrPUF-IMAG-ARRAY CACHED?)

See above.

FETCH (SEQ INDEX)
Fetch the value of SEQ corresponding to INDEX A loop of FETCH operations can accm-
plish the sameas a FETICH-INTERVAL operation, but it is much slower because of the
function call that occurs with every FETCH. This comment applies to FETCH-
IMAGINARY and FETCH-COMPL.EX.

FEICH-IMAGINARY (SEQ INDEX)
Fetch the imaginary, value of SEQ corresponding to INDEX.

.2L

FETCH-COMPLEX (SEQ INDEX)
Fetch a pair of real vaoes of SEQ comqisooding to INDEX The pair is returned via the
multiple value mechani..

FETCH-UNCACHED-INTERVAL (SEQ INThVAL &OPTIONAL OUrPUTr-ARRAY)
Sam as FETCH-WNERVAL but unradied, meanin that the remaking sequence value are
not buffered and that the sequenc buffrs do not dang a a remit of FETCH-
UNCACHED-INTERVAL

* FETCH-UNCACHED-D4AGINARY-INTERVAL
(SEQ UNMMVAL &OPTIONAL OLTFFLT-ARRAY)
Sm as FETCH-IMAGINARY-INTEVAL but uncadied.

* FETCH-UNCACHED.COMPLEX-lINTERVAL
(SEQ INTERVAL &OMIONAL OU7Fr-REAL-ARRAY OUFLT-ZMAG-ARRAY r --HED7)
See above.

FETCH-UNCACRED (SEQ SAMPLE) w~-

Sm as FETCH but wacached.

FETCH-UNCACHED-ThIAGINARY (SEQ SAMPLE)
Sm as FETCH-IMAGINARY but uncached.

FETCH-UNCACHED-COMPLEX (SEQ SAMPLE)
Sam as FETCH-COMPLEX but uncached.

3.2.2 UTILITY FUNCTIONS FOR DEALING WITR SEQUENCES

Thene function perform certain miscellaneous operations on sequences, such ms naming, un-

naming or finding the name of a sequence, showing the computations that led to a sequence and

fluhing sequences. For more explanation of buffering (caching) of sequences the reader is re-

ferre to the chapter on the underlying implementation mechanimma

SEQ-SETQ ("E &REST AROS)
The verdon of the Lisp form "setq" that min be used for naming sequences. An even
mnber of argwnnents is ned.The secrnd fourth, ... are sequences (objects) while the
first, third, ... ame the corresponding names. The keyword &QUCIE mens that the argu-
ments are no evaluated (so it works like the LIsp SETO).

UNNAME (SEQ)
Umnmes SEQ.

p...,.

.27-

SEQ-NAME (0 WECI) OBC.

DOMAIN (SEQ)
Return the domua of 20O.

PEROD (NO) 1 4

Returns the period of SEQ.

COMPUTE-DOMAIN (0
Return the defasult comtpute-domain of SEQ.

SEQUEN4CE? (081)
Predicate which tab whether OW is a uqe~

$DOMAIN (OBJECT)
Returns the domain of OBJECT, if it has one, else NIL

SHOW (OBJECT)
Prints the last computation that led to OBJECF.

SHOWR (OWJECI)
rints allcoputatios ha ledtoO E

* ATOMIC-TYPE (SEQ &OPTIONAL TYPE)
Returns the type of the elements of SEQ. if TYPE is not provided. Otherwise, it acts as aL
predcate, i.e. tests whether the type of 20O is TYPE.

STRUCTURE (S80)
Returns the structure of the sequence. For a numeric sequene, the answer is that it is a se-
quence of atom.

SEQ-TYPE? (SEQ &OVFONAL TYPE)
Recursive checking for TYPE. Without a second argument, it returns the type of SEQ.

p SEQ.GET (20O INDCATOR)
The property list GET operation for bequences.

K3SP-APROPOS (S1RING)
Find any ryster whose name indudes the given string. Same a the APROPOS function of
the Lisp Machine, but much faster because it confines search only to the KBSP-deflned sW-

The following functions give the user 1som ntrol over the buffering and unbuffering of se-

I quecm 1he reader may want to read their description after reading section 4.4 on array memory

management It should be mentioned here that each system remembers the sequence; instances that

were created by its application.

I SEQ-FLUSH (&RESF SEQ-LWS)
Fluh the sequences in thearuetlsfrmtirsse'meoyndlshhirbfr,
that hold their niumerical valums

p SEQ-UNWUFFER (&REST SEQ-LIT)
Undiaches a fig of sequences.

- SYS-FLUSH (&QUGITE SYSFEM)
Remove all sequences from SYSIEWs memory and uncahe them.

-296

3.3 SIMPLE SEQUENCE OPERATIONS

Operadems am a slog$* sequence.

SEQ-SIIFT (SEQUENCE SHIFT) si

Return da euquence, obtained by dilt SEQUENCE to the left by SHIFT so, dint index
SHIFT of the input bequence correqxoda to ide 0 of the output eqei.e. if the input
sequence is xjul, the output aequen is xf uSHIFI1

SEQ-SCALE (SEQUENCE SCALE &OPTIONAL REAL-OFFSET IAO-OWSEI)

Return the sequence obtained by scaling SEQUENCE by a scae factor SCALE. Subtract the
offiet first if it is given. The default offacto awe zero.

SEQRECIPROCAL (SEQUENCE) s"dem aiim

Return the sequence, obtained by taking the point by point reciprocal of SEQUENCE. It
alft SEQREAL-RECIFROCAL or SEQ-C bPEX-RECIPROCAL according to the type
of the input sequence.

SEQNEGATE (SEQUENCE) syatem

Return the sequence obtained by taking the point by point negation of SEQUENCE.

SEQ-ONJUGATE (SEQUENCE) ye

Return the sequence obtained by taking the pon by point coayles conjugate of a uune

Poiatlby-polnt Operations em moehm oneii Oft e.

SEQ-ADD (&RESr SEQUENCES) sae

Return the point by point sm of the arguments.

SEQ-SUBTRACT (&REST' SEQUENCES) sIteffl
Return the sequence obtained by subtracting all sequenom except the first one fron the fins

SEQ-MULTIPLY (&REST SEQUENCES) stem SEWm

Return the point by point product of a wet of sequecs Tha is a generic operation, i.e. it
we"b both real and comuplezsbequences, by invoking SEQ-REAL-MULTIPLY or SEQ.
COMPLEX-MULTIPLY respectively.

SEQ-0 (&RESF SEQUENCES) saenai
An alias for SEQ-MULTIPLY.

SEQ-DIVDE (&REST SEQUENCES) rystem sim

-3.-

Return the 1meq 1encre obtained by dividing a set of sequences. Output is first sequence divided
by the rs. T1his is a generic operation and calls SEQ-REAL-DIVIDE or SEQ4COPL.EX-
DIVIDE.

Generate a sequenc over a domain.

* SEQ-CONSTANT (REAL-VALUE &oPTONAL IMAG-VALUE) system
Return a costant sequence over omeP domain. Default of IMAG-VALUE is 0.

SEQ-FUNCTION (FUNCTION DOMAIN &RESF (YFHER-ARGS) System
Return the sequence computed from the function FUNCTION over DOMAIN. The argu-
ment FUNCTION mus evaluate to a lim function spec (if the name of the function is used,
it mus be quoted). OTHER-AROS are passed to the FUNCTION asthey are, so they ca
serve as parameters of the output sequence. Example: (SEQ-FUNCTION 'FOO 1-10. + 10.1
3.), with FOO being (DEFUN FOO (X A) (' X A)), computes the values of function 3z.

SEQ-COMPLEX-FUNCTION (FUC1ION DOMAIN &RESr 071HER-ARGS)
system -

Returns the complex sequence computed from the function FUNCTION. FUNCTION mut
be a complex-valued function of a single real argument. (YFHER-ARGS are passed to
FUNCTION.

SEQ-FROM-ARRAY (ARRAY) system
Return a sequence from an array. The domain of the returned sequence darts at 0 and has
length equal to the array length.

Applicatlon of a gives fumd.. to each point of a sequence.

SEQ-APPLY (FUNCTION SEQUENCE &RESI OTTHER-AROS) system alias--
Return the sequence whose values are obtained by applying a function to each point of a se-
quence. If SEQUENCE is real, then SEQ-REAL-APPLY is used and FUNCTION should
take one argument. Otherwise, SEQ-COMPLEX-APPLY is used. In the latter caw, FUNC-
TION should take two arguments, the real part and the imaginary part. As an example,

SEQ-APPLY ('+ SEQ 13)
return a sequence obtained from SEQ by adding 15 to each one of its points.

*SEQ-MAP (FUNCTION &REST7 SEQUENCES) system
Returns the sequence whose values are obtained by applying FUNCTION to each point of
the N-dimeional sequence obtained as the Cartesian product of the N SEQUENCE&.
FUNCTION shiould take N arguments. As an example,

* SEQ-MAP ('+ SE01 SE02 SEQ3)
* returns the sum of the three sequences.

Operaion on complex sequences.

.31-

SEQ-REL-FPART (SEQUENCE) sse
Return the real part of a sequence.

SEQ-IMAG-PART (SEQUENCE) system
-'Return the imaginary part of a sequence.

SEQ-COMPLEX (REAL-PART-SEQ IMAO-PART-SEQ) system
I Return a complex sequene built from two real sequenes.

- SEQ-POLAR (SEQUENCE) system alims
Returns the polar version of SEQUENCE. The "real part" of the output sequence is the mag-

p nitude of SEQUENCE and the "imaginary part" is the phase.

SEQ-RECTANGULAR (SEQUENCE) System alims
Returns the sequence obtained if SEQUENCE is converted from polar to rectangular.

SEQ-MAG (SEQUENCE) sysem
Return the point by point magnitude of a sequence.

*SEQ-MAG-SQUARE (SEQUENCE) System
Return the point by pioint magnitude squared of a sequence.L

-SEQ-PHASE (SEQUENCE) sysem

Return the point by point phase of a sequene.

I SEQ-LOG-POLAR (SEQUENCE) system alims
Returns the sequence obtained by converting SEQUENCE to polar but give mag in dbs.
"Real part" is 2Olog(mag) and "imaginary part" is phase.

SEQ-LOG-MAG (SEQUENCE) system
I Return the point by point log magnitude of SEQUENCE in db.

LOG-MAG (SEQUENCE) systerii alias
Return the point by point log magnitude of SEQUENCE over the first half of its domain.
Tis sysem is especially suted to plotting the log-magnitude of the Fourier transforn of a

j real sequene, which is an even fuinction of frequency, and thus only the positive half seeds
to be plotted.

Useful variables:

*CLIP-OFFSET-IN-DS variable

Maximum range in db. Default value is 200.

.32-

CLIP-OFFSET variable
Maximum range. Default value is (LOG (EX~r 10(11 *CLIP-OFFSET-IN-DBS* 20))).

Utilty rfua~ms

LODG-1O (X) function
LA* to the bowe 10of X.

* COMPLEX-MULTIPLY (RAL-Z-1 [MAG-Z-l REAL-Z-2 IMAO-Z-2) function
Multiply two complex numbers z-1 and z-2.

COMPLEX-DIVIDE (REAL-Z-1 IMAO-Z-1 REAL-Z-2 IMAG-Z-2) function

Divide z-1 by z-2.

*COMPLEX-RECIPROCAL (REAL-Z OMAG-Z) function
Take the reciprocal of L

PHASE (Y X) function

Returns the angle, in radianis, whose tangent is y/k. The returned value is always a number
between - randr. Ix=y=, the returnedvalue is0.TIisfunctionis asmart versionof
ATAN2 of Zeta Lisp.

-33- :,

3.4 CONVOLUTION AND RELATED OPERATIONS
I

This section describes systems and functions useful in performing convolution of sequences

and related operaion. From the users viewpoint, a system alias is no different from a system.

From the implementation viewpoint, a system aim is defined by compoing system as mappings,

whereas a system is defined by explicitly operating on the concrete representation of the input and

output sequence. A system alias is usually leas space efficient than a corresponding system for the

same operation, because a system alias by default buffers all intermediate sequences. For more ex-

planation of the differences between a system and a system alias, the reader is referred to section

4.3.

SEQ-REVERSE (SEQUENCE) system alias

Time reverse a sequence. If the input sequence is i], the output sequence
is it-n].

SEQ-FFT-CONVOLVE (X H) system alias

Perform linear convolution of two sequences X and H using the FFT.

OVCONV (SEQA SEOB) system
Overlap-add convolution of SEO by FLTR. FLTR should be substantially shortcr compared
to SEQ. The system decides which one of SEOA and SEOB plays the role of FLTR based on
their length.

SEQ-CONVOLVE (X H) system alias

Convolve sequences X and H. This is a generic operation (i.e. deals with both real and com-
plex sequences) built upon SEQ-REAL-CONVOLVE and SEQUENCE-COMPLEX-
CONVOLVE.

SEQ-CORRELATE (X H) system alias

Find the correlation between sequences X and H, by convolving X with the time-reversed
vernon of H.

SEQ-AUTOCOR (X) system alias

Find the autocorrelation of sequence X, by onvolving X with itself.

SEQ-ENERGY (SEQ &OPTIONAL WINDOW OFMSET-BETWEEN-SAMPLES)
system

The short-time energy in a sequence. If the input sequence has length L, the output se-
quence has length IJOFFSET-BETWEEN-SAMPLES. To compute the output sequence, the
input sequence is split into (posibly overlapping) blocks of length the same as the length of

-.

-34-

the WINDOW, each block is individually windowed, the sum of the squares of its samples is
computed and the result becomes a single sample of the output sequence. The default values
for the optional parameters are: WINDOW is a hamming window of length 256 and
OFFSET-BETWEEN-SAMPLES is 100.

* Related utility functions:

INTERVAL-REVERSE (WITERVAL) function

Get the time reversed interval. If the input interval is [a, b], then the output interval is [-
b+1, -a+ 11. Remember that the convention about intervals is that the first point is included
int the interval, but the last point is not.

CONVOLUTION-SIZE (X H) function

Determine the appropriate FFT length to use for convolution, equal to the sum of the length
of the sequences X and H minus 1.

CONVOLUTION-DOMAIN (X H) function
Determine the domain over which the convolution of sequences X and H will be non-zero.

3.5 DISCRETE FOURIER TRANSFORM COMPUTATIONS

A number of systems and functions is provided for DFT and FF computations. Their main

characteristics are the following:

Sine and cosine tables are used (they are implemented with the "resource" mechanism of

ZetaLisp). This ensures efficiency in time (sines and cosines are computed once when needed and

then looked up, if they are needed again), and in Lisp Machine storage.

The FFT and DFT operations are "generic". This means that they aormodate real and corn-

plex sequences and they branch using the specialized subordinate functions as needed.

The top-level systemstfunctions that a user would normally use are the following:

FFT (SEQ &OPTIONAL LENGTH) system
Return the (complex) FFT of a sequence. The input sequence can be real or complex. The
output sequence is always complex. The default value of LENGTH is the smallest power of 2
which is greater than or equal to the length of the sequence. In case the length of SEO is
longer than LENGTH, no truncation takes place, but instead "aliasing" occurs, i.e. all the
elements of SEO are taken into account, while the sequence of exponential coefficients re-
peats itself periodically. This implies that taking the inverse fft of the fft of a sequence may
not return the original sequence or a portion of it.

4 .

- -.

% ..]-

* .35-

IFfl (SEQUENCE &OPTIONAL LENGTH) system
Return the complex inverse FIFT of a bequence. If the input bsue i real, it is treated a
complex with nero imaginary part The default value of LENGTH ia the smalles power of 2
which is greater thaun or equal to the lengh of the ucqen.

IFFT-REAL (SEQUENCE &OPTIONAL LENGTH) system
Return the inverse Bft in the form of a real sequence. SEQUENCE should be a complex We
quence coITfq2Iondofg to the fft of a real bequence.

DIFT (SEQUENCE &OP'TIONAL LENGTH) ye
Return the DFT of a mquenPere. The default LENGTH is equal to the length of the seque.
Notice that it does't have to be a power of 2.

IDFT (SEQUENCE &OPTIONAL LENGTH) Sstem
Return the invers DFTr of a sequence. The default LENGTH is equal to the length of the
sequence. Notice that it doem't have to be a power of 2.

Utility fuactionssystemn:L

SEQ-COS-SINGLE (PERIOD) system
Return a cosne with the specified period. The compute-domain of the cosne is equal to a
single cycle.

SEQ-SIN-SINGLE (PERIOD) system
Returns a zine with the specified period. The compute-domain of the zine is equal to a single
cycle.

SEQ.COMPLEX-EXP-SINGLE (PERIOD) system alias

Returns a complex exponential with the specified period. The compute-domain of the sgnal
is equal to a single cycle.

SEQ-ROTATE (SEQUENCE AMOUNT) system aba,

Rotate a sequence to the left by specified amount. Equivalently, shift the sequence to the left
as if it were periodic with period equal to its domain and then grab one period. The output
sequence ha the same domain as that of SEQUENCE.

POWER-OF-i-P (NUM) function
Ted tlNUM is apower of 2

NEXT-POWER-OF- INM function
Returns the next power of 2>- NUM.

SEQ-ALIAS (SEQENCE DOMAIN &OPTIONAL REPETITION-LENGTH) systemn
Return the alissed version of a sequence into a specified domain. (This function needs, fixing
to check for invalid inpt It is not likely to be useful to a ordinary user of the KBSP sys-

.3-

3.6 FILE INPUT/OUTPUT

The following facility has been designed to read fran a variety of data file formats that have

existed (and still exist) on the Digital Signal frocemiog Group computer.

The old dat format consist of a UNIX binary file with an ASCII header, which is a block of

512 bytes with type and sin information, a follows

sO2 (for 2-byte integers or ,04 for 4-byte reals or c08 for 8-byte complex)
dim
12456 (or whatever the number of samples in the iek is).

The new DSPG dat fonnt uses a directory containing two files one file ontains the data in

binary form and the other is the descriptor file, containing type, size and iniscallaneous informa-

tion in ASCII form (so that it can be viewed easily on the terminal). The 3600 dat format is very-

similar.

FILE (FIENAME) system
T'his system creates and returns a sequence from a filie. The file must be one of the following
kinds- DSPG old dat format, DSPG new dat format, 3600 dat format or ASCII. FIENAME
must be a hostpath specification conforming with the Lisp Machines conventions for path-
names for different operating systems. See [Weinreb] (section on Naming of Fies).

* SEQ-DUMP-TO-FILE (SEQ PATHNAME) function.

Dump SEQ into a file specified by PATHNAME. Only works for real or complex sequenes.
* The format of the resulting file is the 3600 dat file format.

* 3.7 FILTERING

Funtiowsystems supporting filtering of signals are provided. Note that the filter azeff-

dents must be provided by the user (i.e. no filter design is provided). Filter structures currently

supported are FIR and KIt filters. More general filters can be created by using the SYS-AUAS fa-

.37-

cility and the provided "emsca.s bWilding blocks.

FIR (&REST CUEFFICENTS sytem
Return a bequenc whose value is the impulse response of an FIR filter. For eample, it
COEFFICIENTS are 1 and 0.5, the output of FIR is a sequenac with value 1 at time 0 and
0.5 at time 1.

IIR (&REST COFICIENTS) stem
Return a sequenc whose value is the impulse rcqF mow of an MR Abltu. For example: (HR
.5) kman impulse rpoeof 1.0, -.5, 2, -125, ... In general, (JIt ci c2 ca o) imipir-
ments the impulse reFqn -e of the filter

FIR-FILTER (INPLTF FmR-SEQUENCE) "yem alias
Return the output of the specified FmR filter if VGVTY is tim input sequena to the filter.

-. Th specified filter min be a sequence coidructed using FmR.

IR-FILTER (INPLTF hR-FLTER &OMTONAL GAIN DINTAL-SFAT-ARRAY)
Sytem

Return the output of the specified M filter (scaled by GAIN) if IN is the input se-
quenac to the filter. The default GAIN is 1. The INITAL-STAII-ARRAY, it provided,-
beomes the initial condition for the MR filter, Otherwise, the initial ondition are Mo.

STATE-SHIFT (ARRAY NEW-F[RS-ELEMENT) function
Shift the array elements to right by one and put in a new first element in the firat position.
TIds function works by side-cifect, i.e. it actually changes its argument ARRAY, and should
be used with caution, if at all. F

IIR-FILTER-FROM-ARRAY
(INPUT ARRAY &OPTONAL GAIN INrFAL-SFATE-ARRAY) rytem aias

Filter an input sequenc with coefficients from the given array. In order to implement the
Km filter described in the documentation of MIR, the array must be [ci, c2, ...,col.

3.8 FUNCTIONS OPERATING ON SEQUENCES

MEAN-OF-SEQ (SEQUENCE &opIONAL INTERVAL)
Return the mean value of a sequence over some interval. The default value of INTERVAL is
the domain of the sequence. The function returns two values, the mean of the real and the
imaginary part of the sequenc, using the Zeta Lisp multiple value mechaniu.

-33-

SUM.OF-SEQ (SEQUENCE &OMTONAL INTERVAL)

Return the am of the real and imaginary values of a sequence ovea sme interval.

MEAN-SQUARE.OF-SEQ (SEQUENCE &OMTONAL OnTERVAL)

Return the wean magnide uquared value of a sequence over some inteval, i.e. the an of .

the squares of the value over the interval divided by the lengh of the interval. Thw default
value of WNERVAL is the domain of SEQUENCE.

VARLANCE-OFSEQ (SEQUENCE &OMrONAL INTERVAL)

Return the variance (E(I xI) E(z)) of a sequec ove me interval. The default
value of OnTERVAL is fth domain of t sequence.

INNR-PRODUCT (X Y)

Return the inner product of the vectors X and Y, represented by array..

-396

3.9 NORMALIZING A SEQUENCE

Several system awe provided f(a normualnng a given sequence in different ways. All of thewe

system returns a uaormaliind version of the input ueqtaw

SEQ4NORMALIZE (SEQUENCE) Sstmem
Rturn the aormaliued version of SEQUENCE with zero mecan and tut variance.

PREEMPRASIZE (SEQ &OPTIONAL FREEMPHAS&SFILT7ER) system aiim
Return the preemplaszed veron of SEQ. Mwe defaut preemphasts-flter is the one spedfied --

by variable EFAULT-PREEMPHASIS-FILER*.

DEEMPIIASIZE (SEQ &OPTIONAL DEEMPHASISFILTER) systm aias
Return the deemphaszed version of SEQ The default deemphais-flhter is the one spedfied
by variable -DEFAULT-DEEMPHASIS-ILTEW.

SEQ-UNITENERGY (SEQUENCE) system alias
Return the normalized version of SEQUENCE with sum of squares equal to 1.

SEQ.-UNMTAREA (SEQUENCE) stemn alias
Return the normalized version of SEQUENCE with unit area, i.e. the sum of values being
equal to 1.

Useful variables:

DEFAULT-PREEMPRASIS-FILTER variable
Default preemnphasis filter. Its default value is (FIR 1.0 -.95). If a different default preezn-
phasis filter is desired, this variable must be set to the desired filter obtained with FIR.

*DEFAULT-DEEMPHASS-FILTERO variable
Default deemphasis filter. Its default value is (HR -.95).

- 4&. .N

3.10 WINDOW OPERATIONS

Windowinig Operations s sequenes

SEQ-WINDOW (SEQ WIDOW OFFSEI) "asm aim
Grab portion of Pulitnce overlapping with WINDOW when tihs zero index of doe WINDOW
is aligned with index OFFSEI of SEQ aad window tins portion using the specified window.
The domain of the resulting sequenc is identical to the domain of the WINDOW.

SEQ-GATE (SEQUENCE DOMAIN) system
Grab a portion of a sequence. The domain of the resulting sequence is DOMAIN..-

SEQ-SECTION (SEQUENCE SECTION-iN~TERVAL) "yemas
Grab the portion of SEQUIENCE specified by SECTION-INTERVAL and shift it to start at
the origin.

SECTION (SEQUENCE SECTION-INTERVAL) sysem a"ia
Alias for SEQ-SECTION.

Window generators:

RECTANGULAR (LENGTH &OPTIONAL CENTERED) system
A Rectangular window of the specifed length. If CENTERED is T (the default), then the
window is centered around 0.

HAMMING (LENGTH &OPTONAL CENTERED) system
A Hamming window of the specified lengt. If CENTERED is T, (the default), the Ham-
ming window is centered around zero.

IMPULSE 0 sysem alias

An impulse at 0.

UNIT-STEP sy.stem
A step.

ad1

-41-

4. THE KBSP IMPLEMENTATION.

4.1 INTRODUCTION

7he KDS? p.ack introduced an extension to the Lisp languae in order to represenit sys

* ter and sipahl.

System are leneralized Lisp functiom with arguments almost anything, but most typically signals

or parameters of signals, and outputs other sgnals.

Signals are represnted by Isquences. Sequences are abstract data types (flavors) induiding vari-

* 0us pieces, of information about the signal they repesent, for example its name, where it cam

from, how to compute its values and its domain.

The section on sequences u abstract data types explaims the implementation of sequencesa

flavor types The components of a sequence are explained and a mummary explanation of the main

methods that all sequences are equpped with is given. It will be helpful to the reader if he is famn-

* iliar with the basic philosophy of flavors as described in the corresponding chapter of the Lisp

machine manual.

The section on system implementation explains the facilities that are provided so that the

reader cn define his own system Many examples are provided and explained in detail in order

* for the reader to be able to read the definitions of the current system and write his own. Some

familiarity with lisp macros and flavors will be helpful.

The section on array memory management explains the techniques that enable KBSP to make

efficient use of the Lisp machine memory. A lis of forn that allow the usr to have ontrol over

* the amount of array memory his program consmames is given. Finally, an example of changing the

* definition of a system to make it more memory efficient without sacrificing the clarity of ode is

given. Some familiarity with the concepts of memory management in Lisp, especially garbage col-

* lection, and with the concept of hashing will be helpful.

-

4.2 SEQUENCES AS ABSTRACT DATA TYPES

The KBSP packa provides facilities for the definition of squecs of arbitrary objects, in-

duding suences of sequences. lU ability to mix flavors (see [Wenrebj) is umd to implem.ent

abstract dat type in a modular fahion. KBSP dem severa fa types for sequence, which

can be combined in different way. to implement types mch as numeric quen wd bequenmes Of

sequencm. BASIC-SEQUENCE implemnts a sequence with a domain and a buffer for holding its

values. These values can be any Lisp objects. SEQUENCE is built on top of BASIC-SEQUENCE

and adds to it the ability to plot itself and the ability to have its own property list. BASIC-

NUMERIC-SE OUENCE is built on top of BASIC-SEQUENCE and incudes extra slots to mc-

comodate complex sequences. NUMERIC-SEQUENCE is built on top of BASIC-NUMERIC-

SEQUENCE and SEQUENCE and indudes operations appropriate to numerical sequences (e.g.

The badc flavor out of which sequences are built is the BASIC-SEQUENCE flavor. Its In-

stance variables (i.e. the components of the corresponding abstract data type) are the following:

BUFFER-DOMAIN: This is the interval over which the sequence has previously been computed.

The corresponding values arc stored in BUFFER.

BUFFER: This is normally an array containing the values of a part of the sequence (the part that

has previously been computed).

DOMAIN: The interval over which the sequence is nonzero (or non-constant).

PERIOD: The period of the sequence. It is equal to INF for a non-periodic sequence.

CACHED?: When this is T, the computed values of the sequence are cached, i.e. saved in

BUFFER so that they will not be recomputed when needed agin in the future.

The SEQUENCE flavor is built from BASIC-SEQUENCE, ORlEC-PLOT-MIXIN (a mi-in

that enable. a sequence to plot itself) and SI:PROPERTY-LISr-MIXIN (a nixin flavor that imple-

meats the basic property list operations for the individual sequence intances). The reader is re-

...

:::::::-::::.. .:::::-.. . -... : .: ": .: .:- .-: -::: ::

* . . < .. N. . *. ~ V * . - . .-7- N

.43-

fer.e to chaptr 2 for an explanation of the anfept of building new ubstract data types by comn-

plained in IWeinrbi.

The BASIC-NUMERIC-SEQUENCE flnar is built from BASC-SEOUDIC2. It has addi

tional dlots IAGINARY-DUFFER-DOMAJN and IMAGINARY-DUFFER, to accownmodte

cop-valed mpones

7U NUMERIC-SEQUENCE amply consust of RASIC-NUMERIC-SEQUENCE and SE-

QUENCE.

Sequences can be examined using the UVs ldescribe* facility. Mwe Uip form (DESCRIBE

OWl), where OBW is the name of an object (or a seqence), prints a list of all intance variables of

OW1 together with thei values. Mhe reader my find it helpful to apply this facility at variot.

points of the example memdon and verify for himself the caching and uncaching of sequences. SEQ-

NAME and SHOWR are other war~ to examine sequaence.

The above flavors understand a wide variety of m aesvia methods that awe defined for

them: predicates for testing values, "fetch" messges that return poruions of the data or domains,

Wmt messages that change the valuem. When a system is defined, a new flavor type is defined on

top of a sequence flavor type (using the mizi facility) with new methods that are speci md for

the system. The user ha the ability to define many methods, but DOMAIN and FETCH methods

* ae the minimal methods that mt be provided so that the new flavor is compatible with the rest

of the KBSP package. For example, many KBSP functions and systems expect an object to be able

to fetch its values. A meq11ePn r is able to fetch its values only if mome form of FETCH method has

been defined for it.

As explained in the next mection, DEFIE-SY and SYS-ALIAS are extetuons to UiP that

alow convenient definition of system with their associated methods. DEFINE-SY provides a

convenient syntax for defining a new sequence type by explicitly providing its basic methods. SYS-

ALIAS allows definition of a new mequeipn, by abstractly combining existing sysems, namely

without explicit definitionm of the new equence's methods, and by using a tisp-like Syntal. SYS-

ALIAS is easer to write than a DEFINE-SYS, but it can often be more ineffident in term. of

Wee and memory onsnmtion.

The following is a lia of mad mehd&sciated with the sequence flavors. They are provid-

ed here for reI reniP purposes only. In term of the role methods play in the ICES? packae there

are three clae of methods:

Methods that depend on the particular sequence being defined, such as FETCH, COMPMrE and

DOMAIN. Thes must be defined separately for each new sequence type. It is possible for COM-

PUTE (which works over an interval) to rely on FETCH or vice versa. The preferred implementa-

tion depends on efficiency coniderations and is mubject to change. The airrent conventions are

described in the neM section.

Methods that are sequence dependent, but are not necessary for the proper use of the sequence,

such asPERIOD, SMRUCrLYRE or ATOMIC-TYPE. Default method definitions provide reason-

able anwers, but not always correct.

Methods that perform some function which is universally useful and does not depend on the paric-

ular sequence, such as FIND.COMPUTrATION-[NT1ERVALS or FETCH-INERVAL. These:

methods use the sequcece-specific methods internally and hence they can have a universal defini-

tion, which should not be superseded. T'hese methods could have been defined as top-level Lisp

functins

* Methods for BASIC-SEQUENCE:

HAS-NO-BUFFERS 0
Predicate for testing whether buffer is NIL.

DECACHE 0
It fiees the array used by BUFFER for reus. Sets BUFFER to NIL and BUFFER-
DOMAIN to the zero, interval.

Medhods for SEQUENCE:

DOMAINO0
Returns the nonro domain of the sequence.

COMPUTE (ITERVAL ARRAY)

Computes the values of the uqe~over the INTERVAL and plaocs them into ARRAY.

FETCH (INDEX)
Fetches the value of the sequec at INDEX

FIND-COMPUTATION-INTER yALS
a (OLD-BUFFER-DOMAIN DESIREDBUFFER-DOMAIN)

Returms the intervals over which the values of the sequence mst he actualy computed to
cover the DESIRED-BUFFER-DOMAIN, if the values over OLD:-BUFFER-DOMAIN are
aled kmow.

FETCH-INTERVAL (INTERVAL &OPTIONAL OU1PUr-ARRAY NEW-CACHED?)
Returns an array containing the values of the sequence over INTERVAL. If OUTPUT-
ARRAY is provided, the values are put into it.

PERIOD 0
5 Returns the period of the sequec.

* MODIFY-CACHED? (NEW-VALUE)
Sets the value of instance variable CACHED? to the new value and returns the old value.

ATOMIC-TYPE 0
Returns the type of the elements of the sequence.

STRUCTURE 0
Returns the type of a sequence, for examuple whether it is a sequence of numeric sequences
or a sequence of number.

* COPY-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)
Copies the contents of instance variable BUFFER into the given NEW-BUFFER over the

spcaid NEW-BUFFER-DOMAIN. Does a reasnable thing if NEW-BUFFER-DOMAIN
adthe iutance variable BUFFER-DOMAIN have a nonempty intectiom.

SET-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)
Swaps the contents of instance variables BUFFER and BUFFER-DOMAIN with those of
NEW-BUFFER and NEW-BUFFER-DOMAIN respectively.

-46-

Methods for BASIC-NUMERIC-SEQUENCE:

HAS-NO-BUFFERS 0
Predicate for testing whether sequec has at least one buffer (real or imaginary)

DECACUE 0
It zeroes both the real and the ianary part and returns the corexding arraps topbi

Methods for NUMERIC-SEQUENCE.

COPY-IMAGINARY-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)
Does the same thing as COPY-BUFFER of SEQUENCE but for the imaginary part of a
numeric sequence.

COPY-COMPLEX-BUFFERS
(NEW-REAL-BUFFER NEW-IMAG-BUFFER NEW-BUFFER-DOMAIN)

Does the same thing as COPY-BUFFER of SEOUENCE but for both the real and the ima-
ginary part of a numeric sequence.

SET-IMAGINARY-BUFFER (NEW-BUFFER NEW-BUFFER-DOMAIN)
SET-COMPLEX-BUFFERS

(NEW-REAL-BUFFER NEW-IMAG-BUFFER NEW-BUFFER-DOMAIN)
FETCII-IMAGINARY4INTERVAL (INTERVAL &OMrONAL OUrPUr-ARRAY NEW-CACHED?)
FETCH-COMPLEX-INTERVAL (INTERVAL &OPTIONAL OUrPUr-ARRAY NEW-CACHED?)
RANGE (&OPTIONAL INTERVAL)

Returns the range of the sequene over the specified interval. If no interval is specified, a de-
fault domain is used. For complex sequences, the limits of a square that represents the range
in the complex plane is returned.

IMAGINARY-RANGE (&OMTONAL INTEVAL)
Returns the range of the imaginary part of the sequence over the specified interval. If no in-
terval is specified, a default domain is wsed.

COMPUTME-IMAGINARY (INTERVAL ARRAY)
The default compute method for the imaginary part of numeric sequenes.

I%~

-47-

4.3 SYSTEM IMPLEMENTATION

Systems in the KB P package implement mathematical systems, i.e. entities which generate

"gnals based on some input signals and/or parameters. Systems present a Lisp function interface to

the top-level user. They accept the l umda lit keywords that Lisp functions accept (we [Wcinreb].

and they generate an output sequence in a side-effect-free manner (i.e. the system arguments are

not modified as a result of calling the system).

At the implementation level, a basic feature of systems is lazy or delayed evaluation: The ef-

fect of calling a system is not computation of values of the output sequence, but just creation of the

necesary machinery for doing so, namely generation of Lisp code that can produce the numeric

values of the output sequence.

Another basic feature is that a new flavor type is generated for each system. The new flavor

type is basically a numeric sequence with extra methods that are particular to the corresponding

system like the compwe or downem methodr, which implement the computation of values in a sys-

tem dependent manner. Calling a system generates Lisp code that defines this new flavor and

creates an instance of the flavor type which implements the output sequence according to the argu-

meats of the system call. All sequences generated as a result of the call of a system, i.e. all se-

quences that are instances of the flavor type asociated with a system, are "rer -.mbered" by the sys-

tern in a hashing table in the system's property list. Thus repeating the call (HAMMING 32) twice

does not create two objects, but one. Also an unnamed sequence is not inaccem ble as an unnamed

general object. A property assigned to a sequence usig the special FITPROP version for me-

quences, called SEO-PUTPROP, is not attached to the name of the object, but to the actual object

itself. The buffers of the output sequence that hold its numerical values are generally empty im-

mediately after its creation. They get filled with some of the sequence's values as a result of a

fetch-interval or plot request.

(a) DEFINE-SYS

. . .. : . -. . . .K,. . .-

. ' - A4t2 . t.. .. -.. -

- - - -- --. - - -

-13-

DEFINE-SYS is a macro provided for the definition of new systems. In Lisp, the macro fad/l-

ity is an orderly way of generating lisp code. DEFINE-SYS provides a mechanisn for defining new

systems in a concise manner. A DEFINE-SYS expands to full lisp code performing a variety of

tasks related to the generation and maintenance of the output sequence.

Let us first examine what the arguments of DEFINE-SYS are and how they expand into lisp

code in the context of an example:

DEFINE-SYS (SYSTEM-NAME PARAMEIT FLAVOR-TYPE-LIST FORMS)

The example that will be analyzed here is the definition of a system that generates a Ham-

ming window of specified length. The reader should attempt to understand this definition while

reading the explanation that follows.

(DEFINE-SYS HAMMING (LENGTH &OFIONAL (CENTERED 7))
(NUMIERIC-SEQUENCE)

"A Hamming window"
(COMPUTE ([NTERVAL OUT~r-ARRAY)

(LOOP FOR SAMPLE-INDEX FROM (SrART INTERVAL) BELOW (SEND INTERVAL)
FOR ARRAY-INDEX FROM 0
WITH OFFSET = (IF CENTERED 0 (// LEWITH 2))
DO (SETF (AREF OUTPtr-ARRAY ARRAY-INDEX)

(+ .54 (- .46 (COS (II (" 2.0 P•
(- SAMPLE-INDEX OFFSET))

(1- LENGTH))))))))
(DOMAIN

(IF CENTERED (INTERVAL (MINUS (/ LENGTH 2))
(+ LENGTH (MINUS (// LENGTH 2))))

(INTERVAL 0 LENGTH))))

SYSTEM-NAME is the name of the system. In the context of the example, this corresponds

to HAMMING.

.PARAMETERS are the arguments to the system, typically signal parameters, if the system

generates a signal from its parameters, or one or more sequences, if the system operates on se-

quences (like adding or multiplying two sequences). In the Hamming example, the arguments are

two: LENGTH, which is the length of the window, and an optional argument (note here that the

Zeta Lisp function keywords apply to DEFINE-SYS well) CENTERED, which determines

whether the window will be centered around 0 or whether it will start at 0. The default value of

'.7.."
".%" -

CENTERED is T, L~e. the window is centered around 0.

The output sequec of a sysem is a flavor of a type particular to the sysem The output fla-

voir type is obtained by a flavor definition, which is one of the tingsp included in the expanion of

DEFINE-SYS FLAVOR-TYPE..LISF is a Eda of flavor tpsto be combined into the output fia-

vor. In the tHmming example, there is only one flavor in the flavor-type-flit, NUMERIC-

SEQUENCE. This is the flavor type of the window which the "ytm generate.

FORMS is a Hea of forms which expand into method definitions for the output flavor. Thes.

A methods are particular to the defined sysa and typically specify how the output values should be

computed, and how the domain of the output sequence is found. These fain are required for the

sequence to be any useful. Compute fort may compute over an interval (COMPUJTE) or at a

* angle index (FETCH). COMPUTE forms are fsiser, because they operate on blocks of data, but

they require the user to write a loop of array operations. FETCH form are much slower, because

they perform a function call per index, but arc easer to write.

In the current implementation, the COMPUTE form is required, while the FETCH memge

is reduced to a COMPU)TE memag over an interval of length one, unless it has been defined oth-

* erwise. This may change in future implementations.

T'he COMPUE form by convention always takes two arguments, INTERVAL and

OUTPUT-ARRAY. INTERVAL is the interval over which the values are to be computed and

OUTPUT-ARRAY receives the computed valuem LOOP is a Zeta Lisp iteration construct similar

to a DO or a FOR loop, but more general and powerful (Weinreb]. The compute form expands

* into a COMPUTFE method definition for the output flavor (refer to the section on sequences for

more explanation). Thn compute meme will be sent to the output flavor when its values are me

quested, typically by PLCff or FETCH4-INTERVAL. Thec senders of the messge will provide

values for the two arguments of the method. In the example, die compurte form computes the

values over the interval by applying the mathematical formula for the Hamming window. Thec

domain form always takes no arguments and expands into a DOMAIN method definition. In the

example, the domain computation depends on whether the window is centered or not.

A form called INF-FORMS with no arguments is the Init form.. Mwe iit farm expands into

an aftr-init method definition. This manw that the corresponding me~is automatically sent 7

immediately after the creation of a flavor instance and pedorms, initaliuation tuks. INIT-FORMS

are not requred and in the example of Hamming window they have not been used. ,

in summary, the required compute form are:

COMPUTE, if the output sequec is real,

COMPUTE and COMPUTE-IMAGINARY or
CO1MPrE-COMPLEX, if tin~ output sequence is complex.

DOMAIN, in all casm

Some of the optional ones with default definitions (refer to the secton on sequences for these) are:

RANGE (&OPTIONAL INTERVAL)
IMAGINARY-RANGE (&OPTIONAL INTERVAL)
ATOMIC-TYPE 0
PLOT-RANGE 0-
FETCH (INDEX)
FETCH-IMAGINARY (INDEX)
FETCH-COMPLEX (INDEX)
PERIOD 0
INITrFORMS 0 (default is nil)

As mentioned before, the format of the compute and domain forms is no arbitrary but

depends on the conventions that other parts of the KBSP system follow. For example, the compute

form takes two arguments because this is how the PLOT or FET'CH-INTERVAL function will

lend the correspondng message.

Another simple example is the definition of SEQ-SHI1FT:-

(DEFINE-SYS SEQ-SHIFT (SEQUENCE SHEFI)
(NUMERIC-SEQUENCE)

"Shift the input sequein to the left by SHIFT so that index SHIFT
of the input sequenc corresponds to index 0 of the output sequence
(COMPUTE (INTERVAL OUTPUT-ARRAY)

(FETCH-INTERVAL SEQUENCE
(INTERVAL-DElAY INTERVAL SHIFT) OUTPUT-ARRAY CACHED?))

(COMPUTE-IMAGINARY (IN'TERVAL OUTPUT-ARRAY)
(FETCH-IMAGINARY-IN'TERVAL SEQUENCE

(IN'TERVAL-DELAY INTERVAL SHIFT) OUTPUT-ARRAY CACHED?))

2S

Thesecndmajor way of defining new systes is usig SYS-AAS. Th1s is another macro

that allows definition of a new system by combining existing sytems in anabstract way, i.e.

without the need to ma the internal rept enaion ofthie input argument

* SYS-ALIAS (SYSTEM-NAME PARAMETERS BODY)
BODY mus be of the form (EQUIALENT-EXPRESSION . METHODS). Equivalent-

cirmnis a lisp expresson built on exiting system andfor Upq. A simple example of the use

* of SYS-ALIAS is the definition of SEQ-ECTION:%

(SYS-ALIAS SEQ-SEC TION (SEQUENCE SECTION-INTERVAL)
(SEQ-SHIFT

(EQ-GATE SEQUENCE SECTION-INTERVAL) (SSTART SECTION-INTERVAL)))

* In this definition, METHODS is equal to nil, i.e. no extra methods have been defined for its out-

put sequence on top of the default ones for its type. doesn't exist. 'The equivalent expresion gabs

* a portion of the sequence corresponding to the section interval and shift it so ha it tats at the

* origin. Notice that there was no need to think about the values of the input sequence in this defin-

ition. The input sequence was treated asan abstract entity and its internal representation was not

accssd at all. 'The definition (ignoring the Lisp syntax) reflects the abstract way of thinking

about this operation. SYS-ALIAS is the simplest way of witing new systems. It use only the

abstract notion of a sequence, in contrat with DEFINE-SYS, which in general needs to amcs the

* ~internal sequence representation through array operations. Most sys.ta h user might ever

need can be written (if inefficiently) as system aliases. In many ases, however, system aliases are

very inefficient in their usage of space (and time), and it is necessary to rewrite the system alias

* definition usi DEFINE-SYS. Conider another example of SYS-ALIAS, the system that com-

putes, the periodograin of a sequence:

(SYS-ALIAS PERIODOGRAM (SEQ BLOCK-SIZE STARTING-POIN'T BLOCK-OFFSET'
NUMBER-OF-BLOCKS &O~rIONAL (FFT-LENGTH 2048))

"Get the periodogram of a sequence. Return its log magnitude over
the positive frequencies only. Cached version - all intermediate
sewp are saved"
(LOOP FOR INDEX FROM 0 TO (- NUMBER-OF-BLOCKS 1)

COLLECT (SEQ-MAO-SQUARE

(FA)WN SEQ (HAMMING BLOCK-SIZE)

-53-

(+ SFARTINO-POINT (BLOCK-OFFSEr INDE))

EWM EO-J~r (NEX-POWER-OF-2 FFT-LENOTH))D

FINALLY (RETURN (LOG-MAO (APPLY 'SEQ-ADO SEO-LI)
(InTERVAL 0 (1 + (I (EXT-POWER-OF-2 FFFr-LEIGT 2)))))))

In this definition. each intermediate FFT remt, eac windowed result and each magnitude

squared remit is cached. If a Iarg number of periodograms, each with a larg number of blodas is

takes, then cowmdetrable mmory may be unnemcurily cnuamed. In this cas it is pomdble to per-

form the same computations but uncached. This could me that after echb peuiodogram, anl inter-

mediate results are Bluhed, so that the arrays they ccupy are returned to the pool of free arrays

for reue by the red periodoaa waaputatiomu One way to achieve this by sysematca~ly comurt-

ingga SYS-AUIAS into a DEFINE-SY is shown in the section on array memory management.

.57.

4.4 ARRAY MEMORY MANAGEMENT

Signal proaeing amames lot of memory spc very quickly if the memory space is amt

remd, especially when the procemang involves long waveforms. In conventional computer environ.

meats, array storap is allocated by mean of array dedaratiom. If the array declarations require

more than the available computer (core) memory, then a compiler error is ugnalled in this case,

the ie must take care of fth storage problem manually, meaonn that he mus configure his proo.

gram in such a way that only a smnall part of the data resides in core memory at any given instant,

while the rest is on a manstorage medium, and also in such a way that arrays are reuable. in

more advanced systems which have virtual memory management, arry declarations that exceed the

available core memory are not errors became the operating system takes care so that only a an

part ofthe data isin core. If arequestfor apiece of data not incore is iued, teoperaing sys-

temn knows how to find it on mmi storage and swap& it with another piece in core. ULing a virtual

memory system is not without a price: prograrm that do not aces data sequentially winl camse the

computer to spend mos of his time swapping data in and out of core.

Storag in the Lisp language is based on an entirely different concept of memory manage-

meat. Memory is not allocated explicitly, but implicitly by the Lisp system, and in a less structured

way than in conventional computer environments: memory is allocated automatically when needed

and it is freed when it is not accesible any more (not amcable" means that there is no name or

pointer for a chunk of memory, in which cow there is no way to reach it). For example, Per form

ing a side-effect-free operation on a data structure returns a nameless modified copy of the data

structure. If a name is amigned upon creation of the copy, then the name provides a way to access

the modified version. IU the user does not want the old version any more, he will give its naue to

the modified data structure. Then the storage the old version occupies is no longer accssble be-

camse it became unnamed and it will be garbage-coliected sooner or later.

In fact, when one cosiders arrays on the Lisp machine, the mebecomes slightly more

complicated. The Lis machine memory has distinct regions of prespecified surn for storing arrays

* and lists. These two regions are grbage collected separately.

The KBSP systemn cannot rely on the Limp garbage collection, because arrays wre coinumed

and freed at a rawe much higher than what dhe grbage collector could accounodate. Thus the need

fo some array management scheme wa waeded, which would provide a imle and easy-to-use

mechaniun for alleviating the memory managlement problem on one hand and avaiding repeating

the -en computation om the other.

The solution chosen is the following:

Sequenes are going to be caclied by deflault. This man that if a sequec is created and at

somne point its values over sme interval awe neddand computed, theme values will be saved in a

buffer (wray) so that they are readily available if they are needed agin in the future. Moreover, if

the values over another interval with non-empty intersection with the first intervl are needed, the

KDSP system will compute only the unknown values. Buffering as contiguous, i.e. alting for the

values over an interval which does not intersect with the interval already cached will camn compum-

* tation and buffering of all values between the two intervals as well. This design decision may

change in the future. Buffering solves the problem of repeating the same computation if the values

* awe necinary. Sine: buffering happens by itself, the user does not need to explicitly save away

computed values that he may need in the future.

However, uncontrolled buffering entails a danger, in case when lots of intermediate me-

quemois are generated. That this is no an exotic caw can be seen by considering a periodogramn

computation. Amirne that a ingle periodogram is to be computed, with FFT length equal to 204

* points (1 tH resolution if the sampling rate is 2048 Mz) and with total number of blocks -qa to
128 (a reasnabl number if the signal-to-noise ratio is low but the signal fairly stationary). As-

same that this omputation is going to be repeated 10 times. With omplecte buffering, eveny inter-

mediate FIFF will be cahda well as every magnitude-squared operation. This men that the to-

tail memory comme will be of the order of 25 Megabytes.

2-2-

in DEFUJE-SYS the concept of "local arrays" was applied: the COMPLTFE forms provide

I array(s), whosm scape is local to the forn and they are used far hoaking andlor returning results.

Thiem array. are distinct from the arrays which serve as buffers of sequence values and are per-

manently attached to the sequences themselves. The progiamner of a DEFINESY has the choice

* to perform put of the computation abstractly, i.e. by combining systems, or concretely, i.e. by

- fetching the values of the sequences into local arrays and then operating on the array.. In conrs,

* a SYS-ALIAS allows only abstract combiniatioms of systems.

s When systems wre combined abstractly, memory usne may be excssve. One solution would

be to open all sequences up, put their values into local array. and operate on them. This would

* violate the abstraction principle and ail the convenience, ease and safety of programming that it

offens.

Another solution that ai offered by the KBSP package is to to allowing the ser to control

the uncaching of buffer array.. Freed buffer arrays do not go back to the Lisp region of memory

for array. but they become permanent property of the KBSP system. The KBSP system saves all

freed rrrays n hashing table, in which free arrays are keyed by size. When a new buffer array is

reqluested, the KBSP system first looks at the hashing table to see if there are any free array. of

this siz. If thereme, it grabs outof them and ues it.f not, anewaayof the required sze is

made, which mens that this memory can never go back to the Lisp region for arrays again. If it

becomes part of a cahdsequence, it will store its data, if it is fieed, it goes into the hashing table

for reuse.

T7his storage discipline is fairly aimple to implement and it can offer solution of the storag

management problems in mast cam In the periodogram example, if the computations inside a ain-

gle periodograms arecchd but after a periodogram is completed, all newly cached sequence. are

flushed, the total storage counmed will be only one tenth of what it was before and it will have

been reuised nine times. After all 10 periodograns are completed, this memory will be part of the

hashing table of free arrys for further reus. Cowe in which this sceewould be inadequate

&;g PIn- r

might be: (a). if the intermediate cached computations chew up a8 the available space or (b). if

th er alocates many iarp arrays of many odd dams in wbh ase all array spac will be parti-

tioned into many odd isa and when a new odd ise naieeded, it will not be possble to allocate

it. Given that the array q~mis limited, but large, and Vve= that in signal promag, the cae of

many odd siaisummasl, both othe above te nd to be rather rare.

FORMS FOR ARRAY MEMORY MANAGEMENT

A number of facilities has been provided to give the usner control over the way his sequene

are cached and unached. User-level facilities codat of LET-like maco form that have certain ef-

ftm on the buffering properties of the code they enclow (wae [Weinreb] for the definition of

WITH-UNCACIIING (BODY) m, o

This form executes; the body and b efore it teintes, it Buhes all the sequencs newly

cached inside the body. Flushing a sequeo does not mean desroying it but smply freeing

0-1 the buffer containing its data. Thi of coure means that if this data is needed again, it must

be recomputedL A minor disadvantage of MMin the WrM-UNCACHNG form is that the

resultmwtobe passedout ofit via an array. Passng thereslt out with amquTn isna ol-

sible, because all sequencds are fluhed before esating the body. This implies that WFFH-

UNCACHD40 cannot be combined with a SYS-ALIAS deflnition. However, a SYS-ALIAS

can be trivially converted to a DEFUIE-SYS with uncached intermediate resus as it is ex-

plained in section 4.3.

* *SIJOW-SEQUENCE.FLUSH* variable

U T, a mesag is printed every time a sequec is fliuhed. Defaults to NIL

SHOW-FREE-USER-ARRAYS Variable

U T, amessge isprinted everytime an array is fed and added to thehbob table of huear-
rays. Defaults to NIL.

FLUSH-NEWLY-CACHED-SEQVENCES 0 fnto
Flush all newly sahe equences in the current contest. It flumbes all sequences in the it
"NEWLY-CACHED-sEQUCES. This function is iued inde other maco form,. such

%*I

as WIT-UNCACHINO, which take carm so that *NEWLY-CACHED-SEQUENCESO con-

tasi the right sequences

* USER-ARRAYS* variable
17he lit of user array.

ALWOC-USER-ARRAY (LENGTH) functon
Allocate an array andreord it on *USER-ARRAYS.

DEALLOC-USER-ARRAYS 0 function
Free all user arrays, i.e. these that are members of the *USER-ARRAYS lHe.

* ~LET-SEQ-ARRAY (LET-FORMS BODY)mao

Executes body with L.ET-FORMS bound as in a normal LET7. Flush all user arrays after ter-
mination of BODY.

WITH-SEQ-ARRAY ((ARRAY-NAME SEQ On'ERVAL) BODY) ao
L Execute BODY with ARRAY-NAME bound to (FETCH-IN71ERVAL SEC) INTERVAL).

Flush all user arrays at the end.

WITR-IMAGINARY-SEQ?-ARRAY ((ARRAY-NAME SEQ INTERVAL) BODY)
maco

Execute BODY with ARRAY-NAME bound to (FETCH-IMAGINARY -INERVAL SEQ
IN'1ERVAL). Flush all user arrays in the end.

WITHf-COMPLEX-SEQ-ARRAY
((REAL-ARRAY-NAME [AO-ARRAY-NAME SEQ DnTERVAL) BODY)

Execute BODY with REAL-ARRAY-NAME bound to (FrCH-[N7 3tVAL SEQ INTER-
VAL) and LMAG-ARRAY-NAME bound to (FETCH-IAGINARY-INTERVAL SEQ IN-
TERVAL). Free all user (local) arrays in the end.

WITH-IJNCACHED-SEQ-ARRAY ((ARRAY-NAME SEQ INT1ERVAL) BODY)
macr

Execute BODY with ARRAY-NAME bound to (FETCH-UNCACHED-INTERVAL SEQ
INTERVAL). Free aDl user (local) arrays in the end.

WffH-UNCACHEDIM1AGNNARY-SEQ-ARRAY
((ARRAY-NAME SEQ DIERVAL) BODY)mar
Execute BODY vith ARRAY-NAME bound to (FETCH-UNCACHEDAGINARY-
InMEVAL SEQ InTEVAL). Free all user arrays in the end.

WITHg-UNCACHIED-COMPLEX-SEQARRAY maco
((REAL-ARRAY-NAME IMAG-ARRAY-NAME SEQ INT1ERVAL) BDY)

Execute BODY with REAL-ARRAY-NAME bound to (FETCH-UNCACHED-
iNTERVAL SEQ INTERVAL) and with NAG-ARRAY-NAME bound to (FETCH-

...................................

-5 *96

UNCACHED-1MAGINARY-INERVAL SEQ DMJERVAL). Free all icr arrays in the

*NE',LYCACHEDSEQUECESO variable -

Ija of newly sahe equences.

*SHOW-ALLWC-ARAYO variable
If T, prints a meing every tim an array i allocated. Defaults to Nfl..

*SOWDELL - MY variable

ARRAY.HASH-TABLE constant
I'he hash table for storing and retrieving all free array.

* MAKE-INDIRECT-ARRAY (ARRAY ARRAY-INTERVAL DESIRED-INTERVAL)
function

Returns an indirect array which overlays the DESIRED-INIFRVAL in ARRAY.

* AALO-ARRAY (SIE) function
Get an array of SIZE from the internal po of free arrays, if ther ewiet one, otherwise
make a new one.

DEALLWCARRAY (ARRAY) function
Put an array into the array hash table, the internal poo of free arrays, for reme. If array is
indirect, put back the thing pointed to. (refer to the Lisp machine manual section on indirect -

arrays).

*BFR (SEQ) system
This form caiue all fetch request to SEQ to be cached and panes them on. The intended
use of this form is with sequences which are results of expenve omputations inide a form
which causes computatious to be uncached, like WrM-UNCACHINO. If the remis of theme
expensive computations are passed through BFR, they become cached.

As mentioned in the section on system inpeettoa potential problem with SYS.

ALIAS is that its w~e may cause memory probleum. The posibility of performing uncached ompu-

tations was misueid. ing the forum described in this section, there are many ways to cause this

* to happen. One systematic way, which converts a SYS-ALIAS into a DEFINE-SY with minimal

changles is shown here by an example: the periodogram definition presented in the section on sys-

tei peetto is awuverted into one that Buss all intermediate rewtlts after complton of

* the cmputation of the periodograin

(DEFINE-SYS PERIODOGRAM-MAG (SEQ BLOCK-SIZE 917ARTING-POINT BLO)CK-OFFSET <
NUMBER-OF-BLOCKS &OPTIONAL (FIFT-LENGTH 2048))-j

(NUMERIC-SEQUENCE)

"Get the periodogram of a sequence. Return its magnitude oe
the positive frquncies only. Uncached version - all intermnediate ap are flusbed"

(COMPUTE (INTERVAL OUIPUF-ARRAY)
(WI-UNCACHING

(LOOP FOR INDEX FROM 0 TO (- NUMBER-OF-BLO)CKS 1)
COLLECT (SEQ-MAO-SQUARE

(FFT
(SEQ-WINDOW SEQ (HAMMING BLOCK-SIZE)

(+ START'ING-POINT' (- BLOCK-OFFSEF INDEX)))
(NEXT-POWER-OF-2 FFT-LENGTH)))

INT SEQ-LIS
FINALLY (FETCH-INTERVAL (SEQ-GATE (APPLY 'SEQ-ADD SEQ-LISI)

(INTERVAL 0(11 (NEXT-POWER-OF-2 FFr-LENGTH 2)))
INTERVAL OUTPUT-ARRAY))))

(DOMAIN 0
(INTERVAL 0(Q/ (NEXT-POWER-OF-2 FF1-LENGTH) 2))))

The changes made to the SYS-ALIAS periodograin definition are the following-

First, the whole computation was changed to a compute form and wa enclosed within a WITH-

UNCACHINO. Tis causes all sequences that are cached inide this form to be Rlushed in the end. -

Second, since there is no way to pan a result out of the WIH-UNCACHING uinog a sequence

(i.e. the abstract notion), the result must be p'edout by placing it into the OUFPUr-ARRAY.

So the RETURN form of the loop expression is changed into a FETCH-INT7ERVAL, which

places the numerical result into OUTPUT-ARRAY.

Third, the domain of the output sequence must be specfied usng the domain form and an explicit

calculation.

Z74

S. THE KBSP GRAPHICS FACILITIES

The KBSP graphics system is based on the Lisp machime window sysemn. Accrding to the

philosophy of the window system, window are jus flavor instances. By mixing together a aet of

bade window flavor definitaoi. a wide range of capabilities can be obtained. Lbually, the eisting

Sbasic windows are stiffict for most applications. The KBSP graphics window is one of the basec

windows and is defined by the KBSP packag to have properties that are suitable for plotting

waveforms. The KBSP graphics window is moaun sensidve. This means that dlidcing the mous on

it can have interesting and usefu effects.

At the wet's level two Lisp functions enable plotting of objects on KDSP graphics windows:

PLOT (OBJECT &OPTIONAL WINDOW DOMAIN RANGE)
OBJECT7 is the object to be plotted. WINDOW is the KBSF graphics window that will show
the plot. Uf the argument is not provided, the oldent KBSP exposed window will be used. If
WINDOW is nil, the system will prompt the user for a window to use by left dicking the
mouw on it. DOMAIN is the domain of the object to be plotted. If not given, a reasonable
default value will be used, depending on the kind of the object. RANGE is the vertical range-
of the plot. Ufnot gve, it will be adsso thatthe plotfit inthe graphic window with a
small margin. If OBJECT is a complex sequence, then the KBSP window is split into two
horizonital panes, one for the real and the other for the imaginary part of the complex se-
quenre.

OVERLAY-PLOT (OBJECT &OPTIONAL WINDOW DOMAIN)
This is similar to plot excpt that it produces an overlay plot (it does not erame the window it
is plotting on and it uses the vertical range of the previous plot).

An interesting feature of the KBSP graphics window is its mouse senstivity. Accrding to

where the mouse points, two kinds of facilities are available, and the documentation strip at the

bottom of the Lisp machine screen summarizes them.

Uf the moms points at a KBSP graphics window label:

Clicking left once (Li) calls the funiction SHOWR on the plotted object and the result is plotted on

the KBSP Lisp Listener.

aicing left twice (1.) gives a short description of the KBSP graphics window.

-62-

Clicking right one (I replots the object after an argument is provided (notipce that the KBSP

* ~IAV LUstene cursor blips much faster that before wating for the argument to be typed). if the ar-

gument is a number, the object is replotted entered around this number. If the argument is an in-

terval, the object is plotted over the interval.

If the mouse points anywhere else insde a KMS graphics window except at its label:

Clicking left once (Li) marks the current position of the mouse cursor and shows the coordinates

Of the CDrresonding Plot POin In the uppe label pane of the crreponding KBSP graphicz win-

dow. This feature is useful for reading values off a plot.

Clicking left twice (12) dears the mark.

From the implementation viewpoint, the picture is as follows:

The PLOT function first finds an appropriate KBSP graphics window to use, either by asking the

user or by grabbing the oldest exposed ICESP window. Then it checks its argument for acceptabili-

ty. In general, the object tobe plotted must have its own plotting method or function, unessit is a

seueCOM. In the first cme, the private plotting method or function is called. in the mae of a me-

quence, the KBSP graphics window is configured appropriately (i.e. the previous plot is erased,

the labels are drawn indluding various piecas of information, such as the name of the sequence, its

plotted domain and its range of values) and finally the plotting is done and the window is exposed

(iLe. shown on the wreen. An unexposed window does not appear on the screen). The work of

plotting consists of a lot of bookkeeping operatioms and is shared between the object and the ICES?

graphics window. The ability of a sequence to handle these bookeeping operations is derived from

a flavor mixin, called OBJEcr-PLCYF-MDxI, which is included in the sequence: flavor definition.

43.

BIBLIOGRAPHY

Alien, Elizabeth: "YAPS- Yet Another Production System", AAAI 1983, pp. 5-7.

Backu, John: 'Can Pnrammiog be liberated froin the van Netunn Style? A Functional Style
and Its Algebra of Programe, Cowuia of dwsh ACM, A"~ 1978, Val.
21-6.

Bhrstow, Sbirobe and Sadmil: Interactive Programming, McGraw-Hid, 1984 (chapters 1, 3 and
25).

Byte Magzine: Special issue on Smallbalk, A"g 1981.

Kopec, Gary, The Representation of Discrete-tim Signals and Sysem In Program, Ph.D. Thels,
M.L.T., May 1980.

Liskov, Snyder, Atkdion, Schaffert: "Abstraction Mechaniuw. in CU, Commuiincations of Me
ACM, A"gi 1977, Val. 20-8.

McCarthy and Levin: Lisp 1.5 Programmer's Manual, Mif Press, 1965.

Oppenheim, A. V. and R. Schafer. Digital Signal Processing, Pretie Hall, 1975.

Ritchie and Thompson: -nit UNIX Mmue Sharing System", Commuications of the ACM, July
1974, Vol. 17-7.

Steele and Susunan: "Tdsp of a LISP-based Microproeinor", Communications of the ACM, No-
vemnber 1980, Vol. 23-11.

Weinreb, Moon and Stailman: Lisp Machine Manual, Fift Edition, January 1983, M.I.T. A.I. Lab
Publication.

Winton and Horn: Lisp, Addison-Wesley 1981 (chapter 18 and 22).

.

N ~ ~ ~ ~ ~ ~ -. - * . r- . . -,

-64- S

INDEX

VARIABLES

SCLIP-OFFSETs ... 32

*CLIP-OFFSET-IN-DBSI 31
*DEFAULT-DEEMPHASIS-FILTERS 39
*DEFAULT-PREDFHASIS-FILTERS39
$NEWLY-CACHED-SEOUNCESS.............................. .59
*SHOW-ALLOC-ARRAY: 59 5
'SHOW-OEALLOC-ARRAYs 59
*SHOW-FREE -USER-ARRAYSS 57
*SHOW-$EQUENCE-F.USHs 57

USER-ARRAYS ... 58

ARRAY-HASH-TABLE 59
INF ... 21
MINF .. 21

FUNCTIONS

5+. S', S-. S// (A B) 21 p
$1+. S1- (X) ... 21
S .. 21
S> <. >., S<= (A 8) 21
S(O L.EOIENT (SET UNIVERSE) 24
SCOVER (REST ARGLIST) 24

SCOVERS-P (A B) 24
$DWMAIN (OBJECT) 27 71

$GET-INTERVAL, 5START, SEND. SLENGTH (OBJECT) 23 .-..-

$INTERSECT (&REST ARGS) 24

SINTERSECT-P (&REST ARGLIST) 24
SMAX, SMIN (&REST ARGLIST) 21

SMINUS (A)..21
SNULL (OBJECT) 24
ALLOC-ARRAY (SIZE) 59

ALLOC-USER-ARRAY (LENGTH) 58
ATOtIC-TYPE (SEQ &OPTIONAL TYPE) 27

COIPLEX-DIVIDE (REAL-Z-1 IMAG-Z-1 REAL-Z-2 IMAG-Z-2)
:-.. 32

lPLEX-MULTIPLY (REAL-Z-1 IMAG-Z-1 REAL-Z-2 IMG-

Z-2) ... 32
CWPLEX-RECIPROCAL (REAL-Z IMAG-Z) 32
C"1fUTE-DMAIN (SEQ) 27

CONVOLUTION-DIOAIN (X H) 34
CONVOLUTION-SIZE (X H) 34
DEALLOC-ARRAY (ARRAY) 59 S
DEALLOC-USER-ARRAYS () 58

D4AIN (SEQ) ... 27
EXTENDED-NUERP 21
FETCH (SEQ INDEX) 25
FETCH-COP.LEX (SEQ INDEX) 26
FETCH-OPLEX-INTERVAL (SEO INTERVAL &OPTIONAL _

OUTPUT-REAL-ARRAY OUTPUT-IMAG-ARRAY CACHED?) 25

FETCH-IMAGINARY (SEO INDEX) 25
FETCH-IMAGINARY- INTERVAL (SEQ INTERVAL &OPTIONAL

OUTPUT-ARRAY CACHED?) 25

.. l,• . . .••, -. -. -.. ' % %

: -,, .. ~~~~~~~~~~~~~~...... •..... -,...,. .-. -.. .-.-..- ,..,-.;.,-,.% .,.,;,..%..

-65-

FETCH-INTERVAL (SEQ INTERVAL &OPTIONAL OUTPUT-ARRAY
CACHED?) ... 25

FET0-LNCACO (SEQ SAK4LE) 26
FETCH-UNCAHED-COMPLEX (SEQ SAMPLE) 26 .'"

FETcH-UNCAO1ED-COMPLEX-INTERVAL (SEQ INTERVAL &OP-
TIONAL OUTPUT-REAL-ARRAY OUTPUT-IMAG-ARRAY

CACHED?) ... 26

FETCH-UNCACHED-IMAGINARY (SEQ SAIPLE) 26
FETCI-UNCAOED-IMAGINARY-INTERVAL (SEQ INTERVAL &OP-

TIONAL OUTPUT-ARRAY) 26

FETCH-UNCAICHED- INTERVAL (SEQ INTERVAL &OPTIONAL.

OUTPUT-ARRAY) 26
FINITE-INTERVAL-P (INTERVAL) 22
FINITE-SUPPORT-P, NN-E4PTY-SUPPORT (SUPPORT) 23
FLUSH-NEWLY-CACHED-SEQUENCES () 57
INNER-PRDUCT (X Y) 38
INTERVAL-ADJOINING-P (&REST INTERVALS) 22

INTERVAL-COMER (&REST INTERVALS) 22

INTERVAL-0(VERS-P (A 9) 22

INTERVAL-DELAY (INTERVAL DELAY) 23
INTERVAL-EQ (A B) 22 P
INTERVAL-INTERSECT (&REST INTERVALS) 22

INTERVAL-INTERSECT-0 (&REST INTERVALS) 23
INTERVAL-LENGTH (INTERVAL) 22

INTERVAL-REVERSE (INTERVAL) 34
INTERVAL-SA PLE (INTERVAL SAMPLING-RATE) 23
KBSP-APROPOS (STRING) 27 L

LOG-10 (X) .. 32
MAKE-INDIRECT-ARRAY (ARRAY ARRAY-INTERVAL DESIRED-

INTERVAL) .. 59
MEAN-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL) 37
MEAN-SQUARE-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL) 38
NEXT-POWER-OF-2 (NUM) 35

NULL-INTERVAL-P (INTERVAL) 22
NULL-SUPPORT-P (SUPPORT) 23
OVERLAY-PLOT (OBJECT &OPTIONAL WINDOW DOMAIN) 61

PERIOD (SEO) ... 27
PHASE (Y X) ... 32
PLOT (OBJECT &OPTIONAL WINDOW ODMAIN RX-CE) 61
POWER-OF-2-P (NUM) 35
SEQ-DUMP-TO-FILE (SEQ PATHNAME) 36"

SEO-FLUSH (REST SEQ-LIST)28
SEO-GET (SEO INDICATOR) 27
SEQ-NAME (OBJECT) 27 .' . -

SEQ-SETQ (Q)UOTE &REST ARGS) 26

SEQ-TYPEP (SEO &OPTIONAL TYPE) 27

SEQ-UNBUFFER (&REST SEQ-LIST) 28

SEQUENCEP (OBJ) 27

SHOW (OBJECT) .. 27
SHOWR (OBJECT) .. 27
STATE-SHIFT (ARRAY NEV-FIRST-ELDENT) 37
STRUCTURE (SEQ) 27
SU-OF-SEQ (SEQUENCE &OPTIONAL INTERVAL) 38
SUPPORT (&REST ARGLIST) 23

SUPPORT-COVEI.':-P (A B) 23
SUPPORT-P (OBJECT) 23

p

"~~~~~~~~~~~~~~~~~~~~~~~~...................--......'..........-.............-..-. ...".-.--..-..-.--.-.-.......""
.- . .,.-.-..,..-. ,....-.-...:,./ .. ,.; ... ,.-.-.-, , ..,.,. ..,..,,.,..,..

p

-66-

SYS-FLUSH ("E SYSTEM) 28
UNNAWE (SED) 26
VARIANCE-cF-SEQ (SEQUENCE &OPTIONAL INTERVAL) 38 .

SYSTEMS

BFR (SEC) .. 59

DEEHASIZE (SEQ &CPTIONAL DEEMPHASIS-FILTER) 39

DFT (SEQUENCE &OPTIONAL LENGTH) 35

FFT (SEQ &OPTIONAL LENGTH) 34

FILE (FILENAME) 36
FIR (REST COEFFICIENTS) 37
FIR-FILTER (INPUT FIR-SEQUENCE) 37

HAMMING (LENGTH &OPTIONAL CENTERED) 40
IDFT (SEQUENCE &OPTIONAL LENGTH) 35

IFFT (SEQUENCE &OPTIONAL LENGTH) 35

IFFT-REAL (SEQUENCE &OPTIONAL LENGTH) 35
IIR (&REST COEFFICIENTS) 37
IIR-FILTER (INPUT IIR-FILTER &OPTIONAL GAIN

INITIAL-STATE-ARRAY) 37

IIR-FLTER-FRIt-ARRAY (INPUT ARRAY &OPTIONAL GAIN
INITIAL-STATE-ARRAY) 37

IPULSE() .. 40

LOG-MAG (SEQUENCE) 31
OVCOIN (SEQA SEOB) 33
PREEMPFASIZE (SEQ &OPTIONAL PREEPHASIS-FILTER) 39

RECTANGULAR (LENGTH &OPTIONAL CENTERED) 40

SECTION (SEQUENCE SECTION-INTERVAL) L. 40
SEQ-A (&REST SEQUENCES) 29

SEQ-ADO (&REST SEQUENCES) 29
SEQ-ALIAS (SEQUENCE DOMAIN &OPTIONAL REPETITION-

LENGTH) .. 35
SEQ-APPLY (FUNCTION SEQUENCE &REST OTHER-ARGS) 30

SEQ-AUTOOR (X) 33

SEQ-COMPEX (REAL-PART-SEQ IMAG-PART-SEC) 31
SEQ-CCOPLEX-EXP-SINGLE (PER'O.) 35

SEQ-COMPLEX-FUNCTION (FUNCTION OM4AIN &REST OTHER-
ARGS) .. 30

SEQ-CONJLGATE (SEQUENCE) 29
SEQ-CONSTANT (REAL-VALUE &OPTIONAL iMAG-VALUE) 30

SE--,LVE 33
SEQ-CORRELATE (X H) 33
SEQ-COS-SINGLE (PERIOD) 35

SEQ-DIVIDE (&REST SEQUENCES) Al

SEQ-ENERGY (SEQ &OPTIONAL WINDOW OFFSET-BETWEEN-
SAMPLES) ... 33

SEQ-FFTCONVOLVE (X H) 33

SEQ-FROM-ARRAY (ARRAY) 30
SEQ-FUNCTION (FUNCTION DOMAIN &REST OTHER-ARGS) 30
SEQ-GATE (SEQUENCE DOMAIN) 40
SEQ-IMAG-PART (SEQUENCE) 31
SEQ-LOG-MA (SEQUENCE)................................ 31
SEQ-LOG-POLAR (SEQUENCE) 31

,, SEQ-MAG (SEQUENCE) 31

SEQ-MAO-SQUARE (SEQUENCE) 31

....

* . ,....- .. .

____ Ao

-67-

SE -MAP (FUNCTION &REST SQENCES) 30
SEQ-IHJLTIPLY (&REST SEQUENCES) 29
SEO-NEGATE (SEQUENCE) 29
SEQ-NORMALIZE (SEQUENCE) 39
SEQ-PHASE (SEQUENCE) 31
SEQ-POLAR (SEQUENCE) "
SEQ-REAL-PART (SEQUENCE) 31
SE-RECIPROCAL. (SEQUENCE) 29
SEO-RECTANGULAR (SEQUENCE) 31
SEQ-REVERSE (SEQUENCE) 33
SEC-ROTATE (SEQUENCE AMOUNT) 35
SEO-SCALE (SEQUENCE SCALE &OPTIONAL REAL-OFFSE7T

IlIA -OFFSET) 29
SEQ-SECTION (SEQUENCE SECTION-INTERVAL) 40
SEO-SHIFT (SEQUENCE SHIFr) 29
SEO-SIN-SINGLE (PERIOD) 35
SEQ-SBTRACT (&REST SEQUENCES) 29

SEQ-UIT-AREA (SEQUENCE) 39
SEQ-tIT-ENE]IGY (SEQUENCE) 39
SEQ-WINDOW (SEQ WINDOW OFFSET) 40
UNIT-STEP ().. 40

MACROS

DEFINE-SYS (SYSTEM-NAME PARAMETERS FLAVOR-TYPE-LIST
FOM) ... 45

LET-SEO-ARAY (LET-FORM BODY) 58
SYS-ALIAS (SYSTEM-NAME PARAMETERS BODY) 52
WITH-COMPLEX-SEQ-ARRAY

((REAL-ARRAY-NA.E IMAG-ARRAY-NAME SEQ IN-
TERVAL) BODY) 58

WITH-IMAGINARY-SEQ-ARRAY ((ARRAY-NAME SEQ INTERVAL)
BODY) .. 58

WITH-SEQ-ARRAY ((ARRAY-NANE SEQ INTERVAL) BODY) 58

WITh-U 4-4OED-COPLEX-SE-ARRAY ((REAL-ARMY-NAME
IlIAG-ARRAY-NAME SEQ INTERVAL) BODY) 58

WITH-UNCACHED-IMAGINARY-SEO-ARRAY ((ARRAY-NAME SEQ
INTERVAL) BODY) 58

VITh-RCAOED-SEQ-ARRAY ((ARRAY-NME SEQ INTERVAL)
BODY) .. 58

ITH-UNCACNHIN (BODY) 5-

......

.S.

DISTRIBUTION LIST

DODAAD Code

Director HX1241 (1)
Advanced Research Project Agency
1400 Wilson Boulevard
Arlington, Virginia 22209
Attn- Program Management ,

Group Leader Information Sciences N00014 (1)
Associate Director for Engineering Sciences
Office of Naval Research
800 North Quincy Street .
Arlington, Virginia 22217

Administrative Contracting Officer N66017 (1)
E19-628
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Director N00173 (6)
Naval Research Laboratory
Attn: Code 2627 S .
Washington, D.C. 20375

Defense Technical Information Center S47031 (12)
Bldg. 5, Cameron Station
Alexandria, Virginia 22314 0

....................

.- . •-

rr

m-l =1 64 CI

U"46x<.m '.. -

m 0 1..G 03
-3 1- x i 06-

.-l FAui.- 0310
I- w 99

- i hS..Z u Z

at 0 P -l~. > 0
hi ~ L ".1 4 0 Z 0 G

#A4. 0 0 3 1- L. f
4 04 Lu j G~ U of 3-

GA U. -41i& W4

0A~ 0W 0"0.8 K4n0 S* i GA 1

"M0. U.)0 . w Z
n. 1l- c 001 0'~ 2a -
Ot jZ -0A 0 1-.

Z ZZZZL hhwh1G 4A O G Z A Z9
*~ ~ IL Ll-G~-0 0 "h.. lu I1- hi. 0Ix

FAJZ GAWI-o *r C

ui 4 S.l 1-a) > 4 .44. Zi4. Ea 6062 x.
4~~~ 00 &1 ui G i. . .a

UO .- 4m6IihiRP (Aw IAOw~w

1.4m Z S.4 2 hi S.
m u4~i oi m hi -

ot g ZI.-h 0 1-j x 1

Z 1 ~ 041 6u O .e"

40 >- WG Z ~ In m s(n. - - p0 inW Z '

hn NGAJ~ GAu O s "I 9 4 D N "O
OZW2l 17 i.0u 0 L z . w - j M t P

In O IL. Kt u1 - w W

04 u 1-.4 meGAnus0
-A 0 "4G1 ww m 41 hwZw 0 J 4 io

IA'h
In in1- 0 us 1- IGAn

.j 3.. 0 .-1Z .

-J W400i... A.
*j Za 00p

x~ 4.-.j $

w 0 Nn U 0 ZG W &I~h

1- w~ mii-,O A A O m A
Z z GAZSIOZ Z. S m -

(Z hIt CLKm-.- IL 0. I.
S A .4 U 0.a&.Zan .J Gm GA ZA 4G m

Shim SC .4 20 41 0I m
w.IO 0.0 0i41 GA 2GZ .

0.S W4 mma0J .40 W- IaJ x
41-0 .s 40 IGAXI" 0- 2S. G.G

x~ 40 aZ ~ z hi

9K . ZW - GA Z GA
a m .240hI4 0Ien W G 4-h W us j I..GA

0 01 &Ai

a~~y. u** la-/(-. < :: 5 .- <~ I.-.* ..- .i _** (R * .** *-* $::-~ -- ~ .>

FiLMED

1-85_

DTIC

-.7 .. -.7.- - - - - - -

