




ABSTRACT

The area of the Bering Sea and Alaska has been studied

in terms of shear-velocity, density and compressional-velo-

city structure by applying a generalized linear inversion

method to fundamental-mode Rayleigh-wave group-velocity

dispersion relationships in the period range from 10 to

100 sec.

Group velocity dispersion relationships in the area

have been obtained by applying the phase-matched filtering

technique (He-rrin and Goforth, 1977) to digitally recorded

surface-wave data. Corrections for instrument response and

the sphericity of the Earth were applied to the dispersion

observations. A new exact analytical method for the compu-

tation of Rayleigh-wave phase-velocity partial derivatives

with respect to Earth parameters hias been formulated. With

the phase-velocity partial derivatives determined, the group

velocity partial derivatives were computed by use of the

fast and accurate method of Rodi e-t-al. (1975), and were

successfully incorporated into a generalized linear inversion

method.
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The study area has been found to ccnsist of three

physiographic provinces and the structure of the three

* regions has been estimated as follows: In continental

Alaska, the crustal thickness is 43 - 3 km, and a low

rvelocity zone extends from a depth of about 113 km to about

213 km. In the Bering Shelf region, the depth to the

Mohorovicic discontinuity is 28 , 4 km, and a low velocity

zone ranges in depth from about 108 km to about 213 km. In

the Aleutian Basin, the thickness of the crust is 18 4 km,

and a low velocity zone extends from a depth of about 60 km

to about 220 km.
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INTRODUCTION

Seismic surface waves have drawn much of seismologists'

attention in the last few decades, partly due to their ability

to sample the outer part of the earth over long paths and to

provide information on average structures for parts of the

earth which are not readily accessible to body wave studies;

and partly due to their usefulness in discrimination between

natural and artificial seismic sources, and in estimation of
I

the source parameters.

The objective of this study is to further our understand-

ing of the structure of the earth by investigating the crustal

and uppermost mantle structure of the Bering Sea and of

Alaska. In order to accomplish this goal, group velocity

relationships have been determined by applying the phase-

matched filtering technique (Herrin and Goforth 1977) to

observed surface wave data. In the course of inverting the

group velocity dispersion relationships, in order to obtain

the shear-wave velocity, density and compressional-wave

velocity structure of the area, a new method for the computa-

tion of Rayleigh-wave phase-velocity partial derivatives with

respect to earth parameters was formulated. With the phase-

velocity partial derivatives determined, the fast and

accurate method of Rodi et al. (1975) was used for computing

1
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the group-velocity partial derivatives. In conjunction with

this new method, a generalized linear inversion technique

was used for the inversion of the group velocity dispersion

relationships.

UThe area of the Bering Sea and Alaska was chosen to

be investigated for the following reasons: (i) This area

bears geophysical and tectonic importance in that it is loca-

ted along the plate boundary between the Pacific and North

American plates and is adjacent to the boundary between the

North American and Eurasian plates. (ii) This area is a

region of primary significance for seismic surveillance from

the United States' point of view (Evernden, 1969). (iii) This

area may be unusual in that the crust of the Aleutian Basin

region may be undergoing the process of the continentaliza-

tion of an oceanic crust (Shor, 1964). (iv) Finally, this

area has not, to this author's knowledge, been studied

before in detail and on a regional basis.

It was decided to work on group velocities rather than

4phase velocities with the following reasons: (i) As men-

tioned above, the phase-matched filtering technique, which is

an accurate method for determining group-velocity dispersion,

was readily available. (ii) It is well known that group and

phase velocity observations provide basically the same infor-

mation about the earth model (Der, et al., 1970; Wiggins,

1972). Pilant and Knopoff (1970) have shown that inver-

sion of phase velocities eliminates one degree of
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non-uniqueness compared with inversion of group velocities

( since group velocities are a derivative property of phase

velocities. However, as pointed out by Yu and Mitchell

(1979), due to the very nature of the group velocity as a

differential of the phase velocity, small perturbations in

phase velocity show up as larger variations in group velo-

city. Thus the group velocity dispersion, when inverted,

should produce a more detailed earth model. Braile and

Keller (1975) have stated that the inversion of group velo-

cities did not appear to have degraded the results in

comparison with those from the inversion of phase velocities.

(iii) The aperture of the Alaskan Long Period Array (ALPA)

used as the recording station may be too small to yield

reliable phase velocity information.

Preliminary inspection of data showed that the quality

of Love-wave data was inferior to that of Rayleigh-wave data.

4It was also found that Love-wave dispersion contributes less

information about earth structure than Rayleigh-wave disper-

sion (Der et al., 1970; Braile and Keller, 1975). Since, in

general, the maxima of the Rayleigh-wave partial-derivative

curves are larger and narrower than those of the corresponding

Love-wave curves, Rayleigh waves give better resolution than

SLove waves. For the above reasons, it was decided to use

only Rayleigh waves in this study.

Inspection of results of the multiple filter analysis

(Dziewonski et al., 1969), showed that there was not much

I
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energy present in higher modes. Under this circumstance,

efforts to use higher modes may introduce erroneous rather

than useful information. Therefore it was decided to work

with only fundamental-mode Rayleigh waves.
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DATA

The data used in this study were collected at the

[

Alaskan Long Period Array (ALPA). ALPA was selected as a

recording station for the following reasons: (i) This seis-

mic array, which is located just north of Fairbanks, Alaska,

was probably the best, reliably equipped set of seismographic

stations around the study area and data from it are suitable

for accomplishing the objective of this research in that the

array is located at one end of the region of interest, while

the locations of the seismic sources range from near the

array to the Komandorsky Islands. (ii) The quality of the

data recorded at this array is known to be good. It is an

array with an aperture of about 80 km and was installed with

the knowledge and experience gained from the operation of the

large aperture seismic array near Billings, Montana (LASA).

(iii) Since the data is digitally recorded on magnetic tape,

there is no possibility of error incurred from the digitiza-

v tion of analog data. (iv) Finally, the data were available

for use in this research.

* The location of the recording stations and the epicenters

of the earthquakes used in this study are shown in Fig. 1. The

relative amplitude and phase responses of the seismograph sys-

* tem are shown in Figs. 2 and 3, respectively. The parameters

5
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of the earthquakes used are listed in Table 1. The informa-

I tion on source parameters is from the Preliminary Determination

of Epicenters (PDE) published by either the National Oceanic

and Atmospheric Administration or the United States Geological

ro Survey National Earthquake Information Service. The vertical-

component seismograms of the events studied are shown in

Figs. 4a to 4e.
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METHOD

1. Phase-matched Filtering

For the determination of the dispersion relationships

of surface waves, Dziewonski et al. (1969) have developed a

method called multiple filter analysis. Realizing the lack

of resolution in the time domain of the above method, a more

capable method called phase-matched filtering has been devel-

* oped and proved effective in more recent studies by Herrin

and Goforth (1977). The phase-matched filtering technique

was used in this study in order to separate the effects of the

multipathing from those of primary arrivals. In using the

phase-matched filter, a dispersion curve obtained from the

multiple filter analysis was used as the initial input to the

@1 iterative procedure of the phase-matched filtering technique.

Since the original papers give full accounts of the

above methods, only a brief description of the methods is

*given below. The multiple filter analysis technique displays,

as its product, the instantaneous amplitude of a seismogram

as a function of both period and group velocity (time). When

the instantaneous amplitudes are contoured, a line connecting

the maximum amplitudes for specified periods, which is rep-

resented by the ridge crest of the contour diagram, gives

* the group velocity dispersion relationships for the analyzed

seismogram.

16
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In the phase-matched filtering technique, the Fourier

4 phase of the filter is made equal to that of a given seismo-

gram with the possibly existing multipath effects removed.

The group delays for the initial input dispersion curve are

computed. The phase of the filter is calculated by inte-

grating the above-obtained group delays. By crosscorrelating

the filter and the given seismogram and windowing the cross-

4correlation function, the phase of the filter is made equal
to that of the seismogram after a certain number of iterations.

The group delays of the filter are corrected as the phase of

the filter is modified in each iteration. The group velocity

is then computed from the final group delays of the phase-

matched filter.

2. Division of the Study Area into Different Provinces

The study area was divided into three physiographic

provinces--continental Alaska, the Bering Shelf, and the

Aleutian Basin. This classification was chiefly based on

topographic and bathymetric data of the area and is shown

in Fig. 1. The boundary between the Bering Shelf and the

Aleutian Basin was drawn along the 1000-fathom contour

line of bathymetric data. One purpose of this study was

to study the structure of the three provinces and to deter-

mine the boundary between them if they are different in

structure.

Although it appeared from the topographic and bathymetric

data that continental Alaska and the Bering Shelf are
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continental and the Aleutian Basin is oceanic in crustal and

uppermost mantle structure, there was, as pointed out in the

introduction, a possibility of the Aleutian Basin's being

continental in nature. As an attempt to resolve this

problem, the following method was used.

By inverting the group velocity dispersion relationship

obtained from the event 0509, whose epicenter is located with-

(in continental Alaska, a structure for continental Alaska was

determined. It was recognized that the great circle path for

the event 1410, which is located near the western edge of the

Bering Shelf, crosses the boundary between continental Alaska

and the Bering Shelf at a nearly right angle. The proportion

of the lengths of continent and shelf along the great circle

path was measured on a globe. By subtracting the group velo-

city dispersion proportional to the continental path from the

observed group velocity dispersion for the event 1410, the ob-

served group velocity dispersion relationship for the pure shelf

path was derived. By inverting the resultant group velocity

dispersion, the structure of the shelf region was determined.

Similarly, it was found that the great circle path for

the event 2224, which is located near the western end of the

Aleutian Basin, crosses the boundary between continental Alaska

and the Bering Shelf and the boundary between the latter and

the Aleutian Basin, both nearly perpendicularly. The group

velocity dispersion relationships determined above for con-

tinental Alaska and the Bering Shelf were subtracted in

proportion to their segment lengths of the great circle path
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from the observed group velocity dispersion of event 2224

to derive the observed group velocity dispersion relationship

for the pure Aleutian Basin path.

Before committing much effort to find the detailed

structure of the study area, reasonableness of the above line

of thinking was tested by applying the above procedure with

average earth models of Dziewonski et al. (1975) to the ob-

4 served data corrected for instrument response. The results

were encouraging, and the above division of the study area was

adopted for subsequent studies. The proportion of lengths of

different provinces along the great circle path for the events

used in this study is shown in Table 2.

3. Corrections to the Observed Data

Two types of corrections were applied to the group velo-

city dispersion relationships determined from the phase-matched

filtering technique. One is for the instrument phase res-

ponses and the other is for the sphericity and gravity of the

earth.

For the instrument correction, the following relationship

was used:

(O) = dci) 0I)
dco

where t Ccw) and e~c)are, respectively, the group delay and

phase response of the instruments for an angular frequency w3.

The phase responses of the instruments as shown in Fig. 3

were used for this purpose.
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TABLE 2

PROPORTION OF PATH LENGTHS IN DIFFERENT PROVINCES

Event Proportion of Distances
Name Continental Shelf Oceanic

1410 0.50 0.50 0.00
1519 0.51 0.30 0.19
2005 0.39 0.27 0.34
2224 0.25 0.40 0.35
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During the summer of 1972, the seismograph filter-

amplifiers were replaced with new units having different

characteristics. Two different response curves for the cor-

responding filter-amplifier systems are shown in Fig. 3.

Events 0509 and 2005 were recorded with the old instruments

while the rest of the events were recorded with the new

instruments.

The observed group velocities as obtained from the phase-

matched filtering technique represent the dispersion of the

gravitating spherical earth, while the calculation of the group

velocities in the process of inversion is, for computational

convenience, made for a nongravitating plane-layered earth

model. Therefore it is necessary to convert the observed

Lgroup velocity dispersion to one corresponding to the

nongravitating plane-layered earth.

For Love waves it is possible to apply a suitable trans-

formation to the plane-layered earth model to simulate the

effects of sphericity (Gerver and Kazhdan, 1968; Biswas and

Knopoff, 1970). For Rayleigh waves, however, a similar trans-

* formation is difficult to achieve and an empirical correction

must be applied. Such a correction has been derived by Bolt

and Dorman (1961) and has been widely used. After fifteen

years, North and Dziewonski (1976), based on studies with

additional and presumably better earth models, have improved

the formula of Bolt and Dorman (1961).

Since the effects of sphericity and gravity upon group

velocity are much less than those upon phase velocity, as
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pointed out by Bolt and Dorman (1961) and North and

Dziewonski (1976), a quarter of the difference between the

phase velocities of gravitating spherical earth and nongravi-

tating plane-layered earth, as shown in Table 1 of North and

Dziewonski (1976) was used in the present study as a somewhat

arbitrary but reasonable difference between the group velo-

cities of the above two representations of the earth (see

Figs. 4 to 6 of Bolt and Dorman, 1961). For the regions of

continental Alaska, the Bering Shelf and the Aleutian Basin,

the velocity differences of the earth models ANDES, PLATFORM

and PEMOCD, respectively, of North and Dziewonski (1976) were

used. Since it was found that the velocity differences of

North and Dziewonski are smoothly varying quantities with

period, their values were interpolated or extrapolated as

necessary in the present study.

4. Uncertainty in the Observed Data

Der et al. (1970) used the uncertainty principle of

Bendat (1958) in assessing the uncertainties in their group

velocity data obtained by the multiple filter analysis tech-

nique. Judging that the multiple filter analysis gives an

accuracy greater than that from the uncertainty principle,

!V they took one-fifth of the error estimated from the uncer-

tainty principle as their error of measurements. They gave

0.01 km/sec as a lower error limit; 0.03 km/sec was adopted

as the uncertainty of the group-velocity data by Braile and

Keller (1975) without an explicit explanation, and by Yu and

Mitchell (1979) who used the multiple filter analysis method.

K .,• '
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Although, in the present study, the phase-matched fil-

tering, which is considered to be much more accurate than the

multiple filter analysis, is used, 0.03 km/sec was taken as

the maximum error in the group-velocity data. This value is

adopted in order to accomodate the possible errors in applying

the instrument and sphericity-gravity corrections.

4 5. Method for the Computation of Rayleigh-wave Phase-velocity

Partial Derivatives with Respect to Earth Parameters

In the inversion of group velocity dispersion observations

1 .4 it is necessary to compute the partial derivatives of group

velocities with respect to various earth parameters. Since a

fast and accurate method has been developed for computing group

velocity partial derivatives when corresponding phase velocity

partial derivatives are known (Rodi et al., 1975), an effort

was made in the present study to formulate a simple new method

for the computation of exact phase-velocity partial deriva-

tives. The following paragraphs are the outcome of this

effort.

In an earth model in which the earth consists of many

elastic, homogeneous and isotropic parallel layers on a homo-

geneous and isotropic half-space, the earth properties may be

defined by longitudinal and transverse wave velocities, den-

sity, and thickness of the component layers. Various methods

have been employed in computing the phase-velocity partial

derivatives with respect to the above model parameters.

Dorman and Ewing (1962), followed by Brune and Dorman

(1963), calculated the changes in phase velocity due to the
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perturbation of each physical parameter while retaining the

£ remaining parameters constant. This method is very time-

consuming. On the basis of Jeffreys' (1961) suggestion that

Rayleigh's principle can be used to find expressions for the

I effects of small changes of the elastic properties on the

phase velocity, Anderson (1964) and Takeuchi et al. (1964),

followed by Harkrider (1968) and Anderson and Harkrider (1968),

I approached the problem by using the energy integral technique.

This technique is quite complex. McEvilly (1964) has used a

combination of the above two methods. Bloch et al. (1969),

Der et al. (1970), Der and Landisman (1972) and Knopoff

(1972) have computed phase-velocity partial derivatives but

they have not described the algorithm they employed. Novotny

£ (1970) derived exact expressions for Love-wave phase velocity

partials in a different way by taking advantage of Thomson-

Haskell matrices (Thomson, 1950; Haskell, 1953).

I In the rest of this section, following Novotny in Love

waves, a new method of computing the Rayleigh-wave phase-

velocity partial derivatives with respect to the parameters

I of the medium is presented. Convenient formulas for the

Haskell layer-matrix deriva±tives, which are necessary in the

computation of the phase-velocity partial derivatives, are

I given in the Appendix. Employing double precision in computer

prograumming, the use of the Haskell layer-matrix method has

not shown any numerical difficulties (Thrower, 1965; Dunkin,

g 1965; Gilbert and Backus, 1966, among others) in the period

range of 10 to 100 sec, as used in this study.
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Harkrider (1964) has derived a matrix equation for the

dispersion of Rayleigh waves, which may be expressed as follows:

F(cCJom1,ue,,d)=NK L*- TMCG*N L*H) (2)

where

T" = €2 m P./1Aeo

and

L = 4L A,, 4(.-)A 2 - (AZt, A, - A)/Cc.)

G = , A, ((g.-,) ,A - /4.n A.;z Ap)/(c . )

Y. (3)

N -(t.-')A,, rAo A.z, + (At .pn Ai)/lCcX)

- i- A zr-, 4, r An. A, 31(A, + Apn &)/(C'¢. )

H .- 1) A, + r. 2A (A, + A3)(c'.)

Here w is the angular frequency, c phase velocity, 04 and

* l velocities of compressional and shear waves, / density, d

thickness of a layer;

where ( represents the wave number;
0.

S:
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-(i- c < 4

where

A a.., a..t ... a,

with Q,. designating the Haskell's layer matrix for the mth

layer; and subscripts m, n and o refer to the mth solid layer,

half-space and liquid surface layer, respectively. In order

to minimize typographical requirements, a compound subscript,

e.g. dcaf , is used where a subscripted subscript is appropriate.

An asterisk superscript is used to transform an imaginary

quantity into a real one such that Z*- l" for an arbitrary

imaginary quantity Z .

Since T* -O for the earth model in which the liquid

surface layer does not exist, considering (2) is sufficient

for earth models both with and without ocean. From (2),

9X 9X / 13F-x 2 / (4)

where X designates one of the earth parameters C4, e ,,P and d.

If we define two product matrices A,. and B. such that

An = aft., a,

a,-,. a.,
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then

A a., 9a + 132 a6)

A 1.t z )CC

For the particular cases where nal- and m= -- , respectively,

the second equation of (6) becomes

9X,,

and

A i - Anz

X,- 1 [' X ., "

It is noted from (2) and (3) that in order to compute
9F Aii *DF

we need , and that in order to compute needMaL 9Xn ?

?T 2C l c and . It is also noted

that in order to compute- and , in particular, we

need , , and Since

and terms necessary to compute

,a vC a

and '?F are simple to calculate they are not discussed here.

From the above discussion, it becomes clear that in

order to compute phase-velocity partial derivaties with res-

pect to model parameters, we need only to compute 
'a)jl . (a%).j

' gX ' C
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and .The expressions for these terms are given in

the Appendix.

The merit of the present method may lie in the simplicity

of the algorithm. Equations (4) and (6) in connection with

dispersion equation (2) explain essentially all procedures

required. Partial derivatives of layer-matrix elements given

in the Appendix provide expressions needed in the computation

of (4) and (6).

6. Generalized Linear Inversion

The generalized linear inversion method, which may be

viewed as a discrete specialization of the general formulation

of the Backus-Gilbert inversion technique (Backus and Gilbert,

1967, 1968, 1970), has been applied to geophysical problems

in many previous studies (Smiith and Franklin, 1969; Der et al-.,

1970; Parker, 1970; Wiggins, 1972; Jackson, 1972; Ward et al.,

* 1973; Braile et al., 1974; Braile and Keller, 1975; Pedersen,

1977, among others). The inversion scheme used in this study

closely follows the algorithm described by Wiggins (1972) and

* Jackson (1972). However, an outline of the method along with

some points relevant to the present study are given below.

In general geophysical inversion problems, we have a

nonlinear system dealing with n observations and mn model para-

meters. In the following we shall use the subscript i to

represent the ith observation and the subscript j to designate

the jth parameter. We shall use a small letter to represent

a scalar, a small letter with a bar underneath it a vector,
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and a capital letter a matrix.

The earth model we assume must be capable of providing

us with a functional relationship between the model parameters

and the calculated values. The model parameters will be

represented by a vector such that

I = (&, = , , d)

where d, 0 , D and d are functions of depth. The calcu-

lated values represent the group velocity and will be designated

by (A) . We expand the problem functional (_ ) in a

Taylor series about an initial model _

Xii

i(x) 2J -(Xo)
* o -/ -!

where EL('E-Zo)*J is the functional in the second or

higher (A Z 2) order terms in (.6 - X) We linearize

the problem by retaining the linear part and neglecting the

nonlinear part of (7). By setting

&' z- () - 9 )(8)

A•., . _ _ _. ."
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(7) becomes

Hence we have a linear system in n equations and m unknowns

and the systems Matrix A is, in general, not square.

Equation (8) may be viewed as follows: Xi represents

the true earth, 4,j the initial model, &'Xi the correc-

4tion to be made to the initial model; UX() represents

the observed group velocity at the ith period, Ij. S.)

the group velocity for the ith period computed from the ini-

tial model, 5rV. the difference in group velocity between

the model and the true earth. It is noted that the expansion

of the problem functional in Taylor series is based on the

I - assumption that the group velocity is a smoothly varying

function of the parameters. Also the linearization is justi-

fied only for small values of the parameter corrections 6X

If dfX, must be large to satisfy the observations, then the

results must be checked by expanding the functional about a

new initial model.

For simplicity in notation, we replace X for 6X and

~Jfor X~ h while keeping in mind that X and 2~actually

represent 6X and 4 ,respectively. Then (9) becomes

If we can find Ai , the exact inverse of A , then
we can solve the system for X .But since A is, in general,

not square, and possibly singular even when it is square, the
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inverse of A does not exist. The generalized linear inver-

C sion is a way of avoiding this difficulty by finding the best

possible approximation to a matrix of quantities, which may

be conceivably called the exact inverse of A and designated

r by A"  This procedure may be conceptualized in the

following way.

First consider the adjoint system of (10):

A T .V1(I)

where the superscript T represents the transpose of the

* matrix. The combination of (10) and (11) into an identity

gives

* Ax' .... ,....W
t0

. L** /*.*J(2
It is noted that the matrix in (12), whose blocks consist of

A, AT and O , is symmetric and its size is (-n+) x (Y4+m).

We shall call this symmetric matrix S Let us consider

the eigenvalue problem for S

. The component of W may be separated into contributions from

the It-dimensional data space of group velocities and the

M)7.-dimensional parameter space such that

T _=0( UZI V, V4 , )

0

." _
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Then (13) may be expressed as

That is,

AY G)
A A Y

From (16) we obtain

ATA Y (17)
* A A" u )

Let

,4=) ; B=A T A; C=AA T  (18)

Then (17) becomes

V(

From either of the standard eigenvalue problems (19), in

connection with (16), we can find A , and V

Since 1 and C are symmetric, Uj and V form sets

of orthogonal vectors. Let

• =.,AA- (8) = .- ,A (C) (20)

Then

n (21)
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We normalize Ui and V and define matrices and V, such

c that the columns consist of Ui , ; and V , =j,;

respectively, and define a diagonal matrix A, whose diagonal

elements are A , = , arranged in decreasing order.

Then we realize the following:

(i) Always

U U1 I8  V~'= (22Z)

where a subscript of I indicates the size of the identity

matrix. Equation (22) is true since the multiplication in (22)

always involves the inner product of orthonormal eigenvectors.

(ii) When = < n , i.e., the system is under-determined,

LU U I,,T (23)

and this condition guarantees the existence of a solution

(Jackson, 1972).

(iii) When Y=mnf1 , i.e., the system is over-determined,

*V V,,I (24)

and this condition guarantees the uniqueness of the solution,

if a solution to the problem exists (Jackson, 1972).

(iv) When = , i.e., the system is even-determined,

UUT 
T

* and this condition guarantees the existence and uniqueness of

a solution.

With U, V, and A so defined, we obtain from the

first equation of (16) that

A- U1 A (25)

'S"'. '
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Substituting (25) into (10) gives

%. U-A V T

from which we obtain

-V>X VA- U (26)

Let

R V V'r(27)

Then

A R=VSA U -r (29)

Let

a.R (29)

Then

From (24) and (28), it is noted that if ?=mC<l, then R

becomes Im and (28) gives a unique solution X , which is

identical to X ; that if I*M, then the degree of likeness

of R to I gives the degree of uniqueness of our estimated

* solution 1 . Due to this property of R , it is called the

resolution matrix, and its rows are called resolving kernels.

Let

H V A- (31)

Then (30) becomes

(3z)

0
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from which it is easily understood that H bears the nature

of the inverse of A , through which we could find the best

estimate of the solution .Due to this characteristic of

H ,it is called the generalized linear inverse of A

From the viewpoint of the above discussion, (10) may be

viewed in the following two ways:

A (34)

where the superscripts o and P represent the observed and

predicted (calculated from the earth model) data, respectively.

From this point of view, (32) may be expressed as

X H (35)

Substituting (35) into (34) gives

P=~ Ui Ul 1 (371)

Let

D= Us U (38)

Then

_ D ~O(3 q)



36

From (23) and (37), it is noted that if n 7,thenD

g becomes I., and (37) tells us that the estimated solution

is exact in the sense that the predicted and observed data

are identical; that if a 7,then the degree of likeness of

Dto I gives the degree of independence of the observed

data. Due to this characteristic of D~ , it is called the

information density matrix.

7. Propagation of Errors

Lastly we wish to know how the uncertainty of our obser-

vations affects the solution of the problem presented by (10),

which is an error-free system. Since we have a certain amount

of uncertainty or error, 6 , in the observed data, (10) may

be, in this system with erroneous data, expressed as

(4A

Then the best estimate, X ,of the true solution X~ is the

solution which minimizes the square error

In general, different data may have different reliability

and/or different units. In order to take this into account,

we wish to give different weights to different data. From

the fundamental theory of statistics we know that the optimal

weighting matrix for this purpose is the inverse of the data

covariance matrix. Therefore instead of minimizing (41), we

minimize
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where C is the covariance matrix of data. Differentiating

(42) with respect to XT and setting it equal to zero gives

X (AT C A) A C"  (43)

Thus we have obtained the best estimate X of the true solu-

tion X for a given level of error in the data.

4 Hamilton (1964) has shown that under the above circum-

stances the following holds:

where cov(c) is the covariance matrix of the model para-

meters, and 6; is the variance of the data. Substituting

(25) into (44) for our generalized linear inverse formalism

gives

covg) V Aj VT  (45)

Hence the variance of our model parameters may be expressed

as

,
(, M (46)

8. Consideration for Model Parameters with Different Dimensions

Since in the present problem, we have model parameters

P, , f and c( which have different units and sizes,

we wish to account for this property of our set of model

parameters.

----------------------------
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Smith and Franklin (1969) have shown that the generalized

linear inversion of the system (10) simultaneously minimizes

both

Er E CA!_ %J CAi- V)=-IA9-Y j .2l (

and

)(Tx =Ixji z  (47)

In other words, the generalized linear inverse selects the

smallest variation 6 of the parameters that will satisfy

the system of simultaneous linear equations (10).

In order to account for the different dimensions or sizes

of the model parameters, we introduce the inverse of the
-i

parameter covariance matrix, W as a weighting matrix.

Wiggins (1972) has shown that this choice of weighting has

the interesting and convenient property of making the lengths

of the rows of AW '/2 invariant to the selection of layer thick-

nesses. Now we want to simultaneously minimize

e_ C (

and

()

instead of (41) and (47).

*In order to simplify the process, we introduce the

transformation of Wiggins (1972) and Jackson (1972):

= C" 2 A W' (4 q)
50x)
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When we consider the system

A* 2j (52)

O - - ( 5_3)

we find that

e E%=E'CE (54)

2.( *.. = x x Wi (55)

Thus we have shown that with transformations (49) to (51),
minimizing E2e and X is equivalent to minimizing

f E7C and x w I X . Therefore we take the convenience of

doing the former.



RESULTS AND DISCUSSION

The corrections for the phase response of both the old

and new instruments are shown in Table 3. Both the period

and corrections are in units of seconds.

Der et al. (1970) have shown that when group-velocity

dispersion observation points are evenly spaced on a logarith-

mic period scale, each of the chosen data points furnishes

approximately the same amount of information about the sub-

surface. In other words, this choice of observation periods

provides the greatest independence of data with the same num-

ber of observation points. In the present study, observation

points were chosen at approximately equally spaced intervals

on a logarithmic period scale with the interval such that

A(log T)-, 0.1 in the range from 10 to 100 sec. This

choice of interval or the number of observation points was

guided by inspection of the shape of partial-derivative curves

obtained in preliminary studies of the structure of the area.

The periods indicated in Table 3 represent those observation

periods so determined.

The corrections for the sphericity and gravity of the

earth are shown in Table 4. The values in Taole 4 were

weighted in proportion to the path lengths corresponding

to different provinces as indicated in Table 2; they were sub-

tracted from the observed group velocities. As noted from

40
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Table 4, the corrections are so small that they are less than

the uncertainty of the observed data discussed previously.

However, since they provide a systematic change in group

velocity, these corrections were applied to the observed data.

The observed group velocity dispersion curves determined

from the phase-matched filtering and corrected as discussed

above are shown in Fig. 5. In comparison with dispersion

4 curves of an average earth (e.g. Oliver, 1962; to avoid con-

fusion due to crowded curves, they are not shown in Fig. 5), the

following is observed. The dispersion curve obtained for

continental Alaska (event 0509) is similar to that of the

average continental earth of Oliver (1962) except that it has

slightly higher velocities in the longer periods and lower

4 - velocities in the shorter periods. For epicenters farther

to the west along the Aleutian Islands, the dispersion curves

shift toward that of the average oceanic earth of Oliver

* (1962) but the velocity values are still much closer to that

of the average continental earth than to the average oceanic

earth.

The results of the inversion of the group-velocity dis-

persion relationships are described in the following

paragraphs. In the inversion scheme used here, since there

is no way to predict precisely the variance of parameters,

a constant value of 0.15 was used as an initial estimate of

the standard deviation of parameters.
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1. Continental Alaska

The initial model for the structure of continental

Alaska is shown in Table 5. In constructing initial models,

the updated comprehensive parametric earth models of

Dziewonski et al. (1975) were frequently consulted. Stacey

(1977) gives these models as representative earth models in

his recent textbook.

Although the method developed in this study and the

computer code used to implement the method are capable of com-

puting the group-velocity partial derivatives with respect to

thickness of the layers, for the sake of simplicity and con-

venience, the thicknesses of the layers were held fixed and

parameters 3 , 'P and O( within each layer were corrected

in the inversion process.

Partial derivatives of the group velocity with respect

to , p and &V are shown in Figs. 6, 7 and 8, respectively.

The numbers on curves designate the corresponding layers.

It is noted from the figures, as expected, that partial deri-

vative maxima shift toward longer periods as the depths of

a the layer increase. It is also noted that the amplitudes of

the 8 partial derivatives are significantly greater than

those of the other partials and that the o partials are the

* least significant of all.

The structure of the final model for this region obtained

from the Alaskan event is shown in Fig. 9. Also shown in the

* figure are standard deviations of the model parameters

indicated by horizontal bars at the center of each layer.

6
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TABLE 5

(INITIAL MODEL FOR CONTINENTAL ALASKA

Depth to
P-velocity S-velocity Density Thickness Bottom of

Layer (km/sec) (km/sec) (g/cm3 ) (kin) Layer (kn)

1 3.670 2.310 2.320 0.8 0.8
2 5.411 3.266 2.637 2.1 2.9
3 5.789 3.453 2.768 6.1 9.0
4 6.152 3.483 2.800 7.0 16.0
5 6.398 3.617 2.848 7.0 23.0
6 6.490 3.894 2.962 10.0 33.0
7 6.687 4.024 2.984 10.0 43.0
8 8.016 4.649 3.325 20.0 63.0
9 8.021 4.666 3.333 50.0 113.0

10 7.853 4.461 3.387 50.0 163.0
11 7.853 4.468 3.388 50.0 213.0
12 8.651 4.652 3.452

I

I
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The greatest estimated standard deviation of parameters

was 0.28 km/sec for the shear velocity of the layer centered

at a depth of 188 km. The observed and predicted group velo-

cities are shown in Fig. 10. The rms error of the predicted

values against the observed ones was 0.02 km/sec, which is less

than the uncertainty of the data. The differences between the

observed and predicted values were all within the standard

deviation of the data ex-cept at the period of 25 sec, where

the difference was 0.04 km/sec.

It is observed from Fig. 9, and also from Figs. 16 and

23 for the other regions as shown later, that the magnitude

of the standard deviations of model parameters decreases from

to ,P and to c4- These trends do not appear to represent

c the real accuracy of the model, for from the physical point of

view, 01, would have about the same as or possibly greater un-

certainty than ~6.Therefore this apparent differential

* accuracy among the parameters is interpreted to be caused by

some property of the present generalized linear inversion

method. A possible explanation is given below. As an initial

* estimate of standard deviationof parameters, we used 0.15

for all parameters. Since the values of partial derivatives

of the group velocity with respect to oL are much smaller than

* those of P/ , and still smaller than those of 8 , while a

constant initial estimate of standard deviation was used for

all parameters, less flexibility in parameter correction seems

* to have been given to /D and still less to o4 in order for the

system to find a new model which fits the observed data better
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than the initial model. In other words, smaller allowance

or variance for P and C relative to t6 was required by the

system in making correction to the model. Therefore the

apparent smaller standard deviations for f and o'l are attri-

buted to estimation error rather than to greater accuracy in

determining parameters P and oL . A better initial estimate

of the covariance matrix of model parameters may resolve this

problem.

Two features of the structure worth noticing from Fig. 9

are the depth to the Mohorovicic discontinuity and the pre-

sence of the low velocity zone (LVZ). The depth to the Moho

is 43 km. Although no previous studies, to this author's

knowledge, have been conducted covering the same area as the

present one, the thickness of the crust obtained here may be

compared with results of other studies made in areas nearby.

Using gravity data, Woollard et al. (1960) estimated the

crustal thickness near Fairbanks to be about 33 km. Hales and

Asada (1966) gave 48 to 53 km, estimated from their seismic

refraction studies, as the depth to the Moho for the area

from College Fiord to the northeast, which is near Fairbanks.

Hanson et al. (1968) found from their seismic refraction

interpretation that the Moho is at a depth of 32 km under

Fairbanks and 48 km under their shot point, which is about

120 km southwest of Fairbanks. The present model is essen-

tially in agreement with the refraction results of Hanson

et al. (1968) in the structure of the top 10 km, except that

their model has a layer of sediments a little thicker than in
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the present model. Since their model has only a few layers,

the present model cannot be checked with their results in

the deeper structure.

From Fig. 9 it is also noted that a LVZ is present in

the region and it extends from the depth of about 113 to 213

km. The presence and depth range of the LVZ of the present

model is in essential agreement with the parametric conti-

nental model of Dziewonski et al. (1975).

Resolving kernels for P and A of the final model for

this region are shown in Figs. 11 and 12, respectively. Depth

* corresponding to each resolving kernel is indicated in the

figures. Some sidelobes and deviation of the resolution

matrix from an identity matrix are observed in the resolving

c kernels for f . The sidelobes and deviation are seen to have

worsened in the case of P The resolving kernels for o( in

this and the other regions were so irregular in shape that

*they were not plotted.

Also shown for the bottom layer of the crust in Fig. 11

is the spread, which is the depth range of the rectangle which

has the same area as that under the associated resolving ker-

nel. Since the spread for this layer is 16 km compared with

a 10 km thickness of the layer, the uncertainty of the depth

to the Moho is interpreted to be + 3 km. Therefore a reason-

able value for the thickness of the crust in this region is

43 + 3 km, where 43 km is the depth to the bottom of the

lowest layer in the crust. Although the corresponding spread

for P is comparable to that for 6 , since 3 is the most

I
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influential parameter in the inversion and its resolving ker-

nels look most reliable in the sense that they show least

sidelobes, the spread is shown only for te

The information density distributed in the model for this

region is shown in Fig. 13. It is noted from the figure that

the information density matrix has to some extent been degra-

ded, i.e. distorted from the identity matrix. This degree of

distortion is, however, considered desirable. If the informa-

tion density matrix is a perfect identity matrix, although the

economy of data acquisition and processing is optimal, there

always exists a possibility of missed information needed in

the inversion. On the other hand, if the information density

matrix is too severely distorted, it may guarantee that suffi-

cient information may have been propagated into the inversion

process, but the economy of data acquisition and processing

suffers severely. Although the desirable degree of distortion

of the information density matrix is difficult to determine

quantitatively and consequently is a subjective matter, that

degree of distortion which appears in Fig. 13 is considered a

4 reasonable compromise.

2. Bering Shelf

The initial model for the Bering Shelf region is shown

in Table 6. Group-velocity partial derivatives with respect

to the three parameters for this region are shown for periods

25 and 40 sec in Figs. 14 and 15, respectively. As expected,

the partial derivative maxima and minima are shifted to

4

L
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TABLE 6

INITIAL MODEL FOR THE BERING SHELF

Depth to

P-velocity S-velocity Density Thickness Bottom of
Laver (km/sec) (km/sec) (g/cm&) (km) Layer (km)

0 1.520 0.000 1.030 0.1 0.1
1 2.000 1.000 1.500 1.0 1.1
2 3.670 2.310 2.320 2.3 3.4

d 3 5.789 3.453 2.768 4.2 7.6
4 6.152 3.483 2.800 7.0 14.6
5 6.393 3.617 2.848 7.0 21.6
6 6.490 3.894 2.962 6.0 27.6
7 7.934 4.654 3.310 10.0 37.6
8 8.016 4.649 3.325 20.0 57.6
9 8.021 4.666 3.333 50.0 107.6

10 7.853 4.461 3.387 50.0 157.6
11 7.853 4.468 3.388 55.0 212.6
12 8.651 4.652 3.452
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greater depths as the period increases. It is also noted

from these figures and Figs. 21 and 22 as shown later, that

the amplitude of density partial derivatives relative to that

of shear velocity partial derivatives decreases with depth.

The structure of the final model for this region derived

from the analysis of event 1410, along with the standard

deviations of the parameters, is shown in Fig. 16. The

greatest standard deviation was 0.29 km/sec for shear velocity

of the layer centered at a depth of 133 km. The observed and

predicted group velocities are shown in Fig. 17. All the

differences between the observed and predicted values and

their rms error were within the uncertainty of the data.

It is seen from Fig. 16 that the depth to the Moho is

27.6 km. This value may be compared with 29 km estimated

from seismic refraction studies of Shor (1964) in the south-

western part of the Bering Shelf (stations MKII and MK12 of

Shor, 1964). Also the thicknesses and velocities of surface

layers are in reasonable agreement with those of Shor (1964).

Since Shor's model has only a few layers, the deeper layers

cannot be checked against the refraction results. Also noted

from Fig. 16 is the existence of a LVZ which ranges from about

108 km to about 213 km in depth. This depth range of the LVZ

may be comparable to the earth model averaged over the whole

earth including oceans and continents, of Dziewonski et al.

(1975).

Resolving kernels for P and P along with the corres-

ponding depths of the present model for this region are shown
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in Figs. 18 and 19, respectively. The weaker resolving

d power of .Pand the still weaker resolving power of oe-

which is not shown graphically, compared with that ofe

are noted from these figures as well as from Figs. 11, 12,

25 and 26. In Fig. 18, the spread is shown for the bottom

layer of the crust. The spread is seen to be 14 km. A

reasonable estimate for the thickness of the crust for this

4region is28 + 4km.
The information density of the group velocities used in

the inversion process for the Bering Shelf region is shown in

Fig. 20. It is seen to have been distorted from the identity

matrix to about the same extent as in the continental Alaska

region.

1 3. Aleutian Basin

The initial model for the Aleutian Basin region is shown

in Table 7. The group-velocity partial derivatives with res-

pect to the earth parameters for this region are shown for

periods 16 and 50 sec in Figs. 21 and 22, respectively. Since

the two periods represented in these figures are farther apart
A

than in Figs. 14 and 15 for the Bering Shelf region, the depth

shift of the partial-derivative maxima is seen to be more pro-

nounced here than in Figs. 14 and 15. It is also clearly seen

from these figures that as the period of waves increases, the

shape of the partial derivatives broadens accordingly.

The final model obtained by the analysis of event 2224,

with standard deviations of the parameters, is shown in Fig. 23.
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TABLE 7

INITIAL MODEL FOR THE ALEUTIAN BASIN

Depth to
P-velocity S-velocity Density Thickness Bottom of

Layer (kin/sec) (kin/sec) (g/c() (kin) Layer (kin)

0 1.520 0.000 1.030 3.0 3.0
1 2.000 1.000 1.500 1.0 4.0
2 4.556 2.500 2.480 4.8 8.8
3 6.333 3.550 2.867 2.5 11.3
4 7.000 4.000 3.000 6.5 17.8
5 7.900 4.550 3.305 40.0 57.8
6 7.873 4.335 3.359 40.0 97.8

* 7 7.873 4.335 3.383 40.0 137.8
8 7.873 4.335 3.426 70.0 207.8
9 7.873 4.335 3.432 10.0 217.8

10 8.651 4.652 3.452

a

[o
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The observed and prediL.cted. group veoiisacsoni

Fig. 24. All the differences between the observed and pre-

dicted values and their rms error were within the uncertainty

of the data. It is found from Fig. 23 that the crustal thick-

ness is 17.8 km. Shor (1964) has estimated the depth to the

Moho in this region as 14 km, which was obtained from his

refraction analysis. From the results of studies on travel

(times and waveforms of both refracted and reflected body waves,

Helmberger (1968) has presented models of the Aleutian Basin.

His model with no transition zone between the crust and man-

tle gives 19 km (his Fig. 10 for station L13) as the depth to

the boundary, while his model with one transition layer of

thickness less than 1 km shows the depth of the crust-to-mantle

Ctransition layer around 16 to 17 km (his Fig. 12).

While helmberger's model with the thick transition zone

for his station L9 may be applicable to that part of the

*Aleutian Basin which is near the Aleutian Islands, the present

result of about 18 km may represent the average structure of

the Aleutian Basin. It may well be pointed out that the

great circle path of event 2224 traverses the middle of the

Basin. The crustal structure of the present model is in

reasonable agreement with helmberger's model (his Fig. 10).

The present model in Fig. 23 also shows the presence of

a LVZ which extends from the depth of about 60 km to about

220 km. The presence and depth range of the present model

agree with the parametric oceanic earth model of Dziewonski

et al. (1975).
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The resolving kernels of ,6and ,Pof the final model

for this region are shown in Figs. 25 and 26, respectively.

Depths associated with each kernel are also shown in the fig-

ures. The spread for the deepest crustal layer is also shown

in connection with the resolving kernel for 8of the layer.

The spread is 14 km. A reasonable estimate for the crustal

thickness of the Aleutian Basin is 18 + 4 km. Shor's value

4 of 14 kmn, which is smaller than the present and Helmberger's

estimates, may be regarded as a lower limit of the depth to

the Moho.

The present result on the structure of the Aleutian Basin

shows that, although its crustal thickness is greater than in

average oceans, this part of the Bering Sea is oceanic and

has not been continentalized in the characteristics of the

crust. However, its possibility of conversion from an ocean

basin into a continental mass in the future as noted by Shor

* (1964) remains to be studied.

The information density of the observed group-velocity

dispersion relationship used in the inversion for this region

is shown in Fig. 27. It is noted from the figure that the

information density matrix for this case has been degraded

to a greater extent than in cases of continental Alaska and

4 the Bering Shelf. The cause of this greater distortion is

thought to be due to the simpler shape of the dispersion curve

for this region compared with those of the other regions,

while the number of observation periods was the same in all

cases.
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Thus we have obtained estimates of the structure of the

three provinces of the study area. In order to utilize the

additional data available, the observations from the events

1519 and 2005, and to check the results obtained above, the

following efforts were made. From the experience gained to

this point, the author has learned that it took many trials

and accompanying time of considerable amount to find a "good"

4initial model which gives a satisfactory convergence of pre-
dicted data to the observed one. Therefore instead of

repeating the inversion procedures with the rest of the

observed data, it was decided to solve a forward problem with

the structures obtained and with appropriate proportions of

path length and to compare the results with observed data.

With the information as shown in Figs. 9, 16 and 23,

and Table 2, group velocities were calculated for events

1519 and 2005 and the results along with the observed group

4 velocities are shown in Figs. 28 and 29. As can be seen from

the figures, the agreement between the observed and predicted

values was very good except at a few of the shortest periods.

These results are therefore in agreement with the final

models we have obtained.
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CONCLUSION

From the studies of surface waves by the method des-a
cribed in this study and the results discussed in the last

-. chapter, the following conclusions are drawn:

1. Phase-matched filtering has been effective in

determining group-velocity dispersion curves in the present

study area. The curves have been inverted and checked with

previous results of gravitational, seismic refraction and

reflection studies.

2. The best estimates of the group-velocity dispersion

relationships in the area studied have been obtained and

presented in Fig. 5.

3. The great circle paths for the events used in this

study appear to coincide with the least-time paths. This was

the case due to the geometric arrangements of the physio-

graphic provinces and their boundaries of the study area

relative to the source-station pairs.

4. The method of studying a compound area by dividing

it into two or more "pure-path" provinces proved effective

under the circumstances described in the last sentence. The

group-velocity dispersion relationships derived from this

method for the "pure-path" provinces of the Bering Shelf

* and the Aleutian Basin are presented in Figs. 17 and 24,

respectively.
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," 5. The exact analytical method formulated ir this study

• for the computation of Rayleigh-wave phase-velocity partial

derivatives with respect to earth parameters has proved

effective, has not shown any numerical difficulties when

gcoded with double precision, and has been successfully incor-

porated into a generalized linear inversion algorithm.

6. A generalized linear inversion method has been applied

to an inversion of group-velocity dispersion relationships in

order to find the shear-wave velocity, density and compressional-

wave velocity structure of the earth. The results have yielded

* the following estimates:

(i) The average crustal thickness of the continen-

tal Alaska region studied is 43 + 3 km. A LVZ is present in

Cthis region and extends from about 113 to about 213 km depth.

(ii) The depth to the Moho in the Bering Shelf

region is 28 + 4 km. A LVZ ranges in depth from about 108

0 to about 213 km.

(iii) The crust in the Aleutian Basin region is

oceanic iii nature and the boundary between the continental

* Bering Shelf and the oceanic Aleutian Basin appears to lie

near and parallel to the 1000-fathom bathymetric contour line.

(iv) The thickness of the crust in the Aleutian

* Basin region is 18 + 4 km. A LVZ is present in this region

and extends from about 60 to about 220 km depth.

6

0



APPENDIX

Expressions necessary to compute the phase-velocity par-

tial derivatives are given below. It is hoped that these

expressions, although somewhat lengthy, will give those who

use the method of this paper a convenience and saving of time

required to carry through the very time-consuming and tedious

calculations. It should be noted that in the case of Rayleigh

waves, there are three situations in connection with the rela-

tion between the phase velocity and body-wave velocities.

They are: (1) c>o(m and c>fm, i.e., both 4 Om and A/6m are

positive real; (2) c<O(m and c>Pm, i.e., am is negative pure

imaginary while .Ajm is positive real; (3) c<cam and c< Pm)
i.e., both Acm and Am are negative pure imaginary. In the

following expressions a triple sign--three signs put together

vertically--applies, in the order from top to bottom, to the

above three cases. When the three cases have a common sign,

only a single sign appears. It is also understood that when-

ever AOm and Am are pure imaginary, A.4m and .Am in the

following expressions actually represent A*(m and R*4 m,

respectively; and trigonometric functions become corresponding

hyperbolic functions.

Since the elements of the layer matrix have been published

previously, see Haskell (1953, p. 21) and Harkrider (1964, Eq.

16), only their partial derivatives dre presented here.
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