INTERNAL FORCED CONVECTION TO LOW PRANDTL NUMBER GAS MIXTURESCU) ARIZONA UNIV TUCSON ENGINEERING EXPERIMENT STATION M F TAYLOR ET AL. 15 JUL 84 1248-19 N00014-75-C-0694 F/G 20/13 AD-A148 932 1/2 NL UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A148 932

Interim Report

Contract No. N00014-75-C-0694

INTERNAL FORCED CONVECTION TO LOW PRANDTL NUMBER GAS MIXTURES

Prepared for

Office of Naval Research Code 431 Arlington, Virginia 22217

Prepared by

M. F. Taylor K. E. Bauer

D. M. McEligot

30 JUNE 1984

נורב האב

This document has been approved for public release and sules fix distribution is unlimited.

ENGINEERING EXPERIMENT STATION COLLEGE OF ENGINEERING

THE UNIVERSITY OF ARIZONA TUCSON, ARIZONA 8572184

12 18

064

Interim Report

INTERNAL FORCED CONVECTION TO LOW PRANDTL NUMBER GAS MIXTURES

bу

M. F. Taylor, K. E. Bauer and D. M. McEligot Aerospace and Mechanical Engineering Department University of Arizona Tucson, Arizona 85721

Research sponsored by

Office of Naval Research

ONR Contract No. N00014-75-C-0694

ONR Contract Authority NR-097-395

30 JUNE 1984

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

A148 932

REPO	ORT DOCUME	ENTATION PAGE	E		
REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE M	ARKINGS		
Unclassified SECURITY CLASSIFICATION AUTHORITY					
L SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/A	VAILABILITY C	OF REPORT	
D. DECLASSIFICATION/DOWNGRADING SCHEDULE		Unlimited			
PERFORMING ORGANIZATION REPORT NUMBER(S)		S. MONITORING OF	IGANIZATION R	EPORT NUMBER	S)
1248-10		1248-			
	FICE SYMBOL	78 NAME OF MONI	TORING ORGAN	IZATION	
Engineering Experiment Station	ipplicable)	Office of N	aval Resear	rch	
University of Arizona		Bandolier H	all West -	Room 204	
ADDRESS (City, State and ZIP Code)		76. ADDRESS (City.	State and ZIP Cod	dei	
College of Engineering				_	
Tucson, Arizona 85721		University			
	·····	Albuquerque			
	FICE SYMBOL applicable)	9. PROCUREMENT	NSTRUMENT IO	ENTIFICATION N	UMBER
Office of Naval Research		N00014-75-C	-0694		
ADDRESS (City, State and ZIP Code)		10. SOURCE OF FU	NOING NOS.		
Code 431		PROGRAM	PROJECT	TASK	WORK UNI
Arlington, VA 22217		ELEMENT NO.	NO.	NO.	NO.
TITLE (Include Security Classification)	,	NR 097-395			
. TITLE (Include Security Classification)	PRANDTL	Ì	ĺ		
INTERNAL FORCED CONVECTION TO LOW		1	L		
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES					
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S)	<u> </u>				
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. Sa Type of Report	. McEligot	14. DATE OF REPO	NT (Yr., Mo., Dey) 15. PAGE (OUNT
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M	. McEligot) 15. PAGE C	COUNT
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. S. TYPE OF REPORT	. McEligot) 15. PAGE (COUNT
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. Safype of Report Interim Technical FROM 7/15/82	. McEligot) 15. PAGE (COUNT
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M Interim Technical FROM 7/15/82	. McEligot) 15. PAGE (COUNT
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. Supplementary Notation COSATI CODES 18. 5UP	. McEligot TO 7/15/84	15 July	1984	ify by block numbe	r)
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. A TYPE OF REPORT Interim Technical FROM 7/15/82 SUPPLEMENTARY NOTATION COSATI CODES 18 SUB. GR. He	McEligot TO 1/15/84 SJECT TERMS (C. at Transfer	ontinue on reverse if no	1984 occasery and identity vection — V	ify by block numbe	r)
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. A TYPE OF REPORT Interim Technical SUPPLEMENTARY NOTATION COSATI CODES 18. SUPPLED GROUP SUB. GR. HE	McEligot TO 7/15/84 SJECT TERMS (C. at Transfer bes - Ducts	ontinue on reverse if ne - Forced Con - Turbulent	1984 occasery and identity vection — V	ify by block numbe	r)
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. A TYPE OF REPORT Interim Technical SUPPLEMENTARY NOTATION COSATI CODES 18 SUB-FIELD GROUP SUB-GR. TU	McEligot TO 7/15/84 SJECT TERMS (C. at Transfer bes - Ducts	ontinue on reverse if no	1984 occasery and identity vection — V	ify by block numbe	r)
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. La type of Report 13b time covere Interim Technical FROM 7/15/82 B. SUPPLEMENTARY NOTATION C. COSATI CODES 18. SUPPLED GROUP SUB. GR. He Tu Ga	BJECT TERMS (C. at Transfer bes - Ducts s Flow -	ontinue on reverse if no rever	1984 scessery and identivection - V	ify by block numbe Variable Pro	r, perties -
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. He Tu Ga ABSTRACT (Continue on reverse if necessary and identify At a Prandtl number of abo	BJECT TERMS (C. at Transfer bes - Ducts s Flow - y by block number out 0.2, the	ontinue on reverse if no continue on continue on reverse if no continue on continue on reverse if no continue on conti	ressery and identivection - V	ily by block number Variable Pro	ns for
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 SUPPLEMENTARY NOTATION COSATI CODES 18. SUPPLEMENTARY NOTATION TU Ga ABSTRACT (Continue on reverse if necessary and identify are identified and identify are identified and identify and identify are identified and identify and identify are identified and identify and identify and identify are identified and identify are identified and identify	BJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow	ontinue on reverse if no continue on reverse if no continue on reverse if no continue on Turbulent Gas Mixtures or predictions of differ by a	ncessery and identivection - V	dry by block number Variable Pro i correlation than two.	perties - ns for Since
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 1/15/82 INTERIM TECHNI	BJECT TERMS (C. at Transfer bes - Ducts s Flow - y by block number out 0.2, the d tube flow propulsion	ontinue on reverse if ne - Forced Con - Turbulent Gas Mixtures - predictions - differ by a utilize worki	of accepted factor more ng fluids w	dry by block number Variable Production of the correlation of the two.	ns for Since
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 1/15/82 INTERIM TECHNICAL FROM 1/15/82 COSATI CODES 18 SUB. GR. He Tu Ga ASSTRACT (Continue on reverse if necessary and identify At a Prandtl number of about transfer in fully establishe gas turbine systems proposed for number in this range, it was neces	BJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow propulsion ssary to re-	ontinue on reverse if ne - Forced Con Gas Mixtures of differ by a utilize workits of the dis	of accepted factor more ng fluids we crepancy.	dry by block number Variable Produced is correlational than two. With the Pra By mixing h	ns for Since ndtl elium
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 INTERIM TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	BJECT TERMS (C. at Transfer bes - Ducts is Flow - by block number out 0.2, the did tube flow propulsion is sary to rea, the range	ontinue on reverse if no continue on Turbulent Gas Mixtures or predictions or differ by a utilize working solve the disception of 0.16	of accepted factor more repancy.	driable Product number variable Production than two. with the Pra By mixing h be obtained	ns for Since ndtl elium
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 INTERIM TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	BJECT TERMS (C. at Transfer bes - Ducts is Flow - by black number out 0.2, the did tube flow propulsion is sary to rein, the range in a vertice.	ontinue on reverse if no continue on reverse	of accepted factor more ng fluids we crepancy.	i correlation than two. with the Pra By mixing h be obtained Colburn ana	ns for Since ndtl elium .
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 INTERIM TECHNICAL FROM 7/15/82 IS SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. He Tu Ga ABSTRACT (Continue on reverse if necessary and identify At a Prandtl number of abo heat transfer in fully establishe gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially	BJECT TERMS (C. at Transfer bes - Ducts s Flow - by black number out 0.2, the d tube flow propulsion ssary to rea, the range in a vertice overpredict	ontinue on reverse if record Continue on reverse if record Continue on reverse if record Continue of Turbulent Gas Mixtures e predictions of differ by a utilize working solve the distribute of 0.16 \lequip President Tube showed the Nusselt	of accepted factor more ng fluids we crepancy. <pre></pre>	ify by block number variable Production than two. With the Pra By mixing he obtained Colburn and constant pr	ns for Since ndtl elium logy
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 INTERIM TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	BJECT TERMS (C. at Transfer bes - Ducts s Flow - by black number out 0.2, the d tube flow propulsion ssary to red, the range in a vertice overpredict ovided by residual covided covided by residual covided covided by residual covided c	ontinue on reverse if reference Consider Forced Consider Forced Consider Mixtures of the predictions of differ by a utilize working solve the disternal tube showed the Nusselt relations suggested.	of accepted factor more gfluids we crepancy. <pre></pre>	i correlation than two. with the Pra By mixing he obtained Colburn and constant present with the pra	ns for Since ndtl elium logy operty
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 INTERIM TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN	BJECT TERMS (C. at Transfer bes - Ducts s Flow - by black number out 0.2, the d tube flow propulsion ssary to red, the range in a vertice overpredict ovided by reas property	ontinue on reverse if reference Consider Forced Consider Forced Consider Mixtures of the predictions of differ by a utilize working solve the distensive the Nusselt relations suggities (1 < T /T.	of accepted factor more gfluids we crepancy. <pre> <pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> <td>i correlation than two. with the Pra By mixing he obtained Colburn and constant prostukhov and correlation correlations.</td><td>ns for Since ndtl elium logy operty by n for</td></pre></pre></pre></pre></pre></pre></pre></pre></pre>	i correlation than two. with the Pra By mixing he obtained Colburn and constant prostukhov and correlation correlations.	ns for Since ndtl elium logy operty by n for
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 ISUPPLEMENTARY NOTATION COSATI CODES 18.5UP FIELD GROUP SUB. GR. He Tu Ga D. ABSTRACT (Continue on reverse if necessary and identify At a Prandtl number of abo heat transfer in fully establishe gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially conditions; best agreement was pr Kays. For moderate variation of average friction factor by Taylor	SJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow propulsion ssary to rein a vertice overpredict ovided by reas propert was verifi	ontinue on reverse if no in a Turbulent Gas Mixtures of differ by a utilize working of 0.16 ₹ Properties of the Nusselt relations suggities (1 < T./T. ded; the expon	of accepted factor more gfluids we crepancy. <pre></pre>	d correlation than two. With the Pra By mixing he obtained Colburn and constant project to the prandtl num Prandtl num	ns for Since ndtl elium logy operty by n for ber
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. He Tu Ga At a Prandtl number of about transfer in fully established gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially conditions; best agreement was proposed for average friction factor by Taylor in his equation for heat transfer.	SJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow propulsion ssary to rein a vertice overpredict ovided by reas propert was verifi	ontinue on reverse if no in a Turbulent Gas Mixtures of differ by a utilize working of 0.16 ₹ Properties of the Nusselt relations suggities (1 < T./T. ded; the expon	of accepted factor more gfluids we crepancy. <pre></pre>	d correlation than two. With the Pra By mixing he obtained Colburn and constant project to the prandtl num Prandtl num	ns for Since ndtl elium logy operty by n for ber
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 ISUPPLEMENTARY NOTATION COSATI CODES 18.5UP FIELD GROUP SUB. GR. He Tu Ga D. ABSTRACT (Continue on reverse if necessary and identify At a Prandtl number of abo heat transfer in fully establishe gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially conditions; best agreement was pr Kays. For moderate variation of average friction factor by Taylor	SJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow propulsion ssary to rein a vertice overpredict ovided by reas propert was verifi	ontinue on reverse if no in a Turbulent Gas Mixtures of differ by a utilize working of 0.16 ₹ Properties of the Nusselt relations suggities (1 < T./T. ded; the expon	of accepted factor more gfluids we crepancy. <pre></pre>	d correlation than two. With the Pra By mixing he obtained Colburn and constant project to the prandtl num Prandtl num	ns for Since ndtl elium logy operty by n for ber
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. He Tu Ga At a Prandtl number of about transfer in fully established gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially conditions; best agreement was proposed for average friction factor by Taylor in his equation for heat transfer.	SJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow propulsion ssary to rein a vertice overpredict ovided by reas propert was verifi	ontinue on reverse if no in a Turbulent Gas Mixtures of differ by a utilize working of 0.16 ₹ Properties of the Nusselt relations suggities (1 < T./T. ded; the expon	of accepted factor more gfluids we crepancy. <pre></pre>	d correlation than two. With the Pra By mixing he obtained Colburn and constant project to the prandtl num Prandtl num	ns for Since ndtl elium logy operty by n for ber
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical COSATI CODES FIELD GROUP At a Prandtl number of about transfer in fully established gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially conditions; best agreement was proposed for average friction factor by Taylor in his equation for heat transfer new data.	SJECT TERMS (C. at Transfer bes - Ducts s Flow - by block number out 0.2, the d tube flow propulsion ssary to rein a vertice overpredict ovided by reas propert was verifi	ontinue on reverse if no in a Turbulent Gas Mixtures of differ by a utilize working of 0.16 ₹ Properties of the Nusselt relations suggities (1 < T./T. ded; the expon	of accepted factor more ng fluids we crepancy. <pre></pre>	ify by block number variable Produce than two. with the Pra By mixing he obtained Colburn and constant projection of the prandtl number of the prandtl num	ns for Since ndtl elium logy operty by n for ber
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor, K. E. Bauer and D. M. M. F. Taylor and J. M.	BJECT TERMS (C. at Transfer bes - Ducts ser Flow - by block number out 0.2, the d tube flow propulsion ssary to resin a vertical overprediction over the range of the r	ontinue on reverse if reference of the continue on reverse if reference of the continue of the	of accepted factor more ng fluids we crepancy. <pre></pre>	ify by block number variable Produce than two. with the Pra By mixing he obtained Colburn and constant projection of the prandtl number of the prandtl num	ns for Since ndtl elium logy operty by n for ber
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHORIS M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SUB. GR. He Tu Ga At a Prandtl number of about transfer in fully established gas turbine systems proposed for number in this range, it was nece with xenon or hydrogen with xenon Measurements with these mixtures and Dittus-Boelter substantially conditions; best agreement was proposed for average friction factor by Taylor in his equation for heat transfer.	BJECT TERMS (C. at Transfer bes - Ducts ser Flow - by block number out 0.2, the d tube flow propulsion ssary to resin a vertical overprediction over the range of the r	ontinue on reverse if reference of the continue on reverse if reference of the continue of the	of accepted factor more of fluids we crepancy. <pre> 0.7 can d that the number for ested by Perior on the order to a ORITY CLASSIFIE ed</pre>	ify by block number variable Produce than two. with the Pra By mixing he obtained Colburn and constant projection of the prandtl number of the prandtl num	ns for Since ndtl elium logy operty by n for ber these
INTERNAL FORCED CONVECTION TO LOW NUMBER GAS MIXTURES PERSONAL AUTHOR(S) M. F. Taylor, K. E. Bauer and D. M. Interim Technical FROM 7/15/82 INTERNAL FORCED COVERE INTERN	BJECT TERMS (C. at Transfer bes - Ducts ser Flow - by block number out 0.2, the d tube flow propulsion ssary to resin a vertical overprediction over the range of the r	ontinue on reverse if no in a Turbulent Gas Mixtures of differ by a utilize working of 0.16 < Property of the Nusselt relations suggisties (1 < T./T. Led; the exponsed to 0.65 in Unclassifie	of accepted factor more of fluids we crepancy. <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> <pre< td=""><td>i correlation than two. with the Pra By mixing he obtained Colburn and constant pretukhov and correlation Prandtl num accommodate</td><td>ns for Since ndtl elium . logy operty by n for ber these</td></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	i correlation than two. with the Pra By mixing he obtained Colburn and constant pretukhov and correlation Prandtl num accommodate	ns for Since ndtl elium . logy operty by n for ber these

ABSTRACT

At a Prandt1 number of about 0.2, the predictions of accepted correlations for heat transfer in fully established tube flow differ by a factor more than two. Since gas turbine systems proposed for propulsion utilize working fluids with the Prandt1 number in this range, it was necessary to resolve the discrepancy. By mixing helium with xenon or hydrogen with xenon, the range 0.16 < Pr < 0.7 can be obtained. Measurements with these mixtures in a vertical tube showed that the Colburn analogy and Dittus-Boelter substantially overpredict the Nusselt number for constant property conditions; best agreement was provided by relations suggested by Petukhov and by Kays. For moderate variation of gas properties $(1 < T_w/T_b < 2.2)$ the correlation for average friction factor by Taylor was verified; the exponent on the Prandt1 number in his equation for heat transfer was modified to 0.65 in order to accommodate these new data.

A-1.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
NOMENCLATURE	v
INTRODUCTION	1
TRANSPORT PROPERTIES OF THE MIXTURE	4
THE EXPERIMENT	17
Apparatus	17 20 23
Reproducibility	24
EXPERIMENTAL RESULTS	27
Heat Transfer with Constant Properties	27 31
CONCLUSION	38
ACKNOWLEDGEMENTS	40
APPENDICES:	
A. Uncertainty Analysis	42 50
REFERENCES	106
NICTRIBUTION (ICT	110

NOMENCLATURE

A	Flow area of test section;
С	Velocity of sound;
c _p	Specific heat at constant pressure;
c _v	Specific heat at constant volume;
D	Inside diameter
g	Acceleration due to gravity;
g _c	Dimensional conversion factor;
G	Average mass flux, m/A;
h	Heat transfer coefficient;
i	Specific enthalpy;
k	Thermal conductivity;
• m	Mass flow rate;
L	Distance from start of heating to PT #2;
$\widetilde{\mathtt{M}}$	Molal mass;
p	Pressure;
q''	Heat flux;
R	Gas constant for a particular gas;
R	Universal gas constant;
T	Temperature;
x	Axial distance from start of heating;

NOMENCLATURE (continued)

Greek Symbols

 ϵ/κ Force constant in Lennard-Jones potential; γ Ratio of specific heats, c_p/c_v ; μ Absolute viscosity; γ Kinematic viscosity; ρ Density;

Force constant in Lennard-Jones potential;

Nondimensional Parameters

f Friction factor, $g_c \rho_{b,av}$, $D \Delta p_{fr}/2 L G^2$;

Grashof number based on wall heat flux, $g \ D^4 \ q_w'' / (\nu^2 \ k \ T)_{\mbox{\scriptsize i}}$

Nu Nusselt number, h D/k;

 \bar{p} Pressure drop, $\rho_i g_c (p_i - p)/G^2$;

Pr Prandtl number, $c_{p}\mu/k$;

 q^+ Heat flux parameter, $q_w''/G c_{p,i} T_i$;

Re Reynolds number, G D/μ ;

NOMENCLATURE (continued)

Subscripts

av	Lengthwise average;
b	Evaluated at bulk temperature;
ср	Constant property condition;
DB	Dittus-Boelter;
fr	Frictional;
н ₂	Hydrogen gas;
i	Inlet; an index;
mod	Modified;
ref	Reference;
w	Wall;
Xe	Xenon gas;
1	At start of heating;
2	At pressure tap 2.

INTRODUCTION

The use of gas mixtures has been proposed for use in closed cycle gas turbines with applications in power systems undersea and in space as well as for propulsion of ships, aircraft, buses and rail units. Helium and hydrogen both possess excellent heat transfer properties but require many stages of turbomachinery in closed cycle gas turbines. The addition of higher molecular weight gases to helium or hydrogen to form binary mixtures can reduce the number of stages in turbomachinery but increases heat exchanger surface area because of the lower thermal conductivity of the heavier gases. The Prandtl number can be as low as 0.16 for these mixtures. In the past, most designs utilizing these gas mixtures were made by using correlations of the Colburn [1933] or Dittus-Boelter [1930] type which had resulted from tests using gases with a Prandtl number around 0.7, or with liquids.

In fact, some well-known texts do not recognize that a Prandtl number less than 0.6 can occur for gas mixtures. Several relations have been reported which differ considerably from Colburn and are suggested for use over a wide range of Prandtl numbers, some as low as 0.1 [Kays, 1966; Petukhov, 1970; Sleicher and Rouse, 1975; Gnielinski, 1975; and Churchill, 1977]. The relations recommended by these investigators are tabulated in Table 1. The large variations in Nusselt number resulting from these relations are shown in Fig. 1 as a function of Prandtl number. At a Prandtl number of 0.2 there is a factor of 2.2 between the lowest and

Table 1.	1. Equations Proposed to Predict Nusselt Number over a Range of Prandtl Number.	e of Prandtl Number.	
Investigator	Correlation Equations for Constant Properties	Suggested Pr Range	Eq
Dittus-Boelter [1930]	Nu = .0021 Re 0.8 Pr 0.4	0.7 to 1.0	-
Colburn [1933]	Nu = 0.023 Re 0.8pr 1/3	0.5 to 100	2
Kays [1966]	Nu = 0.022 Re 0.8 pr 0.6	0.5 to 1.0	3
Petukhov [1970]	Nu = $\frac{(\xi/8) \text{ Re Pr}}{K_1(\xi) + K_2(\text{Pr}) \sqrt{\xi/8} (\text{Pr}^{2/3} - 1)}$ $\xi = (1.8210g_{10} \text{ Re} - 1.64)^{-2}$ $K_1(\xi) = 1.3.4\xi$ $k_2(\text{Pr}) = 11.7 + 1.8 \text{ Pr}^{-1/3}$	0.5 to 200	4
Sleicher and Rouse [1975]	Nu = 5.0 + 0.015 Re ^a Pr ^b a = 0.88 - 0.24/(4 + Pr) b = 1/3 + 0.5 exp(-0.6 Pr)	0.1 to 10 ⁵	\$
Gnielinski [1975]	$N_{\rm u} = 0.0214 (Re^{0.8} - 100) Pr^{0.4} (T_{\rm u}/T_{\rm b})^{-45} \left[1 + \left(\frac{\rm p}{\rm x}\right)^{2/3}\right]$	0.6 to 1.5	9
Churchill [1977]	Nu = 6.3 $\frac{0.079 \text{ Re } \sqrt{f} \text{ Pr}}{[1 + \text{pr}^4/5]5/6}$ $\frac{1}{f}$ = 2.21 In $\{\frac{\text{Re}}{f}\}$	e11	,
		1	

Figure 1. Comparison of correlation equations recommended by several investigators.

highest value recommended! The danger of extrapolating heat transfer correlations based on data at Pr = 0.7 is emphasized by Pierce [1981] in an application to the closed gas turbine cycle.

The authors of this paper have used a number of binary mixtures of light and heavy gases to test the correlations shown in Fig. 1; for later reference, equation numbers are listed on the table. Pickett, Taylor and McEligot [1979] employed mixtures of helium and argon in order to obtain $Pr \approx 0.42$ and 0.49 while Serksnis, Taylor and McEligot [1978] conducted measurements at $Pr \approx 1/3$ by using a mixture of hydrogen and carbon dioxide. In the present investigation, additional data have been obtained in the range $0.18 \stackrel{<}{<} Pr \stackrel{<}{<} 0.3$ by mixing hydrogen with xenon and helium with xenon. Table 2 summarizes the range of data obtained in this investigation.

TRANSPORT PROPERTIES OF THE MIXTURES

The properties needed for this study were compressibility, viscosity, thermal conductivity, specific heat, enthalpy, speed of sound, and the gas constant. The properties of air have been studied extensively; for the comparison data the NBS tables of Hilsenrath et al. [1955] were used in this investigation. The properties of helium-xenon mixtures were calculated theoretically. For all gases the viscosity and thermal conductivity were assumed to be independent of pressure.

The helium-xenon mixtures were assumed to be ideal gases, thus making the compressibility equal to unity. This assumption is reasonable for the range of pressures (260 - 1000 kPa) or 2.6 - 9.9 atm and

Table 2. Range of Variables in the Present Investigation.

Gas	Air	He-Xe	He~Xe	He-Xe	Na-Xe	H ₂ -Xe
Molecular Weight	28.97	83.8	07	28.3	14.5	29
Inlet Bulk Prandtl Number	0.717	0.251	0.214	0.231	0.301	0.181 (0.196)
Experimental Runs	16	01	10	4	'n	4
Inlet Bulk Reynolds Number	33,900 - 85,800	32,600 - 87,400	34,300 ~ 61,800	48,400 - 55,400	34,000 - 40,900	71,100 - 73,900
C Exit Bulk Reynolds Number	21,600 - 77,900	16,500 - 74,300	19,200 - 51,800	26,200 - 43,000	19,500 - 36,700	43,400 - 66,700
Maximum $T_{\mathbf{u}}/T_{\mathbf{b}}$	2.38	2.22	1.99	2.06	2.04	1.78
Maximum T _v (°K)	916	962	941	982	972	832
Haximum q	0.0044	0.0069	0.0053	0.0051	0.0047	0.0034
Maximum Gr/Re ₁	1.40 x 10 ⁻²	1.44 x 10 ⁻²	9.34 x 10 ⁻³	6.67 x 10 ⁻³	3.05 × 10 ⁻³	3.29×10^{-3} (3.04 × 10^{-3})
Maximum Mach Number	0.109	0.123	0.079	0.90	0.075	0.103
x/D for Local Bulk Numbers	2.2 - 52.4	2.2 - 52.4	2.2 - 52.4	2.2 - 52.4	2.2 - 52.4	2.2 - 52.4

Values in parentheses are for calculated thermal conductivities of ${\rm H_2}$ - ${\rm Xe}$

temperatures (290 - 980°K or 62 - 1310°F) used in this experiment. Since helium and xenon are monatomic and the temperature range in this study was not too large, the relation [Reynolds, 1968]

$$c_p = (5/2) R = (5/2)R/\widetilde{M}$$
 (8)

was used to calculate the specific heat.

Using the ideal gas and constant specific heat assumptions, one may derive simple equations for the enthalpy and speed of sound [Reynolds and Perkins, 1968]

and
$$i = c_p = (T - T_{ref})$$

$$c = \sqrt{\gamma RT} = \sqrt{(5/3)RT}$$
(9)

The Lennard-Jones (6-12) potential can be employed in the Chapman-Enskog kinetic theory to predict thermal conductivity, viscosity and Prandtl number of binary mixtures of inert gases [Hirschfelder, Curtiss and Bird, 1964]. There has been considerable experimental study of the pure gases but, unfortunately, few data exist on the mixtures.

With force constants, ϵ/k and C, suggested by Hirschfelder, Curtiss and Bird [1964], the predicted viscosity for pure helium falls about eight percent below the data of Clarke and Smith [1968], Dawe and Smith [1970] and Kalelkar and Kestin [1970] at temperatures around 900°C (1650°F). Likewise, the predicted thermal conductivity is about nine percent lower than the measurements of Saxena and Saxena [1968] up to 1100°C (2011°F). In contrast, using the force constants suggested by DiPippo and Kestin

[1969] leads to essential agreement with the values recommended by the Thermophysical Properties Research Center [Touloukian and Ho, 1970].

For pure xenon, force constants from Hirschfelder, Curtiss and Bird [1964] predicted viscosity that falls about five percent below the data of Dawe and Smith [1970] and Kestin, Ro and Wakeham [1972]. The predicted thermal conductivity is about twelve percent lower than measurements of Saxena and Saxena [1969] up to 1200°C (2191°F). DiPippo and Kestin did not report force constants for xenon, but Kestin, Ro and Wakeham suggested force constants that predicted values of viscosity that are in very good agreement with the experimental data and predicted values of thermal conductivity that are about four percent lower than the reported measurements.

The properties of the helium-xenon mixtures are shown in Fig. 2. The solid curves were calculated using the force constants recommended by DiPippo and Kestin [1969] for helium: $\sigma = 2.158$ Å and $\varepsilon/k = 86.2$ °K and those recommended by Kestin, Ro and Wakeham [1972] for xenon: $\sigma = 2.858$ A and $\varepsilon/k = 285.2$ °K.

The viscosity of the mixtures varies considerably with the molecular weight of the mixture. At 277°C (530°F) the maximum viscosity of the mixture is 41% higher than that of helium and five percent higher than xenon. Viscosity predicted using constants from DiPippo and Kestin [1969] and Kestin, Ro and Wakeham [1972] agrees to within three percent of the data of Trautz and Heberling [1923] and Thornton [1960]. As with pure gases the viscosity increases with temperature.

Figure 2a. Transport properties of helium-xenon mixtures. Pressure = latm.

Figure 2b. Transport properties of helium-xenon mixtures. Pressure = latm.

Figure 2c. Transport properties of helium-xenon mixtures. Pressure = latm.

The mixture thermal conductivity decreases by a factor of 23 as the molecular weight increases from pure helium to pure xenon over the range of mixture temperature in this investigation, and mixture conductivity also increases with temperature. Agreement with the data of Thornton [1960], Gandhi and Saxena [1968] and Mason and von Ubish [1960] is good for temperatures ranging from 18° to 90°C (65° to 194°F). The only data available at higher temperatures are those of Mason and von Ubish at 520°C (968°F) and these are almost 10% higher than the predictions; however, in a critical review Gandhi and Saxena [1968] have observed that the measurements of Mason and von Ubish appear to be systematically higher than others they reviewed.

As a consequence of the variation of thermal conductivity and specific heat vs. molecular weight the Prandtl number decreases to a minimum of about 0.21 at $\stackrel{\sim}{M} \stackrel{\sim}{\sim} 50$ from about 0.667 for the pure gases. It is about 0.23 at the molecular weight of air.

It is interesting to note that even though the force constants of Hirschfelder, Curtiss and Bird [1964] did not adequately predict thermal conductivity and viscosity for pure helium and xenon, their predictions for the mixtures did not differ greatly from the ones used in this investigation.

The hydrogen-xenon mixtures were also assumed to be ideal gases, making the compressibility equal to unity. This assumption is also reasonable for the range of pressures (750 - 800°KPa or 7.4 - 7.9 atm) and temperatures (290 - 830°K or 62 - 1040°F) used in this experiment. The specific heat of this mixture was calculated by the relation

 $c_{p,mixture}$ = (mass fraction H_2) c_{p,H_2} + (mass fraction Xe) $c_{p,Xe}$

The enthalpy and speed of sound were calculated in the same manner as with the helium-xenon mixture.

The hydrogen-xenon mixture properties are shown in Fig. 3. The solid lines for viscosity were calculated using the viscosities of hydrogen and xenon and the method recommended by Hirschfelder, Curtiss and Bird [1964] for calculating mixtures of monatomic gases. Hydrogen is, of course, polyatomic and predicting its properties is more complex than predicting those of monatomic gases. The solid lines for thermal conductivity were calculated using the method of Lindsay and Bromley [1965].

The only measurements of viscosity of hydrogen-xenon mixtures found in the literature were those of Trautz and Heberling [1934] which are in good agreement with these predictions, especially at the mole fraction of xenon (0.21) in the mixture used in the present investigation. The viscosity of the mixture increases with temperature and the increase in viscosity from pure hydrogen to pure xenon is threefold.

The mixture thermal conductivity decreases by a factor of 30 as the molecular weight increases from pure hydrogen to pure xenon over the temperature range of this investigation. Only two investigations of thermal conductivity of hydrogen-xenon mixtures have been reported. Barua [1960] measured conductivities for mixtures of eight volume-percentages of xenon from 0 to 100% at temperatures of 30°C (85°F) and 45°C (111°F).

Figure 3a. Transport properties of hydrogen-xenon mixtures. Pressure = latm.

Figure 3b. Transport properties of hydrogen-xenon mixtures.

Pressure = latm.

Figure 3c. Transport properties of hydrogen-xenon mixtures. Pressure - latm.

Saxena and Tondon [1971] measured conductivities for five mole fractions of xenon from 0 to 1.0 at 40°, 65° and 93°C (104°, 149° and 199°F). The measurements of the two investigations are in good agreement with each other, particularly near the mixture concentration (mole fraction of Xe = 0.21) used in this investigation, but are as much as fifteen percent higher than predicted values at 93°C (199°F).

For the present concentration, the experimental values of thermal conductivity were extrapolated to the maximum mixture temperature used, and it was found that the measured conductivity was twenty percent higher than the predicted value. A method recommended by Kestin [personal communication, 1983], but not with complete confidence, is described by Clifford et al. [1980]. The thermal conductivities calculated by this method are closer to the experimental values than those predicted by the method of Lindsay and Bromley, but are still fifteen percent lower at 283°C. As a consequence of this discrepancy in thermal conductivity, the heat transfer data of this investigation were reduced twice, once using the lower predicted values and once using the values obtained by extrapolating the experimental values. The normalized Nusselt number was found to be six to ten percent higher when the calculated thermal conductivity was used rather than the extrapolated experimental value.

As a result of the variations of the calculated thermal conductivity, viscosity and specific heat versus the molecular weight, the calculated Prandtl number decreases to a minimum of about 0.18 at $\widetilde{M}=47$ from 0.707 for hydrogen and 0.667 for xenon. It is about 0.20 at $\widetilde{M}=29$ which is the molecular weight of both air and the hydrogen-xenon mixture

used in this investigation. When based on the experimental thermal conductivity a value of 0.18 is predicted for this mixture.

THE EXPERIMENT

Apparatus

u

The experimental apparatus, arrangement and procedure were similar to those used by Park, Taylor and McEligot [1982]. In the present investigation the loop was a closed circuit, as shown in Fig. 4, due to the extremely high cost of the xenon gas. A single-acting "Gas Booster Pump" from Haskel Manufacturing Company circulated the gas mixtures through two pressure regulators, a plenum, a cooler which removed the heat of compression, a tubular flowmeter, the instrumented test section, another cooler to remove the energy added in the heated test section, a UGC densitometer, another plenum, a control valve and then back into the pump. The two pressure regulators and plenum were installed to remove the pressure fluctuations in the flow created by the pump. Two pressure transducers were used to measure the pressure fluctuations; a Model SCD 147 from Data Instruments, Inc. was located just beyond the first cooler and a Kulite Model XT-140-100G subminiature pressure transducer was mounted flush with the inside of the tube immediately beyond the elbow at the entry of the test section to measure the pressure fluctuations of the flow entering the test section.

The vertical test section was a circular tube of Incomel 600 with an inside diameter of 5.87 mm (0.231 in) and a wall thickness of 0.28 mm

Figure 4. Schematic diagram of experimental apparatus.

(0.011 in). It consisted of a heated section 60 diameters in length preceded by an unheated section of 56 diameters which insured that the flow approached a fully developed velocity profile prior to heating. The test section itself served directly as an electrical resistance heater. Alternating current from a line voltage stabilizer was supplied via variable transformers to the test section through thin stainless steel electrodes brazed to the tube. The current was measured using a Weston current transformer and a Weston Model 370 ammeter. A high impedance Fluke differential voltmeter measured the voltage across the test section to serve as a check on power measurements. Three pressure taps, with holes of about 0.30 mm (0.012 in.) were used. One was located 5 diameters below the lower electrode and the other two were 50 and 54 diameters above it, near the upper electrode. The static pressure at the test section inlet was measured with a Heise bourdon tube gauge and the pressure drop between taps was measured with an MKS Baratron Type 77 Pressure Meter and Head. The fluctuating signals from the Kulite pressure transducer were recorded on a Hewlett-Packard x-y recorder.

Twenty-one premium grade Chromel-Alumel thermocouples, 0.13 mm (0.005 in.) in diameter were spot welded to the heated section of the tube using the parallel junction technique suggested by Moen [1960]. Thermal conduction error was calculated from the heat loss calibration data and a relation developed by Hess [1965]; the thermocouple conductance was estimated from the emissivity of the bare wire and a natural convection correlation for small Rayleigh numbers [Kreith, 1973]. The correction was of the order of 1% of the difference between the tube temperature and the

environmental temperature; at Re \sim 3 x 10^4 this correction was equivalent to 1-1/2 to 2% in the Nusselt number.

Procedures and Preliminary Measurements

The test section was a bare tube surrounded by a draft shield so the heat loss was by radiation and natural convection. The heat loss was calibrated as a function of axial position and temperature from measurements with a vacuum on the inside of the test section. uncertainty of the heat loss measurements was estimated to be about 1%. The heat loss data were represented by cubic equations that deviated no more than three percent except at very low test section temperatures 121°C (250°F) where the deviation might be as much as ten percent. For tests with gas flow the heat loss was usually less than 10% of the heat generated. A few runs with inlet Reynolds number less than 36000 and maximum wall temperatures greater than 650° (1200°F) had heat losses exceeding 20% of the heat generated. The worst case was a heat loss of 41% for helium-xenon (M $\stackrel{\sim}{\sim}$ 83.8) with an inlet Reynolds number of 34000 and a maximum wall temperature of 680°C (1256°F). The electrical resistance of the test section was also measured as a function of temperature during the heat loss runs; the estimated uncertainty was also about 1%.

The closed loop was pressurized with gases and gas mixtures from high pressure cylinders. A cylinder of helium-xenon gas mixture with a molecular weight of 83.8 was obtained from the NASA-Lewis Research Center. Helium-xenon mixtures of lesser molecular weight were obtained in the loop by adding helium to the existing gas mixture. On the other hand, the

hydrogen-xenon mixture was obtained by mixing high purity hydrogen directly with high purity xenon. The partial pressures of the gases in a mixture were used to calculate the quantity of helium needed to reduce the molecular weight of the helium-xenon mixture and also to determine the amounts of hydrogen and xenon needed to obtain the particular mixture for a given run.

The UGC gas densitometer was calibrated with air, argon, helium and the helium-xenon gas mixture (M = 83.8) over the pressure range of this investigation. The densitometer was used to verify the procedures for mixing the gases to predetermined concentrations in situ and also for checking the concentrations after a series of runs. This was done by comparing the measured density with the density calculated using the measured temperature and pressure and the perfect gas law. The measured and calculated densities usually agreed within one percent and the mixture molecular weight did not change measurably during the runs. Mass flow rate was determined with the tubular flowmeter, which was itself calibrated over the range of interest using several positive displacement meters in parallel. The mass flow rate could be determined within an uncertainty of 1.5% or better.

Park, Taylor and McEligot [1982] reported the results of an experiment on the effects of pulsating flow on heat transfer with air with the same apparatus modified to an open loop configuration, so that the mass flow rate could be measured directly with positive displacement meters at the exit of the loop. The static pressure fluctuations were as large as could be attained with the gas booster pump in this system (9 to 35%).

Frequency ranged from 2.1 to 3.6 Hertz, q⁺ from zero to 0.0034 and Reynolds numbers from 18,000 to 102,000. For the range of conditions in the present investigation the effect of pressure fluctuations from 26 to 35% had less than a 2% effect on the Nusselt number [Park, Taylor and McEligot, 1982]. The pressure fluctuations in the gas mixtures were never more than 0.6% (usually less than 0.2%) and had a frequency no greater than 2.0 Hertz. Thus, any effect of pressure fluctuations on the Nusselt number of the present gas mixture experiments is believed to be negligible. Results from runs made with air pulsating at the present levels in the closed loop compared closely with those from similar runs conducted with the loop open and no pressure fluctuations.

The procedure for the experimental runs was to introduce the proper amounts of the gases into the closed loop and then circulate the mixture until the density of the gas reached steady state as measured by the densitometer. The mass flow rate was set to give the required Reynolds number, and then the electrical power to the test section was adjusted to give a series of maximum wall temperatures of approximately 120°C (250°F), 260°C (500°F), 400°C (750°F), 540°C (1000°F) and 680°C (1250F). After covering the range of wall temperature the mass flow rate could be changed to give the next required Reynolds number. Once the range of Reynolds number was covered, the power was shut down and the gas flow stopped. At this time the density was again measured to determine whether the molecular weight had changed due to preferential leakage of the hydrogen or helium. No change in molecular weight could be detected at any time during the experiment.

During each run the wall temperatures along the heated and unheated test section were recorded along with the inlet static pressure and the pressure difference across both the tubular flow meter and the heated test section. The current through the test section and the voltage drop were recorded. The bulk temperature of the gas entering the tubular flow meter was measured and the temperature of the gas entering the heated test section was deduced from this measured temperature and the wall temperatures of the unheated section just downstream of the start of heating.

The data were reduced to give local heat transfer and fluid flow parameters. As described later in the Experimental Results, the ratio of measured Nusselt number to the Nusselt number predicted by Dittus and Boelter [1930] was plotted as a function of the ratio of wall-to-bulk gas temperature and was then extrapolated to $T_{\rm w}/T_{\rm b}=0$ to deduce a constant property Nusselt number versus position for each gas mixture and Reynolds number. This constant property Nusselt number was compared to the predicted values suggested by several investigators mentioned earlier. The heat transfer and friction data with property variation were reduced and compared with existing correlations.

Experimental Uncertainties:

The experimental uncertainties were estimated by the method of Kline and McClintock [1953]. Typical uncertainties for the Nusselt number were about 8% at $x/D \approx 1.3$ decreasing to 5% at x/D > 24 for low heating rates, and about 1.4% at $x/D \approx 1.3$ increasing to 4% at x/D < 24 for the

higher heating rates. These estimates are in good agreement with the estimates made by Serksnis [1977] for $H_2 - CO_2$ experiments and by Pickett [1976] for He-Ar experiments, both in open loop configurations. For the low heating rates, the dominant uncertainties are provided by the inlet bulk gas temperature and the wall temperatures. For higher heating rates, the uncertainty increases with x/D because the uncertainties in tube wall temperature and, therefore, temperature difference increase significantly with temperature level, while the contributions of uncertainties in mass flow rate, electrical power and inlet gas temperature remain small. Typical uncertainties for air, He-Xe ($M \gtrsim 40$) and H_2 -Xe ($M \gtrsim 29$) data are shown in Table A2 in Appendix A.

Reproducibility

The reproducibility of the measurement technique was checked in two ways. Air data in steady flow had been obtained previously in two other test sections by Serksnis, Taylor and McEligot [1978] and Pickett, Taylor and McEligot [1979]. It was found that each had a series of runs at Reinear 80,000 and various heating rates, so these were compared to present measurements at the same conditions. For the three sets of data which spanned a five-year period, it was found that in the downstream region the normalized Nusselt number, Nu/(0.021Re $^{0.8}$ Pr $^{0.4}$), agreed to within three percent at low heating rates ($T_w/T_b \approx 1.2$) and within two percent at higher heating rates ($1.4 < T_w/T_b < 1.8$).

Secondly, the reproducibility of the present measurements was tested at the end of the experiments by duplicating one of the first runs

with Re_i \sim 60,000, q⁺ = 0.0014 (maximum T_w/T_b \sim 1.5) and steady conditions. The mass flow rate could be reproduced to better than 0.2%, the test section inlet pressure to within less than 0.1% and the electrical current within the accuracy of ammeter (\sim 0.25%). The resulting values of (T_w - T_{b,in)max} differed by 2.1%, leading to agreement of the fully developed Nusselt numbers within less than 3% again.

EXPERIMENTAL RESULTS

The ranges of the present data have been previously presented as Table 2. Tabulations of these data are provided in Appendix B. Data for helium-argon mixtures are tabulated in the report by Pickett [1976] and for hydrogen-carbon dioxide mixtures by Serksnis [1977].

Heat Transfer with Constant Properties

To compare experimental data with constant property correlations the measurements were extrapolated to the constant property idealization by an approach like that of Malina and Sparrow [1964]. For this method, a series of experimental runs was taken with the same inlet Reynolds number and gas composition but with successively higher heating rates. At each thermocouple location the normalized value of the measured Nusselt number, Nu/Nu_{DB} , was plotted versus the local ratio of wall to bulk temperature, T_w/T_b . An extrapolation to $T_w/T_b = 1$ yielded the deduced Nusselt number for constant property conditions, Nu_{CD} .

For fully developed conditions with air as the fluid, the ratio of Nu_{cp}/Nu_{DB} was about 0.94 for Reynolds numbers from about 34,000 to 85,000 without any apparent dependence on Reynolds number. The variations of Nu_{cp}/Nu_{DB} with T_w/T_b for several thermocouple locations are shown in Figure 5 for air and three binary gas mixtures. It can readily be seen that the extrapolated values of Nu_{cp}/Nu_{DB} decrease from 0.94 for a Prandtl number of 0.72 to 0.86 at Pr = 0.42, 0.76 at Pr = 0.21 and 0.66 at the lowest Prandtl number. This reduction in the normalized value corresponds to the trend predicted by an analysis by Pickett, Taylor and McEligot [1979].

The constant property Nusselt numbers for Prandtl numbers from 0.18 to 0.72 for three Reynolds numbers are compared to various correlations from references from Dittus-Boelter [1930] through Churchill [1977] in The solid symbols denote data from the present investigation. Figure 6. The air data from Pickett [1976] and Serksnis [1977] and the present investigation agreed to within less than 3% and are represented by a single solid symbol. As the Reynolds number increases, the deviation between the predictions of various correlations also increases. At Reynolds numbers of 34,000 and 60,000 there is little difference between the values predicted by Kays [1966] and Petukhov and Popov [Petukhov, 1970], and both are in reasonably good agreement with the experimental data for Prandtl numbers from about 0.2 to 0.72. However, for a Reynolds number of 84,000, the difference between the Petukhov and Popov and Kays' correlations widens and the Petukhov relation agrees more closely with experiments at the lower Prandtl number.

Technique for determining constant property Nusselt number. Figure 5.

Figure 6a. Comparison between measured Nusselt number and Nusselt number predicted by correlations proposed by other investigators for constant properties.

Figure 6b. Comparison between measured Nusselt number and Nusselt number predicted by correlations proposed by other investigators for constant properties.

Figure 6c. Comparison between measured Nusselt number and Nusselt number predicted by correlations proposed by other investigators for constant properties.

There could be concern about the possibility of thermo-diffusion at high temperatures with the high ratios of molecular weights of the gases used in the binary mixtures. However, any effect of thermo-diffusion should reduce to zero as the data are extrapolated to a $T_{\rm w}/T_{\rm b}$ = 1.

Heating with Property Variation

u

If power densities are to be increased, or the weight of systems such as the closed cycle gas turbine reduced, moderately high heating rates must be employed. Then, the temperature-dependence of the fluid transport properties will cause significant variation in properties appearing in the correlation equations for both heat transfer and friction coefficients. The results and correlations based on the constant properties idealizations become invalid. In this section the proposed modifications accounting for property variations are examined.

Since pressure taps were installed only near the entrance and exit of the test section, local friction factors could not be determined in this investigation. Overall average friction factors with heat addition were compared to the correlation proposed by Taylor [1967]

$$f_{av} = (0.0014 + 0.125Re_{w}^{-0.32})(T_{w, av}/T_{b, av})^{-0.5}$$
 (10)

for the data of a wide variety of experiments with gas flow with 0.62 $\stackrel{<}{\sim}$ Pr $\stackrel{<}{\sim}$ 0.81. Most previous measurements agreed within 10%. For

evaluation of this expression, integrated averages of both the local wall and local bulk gas temperature were used along with the average pressure to determine average density and viscosity. The overall friction factor was determined from the frictional pressure drop,

$$\Delta p_{fr} = p_1 - p_2 - \frac{G^2 R}{g_c} \left(\frac{T_{b_2}}{p_2} - \frac{T_{b_1}}{p_1} \right)$$
 (11)

and the modified wall Reynolds number was defined as

$$Re_{\mathbf{w}} = (GD/\mu_{\mathbf{w}}) \left(T_{\mathbf{b}, \mathbf{a}\mathbf{v}} / T_{\mathbf{w}, \mathbf{a}\mathbf{v}} \right) \tag{12}$$

In the present study correlation (10) predicted most of the data within 5%. These measurements are presented in Figure 7. The few data deviating more than -5% from the correlation were mixture runs with maximum wall temperatures in excess of 668°C (1234°F) and $T_w/T_b > 1.8$ and with modified wall Reynolds numbers in the low range between 8,000 and 20,000. The data deviating more than +5% were all air runs with modified wall Reynolds numbers between 8,500 and 17,500. There appeared to be no effect of Prandtl number.

Experimental local Nusselt numbers were compared to Nusselt numbers predicted by modified forms of the prediction equations recommended by Pickett, Taylor and McEligot [1979]

$$Nu_b = 0.021 \text{ Re}_b^{0.8} \text{ Pr}_b^{0.55} [(T_w/T_b)^{0.4} + 0.85 \text{ D/x}]$$
 (13)

and by Taylor [1968]

$$Nu_b = 0.023 \text{ Re}_b^{0.8} \text{ Pr}_b^{0.4} (T_w/T_b)^{-a}$$
 (14)

Ų

Comparison of average friction factors to Taylor [1967] correlation for variable gas properties. Figure 7.

where $a = (0.57 - \frac{1.59}{x/D})$

For the present comparisons a value of 0.65 was finally taken as the exponent of the Prandtl number in both of these equations.

Figure 8 shows the ratios of the measured Nusselt number to the Nusselt number predicted from Equation (13) and (14) as functions of x/D for two heating rates of air, He - Xe (M = 14.5, Pr = 0.30) and $H_2 - Xe$ (M = 29, Pr = 0.18). The data shown here are typical of all the data measured in this investigation. Both of the correlation equations appear to predict downstream Nusselt numbers with acceptable accuracy for all three Prandtl numbers. Both equations predict entrance effects better for the low heating rate than for the higher rate and are in close agreement with each other, even though the methods of handling entrance effects are different. A better understanding of entrance effects is needed.

Increasing the exponent of the Prandtl number to 0.65 yielded considerable improvement and promise in the predictions using Equations (13) and (14) for all Prandtl numbers. The value of $Pr^{0.65}/Pr^{0.4}$ is 0.65 for Pr = 0.181, 0.74 for Pr = 0.30 and 0.92 for air; it is obvious that determining the correct exponent for Prandtl number is far more difficult for values of Prandtl number near 1 than in the lower Prandtl number cases, where the sensitivity of the Nusselt number to the Prandtl number exponent is much greater.

IJ

Comparison to correlations for heat transfer with gas property variation. Figure 8a.

Comparison to correlations for heat transfer with gas property variation. Figure 8b.

Comparison to correlations for heat transfer with gas property variation. Figure 8c.

Examination of air data with Reynolds numbers of \approx 34,000, 65,000 and 85,000 showed less than 3% variation of Nu/Nu_b with Reynolds number for a particular heating rate for all x/D greater than 2.2. The same held true for the gas mixtures when two Reynolds numbers were available for comparison at the same mixture concentration.

CONCLUSION

From experiments with heated flow of helium-xenon and hydrogen-xenon mixtures with Prandtl numbers in the range 0.18 to 0.30, the following major conclusions may be drawn. The Colburn analogy and the Dittus-Boelter correlation based on measurements for Pr > 0.7, greatly overpredict Nusselt numbers for fully established conditions with constant properties in this range. The correlation equation of Sleicher and Rouse and also that of Churchill underpredict the Nusselt number in this range. Of the correlations examined, that of Petukhov [1970] best represents the data the constant property Nusselt number at 0.18 < Pr < 0.72 in fully established conditions.

The friction coefficients for flow with property variation were predicted within $\pm 5\%$ by the correlation proposed by Taylor [1967], Equation (10), for modified wall Reynolds numbers greater than 20,000.

Nusselt numbers for flow with property variation were predicted using the correlation recommended by Pickett, Taylor and McEligot [1979], Equation (13), and Taylor [1968], Equation (14), but with the exponent of Prandtl number increased 0.65 in both cases. The predictions of both

correlations are in good agreement with each other. For low heating rates the measured and predicted values agreed within $\frac{+}{10\%}$ for axial distances from 4.3 to 52.3 diameters. For the higher heating rates both equations failed to predict the effects of the entrance region adequately at x/D less than about 20. Most of the data at x/D greater than 20 was predicted within $\frac{+}{10\%}$.

ACKNOWLEDGEMENTS

We appreciate the help of Dr. William G. Harrach of AiResearch Manufacturing Company of Arizona, who originally suggested this topic and also supplied the programs for the calculation of the fluid properties. Thanks are due also to Ms. Elmira Reavis and Mrs. Margaret F. Wheeler for changing our rough draft into a finished manuscript and to Mrs. Alison Habel for drawing the figures in this report.

APPENDICES

APPENDIX

Uncertainty Analysis

To determine the validity of the deduced results it is necessary to determine their estimated experimental uncertainties. An analysis has been conducted in accordance with recognized procedures to estimate the percent uncertainty in the important heat transfer and friction characteristics along the test section. Doebelin [1%6] considers the problem of computing a quantity N, where N is a known function of the n independent variables, $u_1, u_2, u_3, \ldots, u_n$. That is,

$$N = fn (u_1, u_2, u_3, \dots, u_n)$$
 (A1)

The u's are the measured quantities (instrument or component outputs) and are uncertain by $\pm \Delta u_1$, $\pm \Delta u_2$, $\pm \Delta u_3$, . . . , $\pm \Delta u_n$, respectively. These uncertainties will cause an uncertainty ΔN in the computed result N. We are concerned with experimental uncertainties here rather than systematic errors, like the thermocouple conduction error which can be corrected. The u's may be considered as absolute limits on the uncertainties, as statistical bounds such as 3σ limits, or as uncertainties on which we are willing to give certain odds as including the actual error. However, the method of computing ΔN and the interpretation of its meaning are different for the first case as compared with the second and third. After calculating the limits on the uncertainty in N, then N $\pm \Delta N$ and the

percentage uncertainly is known. In all cases, systematic errors (bias) were removed by calibration where they were known to exist.

If the individual errors are thought of as $\pm 3\sigma$ limits, then, as shown by Kline and McClintock [1953], the general equation used is

$$\Delta N = E_{arss} = \sqrt{\left(\Delta u_1 \frac{\partial f}{\partial u_1}\right)^2 + \left(\Delta u_2 \frac{\partial f}{\partial u_2}\right)^2 + \dots + \left(\Delta u_n \frac{\partial f}{\partial u_n}\right)^2}$$
(A2)

where E_{arss} represents a $\pm 3\sigma$ limit on N and 99.7 percent of the values of N can be expected to fall within these limits (arss = absolute root-sum square).

An analysis was performed to determine the uncertainty of local bulk Nusselt number, Nu, as calculated from the measured experimental data. Table Al lists the uncertainties of the instruments (\(\Delta u's \)) used in this investigation. The uncertainties of the directly measured quantities were determined from manufacturers' specifications and experience. The uncertainties of the gas properties were not included.

The estimated uncertainty in the experimental Nusselt number which results from the uncertainty in a measured variable is shown in Table A2. The measured variables included mass flow rate, current, inlet bulk temperature of the gas, wall temperature, inlet static pressure, and the resistance per unit length of the test section. Uncertainties, Δu , in these measurements were assigned from Table A1 and their values are shown in Table A2. An uncertainty in mass flow rate of 1.5 percent was used in Table A2. The values of $\frac{1}{2}$ Nu/ $\frac{1}{2}$ u in Table A2 were attained by changing the variable by a: amount equal to its estimated uncertainty and rerunning the

Values	
Meagnred	
Ċ	
Incertainties	
Table Al.	

£

Measured Quantity	Instrument	Uncertainty (Based on Manu- facturer's Specification Unless Otherwise Stated)	Notes
Current	Weston Ammeter Model 370 No. 13605	0.0 to 2.0 amp range, $\frac{1}{2}$ 0.17% of full scale 2.0 to 5.0 amp range, $\frac{1}{2}$ 0.25% of full scale	
Voltage	Fluke Voltmeter Model 883AB	±0.1% of input voltage	Voltmeter used as a check on test section voltage
Mass Flow Rate	Calibrated tubular flow meter	+1.5% of flow rate measured with positive displacement meter	Tubing for test section and flow meter from same manufacturer shipment
Wall and Inlet Bulk Temperature	Keithley Model 179 Digital Multimeter	$^{+}_{-0.004\%}$ of reading (200mV range = 0.014mV)	
	Premium Grade Chromel - Alumel Thermocouples	±2 F, 3/8% of reading above 553K (535F)	For relative measurements, uncertainty can be considered better as same spool of wire was used
Thermocouple Location Pressure Tap Location	Gaertner Cathetometer	+0.1% of distance from datum	(Estimate of uncertainty)

Table Al. Uncertainties of Measured Values (continued)

1	Measured Quantity	Instrument	Uncertainty (Based on Manu- facturer's Specification Unless Otherwise Stated)	Notes
	Test section I.D. and O.D.	Starret Micrometer and small hole gage	±0.001 inch	Uncertainty based on calibrated tubu-lar flow meter uncertainty
	Static Pressure	Heise bourdon tube gage	+0.15 psia	
45		Kulite XT-140-100G Pressure Transducer	+0.1% of full scale (100 psig)	
	Atmospheric Pressure	Welch Mercury Barom- eter	+0.05 psia (+0.03 in Hg)	(Estimate of uncertainty)
	Pressure Drop	MKS Baratron Pressure Meter	Accuracy of +0.02% of full range plus 0.15% of dial reading. Repeatability of +.005 to 0.02% of full range (Full range = 1000 mmHg)	

Table A2. Percentage Uncertainties in the Measured Nusselt Number.

					Variable,	e, c					
701	p/×		E		. 1	Tb,	, in	H	3	Earsa	% Uncertainty
He-Xe		o Nu	ηŲ	3 Nu 3 u	ηγ	3Nu 3u	Δu	3Nu Bu	Qu		
	1.3	0.0	1.5%	0.58	0.25% of full scale	2,13	2.0°F	2.28	2. C°F	6.240	8.14
	2.2	• 00	0.83 lbm	.54	0.25 amp	1.77		1.93		5.239	7.45
	4.3	80.		•50		1.38		1.53		4.123	6.60
kein = 59900											
	10.9	.14		.47		1.06		1.20	-	3.207	5.86
(TW) = 1.17	23.9	.25		.50		.91		1.04		2.774	5.55
Y D/ max	43.6	.45		.58		.87		86.		2.65	5.61
	52.6	.52		.61		.83		.95		2.564	5.58
Run 701	1.3	0.02	1.5%	0.63	0.25% of	0.22	2.0°F	0.44	2.0°F	1.033	1.40
He-Ae	2.2	.02	0.811bm	.57	0.5 amp	91.		.35	2.0	.821	1.24
	4.3	.03		.48		01.		.28	2.2	169.	1.22
Re1n= 58900	10.9	.05		07.		.00	-	.24	2.6	119.	1.48
	23.9	80.		.36		90.		.23	3.2	077.	2.13
(TW)=1.83	43.6	.18		07.	-	.00		.25	3.7	896.	3.07
'b/max	52.6	.23		.41		.00		.28	3.9	1.135	3.77
			-								
_	_	•	_	-	_			_	_		

		Table A2.		age Uncertai	Porcentage Uncertainties in the Measured Nusselt Number (continued)	Heasured	Nusselt N	umber (co	ont funed)		
					Variable,	n 'e					
	7,		•		ı		T _b in	H 3		Bares	X Uncertainty
Run 722 H ₂ -Xe	}	3 Nu du	ρV	3Nu Au	ηV	anu au	Dα	J.Nu.	γn		
Н ~ 29.0	1.3	0.05	1.52	0.48	0.25% of	2.99	2.0°F	3.05	2.0°F	8.54	11.21
ke _{In} = 73800			i		tuit scare						
	2.2	90.	0.84 lbm	.43	0.25 amp	2.60		2.68		7.49	10.49
T = 1.13	4.3	60.		.36		2.02		2.13		5.87	9.26
To max	10.9	.16		.30		1.51		1.63		4.45	8.09
	23.9	.29		.27		1.27		1.39		3.77	7.55
	43.6	87.		26		1.16		1.27		3.46	7.39
	52.6	.55		.29		1.11	_	1.22		3.33	7.32
Run 720	1.3	0.01	1.5%	99.0	0.25% of	0.21	2.0°F	0.36	2.0°F	0.797	1.10
H ₂ -xe	2.2	.00		.61	full scale	21.		.32	2.0	077.	1.18
. ~ 29.0	4.3	.02		.55		60.		.28	2.1	.674	1.21
Re =71200 10.9	10.9	*00.	0.82 lbm	.53	0.5 amp	9		.23	2.6	.663	1.48
Tw = 1.78 23.9	23.9	.05		.55		9.		.22	3.1	.743	2.06
مے	43.6	.13		.61		.05		.23	3.7	916.	2.95
	52.6	.18		79.		90.		.24	3.9	1.007	3.37
		-									
_											

			Table A2.	- 11	age Uncertai	Percentage Uncertainties in the Measured Nusselt Number (continued)	Measured	Nusselt N	umber (co	ont Inved)		
-						Variable, u						à
		- - -	1			1		T _b tn	; ⊷ ⁵		Earss	, Uncertainty
		7/*	3 Nu	γ	a Nu au	ηV	3 Nu	Δu	PMC PMC	Qπ		
×	Kun 727 H Air	1.3	0.02	1.5%	1.37	0.25% of full scale	3.11	2.0°F	3.53	2.0°F	9.415	6.35
		2.2	70.		1.30		2.77		3.19		8.456	5.96
œ	Re in = 66100	4.3	.07		1.22		2.33		2.73		7.185	5.49
		10.9	.16	0.68 1bm	1.16	0.25 amp	1.92		2.31		6.015	5.05
		23.9	.32		1.19		1.71		2.07		5.382	4.84
įщ.	w = 1.20	43.6	.54		1.29	•	1.60		1.93		5.038	4.77
:	م	52.6	.62		1.31		1.54		1.86		4.859	4.14
2	Run 738H A15	1.3	0.00	1.5	0.99	0.25% of full scale	0.01	2.0°F	99.0	2.8°F	1.913	1.32
		2.2	.01	0.66 lbm	68.	0.5 amp	•00		09.	3.1	1.915	1.44
ž.	Re in = 64200	4.3	.02		.78		90.	-	.53	3.5	1.899	1.62
H-16	Tw. = 2.38	10.9	.01		89.		.02		64.	3.9	1.941	1.93
•	b max	23.9	.00		09.		10.		.50	4.4	2.220	2.70
		43.6	.16		.63		90.	-	.56	4.7	2.656	3.57
		52.6	.23		.65		.05		. 59	4.9	2.915	4.06

computer program for data reduction at the experimental conditions. It was found that a change of 0.2 psia to the inlet static pressure did not change the experimental Nusselt number noticeably. Also, an uncertainty of $0.00008~\Omega/\text{in}$ in the measurement of resistance per unit length had an insignificant effect on the percentage uncertainty in the experimental Nusselt number.

Three types of comparisons can be made from Table A2. A comparison between the two runs shows that the percentage uncertainty for a relatively low heating rate run to be higher than a high heating rate run at about the same Reynolds number. The result is due to the relatively high percentage uncertainties in the inlet bulk and wall temperatures being much more dominant in the lower heating rate case. Secondly, the change in the percentage uncertainty along the axial length of the test section can be examined. For the low heating rates the major uncertainties in the Nusselt number are provided by the inlet bulk gas temperature and the wall temperatures; they decrease with x/D. For higher heating rates, the uncertainty increases with x/D because the uncertainties in tube wall temperature and, therefore, temperature difference increase significantly with temperature level, while the contributions of uncertainties in mass flow rate, electrical power and inlet gas temperature remain small. Thirdly, the individual variables can be compared to each other for the two different heating rates as well as for the range of x/D.

APPENDIX B

EXPERIMENTAL DATA WITH HEAT ADDITION

Table B1. Summary of Experimental Data

Run	Gas	M	Pri	Rei	(T _W /T _b) _{max}	q ⁺ max
686Н	He-Xe	83.8	0.25	85147	1.18	0.0007
687H				85802	1.42	.0016
688H				86740	1.65	.0026
68 9H				87373	1.89	.0035
6 90H				86063	2.17	.0049
691H				3 2 6 4 6	1.16	.0009
6 92 H				32647	1.39	.0022
6 93 H				33513	1.62	.0034
6 94H				33328	1.88	.0051
6 95H				33 947	2.22	.0069
6 96H	He-Xe	40.0	0.21	36 183	1.99	.0053
6 97 H				34994	1.75	.0041
6 98H				34280	1.59	.0032
699H				34686	1.36	.0018
700H				34865	1.15	.0007
701H				58657	1.83	.0039
702H				58525	1.59	.0027
703H				61534	1.38	.0017
704H				5 985 1	1.17	.0008
705H				61772	1.77	.0037
707H	He-Xe	28.3	0.23	53 3 90	1.67	.0030
708H				55449	1.38	.0017
709H				48411	2.06	.0051
710H				4 9001	1.16	.0007
711H	He-Xe	14.5	0.30	40869	1.15	.0006
712H				40554	1.32	.0013
713H				35374	1.61	.0027
714H				38 962	1.84	.0034
715H				34042	2.04	.0047
719H	^H 2-Xe	29.0	0.18	73 916	1.48	0.0021
720H	2	- > • •		71174	1.78	.0034
721H				72531	1.30	.0013
722H				73803	1.13	.0005

Table B1. Summary of Experimental Data (continued)

Run	Gas	M 	Pri	Rei	(T _w /T _b) _{max}	q+ _{ma}
723H	Air	28.97	0.72	84169	1.20	.0005
724H				84455	1.19	.0005
725H				84778	1.46	.0012
726H				64990	1.40	.0012
727H				66076	1.19	.0005
728H				34149	1.74	.0023
729H				34946	1.45	.0014
730H				34765	1.20	.0006
731H				33882	2.03	.0033
732H				34777	2.35	.0044
733H				84294	1.74	.0019
734H				84742	2.00	.0026
735H				85824	2.30	.0033
736H				64311	1.90	.0024
737H				66215	1.73	.0019
738H				64199	2.38	.0038

The headings and their definitions used in the listing of the heated flow data are below.

Heading	Definition
TIN	Inlet gas temperature, °F
TOUT	Calculated outlet gas temperature, °F
I	Alternating current, amperes
E	Voltage drop between voltage taps, volts
PR, IN	Inlet Prandtl number, c p \mu/k
GR/RESQ	Ratio of Grashof number g D^4q" $_{w}/(v^2 \rm kT)_{i}$ to the square of the inlet Reynolds number, GD/ μ_{i}
MACH (2)	Mach number at thermocouple 2
MACH (16)	Mach number at thermocouple 16

Heading	Definition
TSURR	Temperature of surroundings inside draft shield, °F
Q+(8)	Nondimensional turbulent heat flux parameter. Corresponds
TC	to q^+ in text at thermocouple 8, $q^+ = q''_w/(G c_{p,i} T_i)$ Thermocouple number
X/D	Axial position, corresponds to x/D in text
HL/QGAS	Ratio of heat loss to heat flux to gas
TW	Inside tube wall temperature, °F
TW/TB	Wall to bulk temperature ratio
QGAS	Heat flux to gas, Btu/hr-ft ²
HTCOEF	Heat transfer coefficient, Btu/hr-ft2-°F
BULK REYNOLDS	Reynolds number evaluated at bulk temperature, GD/μ_{b}
BULK NUSSELT	Nusselt number evaluated at bulk temperature, hD/kb
PT	Pressure tap: 1-near inlet, 2-near outlet
ТВ	Bulk static temperature °F
PRESS DEFECT	Pressure defect, ρ_i g _c (p_i - p)/G ²
TW,AV(F)	Average inside tube wall temperature °F
TB,AV(F)	Average bulk gas temperature °F
TW,AV/TB,AV	Average wall to average bulk temperature ratio
DELTA P(PSI)	Pressure drop from start of heating to pressure tap #2
RE,B,AV	Average value of bulk Reynolds number from start of heating to pressure tap #2, $GD/\mu_{b,av}$
RE,W,MOD,AV	Average value of modified wall Reynolds number, $^{\rm GD/\mu_{W,av}}({\rm T_{b,av}/T_{W,av}})$
F,B,AV	Friction factor through heated section of tube, $\rm g_c \rho_{b,av} \ D \ p_{fr}/2LG^2$

* . 0000 /3 2.782 VULTS AMPS, L PR.IN = .251. GK/RESQ = .167E-02. MACH(2) = .098. MACH(10) = .105. T.5UKR RUN 686H, DATE 4/20/61, GAS HE AE, MOLECULAK WI. IIN = 73.7 F, IGUI = 153.8 F, MASS FLOW RATE = 74.8 LB/HR, I = 42.

O

はししゃ	NOSSELT	613.00	101.03	14.121	110.70	104.24	74.001	ノス・スロ	33.65	74.61	14067	14.1/	70.05	10.00	07.70	00.00	07 . 60	* F • 9 9	34.00	444.65
BULK	NE YNÜLUS	02147.	05103.	65053.	*****	44443.	. 14940	04223.	63512.	02844.	.01510	4700	14014.	17051.	/uoda.	75431.	72200.	14551.	14317.	14521.
	BIU/HRF12F	134.61	71.88	4.9	4.7	•	-	04.54	•	7.	•	.7	53.00	2	52.69	2.	51.63	40.43	31.37	01.511
QGAS	BIU/HKFT2	0731.2	3322.6	4757.4	5144.7	5335.3	9-15-56	1,1040	5456.3	5447.8	5424.8	5393.2	2379.4	3960.8	5340.0	534.8	2321.4	4964	2820.0	6305.9
T W / 18		1.007	1.084	1.105	1.116	1.130	1.144	1.159	1.170	1.175	1.160	1.100	1.177	1.176	1.174	1.173	7	1.170	1.149	1.093
3	(F)	07.	19.	• p7	*	1.641	151.5	103.5	174.0	182.5	190.5	207.0	216.3	226.7	235.8	242.0	4.647	4.	244.0	210.7
HL 10GAS		162	-692	.186	550	000.	•039	•033	€00•	.037	•045	640.	.053	.057	.001	•004	190.	•144	1.008	113
υ/x		. 1	٤.	J.	9	•	•	•	•	ċ	7	7	30.4	7	'n	7	•	è	Ď	÷
10		7	6	*	ഗ	9	7	90	~	10	17	12	13	14	כן	16	17	PT	61	70

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

-.550E-01

72.0

1.00

06.5

-5.a

PRESS DEFECT

76 (F)

OI/MI

STATIC PRESS.(PSIA)

0/x

> 0 4 0 4 7 2 0 4 0	
7 F v A v AU L v A L V 4 C D v A L V 4 C D V A L D V A	
АЕ+В+ AV d∪034.	
UELTA P(PS1) .766E+00	
TW.AV/TU.AV 1.17	
18, AV(F) 103.8	
TWAV(F)	

01502 RUN 687H, DATE 4/20/81, GAS HE XF, MULECULAR NT. = 63.60

٠ ١٠(٥) = ٥٥٠	EULK	71.2	43.5	123.8	117.1	107.E	o•/5	γ • · · · · · · · · · · · · · · · · · ·	/e . 1	74.1	6 6 9 . 1	C 4 . 4	62.1	60.3	0.4	67.0	50.7	4.01	7.06	, ,,,
■ 58.€ F	SUL	2 9 7	200	1.7	246	516	472	362	17	346	126	493	147	021	2	57	55.	755	3	
* .111, T.SUKP	H T COFF	192.55 192.55) •	8 . C	3.3	6.9	7.0	4.2	į. F	¥ • 4	2.5	1.1	7.0		2.5	0 · 0	7.5	7. V	5 • 2	0
MACH(16)	96 A S	16160.5	7778.	1249.	2169.	2738.	2969.	3060.	3cen.	3044.	2986.	2912.	2858.	2797.	2736.	2691.	.6837	1433.	6040.	101
	TW/18	.16	1,211	.24	.27	. 51	.34	.3E	.41	.41	.42	. 41	3.	36	. 37	. 36	.35	.,		•
2, MAC F (2	T M	ころ	9	9	20.	41.	53.	() ()	24.	43.	77.	04.	27.	4.5	69.	83.	S	12.	82.	,
0404E-0	HL / 06A3	171	.725	2	0	ഹ		ന	~	J	· •	ທ	တ	•	_	08	သ	0	တ	•
1, GRIRES	0/x	7.) m	· •	30	1.3	2.2	•	7.6	•	7	•	٠ :	7	٠ ص	æ	2	•	ø	(
IN * .251	10	2	ı M	•	ĸ	•	7	တ	6	10	11	12	13	14	G.C.	16	17	18	19	ć

PPF55 DEFFCT	550E-C1 .980E+00
18 (F)	71.1
TW/18	1.36
STATIC PRESS. (PSIA)	64.6 68.5
0/x	-5.9 54.1
1 d	2 1

AVERAGE PARAMETERS FROM STAKT OF HFATING TO PT2

F P P A V
RESMSMBDS AV
RE, 6, AV 75436.
DELTA P(PSI) .107E+01
TW. AV/TE, AV 1.39
TB, AV(F) 144.7
TW. AV (F) 379.4

4+(4) = .002000 D.DUB VULTS AMPS, E = 121.0 F, 83.60 42.3 RUN 688H, DATE 4/20/61, GAS HE XE, MULECULAR WT. = IIN = 72.8 f, IJJT = 372.3 f, MASS FLUM RATE = 76.2 L6/F3, I = 32.9 PA,IN = .251, GR/RESU = .661E-02, MACH(2) = .096, MACH(16) = .116, T,5UKR

U

UULK	2000EL	~ / • • • •	KZ - 77 T	117.26	101.40	17.51	VD . VD	10.00	11.27	K0.+0	20.42	27.60	10.40	55.02	51.04	20.00	4	20.61	10.011
BULK	SETMULDS Sp74.1.	Hr507.	66573.	80168.	02720.	epora.	83200.	6U717.	75440.	74221.	73270.	67280.	04371.	074279	60172.	26060.	27410.	57074.	20490.
	ָר ה ה	0.70	87.01	83.57	è	70.22	62.17	57.15	54.85	52.07	50.12	のグ・グナ	49.00	44.92	49.76	50.19	4P.44	٠	119.55
QGAS THANKET	26256.B		10307.2	\$606.	20480.5	•	21074.0		71017	-	_	20404.6	4.44107	20002.0	7	19714.0	17550.4	5417.1	066
1 w/ 18		1.3348	1.399	4	4	3	•	•	•	٥	1.620	1.592	C	1.530	1.512	1.490	1.470	1.404	1.254
.33 U	205.8	•		•	344.4	•	433.2	900	515.9	5.96.4	610.5	643.7	6.079	4.407	5.	742.0	701.8	713.6	507.7
HL/QGAS	-,180	78	.178	101.	•002	640.	•034	.043	.040	•059	.070	680.	.103	.116	177	.135	.274	3.123	117
ر / x	4.	i (1		8.	•	2.2	•	•	·	7	å	30.5	7.	'n,	•	2.	•	50.7	,
<u>.</u>	~	ım	•	4	Ö	~	æ	J	70	11	7.5	.F.	14	15	91	17	β1	61	50

AVERAGE PARAMETERS FROM START OF HEATING TO PTZ

-.548E-01

TB (F) 71.1

1.60

70.7

-5.4 24.2

PRESS Defect

TW/TB

STATIC PRESS.(PSIA)

0/x

1

F + 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
KE, W. MUU. AV 30434.
RE, B, AV 72450.
DELTA P(PSI) .131E+01
IW, AV/ TB, AV 1.59
TB, AV (F) 187.3
IM, AV(F) 567.2

RUN 689H» DATE 4/20/31» GAS HE XE, MULECULAR WI. = 83.60 TIN = 72.3 F, TOUT = 467.5 F, MASS FLOW RATE = 76.7 LB/HK, 1 = 96.4 AMPS, E = 6.490 VULIS PRIN = .251, GR/RESQ = .891E-02, MACH(2) = .096, MACH(16) = .123, [,50KR = 150.0 F, u+(3) = .003++3

g_i

BULK BULK EYNDLDS NOSSELT	73. 471.53	36. 72.31	• •	71.	12.	35. 74.23	45. 61.17	.60. 71.04	54.00 00.04	.45. 54.43	••	70.00	60. 41.04		43.51	J	71. 37.00		C
H I COEF BU BIOZHŘFIZF ŘEYN	142.01 0137.	65.58 0713	86.52 8687	1.19	41 65%		00.00	54.93 79360	2.74	75	46.49 06890.	35	77	45.55	45.08		40.19 520	2.3b 524	•
QGAS ATU/HRFT2	30144.1	0274.	25281.1	26384.3	7048.	_	8609	8248.	6450.	28144.3	7180.	. 4420	26221.9	25766.7	5304.	3058.	_	1128.0	24441
Tw/TB	1.356	1.469	1.550	1.610	1.668	1.705	1.854	1.691	058.1	1.066	1.029	1.775	1.724	1.681	1.654	1.622	1.603	4.015	1
T.w. (F.)	60463	21.	366.5	400.4	4.844	501.0	578.4				823.3			1.446	5.075	8.066	1012.7	1.144	772.0
HL/QGAS	161	.604	.166	.120	.064	440.	950.	.053	090.	.077	.120	.141	.168	161.	.212	.224	.343	****	121
0 / X	→•	m	٠,	30	1.3	2.2	4.3	7.7	10.9	17.4	23.4		37.1		40.1	32.5	56.8	38.80	4.04
10	Ų	ന	•	ς.	ø	7	သ	o -	2	11	12	13	14	15	91	17	9	61	7.0

P12
0
HE AT ING
T I
START
FROM
PAKAMETERS
AVERAGE

-.248E-J1

TB (F) 70.7

1.00

71.4 69.8

54.3

IW/TB

STATIC PRESS.(PSIA)

0/x

1

PRESS Defect

FOUPAV	02400.
RESMONDAV	24136.
RESBAN	70411.
DELTA P(PS1)	.156E+01
TW. AVI IB. AV	1.78
[3, AV(F)	225.5
TW.AV(F)	761.5

64040 PR, II

1

21	7/n	HL/QGAS	¥ -	I W / I B	QGAS	COE	ÜÜLK	טטרא
			(F)		BTU/HRFT2	¥	RETABLOS	ACS SEL 1
7	٦.	9	335.0	7.496	50490.7	192.33	3	71.
m	€.	Œ	5	•	2914	•	5 (3)	· · · ·
•	ů.	5	4.024	7	2415	•	2370	7
Ŋ	מ	-	2	3	30824.8	•	4778	
9	•	7	504.5	٠ ک	30592.1	•	4123	ر. د
7	•	5	0	•	. 8746	•	7487	200
30	4.3	5	n	7.	4742.	•	4720	. ~
o	•	٥	~	7	39524.1	•	5364	9
	•	~	4	7.	9245.	•	1771	04.70
	7.	0	910	•	9098	•	7446	
7.5	24.0	82T.	1081.1	466.1	36273.9	47.22	00047.	70.00
	္	0	126	<u>٠</u>	35477.5	•	5549	•
	7.	*	691	D	4601	•	8518	44.00
	3.	2	201	.7	3905.	. •	0980	43.10
	ъ Э	$\boldsymbol{\gamma}$	228	~	33258.5	•	070	19.15
	5	-	241	1.001	32767.0	•	47202.	41.22
	ô	O	2 70	0	9500.	,	2	30.70
	700	***	184	1.237	-3627.6	•	73	•
	,	114		1.438	7875		7	

PRESS DEFECT	250E-01
T8 (F)	71.0
IW/Ib	1.00
STATIC PRESS.(PSIA)	76.2
0/x	54.4
э. Н	7 7

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

Fadady	01460.
REPMPMODPAV	14574.
REABAAV	00394.
DELTA P(PSI)	.164=+01
TWOAV/TOOAV	1.95
TODAV(F)	286.3
TM AV(F)	446.5

500000 = (a)+a A. JOU VOLTS * 60.7 F. RUN 091H, DATE 4/21/61, GAS HE XE, MULECULAR WT. = 83.00 IIN = 70.5 F, IOUT = 169.4 F, MASS FLUW RATE = 26.6 LB/HR, I = 30.0 AMPS, E PRIN = .251, GR/RESQ = .170E-02, MACH(2) = .066, MACH(10) = .071, I,SURR = 60.7

BULK	170000	107.14	34.01	24.70	64.53	54.55	24.10	47.05	43.01	40.67	30.30	37.03	30.70	30.11	32.65	32.40	40.70	43.61	-1.74	76.501
BULK	KEINDLUS	17040.	32020.	32601.	32562.	32520.	32437.	34414.	31967.	31540.	3091%	3635c.	.127.2	29210.	28704.	20307.	20040.	21775.	21721.	27097.
H T COEF	_ (4.	•	44.44	`	42.32	30.50	33.71	31.09	29.65	28.45	27.40	28.15	24.00	28.26	28.23	20.42	70.47	-1.45	150.57
QGAS PTUVERTO	5137HKF12	2/07.3	977.0	2200.5	2361.4	2223.3	2607.1	2626.8	2624.7	2604.0	2583.6	2240.2	•	2508.2	2490.1	2474.9	2403.2	2067.0	-97.5	3863.4
01/#1	(0	1.073	1.087	1.098	1.113	1.128	7	7	1.161	1.163	191.1	1.155			1.144	1.141	1.138	1.108	1.042
3 4		70.3	108.5	116.5	122.7	131.7	141.1	155.3	167.8	177.1	191.6	203.5	213.0	224.4	234.4	241.6	0.047	253.9	236.3	195.4
HL/QGAS	•		2.174	.209	.183	P01.	.073	990•	990.	•075	.007	.103	.112	.122	.131	.134	.144	.304	****	277
7 / c	•	4.		3	ອ•	1.3	2.2	4.4	7.0	•	17.3	•	30.4	•	•	47.3	•	•	28.5	,
ر د	r	7	m	4	J	9	7	80		70	11	75	13	5 7	15	16	11	18	19	70

AVERAGE PARAMETERS FROM START OF MEATING TO PT2

PRESS DEFECT -.689E-01 -.900E+00

13 (F) 69.8 163.7

1.00

STATAC PRESS.(PSIA) 38.0 38.4

0/x

-5.8 54.0

THE COURT OF THE C	> 4	KEPWPHUUPAV 23110.	30246.	.254E+00	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	108.1	192.9
	FodoAV	RESWANDUSAV	REABAAV	DELTA P(PSI)	TW. AV/ [B. AV	[B, AV(F)	_

. GUZIU4 3.12c Vol.13 (0)+7 44.0 F 47.0 AMPS, E RUN 692H, CATE 4/21/31, GAS HE XE, MOLECULAK WI. *

TIN * 71.0 F, TOUT * 320.1 F, MASS FLOW RATE * 28.6 LB/HR, I * 47.0

PA,IN * .251, GR/RESQ * .434E-02, MACH(2) * .060, MACH(16) * .078, F,SURR

•

C

E

GOLA NAVATI	140.30	34.01	64.00	14.00	00.00	13.60	40.22	41.40	06.00	17.00	34.01	33.43	32.43	32.73	54.47	34.40	65.40	-0.14	130.55
SULK REYNÜLUS	ורי נ	32297.	32247.	73	34549.	V.	31207.	30738.	30005	20003.	47344.	20271.	2,200.	64307.	< 100cz	Ø	42834.	$\boldsymbol{\sigma}$	22712.
H I COEF	9.23	24.19	4.6	46.94	43.46	8		5		9	27.90		20.93				24.31	-7.84	143.37
QGAS BTU/HRFT2	4.6864	2252.1	5561.0	5908.6	6433.8	4.9260	668Ü.2	6657.B	6622.2	6545.2	1.7649	6307.9	6313.2	6240.2	6180.8	6120.7	4774.2	-1113.8	9134.7
Iw/ Its	7.	1.176	~	1.240		1.317		• •		1.383	1.364		1.316	.2	1.279	.2	1.255	1.164	1.065
T (1)	, ·	0	94.	3	23.	249.2	86.	13.	42.	80.	08	31.	•	74.		01.	4.614	401.9	71.
HL/QGAS	263	2.142	.274	78T.	~	£80°	690.	.075	.082	5£0.	111.	.130	.145	.160	.172	.104	.515	***	213
n/x	٠,	€.	ć.	3	1.3	2.2	4.3	7.0	10.8	17.4	23.0	30.4	37.0	43.5	46.0	52.4	50.0	0.00	24.5
16	7	m	4	v	4	~	Ø	σ	၂	11	12	13	14	15	91	17	18	61	70

AVERAGE PAKAMETERS FROM START OF HEATING 10 PT2

-.049E-01

70.2

1.00

38.0 38.0

-5.4 54.1

7

PRESS DEFECT

18 (F)

Th/Tb

STATIC PRESS.(PSIA)

0/x

P 1

10000.	10000	27671.	.34¥E+00	1.34	106.3
F 9.0	KENWANUDAW	REPBOAV	DELTA P(PSI)	TWAAV/TBAAV	TB, AV (F)

5 03503

K

.80 PS, E = 4.020 Välfs 115.0 F, ù+(u) = .003	BULK SOLK	33513. 145.5	33355	. 50	•		31612. 44.55	30501.	29472. 30.11	34.			. 27.	12 .	.12	1039. 20.4	92. 19.	Jo7115.3	
ULAR WI. = 83 I = 60.2 AM 80. I.SURK =	H I COEF	130.04	42.24	5.3	2.2	7.0	2.5	J. 0	4.0	4.0	4.0	6.4	6.6	7.5	7.7	8.3	4.4	7.5	
HE XE, MÜLEC = 29.4 LB/HR, MACHILO] = .0	96AS 117HRF	15762.6	3720.4	9433.8	0250.	0553.	0709.	. 1490	. 7050	10368.5	. 4000	9810.0	9591.0	4399.2	9220.6	9009.2	0720.7	1-4119-7	
21/81, GAS FLOW RATE) = .068,	TW/18	.2	\$.30	. 45	.51	. 26	.01	.61	. 59	. 35	30.	.45	.41	• 39	.36	.35	.26	
DATE 4/2 F. MASS F 2. MACH(2)		85.	÷ ~	ဘ	21.	63.	25.	81.	18.	77.	.61	51.	81.	90	•		•	•	
RUN 693H3 OUT = 444.7 Q = .633E-0	HL/66A5	7 0 1		2.1	11	Ø	7	Ø	7	~	9	7	~	S	7	3	3	#	
1.9 F. I GR/RES	n/x	- (1.3	•	•	•	•	17.4	÷	ံ	7.	Ġ.	Ď	2.	ġ	þ	
7 = NIT 165. = N)1	.20	ግ ቀ	S	٥	7	70	ን		11									

PRESS Deficit	085E-JI -154E+UL
1 to (7)	71.0
Th/15	1.00
STATIC PRESS - (PSTA	3 4 . 1
0/x	54.4
ь 1	7

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

FOUNAV	****
REPHUMODUAV	12437.
RE, B, AV	27100.
DELIA P(PSI)	.462E+JJ
TW. AV/ [B. AV	1.52
TB, AV (F)	218.0
IMPAV(F)	270.2

3.030 val.13 (×) + 1 AMPS, RUN 694H, DATE 4/21/81, GAS HE XE, MOLECULAR MI. = TIN = 72.3 F. IUUT = 598.2 F, MASS FLOW RATE = 29.3 LB/HR, I = 74.0 PR.IN = .251, GR/RESQ = .984E-02, MACH(2) = .060, MACH(16) = .093, T.SUKK

2 / X	HL/QGAS	3	Tw/TB	36AS	رے	Allia	7
		(F)		BTU/HRF12	BTU/HKF12F	KEYNULUS	7.
٠,	~	243.7	•	4	20	33328	
٦.	2.143	301.0	4.	6.7446	_	53203	· *
	.272	•	• •		~	000000	1 7
ρ •	.189	367.1	1.577			25933	
1.3	.126	•	3	15505.7	20	32600.	
2. 2	160.	•	-		(F)	12027	
4.3	060.		φ.		7 • 5	3027	1 1
7.7	601.	•	Þ			22002	
6.0	.126	730.9	9	15808.2	0	27610.	
4.6	.168	•	~	_	7.2	25143	4.1.4
3.9	.274	•	7.	_	3	23227	7007
0.5	.321	•	٥	13054.2	7	21733	20.00
7.1	.373	•	J	172.	•	ZU47%	74.07
3.7	164.	742.4	3	249		12430	·
8.2	1000		4	2053.	3	10025	
2.0	.536	1043.9	7	835.	9	10783	
56.6	7	039.	4	S,	7	17070	
8.0	***	0.005	1.295		-36.24	1 (2 1 1 .	
4.5	179	736.5	7	17		7-7-	

AVERAGE PARAMETERS FROM START OF HEATING TO PTZ

-.086E-01

71.2

1.00

38.5 37.9

-5.4 54.3

PRESS Defect

1d (F)

IW/IB

STALIC PRESS.(PSIA)

3/X

4

7 · · · · · · · · · · · · · · · · · · ·	
AESES MUUSEV Vavas	
RE, d, AV 25721.	
DELTA P(PS1) . 571E+00	
TWAAV/TBAAV 1.68	
TB, AV(F) 240.5	
Tw,AV(F) 801.1	

AMPS, c = 5.923 VOLIS = 203.0 F; G+(0) = .000004 5-923 VULIS AMPS 85.60 RUN 695H, DATE 4/21/81, GAS HE XE, MDLECULAR WI. = 17.2 IIN = 72.8 F, TOUT = 755.5 F, MASS FLOW RATE = 29.9 LG/HK, I = 87.2 PA,1N = .251, GR/RESQ = .129E-01, MACH(2) = .070, MACH(16) = .101, T,SURR

BULK NOSSELT	140.57	02.67	07.85	+0.70	20.63	47.64	40.04	33.60	20.00	76.54	21.02	77.77	70.07	61.50	20.62	21.12	10.47	11.05-	AV. LC L
BULK REYNOLDS	53947.	33771.	33010.	53357.	36747	32234.	30006	20339.	26290.	23768.	21778.	20277.	19045.	10019.	17409.	LOBOY	Lotol.	.ofcot	10520.
H I CUEF BIU/HKFI2F	135.11	20.79	40.42	50.55	40.77	36.71	31,33	27.74	26.41	42.67	22.17	73.04	24.08	25.08	26.14	7	21.67	-40.97	173.91
DGAS BTU/HRFT2	34519.7	_	19291.3	_	21396.4	22172.2	22248.6	21638.7	21154.8	20218.1	17120.4	16613.4	_	•	15301.2	15004.5	•	-17929.9	_
T W / TB	1.482	1.627	1.744	1.833	104.1	2.082	2.204	2.222	2.172	2.036	1.902	1.778	1.671	1.276	1.227	1.479	1.440	1.322	1.147
T¥ (F)	_	_	475.2	_	_	703.9	_	_	027.	117.	.691	192.	212.	226.	244.	1256.1	1271.8	1117.7	911.6
HL /GGAS	304	2.480	.259	.208	.146	.113	.120	.161	.193	.256	.489	.536	585.	.021	.673	.708	1.227	**	169
0/X	-	e.	0.	70	•	2.2	•	•	•	17.5	•	0	37.2	÷	D	52.7	ò	0.66	6
21	Ņ	æ	4	n	٥	7	α	٠,	01	11	12	13	14	15	91	17	81	61	70

AVERAGE PARAMETERS FRUM STAKT OF HEATING TO PTZ

-.683E-01

PRESS DEFECT

TW/ID

STATIC PRESS.(PSIA)

0 ×

1

1.00

34.3

-5.4 54.4

KESWSMUDSAV Olibe
RE, 4, AV 22330.
UELTA P(PS1) .626E+U0
TW, AV/TB, AV 1.87
TB, AV (F) 355.5
TweAV(F)

5320 PR. IN

10	3/ x	HL 106AS	78 II	TW/18	OGAS	H T COEF	BULK	BULK
r	***		<u> </u>	•		U/HRFT		NUSSELT
) (. '	٠ (<u>.</u> ,	9	9639	30.4	619	25.
₹.	m	N	-	• 52	7263.	97.6	604	7
4	• 5	\sim		9	6934.	5 • 3	550	-
5	ယ္	ß	5	f t	8625.	06.6	571	
¥Ú	•	4	7	4,7	0053.	7.2	535	2.
7	•	n	5	• £3	0612.	7.0	625	~
Œ	•	3	-	75	0857.	4.5	345	3
э	•	Ų.,	.	66.	. 5690	t . 1	159	ò
1)	ငံ	9	8	• SE	C460.	2.2	900	<u>.</u>
11	٦.	ىك	ċ	• 94	9812.	7.6	742	4)
12	٠,	15	038.	86	7694.	4.2	136	
13	ċ	Œ	087.	.77	6912 .	4.7	369	0
14	7	$\overline{}$	129.	69.	6118.	5.7	231	<u>:</u>
15	<u>د</u>	3	152.	61	5455.	7.6	114	ъ.
16	• ລ	£	189.	57	4832.	6.2	940	٠,
17	52.6	• 2 60	~	1.528	4376.	5.7	961	5
1 8	÷	O.	233.	7	1503.	6.2	654	7
13	• a	4	161.	43	3022.	6.1	616	1.
0.7	5	£60°-	005.	\sim	6123.	, v.	917	7

AVERAGE PAPAMETERS FROM STANT OF HEATING TO PT2

PRESS DEFECT -.673E-01

TB (F) 76.3 65C.8

TW/TB 1.00 1.51

STATIC PRESS.(PSIA) E2.6 E1.E

-5.9

→ ∾

L a

F . B . AV . 00 5 45
RE.W. MOD. AV 9702.
RE, B, AV 27697.
DELTA P(PSI) .756E+00
TW. AV/TP. AV 1.91
T3,AV(F) 213.6
TW, AV (F) 941.2

6.642 VOLTS Q+(6) = .304104 AM P S, E = 146.5 F, 99.1 AMPS, RUN 1974, DATE 4/29/19, GAS HE XE, MOLECULAR MT. * 11N = 76.3 F, TOUT = 540.2 F, MASS FLOW RATE = 32.4 LB/HR, I = 59.1 PR, IN = .214, GK/RESC = .534E-02, MACH(2) * .C55, MACH(16) = .C73, T.SURR

LK EUL	OLDS NUSSE	94. 12t.	91. 53.	71. 61.	43. 57.	76. 52.	53. 46.	28. 34.	76. 33.	30. 31.	24. 27.	17. 24.	62. 23.	55. 22.	36. 22.	52. 21.	37. 21.	17. 17.	98.	
F BU	2F REYN	349	348	347	346	343	339	329	314	305	2 80	292	246	233	222	215	503	204	503	
-	¥	•	.•	•	•	•	•	•	•	•	•	.•	56.49	•	•	•	•	•	•	
QGAS	\rightarrow	6663.	0284.	7564.	8746.	9766.	0245.	0425.	0357.	0280.	. 1666	9207.	28795.6	6330.	7895.	7501.	7183.	4547.	706.	
TWITE		9	.38	. 45	64.	. 5. t	•62	. 70	.74	.74	.72	.67	1.618		.51	.4E	.47	43	8	
¥	(F)	33.	84.	22.	351.1	- 26	33.	13.	.05	36	23.	85.	831.2	74.	911.2	39.	52.	5.986	45.	
4L/06AS		¥	2		.081	04	3	3	4	40	Ŷ	Q	.117	C	S	~	5	.324		
0 / X			6	"	σ·•	1.3	2.2	4.3	7.7	0	~	\sim	30.5	~	C	α	•	•	ر ال ع ع ا	
10		~	m	4	ψ\	٠.	7	Œ	6	٥	11	3	13	14	15	16	17	G .	51	

PRESS DE FECT	678E-01	.174E+01
18 (F)	75.6	531.3
TW/18	1.00	1.45
STATIC PRESS. (PSIA	77.4	76.7
0/x	6.3-	54.5
Lc	_	2

AVERASE PARAMETERS FROM STAKT OF HEATING TO PT2

Fought	.00586
REPHIN MODNAV	11493.
RE,B,AV	27656.
DELTA P(PSI)	•675E+00
TW. AV/TB, AV	1.64
TR, AV(F)	560.9
TWANTED	714.4

5.633 VOLTS 0+(6) = .003232 AMPS, E = 129.5 F, RUN 698H, DATE 4/29/81, GAS HE XF, MOLECULAR LT. = 11N = 76.3 F, IRUT = 454.6 F, MASS FLOW RATE = 31.8 LB/FR, I = 87.2 PR, IN = .214, GF/RESO = .389E-02, MACH(2) = .C57, MACH(16) = .G72, T, SURR

7

ပ္	c/ ×	HL 10GAS	3	1W/18	⋖	1 C D F	ゴ	
			(F)		U/HRF	FRF	YNO	SSEL
2		K)	66	. 23	8226.	27.78	428	3.6
3	د .	5.	39.	ن	5727.	9.95	420	2.5
4	us •	•139	270.6	1.356	21018.6	109.81	34108.	5
5	<u>م</u> .	∞	92.	.39	2153.	4.	4010	6.5
\$	•	4	23.	. 44	2997.	ري م	380	1.6
7	•	3	α. ω)	.45	3329.	6.6	347	6.3
æ	•	03	15.	47	3463.	4.3	2666	4.6
¢.	•	m	72.	.58	3434.	7.5	1504	4.4
0	0	7	11.	. 59	3396.	4.7	0487	1.9
11	7.	K)	76.	. 58	3243.	C. 5	863	8 · 5
12	3.	~	26.	41	2912.	5.5	706	4.9
13	30.5	œ	54.	2	2710.	4.6	5674	43
14	7	6	02.	647	2470.	0.0	4456	4.
15	ä	_	36.	. 44	2222.	5 ° J	3395	3.9
16	ن	\sim	61.	.42	1998.	5.0	2742	3.3
17	2	C	83.	.40	1813.	1.6	215	3.0
18	÷	9	Ct.	36.	9687.	6.2	164	0.6
19	نت	\sim	74.	4	5140.	4.4	150	6.6
20	٠	6	9	.21	7306.	C . 4	147	0

AVFRAGE PARAMETERS FROM START OF HEATING TO PT2

-.681E-C1

(F) 75.6 439.9

1,60

5.5

- ~

PRESS DE FECT

TW/TE

STATIC PRESS.(PSIA)

0/×

F,B,AV	96400.
RE, W, MOD, AV	13147.
RESEAV	2 810 8.
LELTA P(PSI)	.5018+00
TWOAVITEDAV	1.52
In, AV(F)	555.4
TW. AV (F)	577.C

رن ب	0/x	HL/06AS	.3 	TW/TB	S A	T COF	Ξ	_
		•	(F)	•	ULHEF	BTU/FRF12F	REYNDLDS	NUSSELT
2	• 1	142	•	.13	15924.6	221.82	34686.	0
٣	m •	S	•	.17	9170.	97.9	464	3.2
\ †	5	E	9	. 20	2076.	10.0	4587	7.7
5	ar.	2	6	.22	2826.	2.30	4536	7.4
æ	•	0	•	· 25	3194.	96.5	4410	7.7
7	2.2	C	36.	.28	3352.	7.3	4219	0.7
Œ	•	\sim	7	.32	3411.	6.3	3741	3.0
6	•	3	. 66	. 34	3394.	د د	3033) • C
10	•	3	19.	35	3364.	t. C	239	3.5
11	7	4	7.	3.5	3326.	2.1	115	6.0
	•	4	85.	. 34	3262.	٠. د	006	7.4
	ن	S	6	.33	3213.	1.0	903	ار. ق
	7	•	3.	.31	3154.	1.1	805	7.5
15	43.5	• 069	457.5	1.305	3067.	1.1	723	7.1
	•	2	•	.25	3037.	1.1	665	3.0
	2 •	Ø	•	. 28	2982.	1.1	617	C. 1
	÷	ىد	4.	• 28	1885.	£ . 2	573	3.7
	۔ بد	2	٠.	.25	5342.	£ . 2	558	٠
	6	Ç	0	.15	390.	F. C.	554	ر. ع

PRESS DEFFCT	679E-C1 .11 EE +01
1P (F)	75.3
TW/TB	1.0
STATIC PRESS. (PSIA)	71.4 70.6
0/ x	-5.9 54.1
<u>T</u>	- ~

AVERAGE PAFAMETERS FROM START OF HEATING 10 PT2

F, B, AV	.60608
RE,W. F.OD, AV	18628.
REPRAV	30334.
CELTA P(PSI)	.485E+C0
Tw. AV/TP. AV	1.33
TB, AV(F)	158.7
TW. AV (F)	359.E

J073E PUN 706H. DATE 4/29/81, GAS HF XE, MOLECULAR LT. = 39.95

	01 x	HL / OFAS		TW/TB	O	CC	BULK	۲×
			ī		/HRF	U/HRFT	YND	SEL
Ci	٠,	3	4.	0.	423.	16.1	486	17.
3	e.	αc.	•	. (7	747.	5.16	484	2.8
4	۵۱.	2	ċ	• 08	953.	10.4	4824	0.0
יצ	ب	~	ŝ	50.	187.	0.30	4801	7.0
ن	•	03	2.	. 10	351.	96.7	475	2,7
7	•	02	6	. 11	410.	E . 4	4674	7 • 5
œ		02	0	. 12	430.	£ . 6	9255	ارة ريم
¢.	•	05	?	• 13	416.	1.6	417	b.3
c	•	E	0	. 14	410.	بن د رن	3694	ر. د
_	-	3	5	.14	386.	5.0	333	٠ د
2	73.8	• 044	195.5	1.147		63.98	32810.	33.Ca
~	ؿ	4	ڹ	.14	339.	3.0	229	2.6
.	7	K)	7.	. 14	320.	3.0	179	1.7
5	э .	5	7	. 14	303.	2.6	133	1.1
Ÿ	•	S	ភ	.14	285.	1.6	101	4.0
7	2	Ü	2	14	277.	I.3	071	6.6
8	ټ	G	•	14	956.	7.5	044	7 . 8
5	æ	_	3.	12	085.	9.5	034	9.1
ر د	54.1	4	4	7	600	1		•

PRESS	DEFECT	678E-01	.846E+GC
9	(F)	7.4.7	158.6
TW/18		1.00	1.14
STATIC	PRESS. (PSIA)	67.5	67.5
0/x		သ (၈ ၂	0.45
16		-	2

AVERAGE PAPAMETERS FROM START OF HEATING TO PT2

Falsav	.00589
RENKAMODAAV	25701.
RESBAV	32732.
CELTA P(PSI)	.370£+0C
TWOAVITEDAV	1.14
TB, AV(F)	1(8.7
TV. AV(F)	1 64 · E

0+(6) = .003472 8.3C0 VULTS = 141.0 F, AMPS. E RUN 701H, DATE 5/13/81, GAS HE XE, FOLFCULAR LT. = 11N = 7:0 F, IOUT = 541.1 F, MASS FLOW FATE = 54.2 LB/HR, I = 123.6 PR, IN = .214, GR/RESO = .7146-02, MACH(2) = .C60, MACH(16) = .079, T,SURR

F.

ر ر	X /C	HL / Q C A S	3	ar/wr	G A	T CRE	=	BULY
			F		U/HRF	/FRF	ZN.	لنا
C .		12	55.	33	4755.	02.53	865	•
æ	(n) •	2	114.	4	651.	3.54	848	•
5	u)	10	9	52	3847.	57.2	828	•
u.	ىد •	R. O	9	• 5A	5938.	50.0	6009	•
9	1.3	.033	5. 124		47120.1	137.07	57650.	73.62
2	2.2	\sim	74.	59.	7635.	24.2	697	•
സ	4 • 3	\sim	51.	77	7890.	06.3	134	•
σ	7.7	m	27.	• £2	7881.	7.5	361	•
0	0	(L)	77.	82	7835.	3.6	100	•
	7	4	62.	980	7594.	7.4	742	
- 5	ć	~	29.	.76	6605.	4.6	445	•
κ,	0	a)	79.	.71	6128.	3.1	188	
5	37.1	O	9	. 65	572.	2.5	995	•
رة ا	3	\sim	64.) i i	5071.	4. C	780	
c	\ddot{a}	ന	95.	.57	4599.	3.7	664	
	0	4	020	4	4208.	4.5	560	
œ.	¥	2 1	<u>-</u>	.52	676.	1.2	4702	•
o ,	\mathfrak{D}	3	013.	~	4768.	1.1	443	
0	9	.05	4.	.33	2889.	5.1	438	

10 PT2
F HEATING
M START UF
TERS FROM
PAPAMETI
AVERAGE

-.600E-01

74.3

1.00

PRFSS.(PSIA) 117.8 116.6

> -5.9 54.3

PRESS Defect

78 (f)

TW/TB

STATIC

Ы

F . H . AV	*0000·
RE, W. MOD, AV	10771
RESBAN	40246
RELIA P(PSI)	11/5+01
TW, AV/TB, AV	1.7
TB.AV(F)	5.007
Th, AV(F)	2 • 201

02689 39.65 5/13/81, GAS HE XE, MOLECULAR NT. = RUN 732H, DATE 3 8

10	0/x	HI / CG AS	3	TW/TB	⋖	TCOF	B.E.	_
			(F)		U/HR	/		יו עניי
~	-	_	0.8	.24	38378.1	265.27	. 9602	3 C
٣	ω	C	50	.32	5605	47.4	7 7 7 9	
4	" `	Œ	79	.37	1317	4	0.40	
5	œ.	S	66	. 40	2544		916	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡
£	•	\sim	26	. 45	3502	37.1	. a.	• .
7	•	\sim	57	24.9	3797.	25.5	7 7 8	
G)	•	\sim	08	*, R)	3946.	10.1	721	. ~
Ċ	•	\sim	59	٠ ش	3960	5 56		• •
10	ċ	2	92	93.	3958		700	•
1	۲.	3	000	2.5	3876.		7 7	
12	3.	J	96	.57	3641	7.7	7 Y Y	יי יי
13	ċ	S	32	.5.4	3497	7.6	6421	• i
14	37.1	090.	669.5	1.512	33308.1	87.22	44443	, c
	3.	Ü	01	.48	3128.	(C)	2672	
15	Э •	~	4	.46	296t.	0.	1555	,
	ζ.	x	43	44.	2834.		5.4	بند د ر
	Ç	S	C.3	.42	0923	7 7	, v	• ~
	ن. ن	ပ	4	9	1.00) () ()	
	c	ന	51	, C	5513.	, C	000	

PRESS	597F-C1 -128E+01
18 (+)	384.0
1W/1R	1.60
STATIC PRESS. (PSIA)	117.3
0/7	-5.9
PT	2

AVERAGE PAPAMFTERS FROM START OF HEATING TO PT2

F,8,AV
RE.W.MCD.AV 22782.
RE, P, AV 45E91.
CELTA P(FSI) .951E+CO
TW, AV/TE, AV 1.54
18, AV(F) 158.9
Th. AV (F) 553.2

10	2/ x	HL 10GAS	<u>.</u>	8 I / M I	⋖	1 6 6	5	=
)				•	U/HRF	8TU/HRFT2F	REYNOLDS	NUSSELT
~	. 1	950	•	.15	24716	255.79	£1534.	162
	٤.	606.	Œ	1.202	7104.	50.	145	66.1
4	٠.	5	02.	.23	048C.	64.	136	٠,
3	ىنە •	4	14.	.25	1535.	56	1266	
Ł	1.2	.026	0	.27	1502.	4.5	106	د
7	•	\sim	66	.30	2058.	33	075	٠,
α	•	_	79.	. 34	2131.	17.	366	. 7
_C	•	\sim	.60	.36	2132.	07.	878	٠,
	ċ	2	28	.37	2135.	03.	772	<u>س ۱</u>
11	7	2	63.	.37	2102.	96	567	س.
	3.	ϵ	.05	.36	2052.	r.	380	0
13	30.4	E	13.		2018.	٠	206	. 7
	7.	((;	37.	. 34	1972.	٠	046	٠,
	3.	4	59.	.32	1925.	2	898	•
	∞ ∞	4	74.	.31	16E8.	7	803	0
	•	4	38	.30	1843.	7	714	4.
	¢	C	01.	36.	0785.	4	635	٦,
	C	2	000	.27	4095.	٠ ح	605	6.3
	ن	C	,	٠			1	•

PRESS DEFECT	593E-01 .997E+00
T8 (F)	
TW/TB	1.30
STATIC PRESS. (PSIA	117.3
0/x	54.1
PT	- 2

AVERAGE PAPAMETERS FROM STAPT OF HEATING 10 PT2

Frandv	.00492
R E . W . MO D . AV	31318.
RFJESAV	54172.
CELTA P'SI)	.750F+0C
TW, AV/ TB, AV	1.35
T B, AV (F)	154.1
Th. AV(F)	364.0

* .000754 3.684 VOLTS 0+(8) = .000 RUN 704H, DATE 5/13/81, GAS HE XE, MOLECULAR NT. = 39.95

IIN = 75.4 F, TOUT = 158.3 F, MASS FLOW RATE = 55.3 LB/HR, I = 55.7 AMPS, E = PR,IN = .214, GR/RESO = .125E-02, MACH(2) = .065, MACH(16) = .069, T,SURR = 67.5 F,

¥108	1 00 1 00	80.86	7	9	•	ď	4.	4	9.	80	5.		6.	.2	0.7	5.5	3.9	36.57	6.9
BULK	NULUS 851.	9817.	9776.	9735.	9646.	9510.	9163.	8635.	8142.	7162.	6237.	5329.	4457.	3630.	307	254	206	166	181
F T COEF	07 EK F1	9	50.2	50.2	41.1	25° E	15.9	9.90	2.5	8.9	6.7	6.4	5.4	5.3	5.1	4.2	G • 3	(n	• 2
OGAS		7363.	08	94.	50.	C4 •	18.	12.	07.	69	58.	• 5 5	28.	14.	05.	91.	†1.	32.	69.
TW/TB	70	1.093	.10	.11	.12	.13	. 15	.16	.16	.17	.17	. 16	.16	.16	. 16	.16	.16	. 14	• 10
	113.5		2	•	44.	-	63.	76.	4.	98.	10.	21.	33.	43.	50.	58.	64.	0	36.
HL/0GAS	760	. "	07	5	02	~	\blacksquare	\sim	~	2	2	3	3	C	B	3	8	8	_
0/x	7	• m	٠. د	æ	1.3		4.3		0	17 3	m	0	~	m	~	N	9	æ	6
10	^	ım	4	Z.	¢	~	6 0	0	10	11	12	13	14	15	16	17	13	19	50

PRESS	597E-01 .748E+00
18	74.7
TW/TB	1.00
STATIC	۷.
0/x	-5.8
14	- 2

AVERAGE PAKAMETERS FROM START OF HEATING 10 PT2

F. B. AV	36407.
RE. W. MOD. AV	42399.
REPBAN	\$6095.
DELTA P(PSI)	.581E+00
TW, AV/TB, AV	1.16
TB, AV(F)	169.6
TW. AV(F)	201 •2

8.332 VOLTS 0+(6) = .003650 AMPS, E = 142.0 F, RUN 705H, DATE 5/20/81, GAS HE XE, MOLECULAR LT. = 39.95 TIN = 79.0 F, TOUT = 527.0 F, MASS FLOW RATE = 57.5 LB/HR, I = 124.0 AMPS, PR,IN = .215, GR/RESQ = .943E-02, MACH(2) = .052, MACH(16) = .068, T,SURR = 142.

T1

ို	0/ ×	HL/QGAS	3 H	TW/TB	OGAS	T COE	H	BULK
			(F)		U/HRF	/ HR F	YND	SSEL
۸.	7	-,113	53.	.32	4486.	12.44	177	\sim
E O	ლ•	C	. 60	.42	629.	4.5	091	5
.	٠,5	0	48.	64.	4435.	et.t	140	6
5	ಹ	.051	375.5	1.538	46410.5	155.07	61194.	85.65
	1.3	0	13.	.59	7466.	42.6	376	٥.
	2.2	0	55.	.65	8018.	2.9	600	j
	4 •3	0	25.	.72	8231.	16.3	3471	9
	7.7	0	95.	.76	8255.	05.4	5144	5.
0 1	6.0	0	40.	.76	8235.	5.00	412	0
1	7.4	0	8 1	. 74	3064.	5.3	3448	7.
2 2	3.9	.061	. 62	.71	7342.	2.1	447	0
3	5.0	.072	26.	.65	£979.	2.1	4795	7.
4 3	7.1	0	74.	.61	6513.	1.7	1652	.2
5 4	3.7	0	12.	. 56	6101.	3.0	5250	. 2
4	8.1	.111	•	.54	705.	2.5	930	. 2
5	2.5	.120	• 49	.51	5416.	4.3	920	6.
8	6.7	.187	æ	. 48	2919.	0.3	724	7.
6	8 • E	1.674	64.	44.	9019.	3.2	594	7
0 5	4.6	0	39.		2415.	F . 4	588	٠,١

PRESS DEFECT	593E-01
18 (F)	78.5
TW/TB	1.50
STATIC PRESS. (PSIA)	144.9 143.8
0 / x	54.5
Fd	7

AVERAGE PAFAMFTERS FROM START OF HEATING TO PT2

FIBIAV	.00515
RE, W, MOD, AV	19748.
REPBAV	.46795.
DELTA P(PSI)	.100F+01
TW, AV/TB, AV	1.67
TB, AV(F)	246.0
TW. AV (F)	720.0

707H, DATE 5/23/81, GAS HF XE, MOLECULAR 451.3 F, MASS FLOW RATE = 49.2 LB/HR, I = RUN 707H, DATE

BULK		10	4	in	~	70.37		ப		(ന	Δ	.0	(()	\sim t	~	O		T)
A L	YNOLDS	3390.	3272.	3129.	2986.	52692.	2226.	1087.	9436.	7988.	5306.	3004.	. 5460	9123.	7496.	6500.	5589.	4790.	4507.	4443.
T COE	/HRF	53.66	6.06	93.7	84.7	176.32	54.8	36.2	23.0	17.8	11.1	4.10	1.70	06.2	07.1	07.€	06.2	04.0	3.6	2.0
⋖	U/HRF	2989.7	7877.	4506.	6280.	47342.8	7664.	7890.	7929.	7947.	7871.	7486.	7281.	.6669	6736.	6523.	6306.	4138.	5427.	0728.
TW/TB		.28	.36	. 42	. 46	1.511	.56	.62	• 66	.67	• 66	•64	• 60	.57	. 53	.51	640	.47	. 44	.32
3 ₹	(F)	27.	77.	10.	32.	363.3	98	56.	15.	54.	20.	73.	15.	58.	93.	18.	41.	63	48	47.
HL/QGAS		9	~	8	4	.023	~	~	2	~	G	4	5	9	9	7	ထ	C	~	$\overline{}$
0/ ×		۲.	۳.	• RJ	8.		•	•	7.7	•	•	ë	•	~	ä	8	2	9	8	5
ပ		2	٣	4	5	•	_	œ	ው	10	11	12	13	14	15	16	17	18	19	20

PRESS	613E-01 .141E+01
1 B	77.6
TW/TB	1.00
STATIC	135
0/x	-5.9
14	7

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

FIBIAV	.00540
RE, W, MOD, AV	19069.
REPBOAV	44326.
DELTA P(PSI)	.100E+01
TW. AV/TP, AV	1.60
TB, AV(F)	215.9
TWOAV (F)	653.9

0+(8) = .0015636.263 VCLTS RUN 708H, DATE 5/23/61, GAS HE XE, MOLECULAR NT. = 28.30 IIN = 79.9 F, TOUT = 289.0 F, MASS FLOW RATE = 51.2 LB/HR, I = 94.4 AMPS, E = PR,IN = .231, GR/RESO = .232E-02, MACH(2) = .059, MACH(16) = .068, T,SURR = 109.0 F,

U

BULK	'n	;	2.	ω •	•	3	.	÷	3	50.50	•	5	'n	2.	-	္	٠,	8	ံ	Ġ
\supset	YNOLD	544	538	529	521	504	477	410	369	52187.	042	882	731	592	404	381	304	34	206	199
00	いまた	39.2	5.65	0.00	93.3	78.1	63.6	45.3	33.1	127.77	21.5	15.1	19.5	18.9	19.3	15.5	19.5	15.6	1.7	4.5
OGA	エ/コ	0184.	2697.	5956.	7088.	7449.	7606.	7679.	7695.	27701.9	7685.	7647.	7625.	7587.	7549.	7517.	7479.	6437.	9751.	8424.
TW/TB		. 16	.21	.24	. 26	. 26	.31	.34	.36	1.376	.38	.37	. 35	.34	.33	.32	.31	.31	•2E	21
T.		68.	94.	10.	22.	37.	55.	85.	14.	334.8	. 69	96	19.	44.	66.	81.	96	10.	03.	52.
HL/0GAS		~	2	7	B	~	\blacksquare	-	~	.018	2	\sim	~	C	C	m	6	$\boldsymbol{\omega}$	4	0
0/x		٠.		٠. س	80	•	•		•	10.E		3.	•		3.	9	?	•	30	•
10		<i>ح</i>	က	4	2	9	7	ထ	0	10	11	12	13	14	15	16	17	18	61	20

AVERAGE PAKAMETERS FROM START OF HEATING TO PT2

-. 607E-01

(F) 79.3 272.9

1.00

133.9

-5.9 54.1

~ ~

STATIC PRESS.(PSIA)

0/ x

7

PRESS DEFECT

FABAAV	.00538
RE, W. MOD, AV	28428.
RE, B, AV	4 50 9 B.
DELTA P(PSI)	.823E+CO
TW. AV/TB, AV	1.35
TB, AV(F)	156.4
TW, AV(F)	372.3

ر ا	X/C	HL ZOGAS	3	11/118	4	7 COF	=	Ξ
				•	SH/II	1 3 H /		7 400
2	-4	-	326.2	4	82585.8	335,29	48411	134.55
æ	m	. 290		1.554	7251.	78.4	8232	74.1
4	· 5	~	*	.66	8837.	86.1	8016	<u>ر</u>
S	ψ.	4	2.	.74	1170.	75.6	779	4
9	•	03	8	• £2	2435.	58.8	7351	•
~	•	2	11.	• 90	3310.	43.9	6655	2
80	•	02	14.	• 00	3752.	25.2	8665	
σ	•	3	-	90.	3723.	11.8	2687	•
	ċ	C	89.	.05	3624.	06.3	0746	
	~	5	. 400	.01	3115.	99.5	7378	3
	4.	Φ	085.	• 53	0724.	4. E	4665	9
	•		138.	.84	9852.	5.7	244	~
	7	n	190.	.76	8846.	6.5	058	0
	3.	5	230.	.68	8001.	9.2	006	4.
	8	9	259.	•64	7285.	00.5	804	0
	2.	~	282.	550	6735.	02.5	719	5
	56.9	2	8	.55	4219.	1.6	644	6
19	ъ В	Š	287.	. 52	93 78.	32.4	623	8
	Ġ		125.	.37	0650.	6.9	619	``

PRESS DEFECT	627E-01 .186E+01
TB (F)	79.8
TW/TB	1.00
STATIC PRESS. (PSIA	122.5
0/x	54.4
P	~

AVERAGE PAFAMETERS FROM START OF HEATING TO PT2

F, B, AV . 06505
RE, h, MOD, AV 12445.
RE,B,AV 37661.
DELTA P(PSI) .122E+01
TW.AV/TB.AV 1.86
TB, AV (F) 311.7
TW. AV (F) 990.2

3.78¢ VOLTS 0+(8) = .000705 RUN 710H, DATE 5/23/81, GAS HE XE, MOLECULAR NT. = TIN = 80.3 F, 10UT = 168.3 F, MASS FLOW FATE = 45.3 LB/HR, I = 58.0 PR,IN = .231, GR/RESQ = .806E-03, MACF(2) = .062, MACH(16) = .066, I,SURR

BULK NUSSELT	119.83	72.81	72.74	72.25	67.31	62.16	56.02	50.97	48.82	46.14	45.31	42.04	44.19	43.76	43.34	42.63	41.08	36.60	59.27
BULY	49 C01	897	894	9914	885	8748	849	8100	773	7009	631	5638	498	4365	395	3550	318	302	2983
	266.42	75.3	75.2	74.1	62.3	50.2	36.0	24.6	20.1	15.0	14.4	15.2	14.4	14.7	14.6	13.6	10.3	6.6	9.8
QG AS U/HRF	11374.0	539.	635.	0209.	24.	0355.	0375.	0364.	0360.	0344.	c317 .	0307.	0252.	0281.	C273.	0262.	976.	385.	459.
TW/TB	.07	• 0 9	.10	1.109	. 11	.12	.14	.15	.15	.16	.15	.15	.15	.14	.14	. 14	.14	13	10
¥.	19.	29.	35.	139.7	45.	52.	62.	74.	82.	96	90	15.	25.	35.	42.	.64	55.	53.	34
HL/0GAS		~	08	.027	01	\blacksquare	01	01	0	\blacksquare	2	~	2	~	02	03	9	•	_
0/ X	.1	en •	• 5	€.	•	2.2	•	•	ċ	7	3.	ċ	•	3	2	2	÷	8	6
10	2	m	4	2	9	7	ထ	0	10	11	12	13	14	15	16	17	18	61	50

PRESS DEFECT	625E-01 .781E+00
18 (F)	75.7
TW/TB	1.00
STATIC PRESS. (PSIA	113.7
0/ x	54.0
Гф	2 -1

AVERAGE PAPAMETERS FROM START OF HEATING TO PT2

F,B,AV	. 60538
RE, K, MOD, AV	35809.
REPRAV	46197.
CELTA P(PSI)	•566E+C0
TW, AV/TB, AV	1.15
TB, AV(F)	112.6
T W, AV (F)	197.3

21900 RUN 711H. DATE PR. IN

×	0/	HL / QGAS	.2 	TW/TB	ی	1	:	
			(1)	•		ייי כייי	0 UL V	BOLY
		ì	_ (UZHK	CARR	Z	بنا
•	→	·	18	90	5263.	53.5	40869.	132.
•	m,	U	30.	.08	1849.	61.5	2000	•
•	ň	9	38.	50.	3165.	50,0	2000	•
•	يد	\sim	42.	.10	3877.	7 7	2000	•
:	ű	0	4 8 •	. 11	4030	27.6	2440	•
~	۲	_	54.	. 12	4077		100	• '
*	m	.013	164.6	1,135	14054.6	100.52	* CO C V	7.10
7.		0	75.	14	0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0000	•
0		0	200	7 [0 0 0	- C) () (
~		5 6	7 70	7 4 4 6		0 1 0 0		ທີ
٠,		; ;	•	· ·		, , , , ,	ひ つ つ	5
		- '	*	3	1052.	59.8	903	9
300		\sim	12.	57.	4045.	61.3	356	
37.		\sim	20.	• 14	4036.	61.6	3108	` ~
43.		N	29.	.14	4028.	61.5	767	• •
47.		\sim	36.	14	4020	10	0	- (
52.		\sim	6.2	7 1	6 1 2	•	ה ה	<u>, </u>
4				, , , ,	0 70	2000	10	
• • • •		•	÷	. 14	370 E.	55.4	584	
58.		<u>ሙ</u>	. 2.	6.	1661	41.2	2,0	٠,
59.			30.	0	011			<u>.</u>

PRESS DEFFCT 653E-01
TB (F) 84.7 156.4
TW/TB) 1.00 1.14
STATIC PRESS.(PSIA) 144.7
×70 -5.8 54.0
19

AVERAGE PAPAMETERS FROM START OF HEATING TO PT2

4	•
REP W. MOD. AV	30649.
REPBAN	• 6 76 3 6
DELLA P(PSI)	00.13.60
TWAV/TB,AV	•
TB, AV(F))))
TW, AV(F)	1

- .001337 6.398 VOLTS 0+(8) PP#11 = .301, GR/RESQ = .109E-02, MACH(2) = .054, MACH(16) = .061, T.SURR , GAS HE XE, MOLECULAR NT. JN 712H, DATE 6/2/81 , GAS HE XE, MOLECULAR = 254.1 F, MASS FLOW RATE = 35.6 LB/HK, I = RUN = E3.9 F. TOUT = 3

9/x	HL / QGAS	3 H	TW/TB	Q A	T CLE	7	BULK
				U/HRF	H	Z ≻	NUSSELI
• 1	062	7	.13	2623.	43.5	055	3
£.	.184	•	17	5897.	67.7	051	7
· 5	0	5	.20	8859.	60.7	046	٠,
ت •	.028	5	22	9859.	45.7	0422	7
1.3	•015	217.6	1.239	2	2.2	40327.	67.47
•	0	ä	.25	0397.	14.0	017	0
•	.012	5.	2	0459.	91.2	980	0
•	0	6	.30	0473.	75.1	924	9
0	0	95.	.31	C488.	69.2	873	4.
7	0	2.	31	0483.	61.6	772	2
3.	.018	43.	.31	0465.	59.6	680	. 7
•	0	•	30	0460.	61.5	591	~
7	.022	8	• 29	0445.	62.1	508	٦)
3	0	5.	.27	C432.	63.7	430	0
8	0	φ α	27	0419.	64.3	379	9
2	.026	•	.26	0400.	64.3	332	~
9	0	-	26	9596.	61.3	269	٠,
	\sim	7	.24	4725.	41.9	269	0
6	0	?	19	0667.	22.7	264	•

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

PRESS DEFECT -.654E-01

83.4

1.00

143.2

-5.9 54.1

STATIC PRESS.(PSIA)

0/X

4

FPBAV	.00555
RESWS MODS AV	23353.
RESBSAV	36845.
DELTA P(PSI)	39+3499°
TW.AV/TB.AV	1.29
TB, AV (F)	145.9
TW, AV(F)	323.6

, GAS HE XE, MOLECULAR WI - 31.1 LB/HR, RUN 713H+ DATE 6/2/81 TOUT - 432.9 F, MASS FLOW IIN = 63.9 F, PP . II

To .

¥	1/1	.77		•	•		•	•		•	•		•			•	•			
BUL	NUSS	121	69	87	64	9	54	47	42	04	36	34	33	32	32	32	31	30	25	45
7	REYNOLDS	3537	30	22	14	7	20	9		27	7	34	5	90	96	34	17	2 2	7	25
T CCE	/ HR	417.0	36.€	36.6	22.3	10.0	7.06	4.59	54.5	48.7	41.3	36.8	41.C	43.6	47.2	48.4	50.5	47.1	6.50	19.6
⋖	U/HRF	18	5102.	1443.	2657.	4303.	4390.	4636.	4708.	4748.	4736.	4512.	4415.	4287.	4152.	4017.	3896.	2019.	6598.	6061.
TW/TB		. 26	.34	• 39	. 43	.47	.51	. 56	. 6C	.60	9.	.57	1.533	5 7 .	• 45	• 44	.42	.40	.37	. 28
3	(F)	5	2	9	4	6	•	-	2	•	4.	8	-	2	-	4.	4	4	5.	0
HL / QG AS		~		Ý	4	\rightarrow	_	_	$\overline{}$	_	~	3	.035	4	4	4	5	S	3	0
0/x		.1	e.	ĸ,	æ.	•	2.2	•	•	ċ	7	щ.	30.5	7	3.	8	۶.	•	a)	6
10		2	ო	4	5	9	7	Œ	6	0	-	د.	13	4	5	9	7	6 0	6	0

AVERAGE PAFAMETERS FROM START OF HEATING TO PT2

-.676E-01

1.00

121.2

54.2

STATIC PRESS.(FSIA)

0/x

7

PRESS DE FECT

FABAAV	. 0(589
REP NO MODOAV	14150.
RESBAN	25972.
DELTA P(PSI)	*892E+00
TW. AV/TB. AV	1.54
TB, AV (F)	211.6
TW, AV(F)	573.1

- .003799 # 10.300 VLLTS F, 0+(8) 159.0 RUN 714H, DATE 6/2/81 , GAS HE XE, MOLECULAR WT. = 14.50 TIN = 85.3 f, TOUT = 564.9 F, MASS FLOW RATE = 30.3 LB/HR, I = 152.7 AMPS, E PR,IN = .301, GP/RESQ = .245E-02, MACF(2) = .056, MACH(16) = .073, T,SLRR = 159.0

BULK	NUSS EL T	•	•	•	•	59.70	•	•	•	•	•	•	•	•	•	•	•	•	•	•
8 L' K	コスト	445	433	4225	4115	33890.	3537	2689	1474	041	8509	6689	545	454	319	2534	194	141	122	118
F T COEF	U/FRF1	11.4	4C. t	38.6	24.5	207.19	4.59	66.5	50.0	44.4	37.2	31.4	32.8	33.2	36.5	37.4	45.4	36.6	87.8	£ . 6
OGAS	U/HRF	coe1 .	1044.	9564.	146C.	72902.2	3466.	3832.	3960.	4008.	3943.	3095.	2742.	2293.	1588.	1483.	1308.	E842.	1162.	7021.
Th/18		3	.46	. 53	. 57	1.636	57.	.76	. 80	. 81	.76	.75	8	. £3	٠ ج ج	. 55	.51	49	9	34
3	1	. 61	39.	79.	08.	446.6	£9.	£2.	37.	86.	67.	38.	84.	33.	70.	00	16.	42.	30.	18.
HL/06AS		သ	0	•	E	.020	~	_	2	2	~	4	S	•	~	Ø	Œ	2	Œ	0
V /0		-	en •	•.5	ω	1.3	2.2	•	•	ċ	17.4	3	0	7	3	8	C :	÷	æ	6
10		رم ا	ന	4	2	¢	7	ဆ	6	01	11	12	13	14	15	16	17	18	19	20

AVERAGE PAFAMETERS FRCM START OF HEATING TO PT2

PRESS DEFECT -.681E-01

03.1

118.7 117.6

54.3

7

STATIC PRESS.(PSIA)

0/x

ΡT

F,B,AV	• 0900
RE, W, MOD, AV	11185.
RF,B,AV	. 26082.
CELTA P(PSI)	.106F+C1
TW, AV/TB, AV	1.70
TB, AV(F)	262.2
T W, AV (F)	7.077

RUN 715H, DATE 6/2/81 , GAS HE XE, MOLFCULAR LT. = 14,50

TIN = 85.7 F, TOUT = 673.7 F, MASS FLOR FATE = 30.0 LB/HK, I = 168.7 AMPS, E = 11,420 VCLTS

PR.IN = .301, GP/RESO = .305E-02, MACH(2) = .055, MACH(16) = .675, T,SURR = 202.0 F, G+(8) = .064717

_	NUSSEL	7.5	7.0	7.2	3.2	57.26	1.5	3.5	7.5	4.2	0.2	7.2	4.0	4.8	4.4	3.9	3.7	3.0	1.5	7.2
Z C	YNO	404	3930	379	365	33380.	2954	1927	0487	926	7102	5311	3819	255	147	081	0215	696	951	5485
T C0	/FRFT	03.1	33.2	31.E	16.7	199.29	91.4	57.5	41.4	33.E	26.8	21.5	22 · E	23.5	27.0	2 E . C	30.5	30.1	65.5	ر، ه
OGAS	U/HRF	9157.1	4236.	5175.	7774.	89373.2	0310.	0787.	6937.	0 60 6	0647.	8619.	7889.	6972.	6229.	5508.	4985.	2470.	9426.	6053.
TW/TB		. 45	.56	. £7	.72	1.606	8	35.	• 03	. C3	95.	.92	83	• 76	t B	.64	60	.57		40
1	£	.	Š	~	3.	545.5	ë.	4	•	5	æ	059.	13.	167.	207.	240.	264.	290.	268.	126.
HL/06AS		Ç	_	S	G	.023	$\overline{}$	~	2	~	4	9	8	Q	-	2	G	9	3	00.
0/x		7	e.	r.	8.	1.3	•	•	•	•	7	3.	•	7.	3.	ဆ	2.	÷	œ	6
10		7	æ	4	r.	9	۲	80	0	10	11	12	13	14	15	16	17	18	19	20

PRESS DEFECT	683E-01
18 (F)	632.5
TW/TB	1.00
STATIC PRESS. (PSIA	
0/x	54.4
14	7

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

F, B, AV	63600.
RE,W,MOD, AV	922¢•
REPBADV	27036.
LELTA P(PSI)	.116E+01
TW, AV/TP, AV	1.87
TB, AV(F)	305.1
TW, AV (F)	970.3

(EXPERIMENTAL K) RUN 719H, DATE 6/23/81, GAS H2 XE, MOLFCULAR TIN = 69.3 F, TOUT = 350.8 F, MASS FLOW FATE = 56.2 18/HP. T =

10	0/ x	HL / OGAS	31	1W/18	V 9	T COE	=	
			E		U/HPF	/FRF	UNX	SFL
^		Ŷ	6	.20	1994.1	470.52	73916	7 - 2 - 7
m	e.	~	5.	.26	1727.	86.6	975E	7.8.7
4	• 5	5	57.	30	6375.	78.7	3652	0.1
r	.	•050	272.0	1.326	47663.5	264.56	73516.	61.60
9	•	_	91.	. 35	8430.	45.5	3218	, J
^	•	~	14.	.38	8616.	24.8	2756	, 40 10 10 10 10 10 10 10 10 10 10 10 10 10
œ	•	_	53.	.43	8758.	98.4	1632	7.5
σ	•	0	. 45	.46	8816.	75.7	966	S .
	င်	01	20.	. 47	6861.	7: e	8467	9.6
	۲.		68	3 to 6	8672.	62. C	5417	4.6
	3.	~	03.	6.7	eane.	56.t	306	2.0
	ċ	~	33.	. 45	8771.	56.2	070	3
	7.	\sim	62.	.43	8717.	5 € . 4	856	0.5
15	•	3	6	. 41	£650.	59.2	662	7 . 5
	.	3	07.	•35	£598.	60.0	538	7 . 3
	2.	3	5.	. 3B	8522.	6C.3	423	ر. د
	٠	~	2.	•37	7079.	56.3	319	6.4
	ထ	00	•	.3£	£275.	24.5	277	7.7
	ۍ.	-	5	. 28	9526	12.0	266	ن

PRESS	DEFECT	569E-01	.109E+C1	
18	(F)	E E • 5	330.5	
TW/18	_	1.00	1.38	
STATIC	PRESS.(PSIA)	115.4	114.2	
0/x		-5.9	24.1	
PT		-	2	

AVERAGE PAFAMETERS FROM STARI OF HFAIING 10 PT2

F,8,AV
REDWORDED AV 32729.
FE,B,AV 63E5E.
DFLTA P(PSI) .119E+C1
TW. AV/TE. AV 1.44
TB,AV(F) 185.1
TW. AV (F)

0+(8) = .CC344F 4.0C0 VOLTS (EXPERIMENTAL K) RUN 7204, DATE 6/23/81, CAS H2 XF, MOLECULAR hT. = 29.97

TIN = 57.3 f, TOUT = 540.0 f, MASS FLOW RATE = 54.9 LB/HK, I = 166.0 AMFS, E = PR, IN = .161, GP/RESO = .304E-02, MACH(2) = .060, MACH(16) = .103, I,SURR = 165.5 F,

C

BULK	<u>۔</u>		86.5	84.3	79.04	72.5	4.49	55.8	46.4	.	35.0	٦.	-	32.3	•	,	ω	3	۲۵	r
8 ULK	NOL	$\boldsymbol{\dashv}$	0	0	70521	0	O.	~	5	2	8	5	\sim	696	764	624	44978.	386	345	, ,
F T CEEF	HRFT	7.6	3.2	£ . 9	266.13	C.3	0.5	1.7	2.7	7.4	3.5		0.2	9 . t	5.0	1.3	3.4	5.5	9.0	
OGAS	U/HRF	6902	8837.	7103.	19	0341.	0818.	1190.	1366.	1451.	1434.	0802.	0502.	C102.	9703.	9357.	9C80.	6666.	8964.	7776
TW/TB		933	. 43	640	1.541	.59	.64	. 72	.76	.77	.77	.72	.68	.64	5.50	.57	.54	. 52	65.	0
3 ·	(F)	2.	41.	78.	404.9	40.	81.	52.	25.	4	58.	15.	5.	14.	56.	86.	010.	37.	031.	u
HL / OGAS		~	~	S	.033	0	0	01	01	01	\sim	3	4	S	Ý	w	~	11	4	Ç
0/x			• 3	• •	æ	•	•	•	•	0	7	3	0	~	ë.	Š	•	•	80	c
10		2	(C)	4	5	¥	7	ሞ	o								17			

PRESS	DEFECT	574E-01	.1436+01
T B	(F)	96.5	507.2
TW/18	_	1.00	1.53
STATIC	PRESS. (PSIA	114.5	113.3
0/x		-5.9	54.3
PT		~	2

AVERAGE PARAMETERS FRCM START OF HEATING TO PT2

FIBIAV	.00472
RE.W. MOD.AV	22657.
RE, B, AV	57855.
DELTA P(PSI)	.152E+Cl
TW. AVITB, AV	1.69
TB, AV (F)	260.7
TW. AV(F)	756.2

4.890 VOLTS Q+(6) = .001273 (EXPERIMENTAL K) RLN 721H, DATE 6/23/81, GAS H2 XE, MCLECULAF LT. = 28.97 TIN = 89.7 F, TOUT = 252.1 F, MASS FLOW RATE = 55.2 LB/HR, I = 97.8 AMPS, E = PR, IN = .181, GR/RESO = .110E-02, MACH(2) = .083, MACH(16) = .092, T,SURR = 104.5 F,

BULK NUSSELT	41	2	_	<u>, </u>	0	2	~	J	7	33	~	٥	્	ند	مع	~	0	٠,	3
8 UL YND	2	2461	2371	2285	210	1823	1117	2700	911	722	548	382	225	080	964	895	H 13	777	68
H T CCEF BIU/FRFT2F	63	Ŷ	Œ.	~	သ	Ş	Œ	G	~	~	N	-		S	Ç	2	(L)	ن	2
Q G A S U / H R F	7	5743.	8291.	.6525	9594.	9668.	9740.	9756.	9767.	9764.	9748.	9743.	9731.	9716.	9705.	9689.	P936.	4543.	.6200
TW/TB	~		~	•	1.216	.2		,	• 2	.2	• 2	•2	.2	.2	~	.2	.2	5	•
TE (F)	58.	79.	92.	00		24.	47.	70.	86.	14.	35.	53.	73.	91.	C3	16.	25	21.	91.
4L 10 GAS	13	¥	S	\sim	.013	~	-	$\boldsymbol{\vdash}$	~	$\overline{}$	_	~	\sim	\sim	\sim	2	5	4	
۵/ ×	• 1	ო•	41	ىن •	1.3	•	•	•	•	17.4	*	•	7	8	a:	·	÷	ı.	•
10	~	3	4	5	r	7	æ	0	10	11	12	13	14	15	16	17	18	13	5.0

PRESS DE FECT	571E-C1 .867E+OO
78 (F)	86.9 239.2
TW/TB	1.00
STATIC PRESS. (PSIA)	111.2
d/x	54.0
F d	2

AVERAGE PARAMETERS FROM START OF HEATING TO PTZ

	F.R.AV. C0493
	RE, W, MOD, AV 41 & 01.
	RF, B, AV 65567.
	CELTA P(PSI) .971F+C0
	TW.AV/TB.AV 1.28
•	TB,AV(F) 149.1
	Th, AV(F) 316.7

3.140 VOLTS DATE 6/23/81, GAS H2 XF, MOLECULAR hT. = 28.97 F, MASS FLOW PATE = 56.2 L8/HK, I = 62.8 AMFS, F (EXPERIMENTAL K) RUN 722H, IIN = 90.6 F, IOUT = 155.2

Z	.1.	1, GR/RESQ	* .411E-03,	MACF(2)	.087,	MACH(16) # .	091, T, SLRR .	95.3 F. 0	00° # (a)+0
	10	3/x	HL/06AS	¥	TW/TB	Þ	1 COE	7	
				u.		U/HRF	/HRF	YNO	SSEL
	^		2	20.	.05	3010.	37.08	380	135.0
	m	۳,	Ç	2в.	.07	0523.	76.7	3775	0.03
	4	٠. دي	5	33	. C.7	1626.	14.6	3738	4.7
	5	<u>ه</u>	0.1	36.	. C &	2075.	67.3	370	2.5
	\$	1.3	.015	140.6	1.090	12116.8	247.08	73629.	76.18
	7	•	0	45.	50.	2162.	32.0	351	7 . 1
	80		01	53.	.10	2179.	06.6	322C	3.3
	σ	•	01	63.	.11	2174.	88.7	277	7.5
		0	_	69.	.12	2171.	81.3	2355	5 • 5
		7.	0.1	. 62	.12	2161.	72.7	152	1.7
		3	~	88.	. 12	2136.	66.7	0726).)
		0	~	96	.12	2129.	68.5	993	6.5
ç		~	02	04.	.12	2118.	65.1	9158	7.8
35	15	•	02	12.	.12	2109.	63.5	8421	6.8
		7.	02	18.	.12	2103.	62.5	792	ó. ?
		2.	\sim	23.	. 12	2097.	61.2	744	.,
		•	ょ	29.	.12	1861.	56.3	669	3 • €
		ď	Ð	28.	.12	0636.	45.9	675	3 3
		6	2	16.	.10	2076.	3.35	674	5 • 3
			PT	0/x	TAT	TW/TB	B PRES		
				PRF	SS. (P	_	$\overline{}$	-	
			~ -1	-5.8	08.	1.00	695 1.569	-01	

AVERAGE PAPAMETERS FROM STAFT OF HEATING TO PT2

.656E+CO

145.5

1.12

107.3

54.0

2

RE, W, MOD, AV	5721C.
REPBAV	70529.
CELTA P(PSI)	.768E+CC
TW. AV/TF. AV	1.12
TB, AV(F)	114.4
TW. AV (F)	141.5

F,8,AV

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A

046500. -0+(P) PR. IN . 166. GR/PFSO . . 2025-02, MACH(2) . . 061, MACH(16) . . 096, T.SURR (CALCULATED K) RUN 7194, DATE IIN = F9.3 F, INUT = 350.9 F, MA

Ľ	د / ک ×	HL 10GAS	3	TWITA	GA	T COF	7	1
					U/HRF	/HRF	UNX	_
٠.	-	90	•	.2€	1904.1	70.57	391	57.6
~	۳,	7	5.	.26	1727.	86.6	3799	5
4	u.	5	F.7.	• غن	£375.	78.7	3652	-
u	æ.	Š	72.	. 12	7663.	64.5	351	2
\$	•	01		9	6430.	45.5	321	7
2	•	01	14.	• 3F	A616.	24.6	275	4
α	•	5	53.	. 4.2	875F.	7.36	1632	7
0	•	_	. 46	. 46	8A16.	75.7	466	J
0	ပံ	0	20.	.47	ARK1.	72.6	P467	J
,,,,,,,	7	C	f.P.	3 to	8872.	62.0	561	E
٠.	23.9	220.	503.3	1.471	48808.2	158.62	63064.	46.64
к.	•	N	33.	• 4 5	6771.	56.2	9010	E
J	7.	\sim	62	6.49	A717.	58.5	4562	-
ur.	3.	C	₽9•	.41	P650.	56.2	6621	-
ن	ď.	•	07.	.39	P. COB.	J. J9	538	¥
~	~	3	25.	38.	R532.	60.3	4231	0
στ	\$	~	2	.37	7079.	56.3	3196	C
C	Ŧ.	α	•	936	£275.	24.5	2775	O
0	Ġ		•	• 2 P	9526	12.1	266	~

	ppESc.(PcIA)	115.4	114.2 1.38 330.5
- X		0.4-	54.1
-			۷٠

AVERAGE PAFAMETERS FREM STAFT OF HFATING TO PT2

\	.00456
VA. OCK. 3.	32729.
RE.B. AV	62856
OFLIA P(PSI)	.1196+01
TW. AV/TP. AV	1.44
TR. DV(F)	164.1
TW. AV (F)	443.7

(CALCULATED K) PHN 7204, DATE 6/23/41, GAS H2 XE, MOLFFULAF = 97.3 F, TPUT = 540.0 F, MACC FLFW PATE = 54.9 18/HR, I =

. waarn	6.7) 41.2 41.2 40.6 40.6 71.4 75.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10	41 / O C A S T W T W T W T R C F) - 0 7 1
, t 4 , 72 , 75	55.4 1.76 75.7 1.76	013 4F1.4 1.64 014 552.4 1.72 017 625.7 1.76
4 4 4 4 4 4 4	200 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	015 400.0 1.5 015 440.0 1.5 015 440.0 1.5 013 461.4 1.6 014 552.4 1.7
	54704650 7116401266	071 177 341 054 033 404 015 440 013 440 014 552
014		

PRESS DEFECT	574E-01	.143F+01
18 (F)	96.5	507.2
TW/TB	1.00	1.53
STATIC PRESS.(PSIA)	114.0	113.2
٧/٧	6.4-	6.45
Le	-	~

AVERAGE PAPAMETERS FROM STAPT OF HEATING TO PT2

Fersal	.00473
REPWOMUNDAV	22657.
REPBANV	57855.
DELTA P (PST)	.152E+01
TW. AV/TP. AV	1.66
TA. AV (F)	260.7
TW. AV(F)	7.4.2

Q+(8) = .001273 4.890 VOLTS * 104.5 F, AMPS (CALCULATED K) 2114 7214, DAFE 6/23/PI, GAS H2 XE, MOLFCULAP WT. = 1114 = 125.7 F, TPUT = 252.1 F, MASS FLOW RATE = 55.2 LB/HR, I = 97.8 PO.IN = .196, GP/2ECC = .119F-02, MACH(2) = .083, MACH(16) = .092, T.SUPR

<u>ر</u>	0/x	HI 10 CAS	3	TW/18	·	T CEF	3	H
					U/HRF	/HRF	YNDL	ш.
۸.	-	3	•	.12	1674.	58.7	253	53.4
۳	•	16	•	16	5743.	RF.	2461	•
4	٠.	<u>د</u>	•	٩1.	8291.	76.8	237	~
÷.	يك •	2	ċ	15	0560	68.7	229	7.
r	•	$\overline{}$	-	.21	9594.	4 E . F	2106	٠ د
7	•	5	4	.23	9668.	25.0	1823	0
τ	•	0		. 2 h	9740.	03.3	111	0
ን	•		ċ	.2F	9756.	85.4	9100	.3
10	ċ	0	F.6.	.29	9767.	77.7	911	.2
	7	•	4.	.20	9764.	66.1	7229	6.
12	72.6	.017	135.6	1.254	29748.5	165.23	654A3.	50.6
13	c	-	٦.	a 2 e	0743.	65.1	3820	E.
5 [~	73.	.27	9731.	64.2	2253	٠,
*	3.	\sim	91.	.27	9718.	64.3	0960	. 7
15	•	2	3	. 2 t.	9705.	63.9	486	•
17		\sim	16.	.26	0689.	63.7	A 95	4.
<u> </u>	4. • 4. 4.	~	•	3:	P936.	61.3	A 13	2
12	σ.	4	\sim	24	4543.	44.C	777	
0	ō	_		7	0079	17.2	7686	3

571E-01 .887E+00	
68.9 235.2	
1.00	.1
111.2	
٠٠. ٥٠.	
1 6	

PRESS DEFECT

(F)

STATIC DRFSS.(DSIA)

¥/0

-

AVERAGE DARAMETERS FROM START OF HEATING TO PT2

PF.W. MOD.AV 41801. REPBBAV 65567. DFITA P(PST) .971E+00 TW. AV/TP. AV [3, AV(F) 145.1 TW. AV(F)

F.B.AV

95.3 F. 0+(F) = .000511 3.140 VOLTS 62.9 AMPS. F 22.1N = .166, CP/2FCQ = .445F-03, MACH(2) = .CP7, MACH(16) = .041, T,SURR 6/23/81, GAS H2 XF, MOLFCULAR WT. (CALCULATED K) 211N 7224, DATE (123/81, GAS H2 XE, MOLECULAR IIN # 90.6 F, TOUT # 155.2 F, MASS FLOW RATE # 56.2 LB/HR, I #

120.0	. 0
	ά.
•	
9	9
•	•
5.	5.
3	3
•	ċ
·	·
8	8
•	•
•	•
•	•
٠ ټ	٠ ټ
3.	3.
0	0
•	• α
Ş	

. 656F+00 AVFRAGE DAFAMETERS FROM START OF HEATING TO PT2 89.7 1.00 10A.1 54.0

-.569E-01 DEFECT PRESC

TB (F)

DRESS. (PSIA) STATIC

۳.۶

۲/ ×

<u>-</u>

F + 3 + 4 V . 00473
REPWAMMDAAV 57310.
PESBS AV 70526.
CFLTA P(PSI) .768E+CO
TW. AV/TP.AV 1.12
TR, AV (F)
TW.AV(F)

00480 P. A

10	0/ x	HL/ QGAS		1W/18	∀ 9	1 CDE	BUL	<u>ر</u> د
•		: - -	4	· ·	U/HRF	/FRF	F PEYN	SSEL
~		O	33.	• 0 E	14680.2	302.03	84169.	380.56
m	· m	5	40.	11.	9449.	45.5	4137	88.3
•	·.	.122		1.135	1385.	55.9	4103	96.3
S	6 0	5	66.	.14	2155.	54.0	4069	93.8
•	•	~	73.	. 15	2444.	45.6	4000	83.1
~	•	02	79.	.1 t	2536.	37.4	3892	72.7
œ	•	0	89.	.18	2568.	26.0	3621	60.3
Φ	•	_	98.	.18	2563.	21.0	3206	50.6
	•	02	03.	.19	2563.	16.3	2816	46.4
	-	02	13.	.19	2552.	14.7	2056	40.5
	3.	02	23.	• 19	2525.	12.1	1323	35.9
	•	2	28.	.19	2522.	13.1	0593	35.6
	-	2	38.	.19	2508.	10.3	9876	30.5
	9	N	45.	51.	2502.	16.3	9181	29.5
16	47.9	~	50.	.19	495.	6.50	871	28.2
	2	C	55.	. 19	2488.	9.60	8257	26.8
	•	Õ	59.	.19	2132.	06.5	7833	22.6
		8	51.	.17	9986	7.36	7653	3.60
	6	~	21.	•12	981.	76.3	7613	02.1
		14	0/ x	TATI	TW/TB	<u>م</u>	ES	
				PRESS. (PSIA)		(F) DE	FEC	
			5	107.5	1.00	5.7	52	
		7	•	06.	7	2.0	56E+0	

AVERAGE PAPAMETERS FROM START OF HEATING 10 PT2

_	
RE.W. MOD. AV	60191.
RE, B, AV	e1126.
DELTA P(PSI)	.758E+00
TW, AV/TB, AV	1.19
TB,AV(F)	108.8
TW. AV (F)	214.8

F.B.AV.

AIR , MOLECULAR NT. RUN 724H, DATE 6/29/81, GAS TIN - 87.5 F, TOUT - 147.4 F, MASS FIRM RATE -

## ## ## ## ## ## ## ## ## ## ## ## ##									
F F F F F F F F F F	10	Q/x	90	≥	H/T	₹9	T COE	3	J
2 .1093 134.4 1.067 13984.4 297.42 84455. 3 3 .347 151.1 1.117 9429.8 148.32 84423. 1 5 .121 166.5 1.135 112194.6 155.45 84423. 1 5 .043 166.5 1.135 112194.6 155.45 84384. 1 7 .2 .019 179.7 1.166 12489.2 126.71 84386. 1 7 .4 .019 188.5 1.136 12489.2 126.71 843810. 1 1 17.3 .021 223.6 1.193 12497.5 116.75 83110. 1 1 17.3 .024 221.6 1.193 12497.5 115.5 82360. 1 2 23.6 .024 221.6 1.193 12497.5 115.5 82360. 1 3 30.4 .024 227.4 1.189 12495.0 112.65 79502. 1 5 43.5 .027 242.8 1.189 12448.9 112.65 79036. 1 5 5.5 .059 257.3 1.169 12087.9 106.30 78160. 1 6 56.5 .059 257.3 1.169 10051.5 98.86 77541. 2 7 52.5 .027 220.5 1.120 1285.3 177.79 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.2087.9 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7.5 .027 220.5 1.180 1.0051.5 98.86 77541. 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	,			(F)		TU/HRF	TU/HRFT2	EY NOLD	USSEL
3 .347 151.1 1.117 9429.8 146.32 84423. 1 4 .5 .121 160.6 1.135 11334.8 155.37 84389. 1 5 .8 .043 166.5 1.156 12290.5 155.45 84356. 1 7 2.2 .019 179.7 1.166 12489.2 136.81 84381. 1 7 2.2 .019 179.7 1.166 12512.9 126.71 83910. 1 9 7.6 .019 198.1 1.167 12508.7 118.75 83110. 1 1 17.3 .021 221.6 1.193 12472.6 113.80 8138. 1 2 23.6 .024 221.6 1.193 12472.6 113.80 81336. 1 3 30.4 .026 227.4 1.169 12469.0 114.76 80598. 1 5 43.5 .029 257.4 1.169 12469.0 113.66 79502. 1 5 52.3 .029 257.3 1.166 12087.9 106.30 78160. 1 5 52.3 .029 257.3 1.169 10051.5 98.86 77911. 2 5 50.5 .059 257.3 1.169 10051.5 98.86 77911. 2 5 50.5 .059 257.3 1.169 10051.5 98.86 77911. 2 7 52.3 .029 257.3 1.169 10051.5 98.86 77911. 2 7 52.4 .007 220.5 1.120 12855.3 177.79 77941. 2 7 52.5 .007 220.5 1.188 1.00 86.8 -5256-0.	~		60.	34.	1.06	3984.	297.42	84455	374.)
4 .5 .121 160.6 1.135 11334.8 155.45 84389. 5 .043 166.5 1.145 12190.5 155.45 84356. 7 .028 173.6 1.166 12469.2 145.62 84287. 7 .019 179.7 1.166 12512.9 126.7 8418C. 9 7.6 .019 198.1 1.167 12508.7 121.51 8418C. 1 10.6 .019 203.6 1.167 12508.7 1216.75 8310. 1 10.19 1267.7 116.75 82360. 1 2 23.6 1.167 12508.7 116.75 8310. 3 10.2 227.4 1.169 12497.5 113.60 61532. 3 10.6 227.4 1.169 12469.0 114.76 80193. 43.5 0.2 227.4 1.169 12469.0 112.65 79502. 5 0.2 2	m	۳.	4	51.	1.11	9429.	48.3	4423	86.5
5 .8 .043 166.5 1.145 12190.5 155.45 84356. 1 2.2 .028 173.6 1.156 12469.2 136.38 84180. 1 2.2 .019 179.7 1.166 12469.2 136.38 84180. 1 3 .019 203.6 1.157 12502.9 126.71 83910. 1 1 .0.8 .019 203.6 1.167 12507.7 116.75 83110. 1 2 23.6 .0.24 227.4 1.193 12497.5 115.53 82360. 1 3 30.4 .0.24 227.4 1.193 12469.0 114.76 80306. 1 4 3.5 .0.26 227.4 1.189 12469.0 112.31 80193. 1 5 43.5 .0.27 242.8 1.189 12448.9 112.65 79502. 1 5 52.3 .0.29 257.3 1.165 12087.9 106.30 78160. 1 5 56.5 .0.59 257.3 1.166 12087.9 106.30 78160. 1 5 56.5 .0.59 257.3 1.169 10051.5 96.86 77591. 1 5 50.5 .0.59 257.3 1.169 10051.5 96.86 77591. 1 5 50.5 .0.59 1.188 12433.4 111.22 78582. 1 5 50.5 .0.59 1.189 12433.4 111.22 78582. 1 5 50.5 .0.59 257.3 1.169 10051.5 96.86 77591. 1 5 50.5 .0.59 257.3 1.169 10051.5 96.86 77591. 1 5 50.5 .0.59 257.3 1.189 12433.4 111.22 78582. 1 5 50.5 .0.59 257.3 1.189 12433.4 111.22 78582. 1 5 50.5 .0.59 257.3 1.189 1285.3 177.79 77541. 2 5 50.0 86.6 .0.50 85.6 .0.50 118.6 12085.3 177.79 77541.	4	٠. ا	~	60.	1.13	1334.	55.3	4389	95.3
b 1.3 .028 173.6 1.156 12371.1 145.62 64287. 1 2.2 .019 179.7 1.166 12469.2 136.38 84180. 1 3 .018 188.5 1.178 12512.9 126.71 83910. 1 4.3 .019 198.1 1.167 12508.7 121.51 83910. 1 17.3 .021 213.4 1.193 12497.5 115.53 82360. 1 17.3 .024 221.6 1.193 12497.6 113.80 61632. 1 3 30.4 .024 227.4 1.189 1245.3 113.80 61632. 1 4 3.5 .027 242.8 1.191 12455.3 112.31 60193. 1 5 52.3 .029 253.2 1.188 1243.4 111.22 78582. 1 5 52.3 .029 253.2 1.168 1243.4 111.22 78582. 1 5 52.3 .029 257.3 1.169 10051.5 98.86 77931. 1 5 50.5 .273 249.3 1.169 10051.5 98.86 77981. 1 5 50.5 .273 249.3 1.169 10051.5 98.86 77981. 1 5 50.5 .273 249.3 1.169 10051.5 98.86 77981. 1 5 50.5 .273 249.3 1.169 10051.5 98.86 77981. 1 5 50.5 .273 249.3 1.169 10051.5 98.8 -5556.01 7 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.	Ŋ	•	04	66.	1.14	2190.	55.4	4356	95.3
7 2.2 .019 179.7 1.166 12469.2 136.38 8418C. 1 10.8 .018 188.5 1.178 12512.9 126.71 83910. 1 10.8 .019 198.1 1.167 12508.7 121.51 83910. 1 1 17.3 .021 203.6 1.190 12507.7 116.75 83110. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	•	05	73.	1.15	2371.	2. C.	4287	82.8
8 4.3 .018 188.5 1.178 12512.9 122.51 83910. 9 7.6 .019 198.1 1.167 12508.7 121.51 83910. 1 9 7.6 .019 203.6 1.190 12507.7 116.75 83110. 1 1 17.3 .021 213.4 1.193 12472.6 113.80 81360. 1 2 23.6 .024 227.4 1.189 12469.0 114.76 80506. 1 4 37.0 .026 236.5 1.191 12455.3 112.31 60193. 1 5 43.5 .027 242.8 1.189 12448.6 112.65 79502. 1 7 52.3 .028 254.4 1.188 1248.9 113.66 79502. 1 7 52.3 .059 257.3 1.166 106.30 78160. 1 9 58.5 .273 249.3 1.120 12855.3 177.79 77541. 2 8 .059 .2	_	•	6	79.	1.16	2489.	36,3	418C	73.5
7.6 .019 198.1 1.167 12508.7 121.51 E3498. 1 17.3 .021 223.6 1.193 12497.5 115.53 82360. 1 2 23.6 .024 227.4 1.193 12497.5 115.53 82360. 1 3 30.4 .024 227.4 1.193 1245.0 113.80 61632. 1 5 43.5 .026 227.4 1.189 1245.3 112.3 80906. 1 5 43.5 .027 242.8 1.189 12448.6 112.65 79502. 1 7 52.3 .029 253.2 1.189 12448.9 113.66 79036. 1 7 52.3 .029 257.3 1.166 12087.9 106.30 78160. 1 7 56.5 .059 257.3 1.169 10051.5 98.86 77981. 1 7 7.79 77.77 77	œ	•	0	88.	1.17	2512.	26.7	3910	60.8
0 10.8		~	0	98.	1.16	2508.	21.5	3498	51.0
1 17.3 .021 213.4 1.193 12497.5 115.53 82360. 1 2 23.6 .024 227.4 1.193 12472.6 113.80 61632. 1 3 30.4 .024 227.4 1.189 12469.0 114.76 80506. 1 4 37.0 .026 236.5 1.191 12455.3 112.31 60193. 1 5 43.5 .027 242.8 1.188 1248.6 112.65 79502. 1 7 52.3 .028 254.4 1.185 1248.9 113.65 79502. 1 7 52.3 .029 2557.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 98.86 7791. 2 0 59.1007 220.5 1.120 12855.3 177.79 77941. 2 PRESS.(PSIA) (F) 06FECT 100 86.85526.01		•	01	03.	1.19	2507.	18.7	3110	46.6
2 23.6 .024 221.6 1.193 12472.6 113.80 61632. 1 3 30.4 .024 227.4 1.169 12469.0 114.76 80506. 1 4 37.0 .026 236.5 1.191 12455.3 112.31 60193. 1 5 43.5 .027 242.8 1.188 12448.6 112.65 79502. 1 7 52.3 .029 253.2 1.188 1243.4 111.22 76582. 1 7 52.3 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 96.86 77581. 1 0 59.1007 220.5 1.120 12855.3 177.79 77541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2 7 7541. 2		7	0	13.	1.19	2497.	15.5	2360	41.3
3 30.4 .024 227.4 1.1E9 12459.0 114.76 80506. 1 4 37.0 .026 236.5 1.191 12455.3 112.31 80193. 1 5 43.5 .027 242.8 1.188 12448.6 112.65 79502. 1 7 52.3 .029 253.2 1.188 12433.4 111.22 78582. 1 8 56.5 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 98.86 77581. 1 0 59.1007 220.5 1.120 12855.3 177.79 77941. 2 PT X/D STATIC TW/TB TB PRESS 1 -5.9 118.6 1.00 86.85526-01		3	05	21.	1.19	2472.	13.8	1632	37.7
4 37.0 .026 236.5 1.191 12455.3 112.31 60193. 1 5 43.5 .027 242.8 1.188 12448.6 112.65 79502. 1 6 47.9 .028 246.4 1.185 12448.9 113.66 79036. 1 7 52.3 .029 253.2 1.188 12433.4 111.22 78582. 1 8 56.5 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 98.86 77591. 1 0 59.1007 220.5 1.120 12855.3 177.79 77541. 2 PT X/O STATIC TW/TB TB PRESS 1 -5.9 118.6 1.00 86.85526-01 2 54.0 118.1 1.10 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2		•	05	27.	1.16	2469.	14.7	9050	37.4
5 43.5 .027 242.8 1.188 12448.6 112.65 79502. 1 6 47.9 .028 246.4 1.185 12448.9 113.66 79036. 1 7 52.3 .029 253.2 1.188 1243.4 111.22 78582. 1 8 56.5 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 98.86 77981. 1 0 59.1007 220.5 1.120 12855.3 177.79 77941. 2 PT X/O STATIC TW/TB TB PRESS PRESS			05	36.	1.19	2455.	12.3	0193	33.1
6 47.9 .028 246.4 1.185 12448.9 113.66 79036. 1 7 52.3 .029 253.2 1.188 12433.4 111.22 78582. 1 8 56.5 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 98.86 77581. 1 0 59.1007 220.5 1.120 12855.3 177.79 77941. 2 PT X/D STATIC TW/TB TB PRESS 1 -5.9 118.6 1.00 86.85526-01		ë	05	42.	1.18	2448.	12.6	9502	12.1
7 52.3 .029 253.2 1.188 12433.4 111.22 78582. 1 8 56.5 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 96.86 77581. 1 0 59.1007 220.5 1.120 12855.3 177.79 77541. 2 PT x/D STATIC TW/TB TB PRESS 1 -5.9 118.6 1.00 86.85526-01		7	02	46.	1.18	2448.	13.6	9036	32.6
8 56.5 .059 257.3 1.166 12087.9 106.30 78160. 1 9 58.5 .273 249.3 1.169 10051.5 98.86 77581. 1 0 59.1007 220.5 1.120 12855.3 177.79 77541. 2 PT X/D STATIC TW/TB TB PRESS PRESS 1 -5.9 118.6 1.00 86.85526-01		~	02	53.	1.18	2433.	11.2	8582	28.7
9 58.5 .273 249.3 1.169 10051.5 98.86 77581. 1 0 59.1007 220.5 1.120 12855.3 177.79 77541. 2 PT X/D STATIC TW/TB TB PRESS 1 -5.9 118.6 1.00 86.85526-01		•	5	57.	1.16	2087.	5.3	8160	24.5
0 59.1007 220.5 1.120 12855.3 177.79 77541. 2 PT X/D STATIC TW/TB TB PRESS PRESS.(PSIA) (F) DEFECT 1 -5.9 118.6 1.00 86.85526-01		8	27	40.	1.16	0051.	98.8	7581	
T X/D STATIC TW/TB TB PRESS PRESS-(PSIA) (F) DEFECT 1 -5.9 118.6 1.00 86.8552E-0		•	00.	20.	1.12	2855.	77.7	7941	203.64
I X/O STATIC TW/TB TB PRESS									
FRESS-(FSIA) (F) DEFECT -5.9 118.6 1.00 86.8552E-0 54.0 118.1 1.19 1.42.4 4.225.40				•	STATIC	1/1	B PRES		
0.000 0.000 0.000 0.000 0.000 0.000			-	5	75.00 PSI	C	F) DEFE 4.8 442	⊢ (
			2	4	18.	•	200	9	

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

F.8.AV
RE, W. MOD, AV 60685.
RE, B, AV 81434.
0ELTA P(PSI) .703E+00
TW, AV/TB, AV 1.16
TB, AV(F) 109.5
TW.AV(F) 213.9

rs 301156 P.R.

Z	71	7, GR/RE	1001 = 236. SQ = .469E-(3 F. MAS 02, MACH	S FLOW RATE = (2) = .(82, P	* 57.9 LB/F MACH(16) *	HR, I . 99.5	AMPS, E = 6	0.740 VOLTS
	70	Q/ x	HL 10 GAS	3	TW/TB	~	T C 0.5	=	=
	1			(F)		U/HR	8	7007	
	~	-	•	03,	. 2.	34125.1	205.08	6 4 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	יי זייני
	m	e.	.327	N	1.282	, (7	•	-	5 • T
	*	• 5	u	65				00/3	91.5
	5	œ.	C	, (•	1710		4616	00.1
	. ~	,	> 6	֓֞֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֓֡֓֡֓֜֜֜֜֜֜֡֓֡֓֡֓֡֜֜֜֡֡֡֡֡֡	,	9236	54.9	453	5 * 36
	,	•	v			0443,	47.1	4367	5 7 78
	٠ ,	•	~	14.	940	0662.	3 5. 8	7017	
	x 0 (•	-	38.	. 43	0770	28.	7650	
	5		5	61.	44	0.78.2		7 6) (
	0	10.8	N	75.	4.5	700) • • • •	, .) 2
	11	7.	N	00	. 7		•	0291	45.7
	12		5		\ -	*	9 • • 1	9873	34.9
	13		, (•	5 (5 .	737	14.1	8217	30.9
92	? ~	• •	u .		. 43	0720.	14.7	5604	28.3
	,	: ,	`	000	. 42	695.	14.1	5105	9 7 7 7
	12	m	\sim	57.	41	1662.	2.0	, ,	
	16	8	T)	78.	07	1642	, ,	200	7.7
	17	2	~	00		17.7	7 • C	11:	70.7
	18	9	-	α	ָ ה ה			661	18.7
	19	ď		•		0000		115	3.9
) }	- (•	ມ	1037.		83	17.1
	2	•	^	2	S 2	1721.	9.	10771.	185.68
			Id	X/D	T A T I	41/31		ć	
					1 1 1 1 1 1	-	TXT.		
			1	•	118.6	ن	DEFE		
			~	54.1	17.	1.39	4.7		
)		>	

AVERAGE PARAMETERS FROM START OF HEATING 10 PT2

F,8,AV
RE.W. MOD. AV 42556.
R E 9 B 9 A V 7 R 2 O 5 •
CELTA P(PSI) .959E+00
TW.AV/TB.AV 1.43
TB, AV(F) 142.5
TW, AV (F) 398.8

S 01231

PRESS Defect	546E-01 .656E+00
18 (F)	86.5
TW/18	1.00
STATIC PRESS.(PSIA)	101.6
0/x	-5.9
T d	5 7

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

F,B,AV	•0000
REPWONDOAV	32326.
RE, B, AV	56709.
GELTA P(PSI)	.682E+C0
TW, AV/TB, AV	1.43
TB, AV(F)	144.3
TW, AV (F)	404.1

S 101494 RUN 727H, DATE 6/29/81, GAS AIR, MOLECULAR WT. = 28.97

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HL/GGAS T (1) (2) (4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	706AS .110 .135 .039 .022 .022 .022 .022 .023 .023
11000 11000 11000 11000 11000 1000 100	.423 148. .054 158. .039 172. .022 178. .022 178. .023 203.	.5 .135 1589 .054 164. 1.3 .039 172. 2.2 .022 178. 4.3 .022 178. 7.6 .023 203.
	2 14100000000000000000000000000000000000	7 / D HL/ QC 1.

	. 0
PRESS DEFECT	583E-01 .675E+00
18 (F)	85.9 143.9
_	1.00
STATIC PRESS.(PSIA)	97.6
0/×	54.0
p	7 7

F, B, AV . C0496
RE, W, MOD, AV 47366.
RE, B, AV 63628.
DELTA P(PSI) .558E+00
TW,AV/TB,AV 1,18
TB, AV (F) 109.5
TW, AV(F) 214.2

. O F., Q+(6.)	YNOLDS NUSSEL	4149. 255	4093. 80.0	4035. 105.8	3971. 101.8	3838. 94.3	3627. 86.8	3104. 77.0	2358. 69.7	1681. 66.1	8.09 60.8	9256. 57.1	8247. 55.5	7325. 53.3	6466. 51.9	5977. 50.5	5490. 50.0	5071. 44.7	4958. 20.5	4937. 120.4
94, T, SUR	/HRF12F R	200.33	2.79	3.18	0.17	4.56	5.04	2.29	7.96	6.32	4.36	3.26	3.83	3.67	4.37	4.14	4.71	9.75	3.02	5.44
•	U/HRF	30925.2	3244.	0918.	2466.	3680.	4299.	4520.	4485.	4445.	4303.	3915.	3764.	3559.	3374.	3190.	3071.	C817.	6098	906
078. I		. 28	1.352	. 46	.51	.56	• 64	.70	. 73	.73	. 71	•6E	.64	• 60	.57	.55	.53	.51	. 42	. 26
	(F)	33.	~	32.	62.	02.	41.	93.	39.	67.	13.	48.	73.	01.	26.	46.	609	76.	16.	80.
H1 /0645	; ;	Ø	• 905	~	12	07	05	9	40	5	•	æ	0	0	$\overline{}$	2	13	25	$\overline{}$	0
g/ x	•		.		ω•	•	•	•	•	0	-	3	30.5	7	ë	æ•	?	•	8	6
1		2	m	•	Ç	•	_	6 0	6	10	11	12	13	14	15	16	17	3.8	19	20

PRESS	DEFECT	682E-01	.1376+01
18	(F)	78.8	346.4
TW/18	_	1.00	1.52
STATIC	PRESS. (PSIA	46.3	48.7
0/x		-5.9	54.5
F d		-	7

F,8, AV.
RE, W, MOD, AV 12709.
RE, B, AV 29736.
DELTA P(PSI) .577E+00
TW, AV/TB, AV 1.65
TB, AV(F) 186.5
TW. AV(F) 607.9

01400 4.65¢ VOLTS AIR , MOLECULAR NT. = 28.97 23.6 LB/HR, I = 70.0 AMPS, E RUN 7294, DATE 6/29/81, GAS TIN * 80.8 F, TOUT * 253.9 F, MASS FLOW RATE * PP.IN

2	0/ x	HL/QGAS		TW/TB	4 9	T C0E	Ę	BULK
			(F)		U/HRF	BTU/HRF12F	REYNOLDS	SSEL
2		7	76.	. 18	18560.3	192.83	34946.	5.3
m	е	962.		1.241	654	56.1	912	64
4	r.	21	35.	. 28	2660.	2.1	4876	04.4
2		12	53.	.31	3731.	0.2	4837	1.9
9	•	90	76.	. 35	4 50 8	5.5	4756	95.6
~	•	9	97.	.36	4830.	0.1	462	8.4
80	•	03	26.	.42	4955.	3.9	4304	9.8
Φ	•	03	53.	44.	4943.	5.6	3825	3,3
10	•	4	69	. 45	4936.	8.1	3394	0.3
	7.	90	97.	. 44	4888.	6.2	2546	6.0
	3.	05	18.	.43	4824.	5.7	1751	3.5
		S	35.	.41	786.	6.1	0985	2.2
	7	•	54.	040	4731.	5.9	028	0.5
	3.	90	73.	.39	4678.	£. C	963	9.2
	8	07	85.	.36	4638.	6.1	922	8.3
	2.	~	97.	.37	4596.	£ . 2	883	7.5
	•	~	90	.36	3412.	2.0	848	2.5
	8	•	72.	• 30	7221.	3.0	836	3.1
	6	• 0 9	90	19	178.	£.7	834	6.8

AVERAGE PARAMETERS FROM START OF HEATING 10 PT2

-.678E-01

80.0

1.00

46.5

54.1

PRESS Defect

18 (F)

TW/TB

STATIC PRESS.(PSIA)

0/x

PT

F,B,AV	.00614
RE.W. MOD. AV	17524.
RE, B, AV	31819.
CELTA P(PSI)	.506E+00
TW, AV/TB, AV	1.42
TB, AV(F)	144.8
TW, AV (F)	396.1

0586 2.992 VOLTS TIN = 81.2 F. TOUT = 153.2 F. MASS FLOW RATE = 23.5 LB/HR, I = 4

+(a) * +CC0	3	NUSSELT	4	83.7	9.60	7.4	6.3	9.2	1,3	5.1	3.4	3.2	3.2	7.5	6.0	. 0	3.9	3.1	φ. •	S	139.67
85.0 F, 0+		Y NO	7	475	473	472	468	463	645	45p	409	370	334	298	263	229	207	185	165	157	155
.097, T,SURR =	1 006	B TU/HRFT2F	96.6	5.9	3.3	0.6	た。な	0.5	4.5	3.0	0.6	7.1	6.2	4.9	5.8	5.5	5.5	4.5	1.7	7.6	3.0
MACH(16)(G A	BTU/HRFT2	736.	544.	343.	753.	074.	188.	230.	228.	221.	204.	174.	16	147.	133.	124.	112.	727.	559.	142.
092,	TW/TB		.07	. 10	.12	.13	.14	.16	.17	.18	.19	.19	.19	191.1	. 18	. 18	.18	.18	. 18	. 15	· C C
MACF(2)		(F)	20.	35.	45.	53.	62.	71.	82.	92.	66	11.	20.	Ø	37.	46.	52.	57.	62.	.	2.
= .756E-03,	HL / QGAS		171	.812	.203	.118	090	.041	.035	•036	• 038	.041	.047	640.	.053	•056	.058	.061	.132	.820	095
GR/RESO	0/x		.1	۳.	٠.	₩.	•	•	•	•	•	7	3	0		3.	7	2.	•	œ	6
718,	10		2	m	4	Ś	•	~	œ	Φ	0	7	2	13 3	4	2	9	7	80	6	0

PRESS	679E-01 .834E+0C
18	80.3
TW/TB	1.00
STATIC	
0/x	-5.8 54.0
PT	7 7

FIBIAV	.00607
RE, W, MOD, AV	24799.
RESBAV	33266.
DELTA P(PSI)	.425E+00
TW, AV/TB, AV	1.18
TB, AV (F)	108.0
Th, AV(F)	211.8

03333 PR.

10	x 70	HL 10GAS	WT.	TW/18	OGAS	H T COEF	BULK	BULK
2	•1	•	11.	.42	44063.6	191.12	33882°	243
m	e.	.878	8	1.566	5005	2.1	3803	78.5
4	٠. س	0	44.	•66	9830.	2.6	372	04.8
2	.	ന	86.	.73	1741.	5.5	3631	0.2
9	1.3	1	41.	. 82	3533.	4.0	344	3.2
7	2.2	5	98.	05.	4324.	E.2	3148	5.1
œ	•	5	76.	66.	4603.	1.1	244	4.4
0	•	•	42.	.02	4485.	6.7	142	6.5
		9	81.	.01	4373.	5.1	052	2.5
	;	Ø	42.	.96	4053.	3.4	8888	7.0
12	23.9	2	89.	.90	2824.	1.4	753	1.9
	0	4	20.	£3	2445.	1.5	634	9.6
		•	54.	.77	1987.	2.1	529	7.7
	3.	~	80.	.71	1600.	2.9	439	6.4
	8	0	04.	68	1211.	2.7	382	5.0
	2	0	21.	•64	0933.	3.3	330	4.3
	÷	3	40.	•62	7932.	t. 7	285	9.6
	8	4	58.	. 52	852.	2.0	275	
	6	0	78.	.32	691.	5.0	274	~

PRESS DE FECT	684E-01	.162E+01
TB (F)	9.09	451.1
TW/TE	1.00	1.64
STATIC PRESS. (PSIA	48.5	•
0/x	-5.9	54.3
T d	~	7

F, B, AV C0643
RE, W, MOD, AV 10036.
R F. B. AV 2 E50 9.
DELTA P(PSI) •690E+00
TW. AV/TB. AV 1.87
TB, AV(F) 231.5
TW, AV (F) 830.7

90440 AIR , MOLECULAR WT. = 28.97 6/29/81, GAS RUN 732H, DATE PR, I

).5 F, Q+(8) = .064	BULK BULK	YNDLDS NUSSEL	4777. 241.2	4669. 79.5	4556. 105	4433. 100.E	4179. 93.3	3781. 85.1	2846. 73.7	1510. 64.7	0369. 60.6	8398. 54.8	6607. 48.7	5470. 46.8	4333. 45.2	3336. 44.5	2732. 43.3	2179. 43.0	1707. 39.2	1616. 4.1	
.05, T,SURR = 200	H T COEF	/HRFT2F R	5.68	2.61	83,33	63.69	4.48	8.78	1.43	09.9	5.25	3.81	1.36	2.20	3,33	46.4	5.26	ۥ38	2.71	• 66	,
MACH(16) = .10	OGAS	U/HRF	c646 .	6113.	40845.7	3376.	5674.	6826.	7102.	6721.	6485.	5850.	3106.	2455.	1841.	1326.	0755.	0400	7119.	363.	•
.081,	TW/TB		.55	.77	1.902	65.	. 11	.21	.32	.35	.31	.21	.10	65.	63.	.80	.76	.71	•68	.57	ċ
02, MACF(2	3.	(£)	ц.	00	575.6	30.	05.	81.	88.	78.	025.	.860	144.	176.	204.	26.	249.	263.	284.	186.	,
0 • .7276-(HL/0GAS		0	•	.200	13	8	9	9	-	Ø	0	Ø	0	\sim	4	5	~	œ	*	000
B. GRIRES	0/x		٠,	e.	٠. د	ω.	•	•		•	ċ	7	4.	•	7.	43 ° E	8	2	•	6	c
. 71.	10		7	m	4	2	•	~	80	0	01	11	12	13	14	15	16	17	18	19	•

PRESS	DEFECT	679E-01	_
-	(F)	81.4	2.556
TW/TB		1.00	1.70
STATIC	PRESS. (PSIA)	48.5	47.6
0/x		-5.9	54.4
PT		-	2

AVERAGE PARAMETERS FROM START OF HEATING TO PT2

F,8,AV	
RE, W. MOD, AV 8512.	
RE98.AV 2 E400.	
DELTA P(PSI) .825E+00	
TW. AV/TB. AV	
TB, AV(F) 279.6	
TW, AV (F) 1069.2	

C1666 PR

0/x	HL/06AS	3	14/18	⋖	1 COE	BULK	
i		(F)		U/HRF	•	ON N	SSEL
	0	78.	35	4874.7	287.44	84294.	62.0
e.	m	39.	.46	7041.	47.2	4170	85.3
ئ.	-	77.	. 52	4627.	54.5	4035	94.2
€.	.059	402.0	1.570	71	9.0	83903.	∵
•	02	30.	.61	8510.	43.1	3636	79.1
•	2	60.	.66	6639	33.9	3214	7.99
•	02	03.	.71	9157.	23.0	2202	51.0
	02	42.	.73	9182.	15.7	0713	35.1
•	02	63.	.73	9208	13.6	9352	34.1
7	02	01.	.72	9166.	1C.7	8699	25.4
3.	03	32.	•69	8912.	09.2	4301	19.3
ċ	E	55.	•66	8831.	10.0	2088	16.3
7	4	80.	.63	6718.	10.3	2600	13.0
3	4	. 66	• 60	8625.	11.8	6228	10.8
8	5	14.	.56	8536.	12.3	702	08.8
•	F	28.	.56	8459.	13.3	592	07.6
•	Φ	41.	.54	6621.	1.50	493	02.5
80	9	12.	640	4030.	87.6	454	81.3
6	C	90	35	0851	2,2	177	7. 6

AVERAGE PARAMETERS FROM START OF HEATING 10 PT2

PRESS DEFECT -.552E-01

18 (F) 86.8 306.9

1.00

STATIC PRESS.(PSIA) 120.4 119.3

-5.9 54.2

Б

F,8,4	• 004
RE, W, MOD, AV	31448.
RE, B, AV	74932.
DELTA P(PSI)	.1136+01
TW, AV/TB, AV	1.67
TB, AV(F)	174.6
TW. AV (F)	598.8

A V 62

5 0259**7**

W TO COLOR T

BULK BULK	YNOLDS NUSSEL	4742. 367.3	4570. 168.9	4379. 198.4	4194. 191.7	3619. 180.7	3243. 168.0	1860. 151.C	9819. 137.9	7977. 131.7	4524. 121.8	1554. 112.9	861. 108	6446. 103.7	4276. 99.2	2906. 96.3	1668. 94.6	0552. 88.4	0159. 62.1	0103. 153.2			pril 1	-
F T COEF	L/HKFT2F R	52.54	50.60	56.48	53.40	45.25	36.02	24.57	17.18	15.00	11.63	08.44	5.08	08.85	07.51	07.26	08.05	03.24	73.17	81.19	PRES	F) DEFEC	551E-0	4.1 .121E+0
OGAS	U/HRF	7764.	2154.	3054.	6112.	8223.	8978.	9305.	9332.	9347.	9232.	8326.	0	7740.	7317.	6969	6779.	4034.	0827.	2871.	18/18		0	1.73
TW/TB		.46	.63	.72	.78	• 64	.90	.97	00.	65.	• 55	.92	1.867	.82	. 78	.76	. 73	.71	• 64	.46	TAT	5.6	120.3	18.
	(F)	55.	36.	89.	24.	65.	08.	. 69	24.	53.	07.	55.		22.	60.	85.	03	028.	74.	22.	0/x	a .	5.9	54.3
HL / QGAS		0	33	1	90	03	02	02	02	03	03	05	•020	90	0	8	0	m	~	-	1 d		-	2
0/x		۲.	e.	u,	æ.	•	•	•		•	-	3.	30.5		ë	8	2	9	8	•				
70		~	m	4	ĸ	ç	^	60	Φ				13											

AVERAGE PARAMETERS FROM STAFT OF HEATING TO PT2

FABAAV	·06476
RE, W, MOD, AV	25172.
RE, B, AV	7302C•
DELTA P(PSI)	.135E+01
TWAVITBAN	1.89
TB, AV(F)	211.4
TW, AV (F)	806.¢

3317 AIR , MOLECULAR NT. = 28.97 RUN 735H, DATE 6/29/81, GAS P.R.

3	NUSSELT	72.4	28	01.6	88.9	70.0	65.3	46.8	32.8	25.4	14.6	04.8	00.2	96.5	5.3	2.9	1.4	7.6	4.8
\supset	YND	5824	999	534	5105	4620	3891	2113	9524	721	3109	9636	6588	3886	155	0054	8679	750	710
COE	U/FRF	96.8	5.6	61.2	51.4	43.5	34.5	22.3	14.E	12.1	06.7	05.3	6.90	0.70	16.5	10.9	12.0	10.0	5.5
OGAS	U/HRF	01592.7	82	2729.	4943.	8309.	9572.	9955.	9930.	9858.	9536.	7309.	6791.	6164.	5875.	5382.	4981.	2322.	7298.
TW/TB		.62	1.810	. 53	.01	.10	.16	. 26	.29	.27	.22	.14	•06	.98	35.	.86	. 82	.7E	.70
3	(F)	32 •	537.3	.90	56.	14.	71.	56.	28.	70.	040	093.	127.	163.	80.	204.	224.	241.	184.
HL /QGAS		114	.356	.101	• 076	• 039	•050	0	• 036	040	• 048	.079	•0 88	860°	.103	.111	.118	.155	1.003
9/ x		٠,	e.	٠. د	.	1.3	•	•	•	•		3	ö	7	43.8	8	2	è	6
TC		~	c	4	ĸ	•	~	œ	6						15				

PRESS DEFECT	550E-01 .136E+01
18 (F)	85.5
TW/TB	1.00
STATIC PRESS. (PSIA	122.2 120.6
0/X	54.4
T	7

AVERAGE PARAMETERS FKOM START OF HEATING TO PT2

FAR	• 004
RE. W. MOD. AV	20887.
RE, B, AV	72075.
DELTA P(PSI)	.154E+01
TW, AV/TB, AV	2.10
TB, AV(F)	245.8
TW, AV (F)	1025.4

* A V 4 5.5

02400 28.97 MOLECUI AR ET 6/29/81. GAS RIN 736H. DATE

	587 587	64.	0	8535 (P31A 97.9	5.9	r4 (
	RES	00	TW/TB	STATIC	0/x	F		
654		15	1591.	ω α	10.	m	•	
658	•	in i	6269.	47 ·	52.	0	8	19
989	e.	&	3682.	• 63	00	5	Ģ	
767	•	∞	6088.	•64	81.	O	÷	
8612	• 5	ထ	6265.	.67	63.	Ø	æ	
9624		∞	6484.	59.	45.	~	ë	
1191	4.	©	6704.	. 73	17.	~	-	
2975	•	æ	6934.	.77	88	Ø	ċ	
4905	4.	&	7128.	. 82	60.	S	3	
1060		&	7723.	•86	21.	5	-	
9544		\$	7845.	• 80	73.	3	•	
0845	•	•	7848.	. 69	46.	(C)	•	σ
2282	6.	6	7857.	.86	95.	~	•	∞
3267	.	0	7682.	52 •	37.	~	•	7
3675		$\overline{}$	6602.	.74	00	S	•	•
3 6 3 6	e.	7	5912.	.67	57.	9	€	'n
4067	¢.	~	2438.	• 62	26.	4	'n	4
4164	4.	\rightarrow	3237.	. 53	78.	4)	۳,	æ
4311		*	5358.	.41	07.	2		8
	•	>	U/HRF		$\overline{}$			
YNOL	RFT		V	1/1	>	HL /QGAS		10
	04311 64194 64194 633939 63267 63267 63267 6367 64667 64667 6669 6677 6669 6677	COEF HRFTZF E.48 E.48 E.48 E.48 E.49 G.4311. G.4194. G.494 G.494 G.495 G.81313. G.92 G.93939. G.92 G.92 G.92 G.92 G.92 G.93 G.93	BTU/HRFTZF BULK BTU/HRFTZF REYNOLD 24E.48 64194. 113.41 64194. 124.93 64067. 124.94 64067. 107.81 63267. 97.92 63282. 97.92 63939. 113.70 63675. 86.03 52975. 86.03 52975. 86.03 649624. 87.35 54902. 87.35 54902. 87.35 54902. 87.63 64967. 87.63 64589. 159.17 46547.	QGAS H T CDEF BULK TU/HRFT2 BTU/HRFT2F BFEYNDLD 55358.9 246.48 64194. 42438.9 113.41 64194. 42438.5 124.93 64067. 45912.9 124.93 64067. 45602.2 113.70 63939. 47682.6 107.81 63267. 47849.8 91.65 62282. 47845.5 89.81 59544. 47723.4 87.92 62282. 46784.5 87.35 54902. 46784.6 87.35 54902. 4684.6 87.35 54902. 4684.6 87.31 49624. 4684.6 87.63 46657. 46088.9 87.63 46667. 46088.9 87.63 46589. 51591.8 159.17 46547. 60 64.2 -587E-01	W/TB GGAS	TW TW/TB QGAS H T COEF BULK (F) 07.4 1.411 55358.9 246.48 64311. 78.6 1.539 33237.8 113.41 64194. 26.4 1.623 42438.5 124.93 64067. 26.4 1.623 42438.5 124.93 64067. 100.5 1.747 4602.2 113.70 63675. 100.5 1.864 47845.5 107.81 63267. 100.3 1.863 47723.4 85.03 59544. 100.3 1.653 46484.4 87.35 54902. 88.7 1.779 46934.4 87.35 54902. 88.7 1.779 46934.4 87.35 54902. 88.7 1.672 46265.6 87.21 48612. 100.3 1.653 46484.4 87.31 49667. 100.4 1.385 51591.8 159.17 46547.	129	HL/GGAS

F, B, AV . 00517
RE.W. MOD.AV 20866.
RE, B, AV 55851.
DELTA P(PSI) .940E+00
TW.AV/TB.AV 1.79
TB, AV(F) 195.9
TW. AV(F) 716.4

10	0/ x	HL/06AS	=	14/18	∀	T C0E	5	7
		· •	(F)	· ·	U/HRF	-	REYNOLDS	
2	•1	~	71.	.34	45394.5	243,15	66215.	07.3
m	· m	~	29.	**	8242.	15.9	6118	49.4
•	5.	.127	366.6	1.514	4	7.9	01	61
2	80	~	91.	.55	7618.	23.7	590	55 · E
•	•	C	22.	.60	9034.	17.3	568	47.2
~		~	53.	.65	9550.	6.60	534	37.3
60	•	2	97.	.70	9744.	00.7	451	24.0
0	•	02	37.	.73	9756.	94.6	331	13.9
	0	~	60.	.73	9760.	2.4	220	0.60
	7.	ω	00	.71	9697.	9.7	005	01.5
	3.	4	31.	69.	9443.	6.3	812	96.4
13	•	4	54.	.65	9354.	9.0	635	4.0
	-	S	80.	.63	9230.	5.5	475	1.2
	9	5	01.	. 59	9123.	6.2	325	9.0
	8	9	21.	.58	8986	5.5	230	6.4
	2	•	37.	. 56	8888	9.6	142	4.9
	•	~	51.	.55	6982.	5.9	064	9.6
	8	9	12.	64.	4908	4.7	035	9.6
	•	~	66	.34	2260.	7.2	030	4.6

PRESS Defect	563E-01	.109E+C1
18 (F)	64.6	311.1
TW/T8	1.00	1.56
A	97.3	5. 96
0/x	-5.9	54.2
PT	-	7

TW, AV (F)	TB, AV(F)	TWANITERAN	DELTA P(PSI)	RESBSAV	RE, W, MOD, AV	F, B,
596.8	175.0	1.66	.902E+00	56679.	24733.	00

91860 TONT - 550.4 6. MACS - 100 5476 -

	-01	588E	65.1	1.00	1986	18.0			
		RES	22 (1 k / 18	STATIC	0/x	Id		
•	1107	9.1		3267.	.46	017.	%	ċ	2
33.84	41135.	4.41	•	29826.9	1.669	1220.5	1.717	50°C	61
4.	1408	E. 5	~	7174.	.76	292	.21	÷.	8
	2313	1.0	5	9416.	.79	275.	•	2	17
2	3327	0.5	•	0261.	• e4	262.	5	.	91
	4467	9.0	~	0922.	• 69	235.	4	3	15
7	9300	t.9	Ψ.	1464.	. 97	209.	Œ	;	14
7	8376	9 · C	•	2179.	•02	175.	Ň	•	13
.2	0770	4.6	3	2753.	.16	145.	0	•	12
4.	3580	8.1	_	5503.	. 24	086.	•	7.	=
4.00	940	0.5	.	6001.	.32	014.	05	ċ	01
04·E	8848	9.0	.	6000 .	.37	984.	02	;	•
17.0	1035	7:3	G.	£223.	• 35	03	4	•	©
33.3	2551	5.2		5909.	• 25	05.	03	•	_
٠,	3188	5.7	=	4581.	. 16	39.	5	•	£
55.3	360	3.6		1884.	• 05	72.	8	œ.	'n
61.7	3809	8.3		8221.	.97	20.	4		•
44.1	401	4.1		2207.	. 83	44.	8	e.	m
23.0	4166	5.4		9521.	•64	ŝ	142	٦.	~
SSEL	YNDL	HRF		U/HRF					
۲¥	ゴ			SA S	T#/TB		HL / OGAS	9/×	2

F, B, AV
REDUPMODPAV 15219.
RE, B, AV 53119.
DELTA P(PSI) .116E+01
TW, AV/TB, AV 2, 12
TB, AV(F) 261.5
TH, AV(F) 1071.3

REFERENCES

Barua, A. K., 1960. Thermal Conductivity and Eucken-type Factor for the Binary Mixtures H-He, H-Ne, H-Kr and H-Xe. <u>Indian J. Phys.</u>, 34, pp. 169-183.

Churchill, S. W., 1977. Comprehensive Correlating Equations for Heat, Mass and Momentum Transfer in Fully Developed Flow in Smooth Tubes. <u>Ind. Eng. Chem.</u>, Fundam., 16, No.1, pp. 109-116.

Clarke, A. G. and E. B. Smith, 1968. Low-temperature Viscosities of Argon, Krypton, and Xenon. <u>J. Chem. Phys.</u>, <u>48</u>, pp. 3988-3991.

Clifford, A. A., R. D. Fleeter, J. Kestin and W. A. Wakeham, 1980. Thermal Conductivity of Mixtures of Hydrogen and Helium at 27.5°C and Pressures up to 14 MPa. Berichte der Bunsen-Gesellschaft für Physikalische Chemie, 84, pp. 18-23.

Colburn, A. P., 1933. Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Liquid Friction. <u>Trans. AIChE</u>, <u>29</u>, pp. 174-210.

Dawe, R. A., and E. B. Smith, 1970. Viscosities of the Inert Gases at High Temperature, <u>J. Chem. Phys.</u>, <u>52</u>, pp. 693-703.

DiPippo, R. and J. Kestin, 1968. The Viscosity of Seven Gases up to 500°C and Its Statistical Interpretation. Fourth Symposium on Thermal Physical Properties, New York, pp. 304-313.

Dittus, F. W. and L. M. K. Boelter, 1930. Heat Transfer in Automobile Radiators of the Tubular Type. <u>Univ. Calif. Publ. in Engrg.</u>, 2, pp. 443-461.

Doebelin, E. O., 1966. <u>Measurement Systems: Application and Design.</u> McGraw-Hill, New York.

Gandhi, J. M. and S. C. Saxena, 1968. Correlated Thermal Conductivity Data of Rare Gases and Their Binary Mixtures at Ordinary Pressures. <u>J. Chem. Engag.</u>, <u>13</u>, pp. 357-361.

Gnielinski, V., 1975. Neue Gleichungen für den Wärme-und den Stoffübergang in Turbulent Durchströmten Rohren und Känalen. <u>Sonderdruck aus Forschung im Ingenieurwesen</u>, 1, pp. 8-16. Also <u>Int. Chem. Engr.</u>, <u>16</u>, pp. 359-368.

REFERENCES (continued)

Hess, W. G., 1965. Thermocouple Conduction Error with Radiation Heat Loss. M.S.E. Thesis, University of Arizona.

Hilsenrath, J. C., W. Beckett, W. S. Benedict, L. Fano, H. J. Hoge, J. F. Masi, R. L. Nuttall, Y. S. Touloukian and H. W. Wooley, 1955. <u>Tables of Thermal Properties of Gases</u>. NBS Circular 564.

Hirschfelder, J. O., C. F. Curtiss and R. B. Bird, 1964. Molecular Theory of Gases and Liquids, John Wiley, New York.

Kalelkar, A. S. and J. Kestin, 1970. Viscosity of He-Ar and He-Kr Binary Gaseous Mixtures in the Temperature Range 25-720°C. <u>J. Chem. Phys.</u>, <u>52</u>, pp. 4248-4261.

Kays, W. M., 1966. Convective Heat and Mass Transfer. McGraw-Hill, New York.

Kestin, J., 1983. Personal Communication, Brown Univ., Providence, R. I., 3 March, 1983.

Kestin, J., S. T. Ro and W. A. Wakeham, 1972. Viscosity of the Noble Gases in the Temperature Range 25-700°C. <u>J. Chem. Phys.</u>, <u>56</u>, pp. 4119-4124.

Kline, S. J. and F. A. McClintock, 1953. The Description of Uncertainties in Single Sample Experiments. Mech. Engag., 75, No. 1, pp. 3-8.

Lindsay, A. L. and L. A. Bromley, 1950. Thermal Conductivity of Gas Mixtures. <u>Ind. Eng. Chem.</u>, 42, pp. 1508-1511.

Malina, J. A. and E. M. Sparrow, 1964. Variable-property, Constant-property, and Entrance-region Heat Transfer Results for Turbulent Flow of Water and Oil in a Circular Tube. <u>Chem. Engag. Sci.</u>, <u>19</u>, pp. 953-961.

Mason, E. A. and H. von Ubish, 1960. Thermal Conductivity of Rare Mixtures. Phys. Fluids, 3, pp. 355-361.

Moen, W. K., 1960. Surface Temperature Measurements. <u>Inst. Control Syst.</u>, 33, pp. 70-73.

Park, J. S., M. F. Taylor and D. M. McEligot, 1982. Heat Transfer to Pulsating, Turbulent Gas Flow. Proc., Seventh Int. Reat Transfer Conf., Munchen, 3, pp. 105-110.

REFERENCES (continued)

Petukhov, B. S., 1970. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, Adv. Heat Transfer, 6, pp. 503-564.

Pickett, P. E., 1976. Heat and Momentum Transfer to Internal, Turbulent Flow of Helium-Argon Mixtures in Circular Tubes. M.S.E. Report, University of Arizona.

Pickett, P. E., M. F. Taylor and D. M. McEligot, 1979. Heated Turbulent Flow of Helium-Argon Mixtures in Tubes. <u>Int. J. Heat Mass Transfer</u>, 22, pp. 705-719.

Pierce, B. L., 1981. The influence of Recent Heat Transfer Data on Gas mixtures (He-Ar, H₂-CO₂) on Closed Cycle Gas Turbines, <u>ASME J. Eng. Power</u>, 103, pp. 114-117.

Reynolds, W. C., 1968. <u>Thermodynamics</u>, <u>2nd Edition</u>, p. 228, McGraw-Hill, New York.

Reynolds, W. C. and H. C. Perkins, 1968. <u>Engineering Thermodynamics</u>, McGraw-Hill, New York.

Saxena, V. K. and S. C. Saxena, 1968. Measurements of the Thermal Conductivity of Helium Using a Hot-wire-Type of Thermal Diffusion Column. Br. J. Appl. Phys., (J. Phys. D.), 1, 1341-1351.

Saxena, V. K. and S. C. Saxena, 1969. Thermal Conductivity of Krypton and Xenon in the Temperature Range 350-1500°K. J. Chem. Phys., 51, pp.3361-3368.

Saxena, S. C. and P. K. Tondon, 1971. Experimental Data and Procedures for Predicting Thermal Conductivity of Binary Mixtures of Nonpolar Gases. J. Chem. and Eng. Data, 16, pp. 212,220.

Serksnis, A. W., 1977. Turbulent Flow of Hydrogen-Carbon Dioxide Mixtures in Heated Tubes. M.S.E. Report, University of Arizona.

Serksnis, A. W., M. F. Taylor and D. M. McEligot, 1978. Heat Transfer to Turbulent Flow of Hydrogen-Carbon Dioxide Mixtures, <u>Proc.</u>, <u>6th Int. Heat Transfer Conf.</u>, Toronto, <u>2</u>, pp. 163-168.

Sleicher, C. A. and M. W. Rouse, 1975. A Convenient Correlation for Heat Transfer to constant and variable property fluids in turbulent pipe flow, Int. J. Heat Mass Transfer, 18, pp. 677-683.

REFERENCES (continued)

Taylor, M. F., 1967. A Method of Correlating Local and Average Friction Coefficients for Both Laminar and Turbulent Flow of Gases Through a Smooth Tube with Surface to Fluid Bulk Temperature Ratios from 0.35 to 7.35, <u>Int. J. Heat Mass Transfer</u>, <u>10</u>, pp. 1123-1128.

Taylor, M. F., 1968. Correlation of Local Heat Transfer Coefficients for Single-Phase Turbulent Flow of Hydrogen in Tubes with Temperature Ratios to 23. NASA TN D-4332.

Thornton, E., 1960. Viscosity and Thermal Conductivity of Binary Gas Mixtures: Xenon-Krypton, Xenon-Argon, Xenon-Neon and Xenon-Helium. <u>Proc.</u>. <u>Phys. Soc.</u>, 76, pp. 104-112.

Touloukian, Y. S. and C. Y. Ho, 1970. <u>Thermophysical Properties of Matter</u>, Plenum Press, London.

Trautz, M. and R. Heberling, 1934. Viscosity, Thermal Conductivity and Diffusion in Gas Mixtures, XXV Internal Viscosity of Xenon and Its Mixtures with Hydrogen and Helium. Ann. Physik, 20, pp. 118-120.

Tsederberg, N. V. T., 1965. <u>Thermal Conductivity of Gases and Liquids</u>, M.I.T. Press, Cambridge.

DISTRIBUTION LIST

HEAT TRANSFER

One copy except as noted 5 Mr. M. Keith Ellingsworth Materials and Mechanics Program (Code 431) Office of Naval Research 800 N. Quincy Street Arlington, VA 22203 12 Defense Documentation Center Building 5, Cameron Station Alexandria, VA 22314 6 Technical Information Division Naval Research Laboratory 4555 Overlook Avenue SW Washington, DC 20375 Professor Paul Marto Department of Mechanical Engineering US Naval Post Graduate School Monterey, CA 93940 Professor Bruce Rankin Naval. Systems Engineering US Naval Academy Annapolis, MD 21402 Office of Naval Research Eastern/ Central Regional Office Bldg 114, Section D 666 Summer Street Boston, Massachusetts 02210 Office of Naval Research Branch Office 536 South Clark Street Chicago, Ill. 60605 Office of Naval Research Western Regional Office 1030 East Green Street Pasadena, CA 91106 Mr. Charles Miller, Code 05R13 Crystal Plaza #6 Naval Sea Systems Command Washington DC 20362

Steam Generators Branch, Code 5222

National Center 14

Naval Sea Systems Command Washington, DC 20362

Heat Exchanger Branch, Code 5223 National Center #3 Naval Sea Systems Command Washington, DC 20362

Mr. Ed Ruggiero, NAVSEA 08 National Center #2 Washington, DC 20362

Dr. Earl Quandt Jr., Code 272 David Taylor Ship R&D Center Annapolis, MD 21402

Mr. Wayne Adamson, Code 2722 David Taylor Ship R&D Center Annapolis, MD 21402

Dr. Win Aung Heat Transfer Program National Science Foundation 1800 G St. NW Washington, DC 20550

Mr. Michael Perlsweig Department of Energy Mail Station E-178 Washington, DC 20545

Dr. W.H. Thielbahr Chief, Energy Conservation Branch Oept. of Energy, Idaho Operations Office 550 Second Street Idaho Falls, Idaho 83401

Professor Ephriam M. Sparrow
Department of Mechanical Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Professor J.A.C. Humphrey
Department of Mechanical Engineering
University of California, Berkeley
Berkeley, California 94720

Professor Brian Launder
Thermodynamics and Fluid Mechanics Division
University of Manchester
Institute of Science & Technology
P088 Sackville Street
Manchester M601QD England

Professor Shi-Chune Yao Department of Mechanical Engineering Carnegie-Mellon University Pittsburgh, PA 15213 Professor Charles B. Watkins Chairman, Mechanical Engineering Department Howard University Washington, DC 20059

Professor Adrian Bejan Department of Mechanical Engineering University of Colorado Boulder, Colorado 80309

Professor Donald M. McEligot Department of Aerospace and Mechanical Engineering University of Arizona Tucson, AZ 85721

Professor Paul A. Libby Department of Applied Mechanics and Engineering Sciences University of California San Diego Post Office Box 109 La Jolla, CA 92037

Professor C. Forbes Dewey Jr. Fluid Mechanics.Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Professor William G. Characklis Dept. of Civil Engineering and Engineering Mechanics Montana State University Bozeman, Montana 59717

Professor Ralph Webb Department of Mechanical Engineering Pennsylvania State University 208 Mechanical Engineering Bldg. University Park, PA 16802

Professor Warren Rohsenow Mechanical Engineering Department Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139

Professor A. Louis London Mechanical Engineering Department Bldg. 500, Room 501B Stanford University Stanford, CA 94305

Professor James G. Knudsen Associate Dean, School of Engineering Oregon State University 219 Covell Hall Corvallis, Oregon 97331 Professor Arthur E. Bergles Mechanical Engineering Department, Iowa State University Ames, Iowa 50011

Professor Kenneth J. Bell School of Chemical Engineering Oklahoma State University Stillwater, Oklahoma 74074

Dr. James J. Lorenz Component Technology Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439

Or. David M. Eissenberg Oak Ridge National Laboratory P.O. Box Y, Bldg. 9204-1, MS-0 Oak Ridge, Tennessee 37830

Dr. Jerry Taborek Technical Director Heat Transfer Research Institute 1000 South Fremont Avenue Alhambra, CA 91802

Or. Simion Kuo Chief, Energy Systems Energy Research Laboratory United Technology Research Center East Hartford, Connecticut 06108

Mr. Jack Yampolsky General Atomic Company P.O. Box 81608 San Diego, CA 92138

Mr. Ted Carnavos Noranda Metal Industries, Inc. Prospect Drive Newtown, Connecticut 06470

Or. Ramesh K. Shah Harrison Radiator Division General Motors Corporation Lockport, New York 14094

Or. Ravi K. Sakhuja Manager, Advanced Programs Thermo Electron Corporation 101 First Avenue Waltham, Massachusetts 02154 Mr. Pobert W. Perkins Turbotec Products, Inc. 533 Downey Drive New Britain, Connecticut 06051

Dr. Keith E. Starner York Division, Borg-Warner Corp. P.O. Box 1592 York, PA 17405

Mr. Peter Wishart C-E Power Systems Combustion Engineering, Inc. Windsor, Connecticut 06095

Mr. Henry W. Braum Manager, Condenser Engineering Department Delaval Front Street Florence, New Jersey 08518

Dr. Thomas Rabas Steam Turbine-Generator Technical Operations Division Westinghouse Electric Corporation Lester Branch P.O. Box 9175 N2 Philadelphia, PA 19113

Dr. Albert D. Wood Director, Mechanics Program (Code 432) Office of Naval Research 800 N. Quincy Street Arlington, VA 22203

Mr. Walter Ritz Code 033C Maval Ships Systems Engineering Station Philadelphia, Pa 19112

Mr. Richard F. Wyvill Code 5232 MC #4 Maval Sea Systems Command Washington, DC 20362

Mr. Doug Marron Code 5231 NC #4 Naval Sea Systems Command Washington, DC 20362 Mr. T. M. Herder Bldg. 46462 General Electric Co. 1100 Western Avenue Lynn, MA 01910

Mr. Ed Strain AiResearch of Arizona Dept. 76, Mail Stop 301-2 P. O. Box 5217 Phoenix, AZ 85010 (Tel. 602-267-2797)

Mr. Norm McIntire Solar Turbines International 2200 Pacific Highway San Diego, CA 92101

Prof. Darryl E. Metzger Chairman, Mechanical and Aerospace Engineering Dept. Arizona State University Tempe, AZ 85281

The Study Center National Maritime Research Center Kingspoint, N. Y. 11024 Attn: Ms. Shirley Rose

END

FILMED

2-85

DTIC