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RAMAN SIDESCATTERING IN LASER-PRODUCED PLASMAS

I. Introduction

Raman instabilities, which appear in laser-produced plasmas vhen the

plasm density is less than the quarter-critical density, can lead to hot

electron production. These hot electrons could in turn preheat the fuel in

laser fusion applications and are therefore a significant concern. Of the

various Raman instabilities in inhomogeneous plasmas, sidescattering has the

lowest threshold and the highest growth rate. Rence, it is a natural focus of

* theoretical concern.

*In this paper, we revisit the theory of this instability. Previous

workers 4'5 have determined the threshold to be

0 2  -o/3(

(k L) 1,

* where V is the oscillation velocity in the pump wave field, k is the wave0 0

number of the pump wave, L is the inhomogeneity scale length, and c is the

speed of light. However, the strictly analytical approach of Ref. 4 is not

*sufficient to determine the accurate numerical value on the right-hand side of

. o

P

Eq. (4). This paper addresses that issue.

The rest of the paper is organized as follows: Section 11 contains the

derivation of our basic equation. In Section III we solve this equation

numerically to determine the threshold value. Section IV contains a summary

of our principal results.
Manuscript approved September 1984.. C...
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II. Derivation of the Raman Sidescattering Equation

Our starting point is the electron fluid equations with the tons serving

as a uniform background,

+ V • nv=0 (a)-
TF (a)

. 3v v
"M + amv V v- 3T Vn- neE -n-x B -nmvv (b)

- - -°c -

V E - 4w ne (c)

(2)

7 B- 0 (d)

Vi°(e)

4mnev I-

SVi B - - c a ( f)""' ""

., -- -- C c 
..-.:..

Since the instability we are considering is parametric, we have the

approximate relations

Wo M1 2

'.'.1-. 

.:

(3)

k-k + k--o -1- 2

where w and k (a 0,1,2) are respectively the frequency and wave number of

the incoming pump wave, the outgoing electromagnetic wave, and to the outgoing

electrostatic wave. Equation (3) becomes exact in the limit of a homogeneous

Splasa. Using the homogeneous limit dispersion relations

2
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, 2  2 k 2 c 2

o p o

2 2w + k c 2  (4)

w+ 3k+ v

w12 p 2ea

2  2
and neglecting e/C , one finds

2 2  1 p)l12  (5)kl (1o / c,(5

which confirms that this instability can take place only at densities below

quarter-critical.

We chose our coordinates so that the incoming pump wave is polarized in

the z-direction and has Its wave vector in the x-direction, i.e., k - k K e

We shall also take k = k e - k •z , which is consistent with sidescattering

in an arbitrary direction, so that k2 - k1 e + ky e + k e z. We now write

E i E exp (ikx x-wot) + c.c.
"-0 -=3X

11 = E(x)exp (- iky y-ikzZ-i It ) + c.c. (6)

S- V*(x)exp (ikyx + iky + ikz - i(8 2 t) + c.c.
"a..

The x-variations of e and * are due to the inhomogeneity.

To proceed we will use the following ordering. If the dispersion

relation for the a mode in the homogeneous system is given by

3
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D~(,ka) -0, we assume that in the inhomogeneous system D(w ,' Te

and nonlinearity are all small, of order S. Working to lowest order in this

quantity 6, we neglect all products of these small quantities.

From Eq. (2b) one finds,

eE 0
(7)fto law ii

since the electromagnetic wave has no density perturbation and v is assumed
I

much less than wo

Turning now to the equation for the electrostatic wave, we find from Eq.

5% (2b)

3T !n2  eE2 +
V 4vV mVQ V ) (8)

-i *2 L2 T -7 +-a v2 2 " - 0 v vv 1' 8?.:.,

As is usually the case, the V.VV nonlinearity cancels the VxB

nonlinearity. Note also that we now use a subscript 2 on the collision

frequency. This (phenomonologically) allows for the fact that the damping ofL

the three different modes may come from different physical processes. For

instance to account for Landau damping of the electron plasma wave, v2 should

be set equal to the collision frequency plus twice the Landau damping rate.

In Eq. (8), Vl  e-. analogous to Eq. (7). From Eq. (2a), we have

io 2  - Vn !2' (9) . ..

where n o is the zero-order background density which is x-dependent. We have

also assumed that no and nj equal zero as is appropriate for linear

electromagnetic waves. Combining Eqs. (8) and (9) with Poisson's equation,

%4. % %
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Eq. (4c), we conclude

where V2 In obtaining Eq. (11), we replaced w 2 with w, on the righ t-

hand side.

An analogous derivation yields the equation for the sidescattered wave

[W W + i.: - + c2VxV2j P [!.E 2 - E .1)
0

At this point, we iuwst specify the density inhomogeneity. We shall let

cp IM I + (12)

The point x 0 corresponds to the point in the plasma at which the instability

which we are considering occurs, i is the plasma frequency at that point, and L

is the density scale length at that point. Equations (10) and (11) then become

2 2 2 0
2 0 -x .- 2

cv2 2Vx7x E Eu E

0

We have ignored the ,-variation of Wpon the right-h and side of Eq. (13)
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We further simplify to the case of the scattered wave polarized in the z-

direction. Since ponderomotive force goes as E • El , this polarization has the

largest growth rate, at least in the homogeneous system.

Then the equations can be reduced to

L2 2
0 0

twS+612k- 2a 2 02 x .w.P . m we e .
x e - p t p 2 24 L ax wwmW wo o~

~2w2 w+6i~k-~.+32 3  O 4 iw ]D,(14)

2322 iv1 2 1
12w 6w-c 2  0 w ez

1!'"p w- w w m 02

Here we use *, instead of E3  E as dependent variables. Al1so

z -= -oZ

2

3 2

%2 2 2  x a 2

(1 5)

2 w - 6w + 1 6w2 o

where 6w is the change in w from that predicted by the linearized homogeneous

*-dispersion relation. We neglect (6w) 2 , and we use wow- w1 +4w2 to establish

6w1  6w2  On physical grounds, we expect that the threshold will be lowest

in this case, and in the limit L + -, V I/c + 0, we have verified that such is

the case. Hence, we focus our attention on Eq. (14).

In solving Eq. (14), it is useful to take the Fourier transform

.4I.t Jd k( jK) expi ft. As we will see, *(K) and e (K) are square

integrable and nonsingular along the real K aids so that the contour may be

taken as the real X axis. Since upon taking the Fourier transform

d d
dieK arid x . W Eq. (14) become two coupled first order equations in the K

domaino By standard means, we write them as a single second order equation in

6
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in the K domain and eliminate the first derivative term. The result is

V 2  V2  3V2  V2

- y+ (1-3 ~)26 --t k~j i1... 6 edC2  c c c c

i(kx + ) v 2 ( 1
+ + ( C C

xx y

2_ 2 2 K1(7

22 p 2 j2 0J
(kx+ )+ 1 (+K )+

2A y

p 2  . .2 t

* A-4-x k2 -d. 2"int74 os

2=8=+ *c 2 + I (k x+ KI)2+ k _ -..

o 0 2w nt 
- '- [2w Sw + iWO(V+ ,> "- -:/

xt n (Le 2t/2n 1 / 3 ,  k yXEq (1 C re (18duci tPXly X' i tint .''." -

2

o e 2 V2 k2 x4 eA e4 Pp 0 2k - P 2 ilntV 2eV 0.' -'-..-'
A 7 4 71 k2 iXnt: =  4 ' os = mw- -"

=w m C C 0. -]

The quantity k2 is the magnitude of the wave number of the plasma wave in the "."""-
2. 2 2 0 2 0"2i" 2- 2honogeneous system, c k 2  2w 02  2w 0 p . inally, letting V2e/C2 + 01, and ..

the letig, Eq. (16) reduces to"'""-

7
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[ .*-+ t + 212 - 2 + A 0. (19)

2p

Not only is Eq. (19) much simpler than Eq. (16), but also the dimensionality

of the parameter space has been substantially reduced. 1bw y depends only on

the single parameter A, whereas in Eq. (16) it depended on A, v /c, k and - -

e x
k . We will show that for parameters of the NRL6 experiment, the

Y

approximations in deriving Eq. (19) are very well satisifed.

III. Determination of the Raman Sidescattering Threshold

At threshold, all the terms in Eq. (19) must roughly balance. It follows

2 212 2 2
that A- I, or, letting v 4e le I ' we find

1. s .-

3 o 2 2 2. 
(20)

p -o2 .
p

Equation (20) is essentially the same as Eq. (1) near quarter-critical

-* density. When A >> 1, then the only way to balance the term A is by

requiring that y + A 0. We then find

y = iA 2  21)

for the growth rate. It is interesting to note that the limit A+ - does not

". correspond to the homogeneous limit at x - 0 as one might naively expect, but
rather at x - (L/w [ 22 V+ Si 

2  o2(W It is possible". p )2- s(1)- iv 1 w 1w""i].

to refine4 the estimates in Eqs. (20) and (21) but an exact solution of Eqs.

(16) and (19) requires a numerical approach.

8% ,• ,'
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We begin by specifying the appropriate boundary conditions for Ec

Asymptotically, as c goes to +t -, we have

ex p J*i(C3/3 + y)

As a consequence of causality, we demand that the solution decay along

real C-axis when Tm(y) > 0. It follows that we want the positive solul

when C + + - and the negative solution when 4 + - -.

To determine the eigenvalues of Eq. (19), we calculate the determ

the solution matrix D(y) using a finite-element code. 7 The roots of t]

determinant D(y) correspond to the eigenvalues. We began by finding a

roots of D(y) in a fairly sizeable box in the complex y-plane

(- 6.0 < Re (y) < 6.0, - 4.0 < Th (y) <_ 4.5) with A set equal to 1. To

we use Nyquist's theorem

_,1 dID(y) lN 2,iJ D(y)
c

to calculate the number of roots N In the box. By repeated cpadrasect

determine smaller boxes in which only a single root lies. The root lo(

YO is then estimated using the relation

m1 y dID(y)l

c

The exact root location is then omed-in m using a secant-grid algoril

This Nyquist algorithm is optimized in a number of respects and runs fe

rapidly. (For the case just described, the program mde roughly 35,o0

determinations of D(y) and took roughly 13 minutes of c.p.u. tim to rti

CDC 7600.)

9
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I

It should be stressed that the eigenmodes corresponding to eigenvalues

with Im(y) < 0 are unphysical since they correspond to modes which grow along
I

the real C-axis as * * *, so that their Fourier transforms do not exist.

The eigenvalues for the five unstable modes which the routine found are given

in Table I for the case A - 1. The number of significant figures was
I

determined by increasing the width of the integration region and doubling the

number of modes; those figures which did not change were deemed significant

and included in the table. The critical value of A at which Im(y) - 0, Acrit ,

was then found for each of the five most unstable modes by following the

eigenvalues parametrically as A was reduced. The results are shown in Table

II, the overall marginally stability point is given by A - 0.37. We then

repeated the calculation using Eq. (16) rather than Eq. (19) with

10, ky= 0 corresponding to quarter critical density and V2/c - 0.0013.

These values correspond to those in the NRL long scale length experiment.

Results are also shown in Table II. There is evidently good agreement between

the results using Eq. (16) and the results using Eq. (19).

In Fig. 1 is shown a plot of the growth rate versus A for the most

unstable mode, determined from a numerical solution of Eq. (19). In phys! Lal

units

+ ipo(w2 + l 1 -- iy(A), (25)
c

where y(A) is defined graphically in Fig. 1, and A and Xint are defined in

Eqs. (18). A recent analytic theory8 also shows that the growth rate depends

on the single parameter A. In Ref. 8, it can be shown that their expression

for growth rate reduces to y - A1 2 (1 - 0.5 A 31 2 ] so that the threshold is

given by A - 0.63. Thus the analytic theory predicts a threshold higher by

almost a factor of two.

V..
IV
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Table I The real and imaginary parts of y (positive imaginary part means

growth) for A I 1 for the 5 unstable modes. The elgenvalues are

calculated from Eq. (16) and also from Eq. (19)

2 2with i 10, k- 0, 3 V e/C 0.00013.

Mode Number Re y, lTy, Eq. (19) Rey, Tay, Eq. (16) 9

1 -0.4564, 0.50q -0.4597 0.5168

2 -1.794, 0.1418 -1.7R9 0.1473 . .

3 -2.835, 0.06217 -2.827 0.06516

4 -3.7114, 0.0289 -3.7020 0.0304

5 -4.49, 0010 -4.48 0.011 .

Table I The value of A A for marginal stability for the 5 unstable(crit)

modes.

Mode Number A(crit), Eq. (19) A(crit), Eq. (16)

1 0.37485 0.36762

2 0.6188 0.6102

3 0.7567 0.7498

4 0.858 0.854

5 0.9 0.9

" %
*.::. .. -
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In practice, an important effect is tranverse convection across the

9finite spot size. This is an extremely complicated process. The theory of

Liu, et al. indicates that the growth rate must be larger than the convection

time, or Imw > Vg/LT where LT is the transverse scale length. If V - c, (as

it is at densities less than about one-eighth critical) a 100 U spot size

means the growth rate must be larger than about 3 x lo1 2sec a fairly

sizeable requirement on 1nw. However at the quarter-critical density the

transverse scattered photon velocity vanishes so that here the condition

disappears.

From Eq. (25), we conclude that the instability threshold is given by

In fy(A)] w (po[ 2 + (W/Wo)VI] (Xn2 /C2) rather than Im [y(A)] - 0. In this

expression, the v's are the electron ion momentum collision frequency plus

twice any damping rate of the wave. For the electron plasma wave v must also

include the Landau damping. The phase velocity of the wave is given by -

ip/k2. We have verified that Landau damping plays a negligible role for N.L

parameters (Te - 600 e.v.) for densities larger than one-tenth the quarter-

critical density. By contrast, the collisions make a significant contribution

to the threshold in density. In the NRL long scale length experiment,
5

L 140u, Z - 5, T 600 eV. Thus at the quarter-critical density, taking
a

into account collision damping, the threshold for Raman sidescatter is A =

• 0.46 or I - 1.6 x 10 14 /cn2 using the tact that Voe - 25.6 1/2(1/a2 ) o(u).

IV. Summary

In this paper we have revisited the theory of Raman sidescattering in

. laser produced plasmas. We have shown that to a very good approximation the

growth rate and thresholds can be reduced to examining a single parameter :.

system. We find that at quarter-critical density, the threshold for

12
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stimulated Raman sidescatter in the NRL long scale length experiment is given

*roughly by I > 1.6 X 10 14 W/m2
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Fig. 1 The imaginary pert of y as a function of A for the two fastest

growing modes. a) Detailed plot for 0 < A < 1, b) plot for

0O<A<l10.
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