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RAMAN SIDESCATTERING IN LASER-PRODUCED PLASMAS

I. Introduction

Raman instabilities, which appear in laser-produced plasmas when the
plasma density is less than the quarter-critical density, can lead to hot
electron production. These hot electrons could in turn preheat the fuel in
‘ laser fusion applications and are therefore a significant concern.1'3 Of the
various Raman instabilities in inhomogeneous plasmas, sidescattering has the
lowest threshold and the highest growth rate. Hence, it {s a natural focus of
) theoretical concern.

In this paper, we revisit the theory of this instability. Previous

workers"s have determined the threshold to be

* v

. 2 4/3

: (—2) (koL)/ 1, (1

where v° is the oscillation velocity in the pump wave field, ko is the wave
number of the pump wave, L is the inhomogeneity scale length, and ¢ is the
speed of light. However, the strictly analytical approach of Ref. 4 is not

sufficient to determine the accurate numerical value on the right-hand side of

1 Eq. (4). This paper addresses that issue.
d The rest of the paper is organized as follows: Section II contains the
derivation of our basic equation. In Section III we solve this equation
N numerically to determine the threshold value. Section IV contains a summary

of our principal results.
Manuscript approved September 1984.
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II. Derivation of the Raman Sidescattering Equation

Our starting point is the electron fluid equations with the ions serving

as a uniform background,

on
3?+v nv 0

v v
nm 3E'+ mmve Vye - 3T Vn - neE ~ ne T X B = nmvy

VeE=-~- 4% ne

y-3=0
3B
1 %2
YyxE r T3
ktnqz 1 3E
Ixle-—"*ew

Since the instability we are considering 1s parametric, we have the

approximate relations

W, = wy

Ky =

k +k

2 ’

(a)

(b)

(c)

(d)

(e)

(£)

(2)

(3)

vhere W and ka (a = 0,1,2) are respectively the frequency and wave number of

the incoming pump wave, the outgoing electromagnetic wave, and to the outgoing

electrostatic wave. Equation (3) becomes exact in the limit of a

plasma. Using the homogeneous limit dispersion relations

homogeneous
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which confirms that this instability can take place only at densities below L

quarter-critical. .

Ty o

e

We chose our coordinates so that the incoming pump wave is polarized in

N A

the z—-direction and has its wave vector in the x~direction, i.e., Eo - kx e )

We shall also take !1 - ky gy - kz e, which 1s consistent with sidescattering e,

in an arbitrary direction, so that 52 = kx ;x + k

| R

+ kz [ We now write

- N
Y

¢ z oy
o

y -~y

Eo - ic E exp (1kx x-wot) + c.c.

E) = (x)exp (- 1k, y-ik z-lut) + c.c. ©
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Eﬁ = - 7¢(x)exp (1kxx + 1kyy + 1kzz - iuzt) + c.c.

l."

RN -
1]
-

The x-variations of ¢ and § are due to the {nhomogeneity.
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To proceed we will use the following ordering. 1If the dispersion

relation for the a mode in the homogeneous system is given by o
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D(“c’ kq) = (), we assume that in the inhomogeneous system D(“a’ ka), L'l, Te
and nonlinearity are all small, of order 5. Working to lowest order in this
quantity §, we neglect all products of these small quantities. :}“}f

From Eq. (2b) one finds,

!o imw 8
1
since the electromagnetic wave has no density perturbation and v is assumed R

much less than wye

Turaning now to the equation for the electrostatic wave, we find from Eq.

(2b) :.'L:..,‘._;
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As 1s usually the case, the V.VV nonlinearity cancels the VxB
nonlinearity. Note also that we now use a subscript 2 on the collision

frequency. This (phenomonologically) allows for the fact that the damping of

e B e e Y S V0L

the three different modes may come from different physical processes. For

instance to account for Landau damping of the electron plasma wave, vy should

be set equal to the collisiou frequency plus twice the Landau damping rate.

eE
In Eq. (8), v; = Ii%f » analogous to Eq. (7). From Eq. (2a), we have

- o, = - Va_ ¥, (9

vwhere n, is the zero-order background density which is x-dependent. We have

also assumed that n, and nq equal zero as 1is appropriate for linear

Fas T 2L LSS THEEL o VAL,

electromagnetic waves. Combining Bqs. (8) and (9) with Poisson”s equation,
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Eq. (4c), we conclude

2
e[y 2- 2 L] -—U)E—E- 2 . *
Tlay' o) +IT T+ duyyy] By = - 200 B, (1)

N

where Vz = T/me 1In obtaining Eq. (11), we replaced wy with wp on the right-

. hand side. i
An analogous derivation yields the equation for the sidescattered wave
2 2 Y1 2 2, * ew * * ..

[mp -wy + 1-(;- w, + c'VxIx|E, = --—Emo |9(E -E,)~ EV-E)|. GB D) A

At this point, we must specify the density inhomogeneity. We shall let

u)z - moz Q1 +-§) 12)
P P L’
The point x = 0 corresponds to the point in the plasma at which the instability

which we are considering occurs, m; is the plasma frequency at that point, and L

is the density scale length at that point. Equations (10) and (11) then become

2 ]
2 2 mO SN
2o 0 _ 0 X IR =D 2. .:* .
9 [wz wp =Wy T + dugv, + 3V§z v ]§2 5 ay v (Eo E,)

(13)
2 2 e
[m; 1+ - mf +%’fm; + czlxlx]E;- 'En‘f'l‘l@:‘zz) - _1:::_\_7_.5].

We have ignored the x~variation of m; on the right-hand side of Eq. (13)

consistent with our ordering of neglecting products of nonlinearities and

ambient gradients.
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We further simplify to the case of the scattered wave polarized in the =2

PLAAPLF

a4

-

direction. Since ponderomotive force goes as _Eoo E1 s this polarization has the

largest growth rate, at least in the homogeneous system.

LA

Then the equations can be reduced to

2 2
2

o
3 o°x ) “p 3¢ .
axz -wpt+ imp\’2“)2¢- T 7%~ 5om o 2

< A

] 2
| 2wy80 + 61vikx 3=+ 3,

2 2 iv 2

23 o X l1 o Y1 e *
[Zwlsm-c-a—x7+mp f+w__wp ]eZ-FO.EEOD2¢.

Here we use ¢, €, instead of _F:3, _1_32 as dependent variables. Also

Sw = 6m1 = - 6(»2,

where 6w is the change in w from that predicted by the linearized homogeneous
dispersion relation. We neglect (6:»)2, and we use w = wy +uw, to establish
Gml = -~ 6“’2' On physical grounds, we expect that the threshold will be lowest
in this case, and in the limit L + o, Ve/c + 0, we have verified that such is
the case. Hence, we focus our attention on Eq. (14).

In solving Eq. (14), {t {s useful to take the Fourier transform

e(K)
integrable and nonsingular along the real K axis so that the contour may be

(:((:;J =] d k(“") expl Rx. As we will see, ¢ (K) and ¢ (K) are square
c

taken as the real K axis. Since upon taking the Fourier transform

g—;* iK and x» § %, Eqe. (14) become two coupled first order equations in the K

domain. By standard means, we write them as a single second order equation in
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in the X domain and eliminate the first derivative term. The result is

v2

2
Tde [v+ 13 S¥-6
2
dzg c

oo
&
[N

k cjz

v2
-2

2 x
c

c c
x y

L B+ 2 2k§] .+ 0% &

X
“F T g YA v 0
(kx+ )+ ky kx + ky

X
WK) = e(K) exp .1_:2. | | 20,80 - 6v2k k"~ 3v2R-?

20

o
+ 1wpv2

P 02

2 2 w k.x + K* 1

- 2w 6w + K% + 1 2 v, - 4K . (17)
“ (ky+ K+ k]

Also

o 2
o wp X int
Y= lZmOGw + 1(.l)p(\)2+ '“Tl- VI)J —?—

X, = (Le/2 °2)1/3 kK =k X - KX (18)
int mp '’ "x,y x,¥ int’ ¢
2
o 2
) eE w Vv
- p 02,2 .4 _ "po o
A=b |— k) Xinet
w) me

k

NN
la

L)

c

The quantity ko is the magnitude of the wave number of the plasma wave in the

2
honogeneous system, czkg- Zm:- ZmOw:- w: « Finally, letting Vez/c2 + 0, and

then letting kx + o, Eq. (16) reduces to

3
;
.
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1
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2
s |y+c??-A+ap=o (19)
d
4
-
Not only is Eq. (19) much simpler than Eq. (16), but also the dimensionality
of the parameter space has been substantially reduced. Now y depends only on
the single parameter A, whereas in Eq. (16) it depended on A, ve/c, kx and .
ky’ We will show that for parameters of the NRLO e xperiment, the
approximations in deriving Eq. (19) are very well satisifed.
’
IIT. Determination of the Raman Sidescattering Threshold
At threshold, all the terms in Eq. (19) must roughly balance. It follows
that A ~ 1, or, letting v§ = kzlezllmzwf, we find . ‘
2.2 4/3
vos k2 (le) -1 e
/3 02 wz 2/3 (20) L
#/3 (—L-I)
] woz
Lo P
:j:j S
i Equation (20) is essentially the same as Eq. (!) near quarter-critical i'_"‘

density. When A >> 1, then the only way to balance the term A) is by

requiring that *12 + A= 0. We then find

y = 1al/2, (21)

for the growth rate. It is interesting to note that the limit A+ = does not I ‘
::: correspond to the homogeneous limit at x = 0 as one might naively expect, but
: 2 o 02
rather at x = (L/mp‘) { 2 8w + hup Vou 2w iv 1(onp lsp) 1+ 1t is possible »
to refine® the estimates in Eqs. (20) and (21) but an exact solution of Egs. »

(16) and (19) requires a numerical approach.
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We begin by specifying the appropriate boundary conditions for E

Asymptotically, as Z goes to t+ =, we have

w~exp[ti(c3/3 +vg). (

ﬂ As a consequence of causality, we demand that the solution decay along
real z-axis when Im(y) > O It follows that we want the positive solu
: when { + + ®» and the negative solution when  +» ==,

P To determine the eigenvalues of Eq. (19), we calculate the determ

the solution matrix D(y) using a finit e~element codqe.7 The roots of t!

determinant D(y) correspond to the eigenvalues. We began by finding a
roots of D(y) in a fairly sizeable box in the complex y=-plane

(= 6.0 < Re(y) € 6.0, = 4.0 < I (Y) ¢ 4.5) with A set equal to 1. To

we use Nyquist’s theorem

ol 4Dyl
Newrl Dy (

to calculate the mumber of roots N in the box. By repeated quadrasect
determine smaller boxes in which only a single root lies. The root loc

Yo is then estimated using the relation

-l ,YdID(Y)l
Yo RN T M

The exact root location is then tomed-in on using a secant-grid algori!
This Nyquist algorithm 1is optimized in a number of respects anmd rums fz
rapidly. (For the case just described, the program mde mughly 35,00

determinations of D(y) and took roughly 13 minutes o c.p.u. time to ru

CDC 7600.)
A AR AL AT A AT A I MO R P P BN e ety el s .‘_:-'_:-'..-‘.:'..:
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It should be stressed that the eigenmodes corresponding to eigenvalues
with Im(y) < 0 are unphysical since they correspond to modes which grow along
the real z-axis as 7 + £ », go that their Fourfer transforms do not exist.
The eigenvalues for the five unstable modes which the routine found are given
in Table I for the case A = 1. The number of significant figures was
determined by increasing the width of the integration region and doubling the
number of modes; those figures which did not change were deemed significant
and included in the table. The critical value of A at which Im(y) = O, Acrit'
was then found for each of the five most unstable modes by following the
eigenvalues parametrically as A was reduced. The results are shown in Table
II, the overall marginally stability point is given by A = 0.37. We then
repeated the calculation using Eq. (16) rather than Eq. (19) with

-

< - 10, iy- 0 corresponding to quarter critical density and V:/c2 = 0.0013.
These values correspond to those in the NRL long scale length experiment.
Results are also shown in Table II. There 1s evidently good agreement between
the results ;sing Eq. (16) and the results using Eq. (19).

In Fig. 1 1s shown a plot of the growth rate versus A for the most

unstable mode, determined from a numerical solution of Eq. (19). In physi_.al

units
"’o ‘{fnt
[Zw Sw + tw, oVt == v))] ——7— = iy(A), (25)
|

where y(A) is defined graphically in Fig. 1, and A and X;,, are defined in
Eqs. (18). A recent analytiec theory8 also shows that the growth rate depends
on the single parameter A. In Ref. 8, it can be shown that their expression
for growth rate reduces to y = A1/2[1 - 0.5 A.3/2] so that the threshold is
given by A = 0.63. Thus the analytic theory predicts a threshold higher by

almost a factor of two.
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growth) for A = 1 for the 5 unstable modes.

with kx = 10, ky =0,3 Ve/c = 0.00013.

Table I The real and imaginary parts of y (positive imaginary part means

The eigenvalues are

calculated from Eq. (16) and also from Eq. (19)

Mode Number Re v, Tmy, Eq. (19) Rey, Imy, Eq. (16)
1 -0.4564, 0.5091 -0 .4597 0.5168
2 -1.794, 0.1418 -1.789 0.1473
3 -2.835, 0.06217 -2.827 0.06516
4 -3.7114, 0.0289 -3.7020 0.0304
5 -4.49, 0010 -4 .48 n.011

Table 11 The value of A = A(crit) for marginal stability for the 5 unstable

nodeg.
Mode Number Acerie)r Eq- (19) Acerie)s Ed- (16)
1 0.37485 0.36762
2 0.6188 0.6102
3 0.7567 0.7498
2 4 0.858 0.854
5 0.9 0.9

......................

——e e s e
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In practice, an important effect is tranverse convection across the
finite spot size. This is an extremely complicated process.9 The theory of
Liu, et al.4 indicates that the growth rate must be larger than the convection
time, or Iméw > Vg/LT vhere L, is the transverse scale length. If Vg = ¢, (as
it 1s at densities less than about one~-eighth critical) a 100 uy spot size

'1, a fairly

means the growth rate must be larger than about 3 x lolzsec
sizeable requirement on Iméw. However at the quarter-critical density the
transverse scattered photon velocity vanishes so that here the condition
disappears.
From Eq. (25), we conclude that the {nstability threshold is given by

Im [Y(A)] = mpo[“z + (m:/wo)vll (xfnt/cz) rather than Im [y(A)] = 0. In this
expression, the v”s are the electron {ion momentum collision frequency plus
twice any damping rate of the wave. For the electron plasma wave vy must also
include the Landau damping. The phase velocity of the wave 1s given by

“po/kz' We have verified that Landau damping plays a negligible role for NRL
parameters (Te = 600 e.v.) for dénsities larger than one-tenth the quarter-
critical density. By contrast, the collisions make a significant contribution
to the threshold in density. 1In the NRL long scale length experiment,s
L= 140y, Z -~ 5, T. ~ 600 eV. Thus at the quarter-critical density, taking
{nto account collision damping, the threshold for Raman sidescatter is A =

/

0.46 or I = 1.6 x 10%w/ca? using the fact that v, = 25.6 1Y 2¢w/em?) A (W)

IV. Summary

In this paper we have revisited the theory of Raman sidescattering in
laser produced plasmas. We have shown that to a very good approximation the
growth rate and thresholds can be reduced to examining a single parameter

system. We find that at quarter-critical density, the threshold for

N "N"Q\. " n\.-.‘..'-..o-.‘, ' ,’u' N

. N O L AL )
\;,,'. TR f\:.\:.'....\..'. ',\:. -.:,\;,-._




o
stimulated Raman sidescatter in the NRL long scale length experiment is given e
roughly by T > 1.6 x 101%u/ca?. e

o
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