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I. INTRODUCTION

Over the past ten years, the Ballistic Research Laboratory (BRL) has been
striving to develop accurate means of predicting the dynamic behavior of gun
systems. Particularly, the major concerns are those effects that dominate the
launch conditions of the projectile and its subsequent terminal performance.
The basic objective of the acceleration measurement techniques discussed is to
determine the dynamic structural response of guns and projectiles in order to
verify theoretical predictions. These measurements are made in real gun
systems which impose severe environmental conditions that contain interference
phenomena which often dominate the outputs of the measurement system,
rendering the measurements useless for their purpose. 1In spite of the
difficulties encountered, viable acceleration measurements can be obtained by
addressing the nature of the environmental interference and the structural
respounse.

A. The Measurement Problem

The measurement problem is one of being able to discriminate the
significant motion vector from a complex combination of vector components
which are generated by various dynamic phenomena including the ones of
interest. Unlike well-controlled laboratory experiments designed to separate
various physical phenomena, ballistic system measurements are subject to
interference from local accelerations generated by stress waves, blast waves,
dilatational vibrations, traveling loads, impulses, and impacts at mechanical
interfaces. Often the resulting interfering accelerations have a greater
magnitude than the measurand.

B. Approach to the Problem

To gain a meaningful acceleration measurement, one must exploit the
characteristics of the physical phenomena encountered during the
measurement. In this discussion, the global structural motion is paramount.
Therefore, emphasis is placed on the low frequency responses of ballistic
systems, that is, those below 10 kHz. However, higher frequency responses
cannot be ignored or disregarded. The high frequency responses of ballistic
systems (generally frowm 8 kHz to 60 kHz) must be considered for their effect
on the transducer system and their pollution of the desired data. The
measurand must be considered as a six-degrees~of-freedom phenomenon, and the
sensor must be considered to have a multidegree-of-freedom response,depending
on the design of the specific sensor used.

Interferences in the measurement from environmental conditions can be
eliminated or minimized by numerical, electronic and mechanical filtering
techniques. However, these filters must be designed for each specific
situation.

The separation of the desired vector components of motion can be achieved
through the deliberate design of sensor arrays and their associated data r
processing algorithms. The theoretical predictions must be cast in the game i
vector component combinations as the measurement. This technique is enhanced s
through the selection of matched pairs of sensors. h_,
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The following discussion reviews the characteristics of the environment,
measurand and sensors, and the applications of filters, sensor arrays and
calibrations as well as their requirements and limitations.

2%s®

II. THE HIGH G ACCELERATION ENVIRONMENT

2.

N - J

Before proceeding, a definition is in order. A "G" is definedzas one
standard gravitational acceleration unit, 32.2 ft/sec” or 9.8 m/sec”.

M,

For modern ballistic systems, accelerations can be expected with
measurands ranging from 5 Hz to 10 kHz in the frequency domain and from 0 kG
to 50 kG in the magnitude domain. Superimposed on these measurands are

T interfering accelerations ranging from 10 kHz to 60 kHz in the frequency

s domain and 2 kG to 10 kG in the magnitude domain. The desired measurands can
: be reasonably estimated for instrumentation purposes. However, the

_ interfering acceleration environment cannot be readily estimated. Sources of

the interfering accelerations are strain waves, impacts and impulses which

t cause the sensor to resonate, overload, and/or respond nonlinearly. Even if a
.. sensor is not permanently damaged, which is often the case, the output has

Ez been modified by sensor-generated baseline shifts and frequency components
caused by the nonlinear response of the sensor. This condition often renders
the data from the measurement unintelligible. Figure 1 shows the output of a
piezoelectric accelerometer which is dominated by stress wave interference.
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Pigure 1. Typical Gun Muzzle Acceleration Signal
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In this case, the accelerometer is mounted directly to the muzzle of a
75-=m gun. The bandwidth of the acquisition system is 100 kHz. The linear
response of the accelerometer is 6 kiHz.

The expected maximum acceleration of the structure is 350 G with
significant modes up to 1.5 kHHz. This accelerometer was subjected to
accelerations in excess of 2000 G peak but did not suffer permanent damage, a
fact verified by subsequent recalibration. In this case, baseline shifts
occurred due to excitation over the nonlinear range of the accelerometer.
Figure 2 shows the normalized smplitude spectrum of the signal in Figure 1.
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ﬁ This spectrum shows a reasonable separation of the frequency content of N :]
E the measurand from the interference. However, merely filtering the output el
~ signal numerically or electromically will not remove baseline shifts or NS
N spurious frequencies in the range of the measurand frequencies. Figure 3 RO
. . shows the appearance of the measurand after low pass numerical filtering at Tt

6 kHz. Although the filter
vhich masked the measurand,

[

to the interference.
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removes the high frequency components of the data
it does not remove the baseline shift and the

self-generated low frequencies caused by the nonlinear response of the sensor
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Figure 3. Data in PFigure 1 Low-Pass Filtered at 8 kiz

Mathematically, the excitation at the input to the accelerometer can be
expresged by the second time derivative of the sensor’s position vector,
P=R+r . The unit vectors of the earth coordinates are U;, U' and U;. The
unit vectors of the sensor coordinates are U , U , and U with their origin at
the center of gravity of the local etructuraf eIZment. The position vector
is diagramed in Figure 4.

The vector R is the relative position vector of the origin of the local
coordinate system with respect to the earth's coordinate system. The local
coordinate system translates and rotates with respect to the earth's
coordinate system as a function of time., The vector r is the position of the
point of observation with respect to the origin of the local coordinate
system. Since the local coordinate system undergoes rotation, the first time
derivative of the unit vector U is defined as the angular velocity vector,
o.l It can be !hown that the acceleration vector, A, at the point of
observation is

1 S.V.'Mcc.‘uakay, Introduction to Advanced Dymamics, Addison-Wesley
Publishing Company, Reading, MA, pp 28-33, 1958.

2 J.0. Pilcher II, "Theoretical Comsideration in Meaguring Siz-Degree-of-
Freedom Motion of Gun Tubes by Accelerometers," ARBRL-TR-02474, Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, February 1983.
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: TH4
. Figure 4. Position Vector
e _ = . .
I A = = = (R + 2 (wxR) + (we(Rtr))u-(wew)(Rtr) + @x(B+r)] + [r+2(wxt)].
3 (1)

The terms in the first bracket in Eq. (1) repregent the accelerations due to
rigid-body motion of the element. The vectors R and @ are usually the desired
measurands but are not generally separable from the remaining terms. The
terms in the second bracket represent the accelerations due to local
deformations. The frequency domain of these accelerations corresponds to the
band of higher frequencies shown in Figure 2. In the case of gun tube
measurements, the magnitudes of the local deformation accelerations are one to
two orders of magnitude greater than the magnitudes of the rigid-body
accelerations,

Ta'"® e & 4 NS .

III. MECHANICAL FILTERING

- W 5§ ¥ F 5

In spite of the difficulties encountered, mechanical filtering offers the
most viable approach to eliminating the high frequency accelerations from the
measurement. However, this technique cannot be blindly applied. A
preliminary measurement must be made without filtering to determine the filter

11
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requirements. Once these requirements have been established, the design of
the filter can proceed. The operation of the filter must be verified through
. appropriate testing done over the ranges of magnitudes before it is used for
measurement purposes. This is particularly necessary since mechanical filter
design is based on approximate theory and is still an art at best.

-

tabulated in Table 30.3 on pages 30-53 of reference 3. Figure 5 shows one of
the physical embodiments of a filter. Figure 6 shows the characteristics of
the filter in Figure 5 compared with the characteristics of a similar filter
using an elastomeric material instead of felt. The fibrous structure of the

- felt contains numerous scattering surfaces which enhance the attenuation of

- high frequencies. In this case, the cutoff frequency is designed to be 3 kHz.

Tare s
PR

5 A filter design used at the BRL is based on the viscoelastic and e
ﬁ attenuation properties of felt, which is the medium for the spring and damping :

A elements of the filter. It is designed as a parallel transfer impedance

’ filter.

R R

N c R WwC WS WT ;
iy where Z. = the characteristic impedance, and of the filter; e
':J‘ - "-.
;: Zg = the rigid body impedance; . -i
- Zyc» Zyss Zyr = the wave effect impedance due to compression, -
= shear and torsion, respectively. T
-? Zgp is determined by the classical theory of vibrations and Zycs Zyg» Zyr are S
y determined by computing the wave impedances.

N P
~ e
- g = ZRCwclusiur 3) i
N ¢ ZucPustur * ZRZuctur * ZusPur * ZusPwc) B
ﬂ: The wave impedances can be estimated for simple geometries by the models ?:i;
o -'._-:._'

+ R

N Figure 7 shows a comparison of the mechanically filtered and mechanically

- unfiltered shock pulse measure during operational tests of the filter.

o

.- 8 ¢.M. Harris and C.E. Crede, Shock and Vibration Handbook Vol. 2, McGraw- el
- Hill Book Company Inc., New York, Chapter 30, p. 53, 1961. RN
A AR
- ¢ J.0. Pilcher, "Application of Mechanical Filters to Ballistic
- Measurements,”" Ballietic Research Laboratory, Aberdeen Proving Ground, MD, :
. fortheoming. e
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MECHANICALLY FILTERED

Figure 7. Shock Test Verification of Filter Operation

IV. SPATIAL ARRAY TECHNIQUES

Once the high frequency interference has been eliminated or reduced to an
insignificant level, the measuring system must be designed to resolve various
vector components. Certain combinations of sensors must be used depending on
the primary purpose of the data to be collected. This requires amn examination .l
of the accelerometer response to the imposed motion. The accelerometer 1‘;
response can be expressed as a vector, G. }{}f

L

€ = al, + bl + cU, (%) s

where a,b, and ¢ are the response coefficients along the local unit -
vectors.

The coefficients of Eq. (4) are the principal gage factor and the two
orthogonal cross—-axis gage factors. The equation can be expressed in
terms of the principal gage factor, P, and the ratios of the cross-axis
gage factors to the principal gage factor, k) and k, (usually expressed in
percent in the literature). For a specific gage arrangement, where the
principal axis is along U

=P (Ux + klu& + kzuz). (5

14
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The output, O, is the dot product of the gage response vector, G, with the .
local acceleration vector, A (given in Eq. (1)). T

0=cA=P{[R + w0 (RAT) + 0w (R +r)

2 2 . .
(Rx+rx)(my+mz) + Zmsz - 2szy

+ G (R 4r,) - & (R +r )]

[

» .

+ kl[Ry + mywz(Rzu-z) + wywx(Rxﬂ:x)
- R4r win?) + 20 R - 20 R R
y vy z X zx X'z » .

+

&z(Rx+rx) - Bx(Rz+rz)]

+ kz[Rz + wzmx(Rxﬂ'x) + mzmy(Ry-i-ry)

2 2 . .
(Rz+rz)(mx+wy) + 2mey - 2wny

+

&»x(nyny) - «;y(nxux)]} . (6)

The complicated equation above can be simplified by using matched pairs of
accelerometers mounted in symmetrical arrays about the origin of the local
coordinate system. Matched accelerometers have the same cross-axis

. sensitivity. Figure 8 shows the schematic layout for a six accelerometer col-
linear array for measuring the local motion of a gun tube. All six
accelerometers lie on the same axis. Accelerometers 1 and 3 have their
principal axes along U, ; accelerometers 5 and 7 have their principal axes
along U, ; accelerometers 9 and 11 have their principal axes along U . Vector
components for this array can be discriminated using the following algorithms.

T P T R B P P e S A R e A
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e’) Equations (7) are derived in Reference 2, e
%
? These equations demonstrate the complexity of the content of the :-_j{j
o accelerafion measurements. Particularly, they show that single components
= such as R_ are not separable from the data. This is a situation that must be —
x . . e
) addressed when the purpose of the measurement is to verify model .
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Figure 8. Oollinear 3-Pair Accelerometer Array
predictions. Another important consideration is the establishment of the ':'&”

measurement system bandwidth. When vibratory modes are estimated, one must
consider that the terms such as w w R will create frequencies which are the
sum of the frequencies in the reprefefited vectorial components. As a rule of S
thumb, one can expect frequencies up to the third harmonic of the highest mode N
excited. In addition, the spectrum will be filled with the intermediate
frequencies of the vector products.

V. ELECTRONIC AND NUMERICAL FILTERING

It is common practice to provide electronic filtering between the sensor -
and the data acquisition system to create improved signal-to-noise ratio, and o
minimize FM/FM recording distortion. Filtering is also provided to prevent e
aliasing during digitizing for numerical analyses. These filtering AR
applications should be carried out using constant time delay or constant phase "
P
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:4 filterc.5’6 In dynamic measurements, phase shifts become more significant

N than amplitude error and must be kept to a minimum. Although these types of o
filtering are often necessary, they present a dilemma to the experimenter in e
that they often hide difficulties caused by the sensor itself. If the whole

X sensor/acquisition system has insufficient bandwidth, one will see baseline

. shifts and sensor-created frequencies due to nonlinearity and overranging, but

3 not the high frequencies causing these problems. In addition, the output

N signal will be modified to the point that it cannot be reliably analyzed by .
Fourier transform techniques. It has been our experience that this condition T
has been the most common source of difficulty in diagnosing sensor problems in

ballistic measurements. What is generally required, but often most difficult

to obtain, is an instrumentation checkout test of the experiment with wide

system bandwidths that allow complete observation of the event to determine

- the adequacy of the instrumentation's measuring range functioning.
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VI. REQUIREMENT FOR CALIBRATION AND SENSOR CAPACITY

i
e

In order to utilize the powerful mathematical techniques available for

N analyzing accelerometer measurements, more extensive calibration information

< is required than is generally provided. In addition, more stringent

requirements should be placed on the accelerometer for both survival and -
measurement capabilities. :

L N

«_a

4

.‘

A SN

A. Calibration Requiremeats

. A

Calibration requirements generally extend the information available in R
both the space and frequency domain. —

1. A complete vector description of accelerometer sengitivity requires a RN
calibration of the sensor sensitivity in two mutually orthogonal planes as et
shown in Figure 9. .

KA

2. A complete description of the nonlinear sensor sensitivity requires e
sufficient data points over the whole range of measurement to adeq’ately ——a
determine the coefficients for at least a third order description.’ The i
process is required for both the principal axis of sensitivity and the cross R
axes of sensitivity. ‘
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3. The frequency response of both the principal and cross axes is
required for ballistic environments; it is reasonable to assume that the .« o~
cross—-axis environment is going to be the same order of magnitude as the T
principal-axis eavironment with the exception of on-board projectile
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Figure 9. Orthogonal Sensitivity Properties

measurements where the cross-axis environment can be several orders of
magnitude greater than the principal-axis environment, depending on sensor
orientation.

B. General Response Requirements

The accelerometer must survive and provide a sufficient range of
measurement in the ballistic environment. Local mechanical filters and ‘;"f4
fixtures will have to be employed to ameliorate the strain wave effects. e
Wherever possible, these filters and fixtures should be included as part of R
the sensors in the calibration. However, accelerometers must have the e
following properties. ER

: 1. Linearity. Linearity should be within 1X absolute over the range of SR
. measurement., -

2. Frequency Response. The frequency response should be within plus or
minus 12 from .01 Hz to 10,000 Hz.

3. Mmplitude Requirements. Amplitude ranges are

for guns - 2,000 G, and

for projectiles,
current - 20,000 G, and
future - 50,000 G.

4. Cross~Axis Sensitivity. Maximum cross-axis sensitivity should be
less than 1X.
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* S. Metched Accelerometers. The difference between cross—axis
o sensitivities for a matched pair of accelerometers should be less than 0.1%.

6. Volume and Mass Properties. The volume and mass of the
g accelerometers must be as small as possible with respect to the structure on
5 which they are mounted.

ol C. User Reaponsibility
¥
The above requirements can be provided by a vendor, but must be verified
_ﬁ by the user. The main problem is that the vendor cannot predict the mounting
. and environmental condition in which his sensor will be used. The user must
X either recalibrate the sensor in-house or collaborate with the vendor to
o obtain a suitable calibration under realistic conditions of use. This is
’ probably the most difficult procedure to practice and the most ignored. The
« lack of realistic calibration conditions presents the largest source of
Q measurement error, particularly in the ballistic environment,
M VII. SUMMARY
R«
: ® The acceleration envirounment for real ballistic systems is beyond our
. ability to accurately predict due to strain wave effects.
Nl
M
gz ® At this time, mechanical filtering appears to be the most viable solution
'y to the strain wave interference problem.
Al
2 e The complexity of acceleration fields requires that an array of matched
] pairs of accelerometers be used to determine principal vector
. components. Predictive model outputs must be tailored to the measurement,
g taking into account array geometry and vectorial sensitivity,
ot
.Y ® Electronic and digital filtering techniques must be used with caution; at
P a minimum, system bandwidths must be opened up sufficiently to examine the
overall measurement system performance during the initfal phase of any
- glven test series.
:: ® Calibrations must be extended to encompass the spatial and frequency
¢ behavior of the sensor. In addition, calibrations must include the
- mounting and environmental conditions of the actual measurement.
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