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Department of Mathematics and Statistics
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1. INTRODUCTION

An experimental software system for the solution of a class of non-linear,

stationary boundary-value problems is currently under development at the University

of Pittsburgh. The program NFEARS (Non-linear Finite-Element Adaptive Research

Solver) is a further development of the program FEARS [l-3], which utilized bilinear

elements to solve linear elliptic problems. NFEARS retains the functionality of the

earlier program, but incorporates a continuation procedure to solve non-linear

problems, using biquadratic Hermitian elements. The NFEARS design properties include

the following:

P (1) The system constitutes an applications-independent finite-element

solver for a certain class of two-dimensional, non-linear, stationary,

boundary-value problems defined by a weak mathematical formulation.
)

(2) Adaptive approaches are employed extensively. The a posteriori

error indicators developed in £2] are used to control the adaptive

processes and to provide a solution with near optimal error within

a prescribed cost range.

+) This work was supported in part by the Office of Naval Research under Contract
N-00014-80-C-0455.
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(3) In the system design, advantage was taken of the inherent

parallelism and modularity of the finite element method. In

particular, a two-level data structure has been employed to

take maximum advantage of the parallelism in the continuation

process.

(4) The system is highly modular in structure, reflecting not only

the natural separation by distinct function, but also the

isolation of those processes, particularly error analysis, which

are anticipated to be of the greatest experimental interest. In

this way, the migration of NFEARS from convenient research vehicle

* to efficient production tool will be gradual and controlled.

Extensive provisions for evaluating the performance are incorporated.

A principle feature of (2) i% an adaptive algorithm for mesh refinement and/or

. derefinement (or simply (de)refinement). Briefly, after a solution has been obtained

on some mesh, error indicators are computed on each individual element, These

-indicators are used, both individually and in patterns, to compose an estimate of the

error in an appropriate norm, and to specify what, if any, changes are to be made to

the mesh. The (de)refinement algorithm in essence divides elements and/or consoli-

dates others so as to achieve a more equal distribution of error indicators.

This paper presents the overall structure of NFEARS. The weak formulation for

the admissible class of problems is given in Section 2. Sections 3 and 4 discuss

• 4the design criteria of, respectively, the control and data structures of the program.

2. MATHEMATICAL BASIS OF THE DESIGN

By necessity our attention had to be restricted to a specific class of problems

that is sufficiently broad to be of interest both for research and practical appli-
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cations, yet narrow enough to allow for easy implementation as an experimental

vehicle. Our choice was a fairly general class of non-linear, stationary boundary-

value problems on certain two-dimensional domains which admits also many linear

elliptic problems as special cases. Throughout the design, we have refrained from

using approaches which would limit extension to more general problems.

The permissible domains are of the same type as in FEARS [1-3]. The domain Q

in I2 is taken to be an open, connected, and simply connected set with boundary

:v . We denote points of u. by x := (x 1 ,x 2 )T. The system will have two modules,

namely, for the solution of problems with one and two unknowns, respectively. In the

case of one unknown function, we seek a function u(x) defined on . such that

(i) u is a stationary point of the functional

J (I[1],I[2],X1A 2 )dx = (2.1)

(4
Xl fQU f 1(i)dix + ~2 U u f2(R)dx

+ 'l u g1(s)ds + X2  u g(s)ds
• -" J

where d: dx 1dx 2  and

Il] = ill (2!xI + u (2.2)

and

I[2] = 1[2] (u) (2.3)

are invariants with respect to the rotation of coordinate axes.F (ii) If r o , r I , and r2 are appropriately chosen subsets of )Q,

then u satisfies boundary conditions of the form

-: .. " "" . ". - - , " - - " - " . "" ' ' = --- "-.,-..-,.--- ,I,.m .w. . -' ,. ' '
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u h Ah(") + Ah (i) on p0 (2.4)

or

Du X() + X2 i on F1  (2.5)

or

U + au A1(hl+kl) + A2(h +k ) on r (2.6)

where n is the outward pointing unit normal vector on .

Similarly, in the case of two unknown functions, we seek a vector function

T-u = (u1.u2) defined on Q. such that again conditions of the form (i) and (ii)

* hold. In (i) the functional (2.1) is replaced by

1[2](,I[]],X2lox[2 )di AA (2.7)

)~ ~u~1()di + ' uf()dx

+ ;i -i.g(s)ds + X2 ; 9 ii 2 sds

and the invariants become

ai u )u a3u
[2] 1[21 1u 1 '2 2

= ~E2 ~u a au2 (2.8)

0 (3] IC1 (a)K:in (ii) the scalar functions h,, h 21 k1, and k 2  are likewise replaced by vector

fucios
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This class of problems is fairly general and includes, in particular, most of

*the basic problems in elasticity theory. Two parameters, X and 2' are incor-

porated into the formulation, hence the equilibrium surface of the problem under

study is two-dimensional.

As in FEARS, the domain Q is defined as a union of subdomains Qupon each

I 1.3

of which is introduced a finite-element mesh. In order to minimize the amount of

* redundant data, we work, as far as possible, with non-intersecting open subdomains.

The set of discrete points necessary to close the union of these open subdomains is

treated as a separate case. Figure I illustrates how this process works for a

simple (straightlined) domain. Here the domain Q? is decomposed into a union of

(1) Three 2-dimensional open subdomais (or 2-subdomains), here

indexed as 2-1 through 2-3.

(2) Ten 1-dimensional open line segments (or 1-subdomains) on the

boundaries of the 2-subdomains. here indexed as 1-1 through 1-10,

so that each -subdomain is on the boundary of at most 2

2-subdomains, and,

(3) A set of eight discrete points, or tsubdomains, here indexed as

0-1 through 0-8, which close the decomposition. Each -subdomain

is thus on the boundary if at most 4 2-subdomains and at most 4

2-subdomains.

For the design of a reasonably efficient mesh refinement algorith, further

restrictions on the choice of the subdomains are desirable. We assume that the

closure i of 2-subdomain Pi is a diffeomorphic image of the closed unit square,

Qo" on which a simple hierarchy of subdivisions can be defined. Moreover, the

closure of each 1-subdomain is assumed to be a diffeomorphic image of the unit

interval [0,1].
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The mesh on each T_ consists of curvilinear elements which are first defined

r4 on 0Q0 and then mapped onto .. Then an admissible mesh on Q is defined as a

collection Md of closed squares Q in &o which are generated by recursive appli-
0

cation of the two rules:

U (1) The mesh M = M 0 consisting only of Q itself is admissible.o"0 (2.9)

(2) If Al is an admissible mesh on Co then the mesh M' that is
0

obtained from AM by subdividing any one closed square Q of

M into four congruent squares of half the side length of Q

is admissible.

A typical mesh on o generated in this way is shown in Figure 2. (For

clarity, some of the mid-side and center nodes of the biquadratic Hermitian element

have been omitted.) The refinement introduces two types of intersection point. We

call a point kegu oW if it is a corner of all undivided squares incident with it;

all others are termed ivtegutai. All points on the boundary of Q are always
0

regular. In Figure 2, the irregular points are marked by small circles. In order

IU to obtain continuity of the solution at irregular points, we constrain the solution

to take on values interpolated from nearby regular points. Thus the irregular

point no longer carry independent information of their own, and must be treated

separately. In Figure 2, the elemental stiffness matrix K if the hatched element

depends on the 5 numbered regular points. If K represents the usual stiffness

matrix of that element, then K := LTKo L, where L is an interpolation matrix

whose entries depend only on the mesh M on Qoo"

The decomposition of Q makes evident a natural parallelism in the incre-

mental construction and solution of the macro-stiffness system. The overall macro-

stiffness matrix has the form
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A1  0 C

U 0
(2.10)

A N CN

C T CT
L.1  . . . CN B

where Ai corresponds to the interior of the 2-subdomain si' Ci corresponds to

the 0- and I-subdomains on the boundary of Pi. and B contains information on

all,'but only, the 0- and 1-subdomains. Using a symmetric-decomposition solution

method, we may perform the following steps for each Q i in parallel

(M) Generate the matrices Ai and C.

(ii) Generate the contributions to the matrix B and send them to

a designated linear solver-process.
(2.11)

(iii) Compute the decomposition of A. and the corresponding modifi-

cation of C.

(iv) Compute the resulting modification of B and send it to the

solver-process.

4 A ,imilar procedure applies to the processing of the right-hand side. (Less

optimistically, the Q i may be processed serially, but even here, the inherent

.. parallelism implies that the order of processing is irrelevant.) Upon completion

of the parallel construction/decomposition, the matrix B is decomposed and the

corresponding portion of the solution obtained. The remainder of the solution, in

the interiors of the Qi, is obtained by back-substitution for each Qi, and is

once again a parallel process.

The ability of this scheme to deal with multiple right-hand sides without

afltering the matrix decomposition is of particular importance in the continuation

ea
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process, since it allows us to use modified rather than full Newton refinement. The

macro-stiffness matrix is calculated only once in each continuation step, at the

starting solution point for the step. The refinement of the predicted solution then

uses this same matrix, resulting in a marked improvement in efficiency. Full Newton

refinement remains possible, of course, if it is needed.

*3. NFEARS CONTROL STRUCTURE

To discuss the control and data structures of the program NFEARS, it is first

necessary to discuss the philosophy of the error analysis in the continuation

process. The mathematical basis of the error analysis is discussed in [4], and the

various aspects of its implementation are, at root, the raison d'etre for NFEARS as

a research tool in the first place. For this reason, the error analysis portions

* must be implemented so as to provide maximum flexibility and eash of experimentation.

However, error analysis in NFEARS does not occupy a readily isolated module, but

rather, various aspects of it occur throughout the code. Those aspects of NFEARS

which are not under such intense research scrutiny, such as continuation per se,

Newton refinement and linear solution, are still of sufficient complexity and cost

that efficient coding is essential. Thus, the exigencies of error analysis determine

not only that portion of the code, but dictate design criteria for all of NFEARS.

To the extent that speed and ease of alteration of code are conflicting design

goals, the primary design criterion for any portion of code will largely rest onr. whether that code is, or is not, part of the error analysis.

The global structure of the NFEARS design is such that, once some particular

mesh has been specified and a solution point on that mesh calculated, several

*. continuation steps may occur before the error analysis deems mesh alterations

necessary. Such changes are dictated by the error indicators calculated for each

element at each step, and will involve either refinement of the mesh if the errors

II
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subordinate to the executive.

The mesh management module is responsible for the creation and maintenance of a

*disk data structure reflecting the current mesh and current solution. As noted, -

changes to the mesh are anticipated to be relatively rare in relation to

*. continuation steps on a given mesh. However, when mesh changes do occur, their

* effect on the total NFEARS data structure will be extensive. The data structure

*i used to store mesh information is a straightforward extension of the tree structure

used in FEARS, which is described in [3]). Additionally, whenever the mesh is

changed, a Transient Data Set (see below) is created afresh, containing mesh-

dependent data in a form most efficiently available to the continuation module.

Within each continuation step, error indicators are calculated on each element,

I as are summary error indicators on each 2-subdomain and for the region as a whole.

These indicators depend on the new solution point, and are calculated as soon as the

* new solution is available. Their purpose is two-fold, and it is important to

delineate the two functions. On the one hand, it must be ascertained whether the

current mesh has become untenable, and must be (de)refined. This is, in essence, a

go-no-go decision to be made after each continuation step. It depends not simply

on individual error indicators but on patterns of errors within each 2-subdomain.

This error pattern analysis is thus a submodule of the FMC process.

On the other hand, once the current mesh has been deemed unacceptable, it still

* remains to specify (and effect) precisely what changes must be made to the mesh.

This logically separate step occurs in the (de)refinement specification module. This

module is yielded control only after an FMC episode has been terminated by directive

* from the error pattern analysis. In turn, the mesh management module will then

effect the specified changes, and the executive will calculate a new starting

solution and begin another FMC episode.

* Apart from the error pattern analysis submodule, the FMC module poses somewhat

the converse design criteria than the error analysis. Continuation on a fixed mesh

.S-
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has already been researched (see PITCON [5,6]) and, subject to minor and anticipated

S variations in technique, is not considered to be of major research interest in

NFEARS. This module, then, as well as the linear solver and user-function evaluation

submodules subordinate to it, are optimized for speed, even if at some expense in

p size, clarity and flexibility. Of particular importance is that mesh-dependent

data, unchanging during several continuation steps, is calculated only once and is

available in a sequential, unstructured stream. This data, the Transient Data Set,

is described in the Section 4 below.

-Repeated continuation steps within an FMC episode will occur until one of the

following sequential conditions arises:

(1) The target values of the parameters XI and X2 are achieved,

with no contro-indications in terms of error or cost control

measures.I
(2) Any of the cost-control paraneter% are violated, such as the

maximum number of continuation steps or the minimum acceptable

step size,

(3) The error pattern analysis indicates that the current mesh has

become untenable, requiring refinement in some portions of the

region and/or derefinement in others.

(4) Unanticipated serious errors, such as the singularity of the

Jacobian/continuation matrix.

At the conclusion of an FMC episode, control is yielded either to the (de)refinement

specification and mesh refinement modules for mesh (de)refinement, or the the

executive module to terminate the run.I4

As in PITCON. a single continuation step consists of a controlled sequence of

- six sub-modules. namely

,2
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(1) The calculation of a tangent vector at the current solution point,

(2) The selection of the new continuation variable,

(3) The selection of the step size,

(4) The construction of the predicted solution and the evaluation of

the functional (2.1) at this point via user-supplied functions,

(5) Modified (optionally full) Newton refinement of the predicted

solution, including the calculation of the elemental and summiary

Ierror indicators, and

(6) The error pattern analysis on the error indicators to make the

go-no-go decision on mesh (de)refinement.

Noto that the failure of the Newton refinement to converge will not, by itself,

terminate on FMC episode; rather, it would simply indicate the need for a smaller

step. Cost control restrictions would then terminate this process if needed.

The linear solver and user-supplied function evaluation modules present no

unusual design criteria other than as noted above.

4. NFEARS DATA STRUCTURE

The data structure for NFEARS is composed, is broad terms, of two distinct

0 structures, the permanent data set (PDS) and the transient data set (TDS). This

-" , division directly reflects the corresponding division of an NFEARS execution run

into FMC episodes punctuated by mesh re-specification and (de)refinement. The

* distinction between permanent and transient data is precisely the distinction of data

that transcends any particular mesh versus data that is dependent on a given mesh.

The importance of the distinction lies in the fact that the PDS is the primary

structure for the mesh specification and management modules (which are o imized

0
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for speed).

The PDS contains data that is intended to survive not only a given mesh

selection, but even the termination of the NFEARS execution. It is created

immediately upon successfully editing user input, and contains all data regarding

* the qeometry of the region, as well as user-supplied run-control and cost-control

parameters. In the course of the run, it is augmented with the current mesh,

solution point, and error indicators. These are stored in a flexible tree

structure (similar to that in [3]), enabling mesh (de)refinement to be made at a

reasonable cost. Also stored in the PDS are such historical data as may be needed

for summary reports to trace the events of an NFEARS run.

Once the PDS has been created from user input, and some mesh specified with a

corresponding solution point, the execution of NFEARS may be interrupted without

loss of data, and resumed "in place" at some later date. This "dump/restart"

capability may be used for interim analysis of results, post-processing, or simply

to alleviate machine-time restrictions. It also provides the ability for the user

to follow different curves on the solution surface, starting from a common point.

The TDS, conversely, does not survive any instance of mesh (de)refinement.

It is created in its entirety by the mesh management module whenever the mesh is

changed, and contains all data from the PDS necessary to do continuation on the

current mesh. It is used by the FMC process, mostly on a read-only basis. It

consists of some core-resident portions relating to the 0- and 1-subdomains, with

the remainder placed in blocks of a sequential disk file. Each block corresponds

to one 2-subdomain, and the blocks are processed either in parallel, or serially,

independent of order. Input buffering overlap on the TDS is tuned to keep disk

overhead to a minimum.

The contents of the TDS for a given mesh includes the following types of mesh-

dependent data:

i. "... ." . . .. ". .- T'- -- ]] . '-
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(1) Integration-related data for each element and boundary line

segment, such as quadrature coordinates and the determinant of

the Jacobian if the isoparametric domain transformation,

(2) Index information needed for the construction of the linear

system, especially in the assembly of the Jacobian matrix of

the function (2.1),

(3) The interpolation matrix L by which the solution values at

irregular nodes are expressed in terms of regular nodes, and

(4) Pivoting strategies for the incremental decomposition and solution,

by 2-subdomain, of the linear system.

Some data in the TDS is organized by element, some by node; minor repetition of

data occurs in a few cases. In addition to the TDS, tabulations of shape function

evaluations and derivatives for the biquadratic Hermitian element are stored in the

PDS. again to obviate repetitive calculation within the FMC process.
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