D-R148 859 DESIGN OF A KNOWLEDGE-BASED FAULT DETECTION AND 1/1
DIAGNOSIS SYSTEM(U) HHSSRCHUSETTS UNIY RHHERST DEPT OF
COMPUTER AND INFORMATION S.. E HUDLICKA ET A

UNCLASSIFIED 28 MAR 84 TR-84-83 NoBoid- ~79-C-0439 F/G 9/2

END
Fuueo

e

m“lEO m K g22
=3 L
T
|_——-——_ 1.8

==
I
==
=
E
i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ASSanma

1 L

L. A

Department of Computer and Information Science
University of Massachusetts
Ambherst, Mamachusetts, 01003

TR # 84(83.

<N

10]

¢ | o

DESIGN OF A KNOWLEDGE-BASED R,

2 FAULT DETECTION AND DIAGNOSIS b

SYSTEM

- R

$ Eva Hudlicka and Victor Lesser DT: ~ - 1
Q
<

ELECTL N
OEC 2 1 1984 "-j_ Zl’

- -
<A

Computer and Information Science

‘University of Massachusetts at Amherst

Computers
Theory of Computation

Cybernetics

UTIB FILE COPY

DESIGN OF A KNOWLEDGE-BASED .
FAULT DETECTION AND DIAGNOSIS R

Eva Hudlicka and Victor Lesser

Department of Computer and Information Science
University of Massachusetts .
Ambherst, Massachusetts, 01003

TR # 84.03.

CSoet address: evaumasscs Cmet-relay
20 Mrech 1984

DT'C

ELECTE
050211984

A

Defeass Advanced Projects Ageacy (DOD), monitored by the Office of Naval
This paper in the Proccodings of the 17th Hawaii Internstional Comference cm System

research was sponsored uwwmwmw_‘m .

!
£
3
:

This document has been approved RO
for public teloase'ax_xd sale; its e
distribution is ted. e

.......

psper presents a design of a knowledge-based fault detection and diagnosis (FDD)
component intended to function as part of an intelligent processor (ageat) in a distributed
problem solving system. This component will permit the system to monitor its own
bebavior, detect an abnormal system state, and identify the fault that caused it. Once the
fault is identified, the system can repair it or reconfigure itself, thus improving its
performance. The beart of the FDD component is a model of the system it is moaitoring.
This model represents the correct behavior of the system and the criteria for detecting
deviations from this bebavior. Thus it integrates information necessary for detection and S
diagnosis into a uniform structure. Detection is accomplished by monitoring the system RENeE
- state and detecting situations which violate the predefined expectations. Diagnosis is
accomplished by counstructing a representation of the current system state and determining
the earliest points of departure from the expected behavior as represeated by the correct
system model. These points constitute the identified ﬁ.-.’L;;}\

1

. Teta v e s

i o

te R L

. et Yy, % e

. Vet Tt
St

. ettt e e

. uTa

Aoceastan Fop
R S ¢
*B

. |

By ol
_Distadru L
Avajlabilety Cadyes
*'"-'.Z-.'af Lemd e |
AR S S R

...........

I INTRODUCTION

In large, complex systems, such as distributed problem solving-systems, independent
intelligent agents (processors) cooperate on the overall solution. In order to function in this
manner the agents must decide which subproblem in their area to work on, whether to
satisfy other agents” demands for information, and what type of information to
communpicate and how often. The information upon which these decisions are based is
distributed among the different agents; there is no ceatralized coatrol or global database.
Due to this lack of a coherent global database it is common for a given agent’s model of
the world to be incomplete or inaccurate. For example,

@ the agent’s model of the system organization is wrong and this results in
communicating irrelevant information;

® the agent’s model of the environment is vwrong (for example, due to 2 faulty
sensor) and this results in wasted effort as bad data is processed;

® the agent’s model of its own role in the overall system is wrong resulting in its
working on a subproblem that has already been solved by another agent.

Such errors at best result in degraded system performance and at worst in the system nct
achieving its goal at all. We call such errors problem solving control errors, because the
coatrol decisions made by the agents are inappropriate due to their inaccurate models of
the worid. Note that problem solving control errors can be due to hardware faults (as in
the sensor failure in the enniple above).

There are two general ways to deal with faults and the errors they cause. One way
is to eliminate the faults a priori and the other is to accept them as unavoidable and
design the system 30 it can deal with them. These approaches bave been termed fault
intolerance and fault tolerance respectively by Avizienis (1] in the context of hardware and
software. In the context of distributed problem solving there are two alternative
approaches to making the appropriate control decisions to guarantee correct problem solving
which are analogous to the fault intolerant and the fault tolerant methods mentioned
above. Onme is to insure that each agen: always has complete and accurate information.
Unfortunately, for many distributed problem solving tasks, maintenance of such a database
would require extensive synchronization and communication amoang the agents and
consequently decrease system performance. The other way to deal with a lack of coherent
global database is to accept the fact that there will b: inconsistencies in the agents”
knowledge and deal with the consequences as they arise.

——y

<
L
P

One approach which falls within the category of fault tolerance has been described by
Lesser [S] and termed the functionally accurate/cooperative (FA/C) approach. This approach
is based on the philosophy that a system must deal with errors as part of its problem
solving strategy rather than counsidering them as an abnormal situation. In order to achieve
this, an FA/C system utilizes redundant views of the data as well as multiple paths to the
solution. Because of this built-in redundancy an FA/C system tolerates some errors
implicitly if given sufficient amount of overlapping and redundant information. It is thus
suited to tolerating some types of faults such as transient faults or faults which can be
overcome by using redundant information. However, there are faults which the FA/C
approach cannot deal with. In situations where a fault is permanent (for example, a sensor
continually distorting its data) the system wastes effort dissipating the effects of such
erroneous data because it bas no explicit awareness of the underlying fauit. In cases where
redundant information does not exist the FA/C approach clearly cannot help ecither. For
example, suppose there is only one channel through which two agents may communicate.
If this channel fails communication becomes impossible. In both these cases the system
performance could be improved if it could detect such a problem state, ideantify the fault
that caused it, and correct it or reconfigure the system.

Existing fault tolerance (FT) techniques for detection and diagnosis are not directly
applicable to the distributed problem solving domain. Error detection in both hardware and
software FT systems is usually accomplished by replication and voting. This technique is
expensive since the eatire system needs to be replicated several times and processes the
same data. Thus we need a new type of detection method which is not based on
complete replication of the system in order to recognize an error. Diagnosis in hardware
FT systems is performed by running a battery of tests on the failed circuit or system.
This approach often fails when faced with complex, non-permenent or multiple, interacting
faults. Thus hardware diagnostic techniques are inadequate for systems where many
complex faults may occur simultaneously. In software FT systems automated diagnosis
following a failure is generally not attempted at all. Some work has been done in the
automated diagnosis of faults in hardware systems using artificial intelligence techniques.
Shubin et al. (8] developed a tool for automatically identifying a failed unit in PDP
1/03°s. His system assumes a single fault. Genesereth (4] and Davis et al. (3] have
developed systems which can identify multiple faults in a digital circuit using models of the

This paper discusses a design of a component capable of fault detection and diagnosis
in a FA/C distributed interpretation system. The interpretation system consists of a number
of intelligent ageats distributed over a two-dimensional area. The task of each agent is to
track moving objects through the part of the area that it can sense via its acoustic sensors.
The task of the system as a whole is to create a complete map of the enviromment
indicating the location and type of each object.

The rest of the paper is divided into three sections. Section 2 describes the types
of faults the system can bandle, the models needed for detection and diagnosis, and the
use of these models. Section 3 presents an example of a problem detection and fault
diagnosis. Section 4 concludes the paper and discusses the contributions we expect from
this research.

I MODELS FOR DETECTION AND DIAGNOSIS

A. Types of Faolts FDD can Handle

The fault detection and diagnosis (FDD) compoanent detects problem solving control
errors which are inadequate control strategies adopted by a problem solving component 2 a
result of incomplete or inaccurate information. Because such an error can result either
from hardware failures (failed sensor or channel) or from faults specific to a problem
solving system, (such as wrong values of intermal parameters), our model allows the
identification of both types of faults by representing the system at the appropriate level of
detail. The FDD componpent can deal with multiple, possibly interacting, faults as well as
with complex failures such as a seasor uniformly distorting its data or bursty faults.

o i P4

ATrL SEPEIRIN IAGIEE Y

B. Knowledge Needed for Detection

The problem of detection is t0 recognize an abmormal system state. To do this, the
system must have an idea of what constitutes a normal system state. The obvious way to
detect an abnormal system state would be to compare the system behavior with the correct
behavior, ie., behavior expected if the system was working in an optimal manner on
deriving the correct answer. Since we are dealing with a problem solving system neither
the correct answer nor the optimal approach is available a priori. Therefore we must have
other methods of detecting unsatisfactory states that do not involve comparing the system’s
progress with the answer it is attempting to derive. There are two such methods:

1. one uses general knowledge about appropriate system behavior, about the task,
and about the environment;

2. the other uses internal consistency standards based on redundancy within the
system.
General knowledge about appropriate system behavior comes from expectations of

what a good interpretation system should do. For example, we expect the system’s

confidence in its results to increase with time. We also expect it to make reasonable '
progress through the eavironment, accounting for more and more of its data as time goes R
on. Other system behavior criteria may include time or accuracy limits imposed by the ,\
user. In this case the system would be functioning abnormally if it did not derive an
answer within a specified time limit or with specified degree of accuracy.]

..................

The system can also use domain specific knowledge which can be applied to detect
an abnormal system state. In our case, the domain of acoustic semsing, we can put
constraints oa the types and motion of the vebicles which can function as expectations
whose violation coastitutes an abnormal system state. For example, vebicles can move only
within some range of velocities or can change direction within some range of angles.

Finally, the system can use some general knowledge about the specific environment it
is dealing with. This knowledge can be obtained by some preliminary, rough measurements
of the data. For example, before the detailed, intelligent interpretation, the system can
build a density map of the data. This would then serve as an expectation of the load
distribution. For example, if an agent in an area known to have high density of raw data
is idle, this is an abnormal system state.

Internal counsistency standards can be utilized in a system which coatains redundant
information. This redundancy can be in terms of multiple views of the same data or in
terms of multiple ways to process the data to derive the answer. Using the internal
consistency measures consists of making sure that these multiple sources of information
agree. Our system is ideally suited for this method since it contains both multiple view of
the same data (by agents in different locations) and multiple methods of deriving the final
answer (different knowledge sources taking different paths to the solution). Examples of
measures expectations based on internal consistency are:

® Predictions based on partial results should be fulfilled. For example, in the Lo
distributed interpretation system, predictions are represented as goals. A goal is w0
an expectation that a vehicle of a particular type will be in a particular region at
a particualr time. Such tions are produced by agents in the course of e
processing and are either ed locally by the same agent or sent out to LA
another ageat which can fulfill them.

® The system parameters should have values consistent with each other and with the L
current operating eavironment of the interpretation system, (i.c., with respect to R
the current system configuration, data distribution, and external expectations placed DR
on the system). For example, the interpretation system's knowledge is contained o |
in task processing modules (knowledge sources) which are rated based on their S
effectiveness, the strength of the data they will utilize, and the importance of the
results they will produce. These knowledge sources are rated and if they exceed
some predefined threshold they are put on a queue. The highest rated knowledge
source is put on the queue each system cycle. If the data is very weak and the
threshold does not reflect this, it may be set so high that very few or no
knowledge sources are invoked and as a result the agent is under-utilized.

o Communication areas among the different agents should be coasistent and
utilized. In order for two agents to communicate, their communication areas must
match: the sending agent must know it should send messages to the receiving
ageat and vice versa. If the communication nreas do not match, then an agent

............ \.;\.‘\. ‘:.-.'_. -_'..-.- R
AP IR AR A I

may coatinue mmMQ which, although they get over the channel, are
ignored by the ing agent because it docs not kncw that it should be
accepting them.

A distributed problem solving system contains many such examples of internal consistency

and we plan to exploit them in detecting an abnormal system state.
C. Knowledge Needed for Diagnosis

The problem of diagnosis is to identifly the faults causing a given abnormal system
state. There are two approaches to this problem:

1. using a malfunction model or

2. using a model of the correct system behavior.
A malfunction médcl consists of a map between the set of possible symptoms and the set of
possible faults. This model is appropriate for systems where such a symptom-fault map is
simple or for black box systems whose internal structure is not understood and which can
only be described by such stimulus-response type maps. Such models can be very efficient
(diagnosis consists of table lookup) but with any non-trivial systems it is difficult to build
a compliete malfunction model. In other words, there is always one more way in which
the system could fail that bas not yet been catalogued. A malfunction model would fail in
such a case because it would not find a match in its set of symptom-fault pairs.
Malfunction models are also not feasible for detecting interacting faults because of the
combinatorial explosion of the number of symptoms that would need to be catalogued.

Aa alternative to the malfunction model is a model of the system’s intended structure
and function. This model bas been termed function-oriented model by Nelson {7). Such
model is appropriate if the system's structure is known, as is the case, at least in principle,
in man-made systems, or if the comstruction of a malfunction model is unfeasible. An
example of a good application for this type of diagnostic model is a man-made system
intended to be self-sufficient, such as a satellite. It would be unfeasible to test the satellite
for long enough time to catalogue all possible malfunctions. Even if that could be done, it
would not solve all the problems since the actual working conditions of the satellite would
presumably be different from the testing conditions and unpredicted faults could occur later.
Since the satellite was designed by humans a complete description of its structure and
function can be made available to a detection/diagnostic system and fuaction as the correct
system model.

The disadvantage of this approach is its inefficiency. Suppose that a given symptom
always indicates only one fault. In a malfunction-model-based diagnosis this fault would be
identified very fast. In a correct-system-model-based diagnosis this fault might take a long
time to identify, depending on how far the initial symptom state was from the fault state.
Furthermore, the diagnostic module would repeat its entire set of actions every time that
symptom appeared although the symptom could never imply any other fault. Ideally, a
fault tolerant system would start out with the complete, correct model of the system and
adaprively build up a malfunction model which could then be used for more efficient
diagnosis. In cases where malfunction model was inadequate the system cculd always fall
back on the underlying model of the correct system behavior. Experienced diagnosticians,
such as physicians, seem to use this type of strategy [9). As a first step towards this
approach to diagnosis we have developed a method based on the correct system model.

We model the distributed problem solving system as a set of objects and the set of
states these objects undergo during processing (see Figure 1). The states of the objcts are
represented as nodes in a graph and are connected by state transition arcs which capture
the causality of events; i.c., if state A preceeds state B then this means that state A must

4 viod
sAane se0ae O Siate ¢
A -3 :
‘Qlojtcs wadt '
. ~ 4
objeed ave -
° |
o ‘ AT 3idiony
ovjecs ACe et
]
L]
Figure 1: System Model. ,f'; f::’_}::%
L 4
N N N S i i B 50 o i e e

be true before state B can take place. Different states of the same object are connected
together via a node in the graph representing the object. Examples of cobjects in cur
system are hypotheses (representing results derived by the system from the initial sensor
data), goals (representing predictions of future hypotheses based on hypotheses constructed
so far), knowledge sources (pieces of code actually performing the interpretation task), and
knowledge source queues. The graph representing the objects and their states is organized
into small clusters for managebility. These clusters are then organized in a hierarchy
corresponding to a top-down view of the system. For example, a high level cluster might
Tepresent an event as two states, state A followed by state B. A cluster at a lower level

of the hierarchy would contain othcr events which occur between state A and state B.
Such a hierarchical structure makes the detection more flexible and the diagnosis more
efficient.

Detection flexibility is achieved by monitoring the system state at the level necessary
rather than always monitoring the system at the lowest level of detail, as would be
pecessary without a hierarchical representation. The lowsr the level of detail at which the
monitoring takes place, the less the errors are able to propagate and the less damage they
do. Thus depending on the accuracy and speed required for a given task, the monitoring
can be moved up or down the hierarchy.

Efficiency of diagnosis is achieved by using discrepancies fouad at the higher level of
representation as a means of focusing into the general problem area and only then
examining the low level states. This is clearly more efficient than starting the diagnosis at

the lowest level of detail and examining every node until the problem is found. Figure 2
shows a cluster in the system model representing a high level view of communication
between two agents. The objects modeled are messages (node MESSAGE-OBJECT in
figure). @ Two states of this object are represented in the sending agent: node
MESSAGE-EXISTS and node MESSAGE-SENT. In order for a message to be sent it
must exist and the sending area must be consistent (node SEND-AREA-OK). If a message
is sent and if the channel is ok the message is received by the agent at the other end of
the chaanel. Here two states of the object message are represented:
MESSAGE-RECEIVED and MESSAGE-INCORPORATED. If the message is received
and the receiving area is consistent at the receiving agent the message is incorporated into

the receiving agent’s database. The next section discusses the integration and use of the

..
.............

N A e
F\"\'

.
PRIV WA . o P
NG P AP S S . PRSI S e e e e e‘:‘-
DR e e N T e e e e e L e e e, PR IR IS TR AT YR S RIS K
PP SRR, I PSP AP SR PE I PEPRPC P C TS G S AT T S~y RN PR

e

objact: message (at Agent #2) l

FMESSAGE-RECEIVED

MESAGE - INCORPORATED

object: message (at Agent #1)]\ RECE VE-AREA-0KX

agent boundary

Figure 2: A CQluster Representing a High Level View of Communication.

detection and diagnostic knowledge.
D. Integrating and Using the Detection and Diagnestic Knowledge

The discussion in the previous section described how the model of the correct
bebavior represents the structure and causality relationships of the system. This section
discusses how we can associate the detection information with arbitrary states in this model
and thus provide a structure relating the different detection criteria with the diagnostic
knowledge. Any state in the system model can be tagged and associated with a detection
criteria data structure. All tagged states are watched and updated by the monitor at some
predefined interval. The detection criteria data structure contains a list of the statistics that
should be collected by the monitor, a place to store the collected data, and a threshold
value indicating whea the diagnostic component should be iavoked. This diagnostic
threshold is expressed in terms of the statistics collected. For example, the
MESSAGE-INCORPORATED state in the high level communication model shown in Figure 2,
has associated with it the following information:

1. percent of messages rejected so far (say 30%);

.........................
.....

........

...........

......

2. allowed percent of messages rejected before diagnosis is invoked (the diage
threshold) (50%);

3. description of the types of messages watched for (for example, we might
watch for goals sent from one particular agent).

This information indicates that the agent expects SO percent of the messages that a
over the channel from another agent to fall within its receive area. So far, onl
percent of these messages were rejected which is well within the tolerated range. How
should this value exceed the diagnostic threshold (set to 50 percent), the diagn

component would be invoked.

When invoked, the diagnostic component is givem a description of the vio
expectation which caused the invocation. This description consists of a specific objec
this case, say Message #51) and the state this object did not go through as expectec
this case MESSAGE-INCORPORATED was the state not satisfied). Once the diagr
component is given a symptom it begins the construction of the current system state n
starting with the symptom nodes and going backwards in time (i.c.,, following the
transition arcs backwards). The current system state model is created by determining
each node in the model whether it is true or false with rezpect to the object |
investigated. Each node in the model has associated with it i~formation describing ho
determine whether it is true or false. This information is obizined from the rich
the interpretation system’s data structures maintaining the system’s history. (Data struc
such as the hypotheses about the environment, predictions about further hypotheses (g
different knowledge source queues, and sets of already invoked knowledge sources).

Nodes in the model continue to be evaluated until a state is found which
satisfies the expectations (the last good state). Once this state is found, we know tha
fault occured between it and the false state which immediately follows. At the high
this discrepancy, (the last good state followed by the first bad state), serves as a foc
point guiding the diagnosis into the correct part of the system model. Only the rela
low states in the model constitute reportable failures. These states are marked as prin
The diagnostic compopent will in practice evaluate several clusters, desceading dow
hierarchy, before a primitive false state is found.

..........................
..............
.......................................

By analyzing why a particular state of some object was not satisfied (in this case why
particular message was rejected) the diagnostic component may discover a fault in the
receiving area and thus account for the rejection of the other messages. Depending on
bow crucial it is for the system to catch faults, either lower level states or higher level
states can be monitored. The lower the level monitored, the less the fault has a chance to
propagate and the less damage it does. But there are more of these states and therefore

their monitoring is more expensive.

.

!...';__'. \ ".r":‘ ,\ Ry ‘,- }\, ,\._\ ,-. .s.,.\.\ SN et et e e T Salese el e e e e

.................

I P l...“. P v4444LALA4A444444;A'4'4LAL‘4‘

‘‘‘‘‘‘‘‘‘‘

Il EXAMPLE OF DETECTION AND DIAGNOSIS OF A PROBLEM SOLVING
ERROR

In this section an example of fault detection and diagnosis is presented in the
context of the system we will be monitoring: the distributed vehicle monitoring testbed
(DVMT). Each agent is a sophisticated problem-solver capable of making local decisions
and carrying out the entire task, given the data. Briefly, an agent functions as follows:

1. A piece of data (a hypothesis describing a vehicle of certain type at some
location at some time (time frame)) arrives.

2. This stimulates the creation of goals. Goals are descriptions of the types of
bypotheses whose creation is expected based on the newly arrived hypothesis.
Goals are thus predictions of future data based on current data.

3. A pgoal together with a hypothesis which caused its creation stimulate a
knowledge source that is capable of satisfying the goal.

The knowledge source is put on the scheduling queue.

The highest rated knowledge source on the scheduling queue is invoked,
creating more hypotheses and the cycle begins again.

Each agent in the testbed will contain an FDD componeat responsible for fault detection
and diagnosis. The individual FDD components will engage in distributed problem solving
with its counterparts at other ageats as it performs the detection and diagnosis, much as
the underlying interpretation agents engage in distributed problem solving as they perform
the task of acoustic signal interpretation. The testbed will eventually include a component
responsible for reconfiguring the system in response to faults reported by the individual
FDD components [2].

Cousider the following scenario. Two agents are cooperating on an overall
interpretation of the environment (see Figure 3). Agent #1 receives data from region
sensed by Sensor A (left balf of the eavironment); Ageat #2 receives data from region
sensed by Sensor B (right half of the environment). Both Agent #1 and Agent #2 process
the data at the lower levels of abstraction (up to vehicle tracks) but only Agent #1 can
process the data to the highest level of abstraction (the pattern tracks) and is respoasible
for integrating information over the entire environmeat. Since Agent #1 can only directly
sense data covered by its sensor (Semsor A) it must recsive hypotheses falling within
Sensor B's area from Ageat #2. The agents need to communicate in order to achieve
the solution and therefore their communication areas must be matched: Agent #17s
receiving area must cover area sensed by Sensor B as does Agent #2°s sending arca.

theses 8t vehicle .
track level

Agent #1 i i data z i data Agent #2

. e
LT
X vehicle track
. é) / hybothesis derived

vehicle track N . e by Agent #2 S
hypothesis derived Y ® v od ® rd -k

by Agent #1 - . °
o
Sensor A T Sensor 8 [“ P

Goal #3 sent to
Agent #2 from Agent ¥l .. ’

Figare 3: Twe Processor Fallure Scenarle. R

. _
Suppose that Agent #2's receiving area is wrong and does not specify Sensor B's area. Tl
Suppose that Agent #1 has successfully tracked a vebicle for some time and has a vebicle '
track hypothesis ranging from time frame 1 to time frame 3. It creates a goal for time >

fnmcl,Godﬂ,!mdncethisgodisontdAgem#l':sensedam,itsendsthisgml
out to Ageat #2 and awaits an answer (a bypothesis that would satisfy the goal).
Meanwhile, Agent #2 has derived such a hypothesis (one covering time frames 4 through

4) 6). Agent #2 sends its hypothesis to Agent #1 but because Agent #1°s receiving area is !
wrong, even though the hypothesis gets over the channel, it is never actually incorporated
into Agent #1°s database and Goal #4 remains unsatisfied. Suppose there is a limit on '
the amoust of time within which a goal must be satisfied. The detection component .

notices that Goal #4 has violated this time limit and invokes the diagnostic component.

Investigation begins in the part of the system model which represeats the symptom: in
this case, a cluster which includes the state GOAL-SATISFIED whose violation caused the
trigerring of the diagnostic component (see Figure 4 a). The aim is to find the value (true
or false) of each state node in this cluster. The values of the nodes are found by
evaluating the description of the value associated with each node. Once these values are
found, the true-false pair (a true node followed by a false node) can be identified. (In the
figure, true nodes are filled in and false nodes have a box around them.) This is the
point at which correct processing stopped. If the false node is a primitive node, then it
can be seported as the identified fault. Since in this cluster no nodes are primitive, the
true-false pair will be used to focus the diagnosis into the correct part of a more detailed
model. The true-false pair in this case is found at GOAL-SENT - HYPOTHESIS-INSERTED.
Since goal was seat out but no hypothesis was received the fault must have occured in one
of the states occuring in between GOAL-SENT and HYPOTHESIS-INSERTED. The node
GOAL-SENT points to another cluster in the model which iepresents the events that occur
between it and the next node, HYPOTHESIS-INSERTED. This is the cluster represented in
Figure 4 b. Again, the values of all nodes in the cluster are determined as before. In
this cluster there is a primitive node, RECEIVE-AREA-OK. This node is found to be false
with respect to Goal #4. In other words, Goal #4 does not fall within the receive area.
Because a primitive false node has been found, a failure has been identified and can be
reported to the component responsible for reconfiguration and repair. Any pending
symptoms are scanned to see which ones can be accounted for by the identified fault.
This allows the system to function more efficieatly since it reduces the number of
symptoms that have to be diagnosed in full.

Several issues arise:

1. Since all the information that may be needed for diagnosis cannot be stored
there will be cases when the system cannot determine the value of a state. It
will have to try and determine the value indirectly, by analyzing surrounding
states.

2. Should the diagnostic com t continue and search for other faults or should
it stop with the first one found.

3. Finally, bow can the FDD know that it is the receive area that is wrong and
not the goal (i.e., suppose Goal #4 should never have been created by Ageat #1
or should never have been sent to Agent #2). Deciding which of the two is

mmﬁraotherinfomaﬁon,mhn.whommtheamofcodﬁ

and wn it is reasonable for Agent #1 to require its satisfaction from

Agent

ey
” 4
o - 1
AV . ', <
‘-A4

- wm.-

GOAL -SENT

COAL - INSERTED
/—"3 HYPOTHESS-~ INSERTED

v

GOAL-SATISF IEO 0BECT: HYPOTHESIS

00ECT: GOAL

tSoal #e)
L
HYPOTHESIS-RECE | VED
~O——0
ALEDGE R ORCE AS . HYPOTHESIS-INSERTED .

@ R CCE -SOERALED R
RECE 1 VE-AREA-OX '-‘_?;'_Z.--_z'.
o NSNS
.- -.~'-.. "
L]

Figore 4: Diagnostic System Model.

We are just beginning to address these issues.

3t g
."’af-

IV CONCLUSIONS

This paper presented a design for a distributed knowlec' >-based fault-detection and
diagrosis component (FDD) intended to monitor and correct - .: behavior of a distributed
problem solving system. We described the detection criteri. and the model used for
diagnosis. We presented an example demonstrating the use of the detection and diagnostic
koowledge in the identification of a fault. FDD performs error detection in a complex
problem solving system without resorting to replication and vcting as is the case in
bardware fault tolerant systems. Unlike existing hardware systems it can deal with
complex, multiple failures. FDD is a first step in providing fault-tolerant control in a
problem solving system.

Y Y W W e

T a4t aVs et a e gt . .-
' " " LI S IS ST S e X et e SIS R P T
\J\A\.afi\;‘;_"i':.{'_‘.":‘."_h ARSI A A S S PTG TN -A‘-'A'-';x'.‘-' VPRI YUY

V REFERENCES

Algirdas Avizienis.
Fault-Tolerance and Fault-Intolerance: Complementary A7-:oaches to Reliable
Computing.

ACM Sigplan Int. Conference on Reliable Software, pages 458463, April 1975.

Daniel D. Corkill.
A Framework for Organizational Self-Design in Distributed Problom Solving Networks.
COINS Techapical Report 82-33.

R. Davis, H. Shrobe, W. Hanscher, K. Wieckert, M. Shirley, and S. Polit.
Diagnosis based on descriptions of structure and function.
In Proceedings of AAAI, pages 137-142, August 1982.

M. Genesereth.
Diagnosis using hierarchical design models.
In Proceedings of AAAl, pages 278-283, August 1982.

Victor R. Lesser and Daaiel D. Corkill.

Functionally-accurate, cooperative distributed systems.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1)81-96, January 1981.

Victor Lesser, Daniel Corkill, Jasmina Pavilin, Larry Lefkowitz, Eva Hudlicka, Richard
Brooks, and Scott Reed.

A bigh-level simulation testbed for cooperative distributed problem solving.

Proceedings of the Third International Conference om Distributed Computer Systems, pages
341-349, October 1982.

William R. Nelson.

Reactor: An expert system for diagnosis and treatment of nuciear reactor accidents.

In Proceedings of the Second National Conference om Artificial Intelligence, pages
296-301, August 1982,

H. Shubin, and Joba W. Ulrich.

IDT: An Intelligent Diagnostic Tool.

In Proceedings of the Second National Conferemce om Artificial Inselligence, pages
290-295, August 1982.

P. Seolovits, and S.G. Pauker.
Categorical and Probablistic Reasoning in Medical
Artificial Intelligence, Vol. 11, #1&2, 1978, pages 115-144.

! A

_4
RN
’ 4

.......
........

- L AL G Brgaardl el ol bl asut el ardh Ol ard vl E-b e e s ~— . W
AL Sl i e R S A A e N S e L R T)

Y R DA N R AN O
FAPAG N IR AT IO NI NIINE SIS,

- —
f—l:'l:f:ﬂ:a‘:l.,

