
D-R 14 959 DESIGN OF 
A KNOWLEDGE-BASED 

FAULT DETECTION 
AND 

/i
DIAGNOSIS SYSTEM(U) MASSACHUSETTS UNIV AMHERST DEPT OF
COMPUTER AND INFORMATION S.. E HUDLICKA ET AL.

UNCLASSIFIED 20 MAR 84 TR-84-03 NB0i4-?9-C-0439 F/G 9/2 NLrmuuuuuuuuiulEEEEEEEEE



Ii

* +



111.0 I&E &6
1111 11.1

1011IElE --
II1.25 11.4 31.6

MICROCOPY RESOLUTION TEST CHART

NAT!ONAL BUREAU OF STANDARDS-1963-A

[~~



for Public re*ei and san iPtsvedistribution is 91w, its

DZAi O KNOWJZDGE-BASED

FAULT DZIETMON AND DIAGNOSIS

Dapawo of COMPOte sad laftmo Scienc ELECTL 'ErUnivemdy of Mamdiumm C
A~ mh M ?. uich ~ w 0 003OEC 2 1 984

TR 84.

Computer and InformationScee

* V 
*4



DSIGN OF A KNOWLEDGK.IASD
FAULT DKJLJIU xO AND DIAGNOSIS

By. Hudicka amd WSWa Lw

l~wasat of CaMpuh mmd hfcnadam Shm

CSM addem evama.- Cnamnky

SELLCTE
DEC 211984 .

M&b uMuuu un up=uW ft Nsdmi d .Mwft m wdrOva MOM=W @ay
fta Dstum MuAMMd Pksnw usI Agimy (DOD) MrnbwW Wy 6 t of~ NaWa m~
uidw CAMiM N3DIMI.

1~pawp~.rsbIn si 69 PI f f 171h tHud Iaftummd C..tuums = *p'm

This document has been apprved]
for public release and sale; its
distribution is unlimited



ABIACr

paper prmm a deep of a kmwlmdpmbmd fault detection and diagawis (IFD)

coempsat Intended to function a part of a laindigmat proruo (agmnt) ina itbue

Proum mivia ~W5m. TIU compament wil permit the systm to monitor its 0"

behavior, detec an abnormael symtm state, and identiy the fault that caused ft. One ti
fault is identified, the sywem can rapair It at reconfigure Wtelf, thus improv~ng Its

puformne. The heant of the FDD component is a model of the system ft is monitordg.

This ode mreeimb fth coomr behavior of the systeem and the criteria fordectg

deviatioms from this behavior. Thus it intepates imformation neconmy for detection and

daemodis Istoo a uniform wuctum. Detection Is acmomplmi--ed by Wmring the System

s- amd- detectlng ituations whida violate the predefined expectatlons Dimaois I
acoml~dby ommixucting a e$unaYn ftearmtsem sotn eemnn

the alim points of dqpat.. ft=rom h expected behavior as mg Presnte by the rsrt

Woote model Thes points contitute the kdted faults-

Av-, r, t I

A 7-



w w-. * * - . .. - -~ I~

IJ

I INThODUCMrON

In large, complex systems, such as distributed problem solving-systems, independent

intelligent agents (procemors) cooperate on the overall solution. In order to function in this

manner the agents must decide which subproblem in their area to wor! on, whether to

satisfy other agents' demands for information, and what type of information to

communicate and how often. The information upon which these decisions are based is

distributed among the different agents; there is no centralized control or global database.

Due to this lack of a coherent global database it is common for a given agent's model of

the world to be incomplete or inaccurate. For example,

e the agent's model of the system organization is wrong and this results in
communicating irrelevant information;

* the agent's model of the environment is vrong (for example, due to a faulty
sensor) and this results in wasted effort as bad data is processed;

* the agent's model of its own role in the overall system is wrong resulting in its
working on a subproblem that has already been solved by another agent.

Such errors at best result in degraded system performance and at worst in the system nct

achieving its goa at all. We call such errors problem solwng control errors, because the

control decisions made by the agents are inappropriate due to their inaccurate models of

the world. Note that problem solving control errors can be due to hardware faults (as in

the sensor failure in the example above).

There are two general ways to deal with faults and the errors they cause. One way

is to eliminate the faults a priori and the other is to accept them as unavoidable and

design the sysm so it can deal with them. Thes approaches have been termed fault

intolerance and fault tolerance respectively by Avizienis (l] in the context of hardware and

software. In the context of distributed problem solving there are two alternative

approaches to making the appropriate control decisions to guarantee correct problem solving

which are analogous to the fault intolerant and the fault tolerant methods mentioned

above. One is to insure that each aen: always has complete and accurate information.

Unfortunately, for many distributed problem solving tasks, maintenance of such a database

would require extensv synchronization and communication among the agents and

consequently decrease system performance. The other way to deal with a lack of coherent

global database is to accept the fact that there will bz inconsistencies in the agents'

knowledge and deal with the consequences as they arise.

... 4



One approach which falls within the category of fault tolerance has been described by S

Lr [5] and termed the functionally accurateckooperative (FA/C) approach. This approach

is based on the philosophy that a system must deal with errors as part of its problem

solving strategy rather than considering them as an abnormal situation. In order to achieve

this, an FA/C system utilizes redundant views of the data as well as multiple paths to the

solution. Because of this built-in redundancy an FAIC system tolerates some errors

implicitly if given sufficient amount of overlapping and redundant information. It is thus

suited to tolerating some types of faults such as transient faults or faults which can be

overcome by using redundant information. However, there are faults which the FAC

approach cannot deal with. In situations where a fault is permanent (for example, a sensor

continually distoning its data) the system wastes effort dissipating the effects of such

erroneous data because it has no explicit awareess of the underlying fault. In cases where .

redundant information does not exist the FA/C appoach clearly cannot help either. For

example, suppose there is only one channel through which two agents may communicate.

f this channel fails communication becomes impomible. In both these cases the system

performance could be improved if it could detect such a problem state, identify the fault

that caused it, and correct it or reconfigure the system.

Existing fault tolerance (FT) techniques for detection and diagnosis are not directly

applicable to the distributed problem solving domain. Error detection in both hardware and

software FF systems is usually accomplished by replication and voting. This technique is

expenive since the entire system needs to be replicated several times and proceses the

ame data. Thus we need a new type of detection method which is not based on

complete replication of the system in order to recognize an error. Diagnosis in hardware

FT systems is performed by running a battery of tests on the failed circuit or system.

Tiis appmoach often fails when faced with complex, non-permenent or multiple, interacting

faults. Thus hardware diagnostic techniques are inadequate for systems where many

complex faults may occur smultaneously. In software Fr systems automated diaposis

following a failure is generally not attempted at all. Some work has been done in the

automated diagnosis of faults in hardware systems using artificial intelligence techniques.

Shubin cc al. (8] developed a tool for automatically identifying a failed unit in PDP

1IlW3s. His system assumes a single fault. Genesefeth (41 and Davis et al. (31 have

developed systems which can identify multiple faults in a digital circuit using models of the
I



co re circit structure and function.

This paper discuse a design of a component capable of fault detection and diagnosis

in a PAXC distributed interpretation system. The interpretation system consists of a number

al intelligent agents distributed over a two-dimensional area. The task of each agent is to

track movinS objects through the part of the area that it can sense via its acoustic sensors.

The task of the system as a whole is zo create a complete map of the environment

indicating the locaion and type of each object.

The rest of the paper is divided into thrm sections. Section 2 describes the types

of faults the system can handle, the models needed for detection and diagnosis, and the

use of these models. Section 3 presents an example of a problem detection and fault

diagnosis. Section 4 concludes the papar and discusse the contributions we expect from

this research.

I-



UM MOMM I R DOWCTO AMD DIGNOSI

A. 7"ne of Faults FM earn Handle

The fault detection and diagnosis (FDD) component detects problem solving covrol

errors which are inadequate control strategies adopted by a problem solving component P. a

result of incomplete or inaccurate information. Because such an error can resuelt either

from hardware failures (failed senior or channel) or from faults specific to a probl--m

solving system, (such as wrong values of internal parameters), our model allows the

identifction of bot Mms of faults by rereenting the system at the appropriate level of

detail. The FDD component can deal with multiple. possibly interacting, faults as well as

with complex failures such as a sensor uniformly distorting its data or bursty faults.

D. Knowledge Neede for Detection

The problem of detection is to reconize an. abusornl siem state. To do this, the

system must have an idea of what constitutes a normal system state. The obvious way to

detect an abnormal system state would be to compare the system behavior with the correct

behavior, iU., behavior expected if the system was working in an optimal manner on

deriving the correct answer. Since we are dealing with a problem solving system neither

the correct answer nor the optimal approach is available a priori. Thberefore we must have

other methods of detecting ustisfactory state that do not involve comparing the systemls

progrs with the answer it is attempting to derive. There are two such methods:

1. one uses general knowledge about appropriate systm behavior, about the task,
and about the environment;

2. the other uses internal consistency standards based on redundancy within the
system.-

General knowledge about appropriate system behavior comes from expectatons of

what a good interpretation system should do. For example, we expect the systems

confidence in its results to inceas with time. We also expect it to make reasonable

* prop. through the environment, accounting for more and more of its data as time goes

on. Other system behavior criteria may include time or accuracy limits imposed by the
*user. Inthscsethe system would befunctiouningabormaly if itdidnot derive an

* answer within a specified time limit or with specified degree of accuracy.

7, 2. 2. *



-a. . ....

0

The system can also use domain specific knowledge which can be applied to detect 0

an abnormal system state. In our case, the domain of acoustic sensing, we can put

constraints on the types and motion of the vehicles which can function as expectations

whose violation constitutes an abnormal system state. For example, vehicles can move only

within some range of velocities or can change direction within some range of angles. 0

Finally, the system can use some general knowledge about the specific environment it

is dealing with. This knowledge can be obtained by some preliminary, rough measurements

of the data. For example, before the detailed, intelligent interpretation, the system can •

build a density map of the data. This would then serve as an expectation of the load

distribution. For example, if an agent in an area known to have high density of raw data

is idle, this is an abnormal system state.

Internal consistency standards can be utilized in a system which contains redundant

information. This redundancy can be in terms of multiple views of the same data or in

terms of multiple ways to process the data to derive the answer. Using the internal

consistency measures consists of making sure that these multiple sources of information

agree. Our system is ideally suited for this method since it contains both multiple view of

the same data (by agents in different locations) and multiple methods of deriving the final

answer (different knowledge sources taking different paths to the solution). Examples of

measures expectations based on internal consistency are:

" Predictions based on partial results should be fulfilled. For example, in the
distributed interpretation system, predictions are represented as goals. A goal is
an expectation that a vehicle of a particular type will be in a particular region at
a particualr time. Such expectations are produced by agents in the coure of
processing and are either fulfilled locally by the same agent or sent out to S
another agent which can fulfill them.

* The system parameters should have values consistent with each other and with the
current operating environment of the interpretation system, (ie., with respect to
the current system configurtion, data distribution, and external expectations placed
on the system). For example, the interpretation systems knowledge is contained
in task processing modules (knowledge sources) which are rated based on their
effectivenes, the strength of the data they will utilize, and the importance of the
results they will produce. Then knowledge sources are rated and if they exceed
some predefined threshold they are put on a queue. The hiz hat rated knowledge
source is put on the queue each system cycle. If the data is very weak and the --
threshold does not reflect this, it may be set so high that very few or no
knowledge sources are invoked and as a result the agent is under-utilized.

* Communication areas among the different agents should be consistent and
utilized. In order for two agents to communicate, their communication areas must
match: the sending agent must know it should send messages to the receiving
agent and vice versa. If the communication r.reas do not match, then an agent



may continue sending messages which, although they get over the channel, are
igtored by the receivin S agent because it does not knew that it should be
acceting them.

A distributed problem solving system contains many such examplas of internal consistency

and we plan to exploit them in detecting an abnormal system state.
9

C. Knowledge Needed for Diagnosis

The problem of diagnosis is to identify uhe faults causing a given abnormal system

ante. There are two approaches to this problem:

1. using a malfunction model or S

2. using a model of the correct system behavior.

A malfunction model consists of a map between the set of possible symptoms and the set of

possible faults. This model is appropriate for systems where such a symptom-fault map is 0, --

simple or for black box systems whose internal structure is not understood and which can

only be described by such stimulus-response type maps. Such models can be very efficient
(diagnosis consists of table lookup) but with any non-trivial systems it is difficult to build

a complete malfunction model. In other words, there is always one more way in which -..

the system could fail that has not yet been catalogued. A m~alfunction model would fan in

such a case because it would not find a match in its set of symptom-fault pairs.

Malfunction models are also not feasible for detectins interacting faults because of the

ombinatorial explosion of the number of symptoms that would need to be catalogued.

An alternative to the malfunction model is a model of the systems intended structure

and function. This model has been termed function-oriented model by Nelson (7]. Such

model is appropriate if the system's structure is known, as is the cas, at least in principle,

in man-made sysems, or if the construction of a malfunction model is unfeasible. An.
example of a good application for this type of diagnostic model is a man-made system

intended to be self-sufficient, such as a satellite. It would be unfeasble to tet the satellite

for long enough time to catalogue all possible malfunctions. Even if that could be done, it

would not solve all the problems since the actual working conditions of the satellite would

presumably be different from the testing conditions and unpredicted faults could occur later.

Sine the satellite was designed by humans a complete description of its structure and

function can be made available to a detecton/diagnostic system and function as the correct

system model.

• +,.i,.m~~~u.-+z..+- - * . - .- _... . . . .. .- , -'.,... d"' . -.- .. ... .



The disadvantage of this approach is its inefficiency. Suppose that a given symptom

always indicates only one fault. In a malfunction-model-based diagnosis this fault would be

identified very fast. In a correct-system-model-based diagnosis this fault might take a long

time to identify, depending on how far the initial symptom state was from the fault state. . -

Furthermore, the diagnostic module would repeat its entire set of actions every time that

symptom appeared although the symptom could never imply any other fault. Ideally, a

fault tolerant system would start out with the complete, correct model of the system and

adapt"vely build up a malfunction model which could then be used for more efficient

diagnosis. In cases where malfunction model was inadequate the system could always fall

back on the underlying model of the correct system behavior. Experienced diagnosticians,

such as physicians, seem to use this type of strategy [9]. As a first step towards this

approach to diagnosis we have developed a method based on the correct system model. V

We model the distributed problem solving system as a set of objects and the set of

states these objects undergo during processing (see Figure 1). The states of the objects are

represented as nodes in a graph and are connected by state transition arcs which capture

the of events; i.e., if state A proceeds state B then this means that state A must

~ 4• , . -

Figure 1: System Model

-7



be true before state B can take place. Different states of the same object are connected 0

together via a node in the graph representing the object. Examples of objects in cur :.-

system are hypotheses (representing results derived by the system from the initial sensor

data), goals (representing predictions of future hypotheses based on hypotheses constructed

so far), knowledge sources (pieces of code actually performing the interpretation task), and

knowledge source queues. The graph representing the objects and their states is organized

into smina clusters for managebility. These dusters are then organized in a hierarchy

corresponding to a top-down view of the system. For example, a high level cluster might

represent an event as two states, state A followed by state B. A cluster at a lower level

of the hierarchy would contain other events which occur between state A and state B.

Such a hierarchical structure makes the detection more flexible and the diagnosis more

efficient.

Detection flexibility is achieved by monitoring the system state at the level necessary

rather than always monitoring the system at the lowest level of detail, as would be

necessary without a hierarchical representation. The lower the level of detail at which the 0

monitoring takes place, the less the errors are able to propagate and the less damage they

do. Thus depending on the accuracy and speed required for a given task, the monitoring

can be moved up or down the hierarchy.

Efficiency of diagnosis is achieved by using discrepancies founad at the higher level of

representation as a means of focusing into the general problem area and only then

examining the low level states. This is clearly more efficient than starting the diagnosis at

the lowest level of detail and examining every node until the problem is found. Figure 2 p

shows a cluster in the system model representing a high level view of communication - -

between two agents. The objects modeled are messages (node NESAGE-OBJECT in

figure). Two states of this object are represented in the sending agent: node

MESSAGE-EXISTS and node bMSSAGE-SENT. In order for a message to be sent it

must exist and the sending area must be consistent (node SEND-AREA-OK). If a message

is sent and if the channel is ok the message is received by the agent at the other end of

the channel. Here two states of the object message are represented:

MESSAGE-RECEIVED and MESSAGE-INCORPORATED. If the message is received

and the receiving ara is consistent at the receiving agent the message is incorporated into

the receiving agent's database. The next section discusses the integration and use of the

* ''



object: message (at Agent N2)

SEND-AIA-AA4

MESSAGE-UXISTS i- i:

" rESS.,SG-- C:EC RPO AT-

object: message (at Agent #1) aCaEIVE-AREA-

agent bo4 dry '

Figue 2: A Caster Representing a Eigh Levd View of Communlcatioa.

detection and diagnostic knowledge.

D. Interating and Udng the Detection and Diagnostic Knowledge

The discussion in the previous section described how the model of the correct

behavior represents the structure and causality relationships of the system. This section

discusses how we can associate the detection information with arbitrary states in this model

and thus provide a structure relating the different detection criteria with the diagnostic

knowledge. Any state in the system model can be tagged and associated with a detection

criteria data structure. AU tagged states are watched and updated by the monitor at some

predefined interval. The detection criteria data structure contains a list of the statistics that

should be collected by the monitor, a place to store the collected data, and a threshold

value indicating when the diagnostic component should be invoked. This diagnostic

threshold is expressed in terms of the statistics collected. For example, the

MESSAGE4NCORPORATED state in the high level communication model shown in Figure 2,

has mociated with it the following information:

1. percent of messages rejected so far (say 30%);

,%.. -...:.. , ... .. .. .. .... . . . . . .. .



2. allowed percent of messages rejected before diagnosis is invoked (the diagv
threshold) (50%);

3. description of the types of messages watched for (for example, we might
watch for goals sent from one particular agent).

This information indicates that the agent expects 50 percent of the messages that a

over the channel from another agent to fall within its receive area. So far, onl:

percent of these messages were rejected which is well within the tolerated range. How

should this value exceed the diagnostic threshold (set to 50 percent). the diagm

component would be invoked.

When invoked, the diagnostic component is given a description of the vio

expectation which caused the invocation. This description consists of a specific objec

this case, say Message #51) and the state this object did not go through as expectec

this case MESSAGE-INCORPORATED was the state not satisfied). Once the diagr

component is given a symptom it begins the construction of the current system state a

starting with the symptom nodes and going backwards in time (ie., following the

transition arcs backwards). The current system state model is created by determinin!

each node in the model whether it is true or false with rcspect to the object I

investigated. Each node in the model has associated with it in!3rmation describing ho

determine whether it is true or false. This information is obtalaed from the rich so

the interpretation system's data structures maintaining the system's history. (Data struc

such as the hypotheses about the environment, predictions about further hypotheses (g

different knowledge source queues, and sets of already invoked knowledge sources).

Nodes in the model continue to be evaluated until a state is found which

satisfies the expectations (the last good state). Once this state is found, we know tha

fault occured between it and the false state which immediately follows. At the high

this discrepancy, (the last good state followed by the first bad state), serves as a foc

point guiding the diagnosis into the correct part of the system model. Only the rela

low states in the model constitute reportable failures. These states are marked as prin

The diagnostic component will in practice evaluate several dusters, descending dow

hierarchy, before a primitive false state is found.

es % ' * " * e ' " e *°% .- % ' .o ,e%''* % ''oo
"  

,. .'2'" ,"*' . . "% °% . °% '% . ",",
eee 

•

q 
•

.%'e " e e e ea .• •, . , ' ° - m e t . *." " e 
°

• ... .



By analyzing why a particular state of some object was not satisfied (in this case why

particular message was rejected) the diagnostic component may discover a fault in the

receiving area and thus account for the rejetion of the other messages. Depending on

how crucial it is for the system to catch faults, either lower level states or higher level

states can be monitored. The lower the level monitored, the less the fault has a chance to •

propagate and the less damage it does. But there are more of these states and therefore

their monitoring is more expensive.

.-



III EXAMPLE OF DETECTON AND DIAGNOSIS OF A PROBLEM SOLVING 0

ERROR

In this section an example of fault detection and diagnosis is presented in the

context of the system we will be monitoring: the distributed vehicle monitoring testhed

(DVMT). Each agent is a sophisticated problem-solver capable of making local decisions

and carrying out the entire task, given the data. Briefly, an agent functions as follows:

1. A piece of data (a hypothesis describing a vehicle of certain type at some
location at some time (time frame)) arrives.

2. This stimulates the creation of goals. Goals are descriptions of the types of
hypotheses whose creation is expected based on the newly arrived hypothesis.
Goals are thus predictions of future data based on current data.

3. A goal together with a hypothesis which caused its creation stimulate a
knowledge source that is capable of satisfying the goal.

4. The knowledge source is put on the scheduling queue.

5. The highest rated knowledge source on the scheduling queue is invoked,
creating more hypotheses and the cycle begins again.

Each agent in the testbed will contain an FDD component responsible for fault detection

and diagnois. The individual FDD components will engage in distributed problem solving

with its counterparts at other agents as it performs the detection and diagnosis, much as

the underlying interpretation agents engage in distributed problem solving as they perform

the task of acoustic signal interpretation. The tetbed will eventually include a component

responsible for reconfiguring the system in response to faults reported by the individual

FDD components [2].

Consider the following scenario. Two agents are cooperating on an overall p

interpretation of the environment (see Figure 3). Agent #1 receives data from region

sensed by Sensor A (left half of the environment); Agent #2 receives data from region

sensed by Sensor B (right half of the environment). Both Agent #1 and Agent 2 process

the data at the lower levels of abstraction (up to vehicle tracks) but only Agent #I can p

proces the data to the highest level of abstraction (the pattern tracks) and is responsible

for integrating information over the entire environment. Since Agent 01 can only directly

sense data covered by its sensor (Sensor A) it must receive hypotheses falling within

Sensor B's area from Agent #2. The agents need to communicate in order to achieve p

the solution and therefore their communication areas must be matched: Agent #Is1

receiving area must cover area sensed by Sensor B as does Agent 02's sending area.

,.........



hPothOSeO at vehicle
track level

0 0
AgntII dt data Agent #2Z

vehicle track

vehi~e tackh~pothesis derived
vehicretracby Agent #2

hqjothesie derived *
bV Agent 91

Sensor A Sensor 6

Goal 84 sent to
Agent 02 from Agent 01-

11gw. 3- Two Proams., Falre Scenari.

SUPPOse that Agent 02's receiving ame is wrong and dosnot specify Senr B's area.

track hypothesis ranging from time; frame; 1 to time frame 3. It creates a goal for time
frame 4, Goal 04, but inee this goal is out of Agent #I's sened ame, it sends this goal
Out to Agent 02 and awaits an answer (a hypothesi that would satisfy the goal).
Meanwhile, Agent #2 has derived Such a hypothedS (or4e coveing time frames 4 through
6). Agent #2 snds its hypothesis to Agent #F1 but because Agent #1's receiving area is
wrong, even though the hypothesis gets over the channel, it is newe actually incorporated
into Agent 01's database, and Goal 04 remains unsatisfied. Suppose there is a limit on
the amount of rim within which a goal must be satisfied. The detection compoet

Ponen
mario that Goal 04 has violated this rimes limit and invokes the diagnostic component.

16-



Investigation begins in the part of the system model which represents the symptom: in 0

this case, a duster which includes the state GOAL-SATISFIED whose violation caused the

trigerring of the diagnostic component (ee Figure 4 a). The aim is to rind the value (true

or false) of each state node in this duster. The values of the nodes are found by

evaluating the description of the value associated with each node. Once these values are

found, the true-false pair (a true node followed by a false node) can be identified. (In the

figure, true nodes are filled in and false nodes have a box around them.) This is the

point at which correct processing stopped. I the false node is a primitive node, then it

can be reported as the identified fault. Since in this duster no nodes are primitive, the

true-false pair will be used to focus the diagnosis into the correct part of a more detailed

model. The true-false pair in this case is found at GOAL-SENT - HYPOTHESIS-INSERTED.

Since goal was sent out but no hypothesis was received the fault must have occured in one i

of the states occuring in between GOAL-ENT and HYPOTHESIS-INSERTED. The node

GOAL-SENT points to another cluster in the model which 'presents the events that occur

between it and the next node, HYPOTHESIS-INSERTED. This is the duster represented in

Fqgure 4 b. Again, the values of all nodes in the duster are determined as before. In

this duster there is a primitive node, RECEIVE-AREA-OK. This node is found to be false

with respect to Goal #4. In other words, Goal #4 does not fall within the receive area.

Because a primitive false node has been found, a failure has been identified and can be

reported to the component responsible for reconfiguration and repair. Any pending

symptoms ae scanned to see which ones can be accounted for by the identified fault.

Tis glows the system to function more efficiently siace it reduces the number of

symptoms that have to be diagnosed in full.

Several isues arise:

1. Since all the information that may be needed for diagnosis cannot be stored
there wi be caes when the system cannot determine the value of a state. It
will have to try and determine the value indirectly, by analyzing surrounding .

2. Should the digotccm -t continue and search for other faults or should
it stop with the fit one foun d.

3. Finally, how can the FDD know that it is the receive area that is wrong and
not the gol (ie., suppose Goal #4 should never have been created by Agent 0l -
or should never have been sent to Agent #2). Deciding which of the two is
wrong requires other information, such as, who can sense the area of Goal 04
and wbedwr it Is reasonable for Agent #1 to require its satisfaction from
Agent #2.

- . . . . . .. -.- " ......



GOAL-SENT

GoAL- INSERTEO

IHYPOrHESIS-INSERTEO

GOAL-SATISFIEO OB.ECT: HYPOHESIS

OPJECT: GOAL -

(Coal 94)

I4YPOHESI S-RECE IVED

RtECEI VE-KNOlJLEOGE-NSRE

RtE CES nilNL EC E rOU RE RWS HYPOT ESI S-INS R E

SIwCE-SOEGLLED

IECEIVE-AREA-A *

Figur 4:. Dlaguec Sysm M.deL

We an -m beginla to addrmu thus brans

I~~IL



IV CONCLIONS

This paper presented a design for a distributed knowlee'z>based fault-detection and

diagnosis component (FDD) intended to monitor and correct .~behavior of a distributed

problem solving system. We described the detection cuite: and the model used for

diagnosis. We presented an example demonstrating the use of the detection and diagnostic

knowledge in the identification of a fault. FDD performs error detection in a complex

problem, solving system without resorting to replication and voting as is the case ina

hardware fault tolerant systems. Unlike existing hardware systems it can deal with

complex, multiple failures. FDD is a first step in providing fault-tolerant control in a

problem solving system.

I-L



V REFmamcu S

1. Algidas Aviziemis,
Fault-Tokwrane and Fault-Intolerance: Cosepkeahaz y A.-oacbes to Reliable

Computing.
ACH S18,J. /at. Coqerence on Rulfsbe Softwe, pages 4584.43 April 1975.

2. Daniel D. Corkiil.
A Framework, for OraiaimlSeff-Design in Diributed Problzm Solving Networks.
COIN1S Technial Report -3

3. R. Davis, H. Shrobe, W. Hanscher, K. Wieckert, M. Sirley, and S. Polit.
Digni based on descriptions of structuue and function.

in Proceedings if MMA, pages 137-142, August 1982.

4. M. Genssereth.
Diansi usn hierarchica deign niodes,
In Proceedings of AMl, pa 278-283, Augst 18.

5. Victor R. Lemer and Daniel D. Corkill.
Funchionaily-acicurate. cooperatl distuibuted siem
IEEE Troaurertls = System. Man. and Cyberautis, SMC-11(1)S1-96, January 19S1.

6. Victor LAmser, Daniel Corkill, Janmina fvfila, LWry Lalkowitz, Eva Hudlicka, Richard
Book, and Scott Reed.

A h*Ww-evu imulation tesIbed for ooopeative Altributed probim solving.
Proceedings cf dho Third luntero~oe CaVerence en DIibued Cmpter System., pages

341-349, October HRg.

7. Widlam R. Nelon.
Reactor: An expert sflm for diamois and treatment of nuclear reactor accidents.
In Proceedings of the Second Nestfiw Cuiterece en Aru~ical Intelligence, pages

296-301, Augst 198.

&. H. Shubin, and Joba W. Utrch.
IDIT: An IntlU* t Dlanosic Tool
In Proceedings f the Seeed N.aaJ Csap 4 arn - Anrlel Inteligence, pages

290-295. August 1982.

9. P. Saovls and 5.0. nauker.
Cateoriaad Probabliml Rasoning in biefical Dkagods.

Artificial Intelligence, Vol. 11, 01&2, 197, page 115144.



*FILMED

1-85

DTIC









I

I

I

I



1

*1

4


