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SUMMARY 

Combustion properties of slotted and unslotted single perforated (IP) 
stick propellant samples were examined using closed bomb and interrupted 
burning techniques.  All samples were prepared from a single lot of NOSOL 363 
propellant.  The maximum sample length studied was 337 mm.  The results of the 
study indicate a significant difference in the burning characteristics of some 
of the slotted and unslotted samples.  Whereas the burning rates of slotted 
stick propellants were found to be independent of grain length and perforation 
diameter, the burning rates of unslotted samples were found to be strongly 
affected by both parameters.  (It seems reasonable to assume that these 
observations would also hold in a general way for propellants made using 
different chemistries.)  The burning augmentation with grain length is not a 
simple relationship, however.  Although burning rate increase was found to 
correlate with grain length for all the larger (2.13 mm) perforation diameter 
(PD) unslotted samples studied, the correlation did not hold true for the 
smaller (.940 mm) PD samples.  In the case of the latter, the greatest burning 
rate augmentation was observed for the medium, rather than the longest 
samples. Overall, it appears that slotted IP stick propellants burn according 
to Piobert's law irrespective of grain length, whereas unslotted IP stick 
propellants do not. 

Interrupted burning tests indicate that perforation-augmented burning, as 
evidenced by severe coning and greater regression within the perforation than 
the grain exterior, can take place.  This was the case for the 143 mm long 
samples having a 0.940 mm perforation diameter. Appropriately, similar 
samples, when burned in a closed bomb, exhibited strongly enhanced burning 
rates.  On the other hand, interrupted burning experiments with samples of 
identical length but a larger (2.13 mm) PD showed little evidence of augmented 
burning.  Consistently, only a negligible increase in closed bomb burning 
rates was observed for samples in this length and perforation diameter 
range.  These observations demonstrate that a perforation dependent 
augmentation of observed burning rates is possible.  Further, the dependence 
appears to be a function of both perforation length and diameter. 

Possible mechanisms for the observed augmentation include a simple 
pressure augmented burning in the perforation, erosive burning, and grain 
fracture.  The pressure- and fracture-augmented hypotheses were examined 
numerically using IBHVG, a lumped parameter interior ballistic code and 
CBRED2, our normal closed bomb burning rate analysis program.  Although no 
exact matching of the observed phenomena resulted, several consistent trends 
were noted.  On the one hand, the degressive character of the burning rate 
curves from the fracture mechanism simulations was similar to that 
experimentally observed for the longest of the small-perforation samples.  On 
the other hand, simulations assuming perforation pressure buildup also 
resulted in augmented burning rate curves.  The order of augmentation was 
inverted, however.  That is to say, whereas the computed predictions called 
for greater enhancement of the samples with small perforation diameters; in 
factjthe experimental results indicated greater enhancement for the samples 
with larger perforation diameters. 

There is considerable independent evidence for grain fracture in 
unslotted IP stick propellant burning under gun conditions.  Stick propellants 
examined for use in advanced US artillery charges have generally been much 



longer (and in the case of the M30A1 propellants, more brittle) than the 
samples used in this study.  Due to size limitations on our bombs, sample 
lengths had to be greatly reduced.  It is reasonable to assume that we would 
have observed more grain fracture had we been firing the full gun-length 
propellant samples.  As it is, we feel that grain fracture was the controlling 
mechanism in the combustion of only the longest, small perforation diameter 
samples.  From the results on the remaining samples, it appears that 
significant burning rate augmentation can take place without grain fracture. 
Mechanistically, it is likely that perforation pressure buildup, erosive 
burning, and grain fracture are stages in a natural progression.  The relative 
importance of the stages in the burning of an actual propellant charge 
probably depends upon factors such as propellant energy, intrinsic burning 
rate, mechanical properties, and geometry (grain length, perforation diameter, 

and web). 
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I.  INTRODUCTION 

The use of bundles of propellant sticks in artillery charges offers many 
potential advantages both in simplifying charge construction as well as in 
Improvements in interior ballistic performance.  The natural flow channels 
between sticks provide a ready means for propagation of igniter gases into and 
the flow of combustion products out of the propelling charge.  Recent 
experimental and theoretical efforts have demonstrated quite conclusively that 
the use of stick propellants can drastically reduce pressure waves, especially 
in the case of top zone charges in large caliber guns. » > '   The pressure- 
wave reductions, in turn, can readily be translated into improvements in 
weapon safety and shot-to-shot reproducibility.  There are further indications 
that stick propellant charges may function with higher thermodynamic efficien- 
cies than granular charges.   This would lead to equivalent performance at 
lower charge weights.  The use of stick propellants in future United States 
artillery systems seems assured provided that the practical problems relating 
to production and reproducibility can be successfully solved. 

Stick propellants in various forms have been used in guns for close to a 
century.  In fact, the British term "cordite" can be traced back to an early 
double-base propellant composition which was extruded as nonperforated 
cylinders (cords) cut to fit the length of the gun chamber.  Subsequent 
developments in stick propellants introduced a perforation in the center of 
the stick to take advantage of the superior form function of the single 
perforated geometry.  Anomalies were noted, however, in the burning of the 
perforated sticks.  This lead to the introduction of a slot along the length 
of the stick to permit lateral venting of the combustion products from the 
perforation.  Slotted stick propellants appear to be well behaved and current 

A.  (/. Horst and T.  C. Minor,   "Improved Flow Dynamics in Guns Through the Use 
of Alternative Propellant Geometries," 1980 JANNAF Propulsion Meeting,   CPIA 
Publication 315,   Vol I,   pp 325-352,  March 1980. 

^T,  C.  Smith,   "Experimental Gun Testing of High Density Multiperforated 
Stick Propellant Charge Assemblies, " 17th JANNAF Combustion Meeting,  CPIA 
Publication 329,   Vol II,   pp 87-96,   November 1980. 

■2 

""T.  C.  Smtth and J. A. Kudzall,   "Evaluation of Stick Propellant Charge 
Concepts," 16th JANNAF Combustion Meeting,   CPIA Publication 308,   Vol I, 
pp 417-432,  December 1979. 

^F.  W.  Bobbins,  J. A. Kudzall,  J. A. McWilliams,  and P.  S.  Gough, 
"Experimental Determination of Stick Charge Flow Resistance," 17th JANNAF 
Combustion Meeting,   CPIA Publication 329,   Vol II,   pp 97-118,   November 1980. 

S.  Weiner,   "Investigation of Stick Propellant for 155-mm Howitzer, 
XM198," Interim Memorandum Report,  Picatinny Arsenal,  July 1975. 

J.  Comer,   Theory of the  Interior Rallistics of Guns,  John Wiley and 
Sons,   NY,   1950. 



7 8 European practice leans heavily in favor of the slotted configuration. ' 
There is a feeling, however, that given an understanding of IP stick 
propellant burning, certain progressive burning properties of the IP stick 
propellants may be exploitable in future gun systems. 

The BRL has recently been engaged in interior ballistic modeling of stick 
propellant charge performance.  Normally interior ballistic simulations are 
made on the basis (inter alia) of propellant burning rate data obtained from 
closed bomb firings.  For granular charges, agreement between experiment and 
prediction is generally excellent.  Attempting this approach with stick 
propellant systems, however, resulted in serious differences between 
experimental and theoretical results.   Predicted maximum pressures were 10-25 
percent low for unslotted IP stick propellants, and 5-10 percent low for 
slotted IP stick propellants.  These results are not atypical of findings 
elsewhere.   Part of the difficulty probably stems from the fact that the 
closed bomb burning rates of the propellants (which can be as long as 710 mm 
in the gun) were obtained on samples cut to fit into the standard (350 mm 
long) 700 cm closed bombs.  In other cases, the burning rates used in the 
interior ballistic codes for stick charges were extrapolated from granular 
propellant burning rate data.  Clearly, stick propellants seem to have some 
unusual burning characteristics in guns.  The objective of this study was to 
examine, by means of the closed bomb, the variations of extracted burning 
rates as a function of grain length and the presence or absence of a slot 
along the length of the grain.  The scope of the study included a variation of 
the perforation diameter and the mode of sample ignition.  The results of the 
exercise were to be used in further interior ballistic modeling efforts for 
stick propellant systems. 

II.  EXPERIMENTAL DETAILS 

A.  Propellants 

The propellant, NOSOL 436, Lot RAD 1-2 of 1973, was manufactured at 
Radford Army Ammunition Plant.  Chemically, the composition is identical to 
NOSOL 363.  This is a solventless modified double-base propellant manufactured 
in "carpet rolls."  The material was subsequently extruded into single 
perforated sticks at the Naval Ordnance Station, Indian Head, Maryland. 
Slotted samples were prepared at the BRL using the device pictured in Figure 
1.  Dimensional information for the two sample types appears in Table I. 

'I.  W, May and T.  C. Minor,   "European Trip Report,   18 June - 2 July 1979, " 
Applied Ballistics Branch,  Interior Ballistics Division  (DFDAR-BLP), 
Ballistic Research Laboratory,   Aberdeen Proving Ground,  W,   1  May 1980. 

F.   W.  Robbins and A.   W.  Horst,   "A Single Theoretical Analysis and 
Experimental Investigation of Burning Processes of Stick Propellant," 18th 
JANNAF Combustion Meeting,   CPIA Publication 347,   Vol I,   pp 25-34,   October 
1981. 

A.  Grabowski,   S.  Weiner and A.  J.  Beardell,   "Closed Bomb Testing of Stick 
Propellant in Gun Firing Simulation," 17th JANNAF Combustion Meeting,   CPIA 
Publication 329,   Vol II,   pp 119-124,   November 1980. 
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PROPELLANT STICK 

CUTTING EDGE 

Figure 1.  Device for Preparing Slotted Samples 

TABLE I.  DIMENSIONAL INFORMATION FOR NOSOL 363 TEST SAMPLES 

Parameter Propellant A Propellant B 

Outer Diameter (mm) 
Inner Diameter (mm) 
Web (mm) 
Length (mm) 

Slot Width (inner) (mm) 
Slot Width (outer) (mm) 

6.502 
0.940 
2.794 

* 

0.813 
1.727 

7.620 
2.134 
2.743 

* 

0.711 
1.829 

*  Sample lengths varied from 19.05 to 336.6 mm. 
Specifics appear in Table II. 
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B. Test Matrix 

Selection of samples, sample lengths, and choice of slotted versus 
uslotted IP sample geometries was made to maximize (within limits of existing 
equipment) the probability of finding differences in extracted burning rates 
ascribable strictly to changes in propellant geometry.  The sample matrix for 
the study is given in Table II.  End views of various slotted and unslotted IP 
samples appear in Figure 2.  Sample lengths varied from 19 to 337 mm giving a 
range of perforation length to diameter ratios from 9 to 358. 

C. Interrupted Burning Experiments 

Interrupted burning experiments were performed on both the 0.940 ram and 
2.134 mm perforation samples.  The samples were 143 mm long, arranged in the 
same configuration and loading density as for the stick propellant closed bomb 
firings.  The size of the blowout chamber limited sample lengths to 143 mm. 
Samples were captured on target cloth stretched in front of the device in such 
a way as to provide a "soft landing" for the propellant pieces ejected.  Most 
of the grains were recovered intact.  Blowout discs were designed to burst at 
34.5 MPa.  Actual measured burst pressures were 37.4 and 37.9 MPa, 
respectively, for the experiments with the small and large perforated 
samples.  The ejected grains were subsequently examined microscopically to 
determine regression distances at the exterior surface and inside the 
perforation along the length of the grains. 

D. Closed Bomb Tests 

Closed bomb tests were carried out in the standard BRL 700 cm closed 
chamber at loading densities at or near 0.25 g/cm .  Sample weights ranged 
from 173.0 to 184.7 g, since only whole strands and grains were used. 
Generally, experiments were run in duplicate with additional samples being run 
when necessary.  Because of the length of the bomb cavity, the maximum sample 
length was 337 mm.  Additional sample lengths appear in Table II.  The 
Igniters used in the system consisted of a "mild" electric match (M-lOO type) 
manufactured by the Atlas Company and various weights of black powder.  In 
some cases, the match and a fast granulation black powder  (FFFG) were 
enclosed in a Dacron patch.  In others, single perforated black powder pellets 
were stacked end-to-end, axially aligned with the match and wrapped in 
cellophane tape.  In several tests, DuPont 700X flake double-base propellant 
was substituted for the black powder ignition aid.  All charges were made up 
in the JANNAF configuration, i.e., propellant sticks and grains stacked and 
wrapped with cellophane to give a fairly rigid package.  The igniter was 
placed at the center of the charge in some cases and at the end of the charge 
in others.  The packaging procedure was expected to promote good charge 
ignition.  To examine the effects of ignition on extracted burning rate, the 
ratio of igniter to propellant was varied from 1.7 to 3.5 percent.  A series 
of pictures showing igniter, stick propellant, and an assembled stick 
propellant charges appear in Figures 3A, 3B, and 3C.  Closed bomb data 
reductions were performed either via the CBRED or BURNX programs. 

12 
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Figure 2.  End Views of Slotted and IP Grains 

Figure 3A.  Granular and Medium Length Stick Charges 
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Figure 3B.  Medium and Long Stick Charges with BP Pellets and FFFG Igniters 

Figure 3C.  JANNAF Configuration with Centercore and End-on Ignition 

15 



III.  RESULTS 

A.  Reproduclblllty 

The reproducibility of the granular (19 mm long) propellant firings was 
quite good.  An overlay of individual runs for the samples of each perforation 
diameter (0.940 and 2.134 mm) appears in Figure 4.  The burning rates of the 
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Figure 4.  Burning Rate Comparison for 19.1 mm Long, (0.940 and 
2.134 mm Perforation Diameter) NOSOL 363 Samples 

two samples match with little apparent difference over the 10-300 MPa 
region.  Interestingly, the upper ends of both curves show a decrease in slope 
above 150 MPa.  The round-to-round reproducibility of the slotted propellants 
was, likewise, excellent.  Plots of replicate firings were virtually 
indistinguishable.  The reproducibilities of the burning rate data from the 
longer (especially the 337 mm long) samples of both perforation diameters, 
however, were considerably poorer.  Superimposed curves from four firings of 
the 2.134 mm perforation diameter perforated stick, samples appear in Figure 
5.  The increased scatter of the data is evident.  Furthermore, a wavy 
character may be seen on several of the traces, especially in the low pressure 
region.  The wavy character of the burning rate curves is a result of 
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Figure 5.  Round-to-Round Reproducibility of 2.134 mm PD, 
337 mm Long IP Stick Propellant Samples 

oscillations in the closed bomb, probably excited by the combustion products 
jetting from the ends of the long single perforated grains.  A number of the 
pressure records contained easily identifiable sinusoidal wave patterns 
superimposed on the pressure-time trace.  A set of reproducibility curves for 
the smaller, 0.940 mm, perforation diameter stick propellant samples appears 
in Figure 6.  The scatter in the data is, once again, evident, though for 
these samples there seemed to be fewer chamber oscillations. 

B.  Form Function Check 

The form function subroutines for analyzing the slotted granulation data 
were written by Mr. F. Lynn, BRL.  Since these were new subroutines, it became 
of interest to independently verify that the same burning rate answers would 
be given by the single perforated and slotted subroutines under comparable 
conditions.  Accordingly, samples of slotted and single perforated stick 
propellants from both perforation diameters were cut into 19 mm lengths and 
fired in the closed bomb.  The JANNAF charge configuration was used in both 
cases.  The data were reduced and examined.  Figure 7 presents the results 
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Figure 6.  Round-to-Round Reproducibility for 0.940 mm PD, 
337 mm Long IP Stick Propellant Samples 

from the short IP slotted and unslotted granular firings, respectively, for 
the large perforation diameter samples.  The agreement of the data is 
exceptional.  The agreements between analogous firings of the smaller 
perforation samples was only slightly poorer.  As a matter of fact, the 
agreement between the granular and slotted propellant burning rate data (even 
for the 337 mm length slotted sticks from both perforation diameter samples) 
was so good that all these data were subsequently averaged to form the 
reference data set for comparison with the longer IP samples. 

C.  Burning Rates of Larger Perforation Diameter Samples 

A comparison of the averaged data from firings of the 2.13 mm perforation 
diameter samples appears in Figure 8.  Included are the data from firings of 
337 mm long unslotted and slotted IP stick samples as well as the unslotted 
168 and 19 mm IP samples.  The short (19 mm) and 84 mm long slotted and 
unslotted IP samples had virtually identical burning rates.  As a matter of 
fact, even the burning rates of the 168 mm long unslotted IP samples fall only 
slightly above the average of the shorter samples.  The average burning rates 
of the 337 mm long IP samples, however, fall considerably above the rest of 
the data.  The error limits around this curve (cfr. dotted lines) leave little 
question that there is a significant difference between the burning rates of 

the unslotted IP stick samples and the rest. 
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D. Burning Rates of Small Perforation Diameter Samples 

The averaged data for various configurations of the 0.940 mm perforation 
diameter propellant samples appear in Figure 9. As above, the results of the 
337 mm single perforated and slotted samples as well as single perforated 168 
and 19 mm long samples are included.  The slotted and short single perforated 
granular propellant sample results agree quite closely over the whole pressure 
range.  Unlike above, however, the observed burning rates of the 168 mm long 
single perforated samples were higher than the rest of the data, including the 
337 mm single perforated samples. These results were so unexpected that a 
considerable amount of energy was expended checking them out.  Repetition of 
the experiments, however, confirmed these findings. 

Initially, it appeared that there may have been ignition effects on the 
extracted burning rates of the long (337 mm) small perforated samples.  To 
check this out, a set of experiments was performed in which the igniters were 
varied from Bennite strands to black powder pellets to granular (FFFG) black 
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Figure 9.  Average Burning Rate Data for 0.940 mm Perforation Family 
of Samples  (Dimensions Indicate Length) 

   19 mm Unslotted IP 
  337 mm Slotted IP 
- — 337 mm Unslotted IP 
 .— 168 mm Unslotted IP 
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powder.  Ultimately, the results could be resolved into a group of ten firings 
(various igniters and configurations) and two outliers with considerably 
higher burning rates than the rest of the data.  Plots of the data from four 
"normal" runs and the burning rate curve for one of the outliers are presented 
in Figure 10.  Considering some of the findings to be discussed later, it 
seems probable that these unusual results were due to drastic grain breakup or 
splitting during burning. • . ' . 
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Figure 10.  Average Burning Rate Curve and Outlier for 
0.940 mm PD, 337 mm Unslotted IP Stick Propellant 

IV. DISCUSSION 

A.  Mechanistic Considerations 

Conventional gun propellants are generally accepted to burn in parallel 
layers, normal to the sample's surface (Piobert's law).  According to this 
law, burning rates are assumed to depend on pressure and sample chemical 
composition,(and, tacitly, processing variables) but independent of sample 
geometry.  Under ordinary circumstances, sample geometry and burning rate have 
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been shown to be independent.  A clear cut example of this may be found in a 
recent JANNAF Round Robin study^ comparing burning rates of 7 perforated 
granular and strand propellent samples with identical chemical compositions. 
The normal gasification process from the surface of a propellant grain is 
described in Figure 11A.  Under certain circumstances, however, the 

Figure 11.  Gas Evolution During Burning of Short Granular and 
Slotted and Unslotted Stick Propellant 

^^A. Juhasz,   ed.,   "Round Rohin Results of the Closed Bomb and Strand Burner," 
JANNAF Combustion Subcommittee,  Bum Rate Measurements and Data Reduction 
Procedures Panel,  CPIA Publication 361,  August,   1982. 
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assumptions concerning the decoupling of burning rate and sample geometry may 
collapse.  In the case of perforated propellant grains, for instance; provided 
that the perforation is sufficiently long, conditions may become favorable to 
allow a coupling between perforation length and burning rate.  For example, if 
the venting of combustion products through the perforation ends is slower than 
the generation of combustion products within the perforation, a pressure 
buildup will occur. (See Figure IIC.)  The inner surfaces of the grain, 
therefore, will burn at a higher pressure (and therefore a higher rate) than 
the outer surfaces.  The difference in pressure may also be expected to drive 
a rapid gas flow through the perforation, setting up conditions favorable for 
erosive burning.  Alternately, if the gas pressure inside the perforation 
becomes sufficiently high, grain rupture may result,(Figure IID.)  The idea 
behind the longitudinal slot in slotted stick propellants, is to permit 
sideways venting of combustion products from inside the perforation, thereby 
avoiding the perforation pressure buildup and attendant effects . (Figure UB.) 

B. Data Correlations 

The close agreement between the burning rates of the short, unslotted 
single perforated grains and the slotted 337 mm stick samples indicates that 
slotting does, indeed, serve to eliminate the augmenting influences on 
propellant burning, at least in the closed bomb.  Conversely, the differences 
between the burning rates of the unslotted single perforated stick and the 
granular/slotted samples demonstrate clearly that some augmenting mechanisms 
are operating in the burning of these single-perforated stick samples. 

The change in burning rates with sample length appears to follow a 
regular pattern in the case of the 2.134 mm perforation diameter IP samples. 
The greatest augmentation takes place for the longest samples with 
progressively less augmentation as grain length decreases.  This is consistent 
with both the perforation-pressure-augmented and erosive burning mechanisms. 
In the case of the 0.940 mm perforation samples, however, the fastest burning 
rates were not observed for the longest, but for the medium length (168 mm) 
samples.  This is inconsistent with both the mechanisms mentioned above.  It 
seems clear from the results of both sets of samples, however, that up to 
perforation-length-to-diameter ratios of 40 to 45, augmentation effects are 
relatively weak.  It is interesting also to compare the results of the 
unslotted IP stick samples with each other and the reference (averaged 
granular/slotted) data set . (See Figure 12.) From the curves, it is clear that 
the greatest overall burning rate augmentation takes place for the large 
perforation diameter 337 mm long IP samples 

C. Modeling Efforts 

(Perforation Pressure Build-up)  It became of interest to examine 
numerically the change in extracted burning rates based on the hypothesis of 
pressure build-up inside the perforation.  To accomplish this, a lumped- 
parameter interior ballistic code (Baer-Frankle model) was modified to permit 
the burning rates inside the perforations and on the exterior grain surfaces 
to be different.  The normal r=AP" burning rate relationship was assumed for 
both surfaces, however.  The pressure inside the perforation was modeled by 
assuming that the system behaves as a rocket, the gases generated inside the 
perforation moving to the exterior volume by assuming sonic and subsonic 
equations of mass flow through the perforation ends.  In order to simulate the 
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Figure 12.  Baseline and Strongly Augmented Burning Rates 

 2.134 PD, 337-inm Unslotted IP sample 
      0.940 PD, 168-mm Unslotted IP sample 
  0.940 PD, 337-mm Unslotted IP sample 

closed bomb situation the projectile was not allowed to move (thereby keeping 
the chamber volume constant).  The pressure-time curve so synthesized was then 
analyzed using a normal closed bomb burning rate reduction code.  The closed 
bomb code assumed identical regression rates for all surfaces. 

An increase was noted in the extracted burning rates for both the small- 
and large-perforated unslotted stick propellant samples.(See Figure 13.)  The 
magnitude of the increase was roughly that of the experimental data, but the 
order of increase was reversed. According to the perforation-pressure-buildup 
hypothesis, the effect should be strongest for long grains with small 
perforation diameters.  This is because the volume into which the perforation 
combustion gases are released is smaller and because the nozzle area through 
which the gases must exit is smaller.  This would lead to higher 
pressurization and mass generation rates inside the perforation, hence greater 
extracted apparent burning rates.  In actual fact, the single-perforated stick 
propellant samples with the larger perforation diameters were found to have 
the higher burning rates. 
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Figure 13.  Synthetic Closed Bomb Burning Rate Curves Assuming 
Perforation Pressure Buildup 

Baseline burning rate 
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(Grain Splitting) The pressure differentials calculated between the 
perforation and the exterior grain surface (above) were greater than rupture 
pressures previously determined for the samples using static pressurization 
techniques.    Further, the ruptured samples were found to have failed with 
the formation of longitudinal splits.  This prompted numerical examination of 
the hypothesis of grain splitting during burning.  For this portion of the 
study, a conventional closed bomb synthesis program was modified to allow 

11 F.  W.  Rohbins,   "Continuing Study of Stiak Propetlant Combustion Processes, " 
19th JANNAF Combustion Meeting,   CPIA Publication 366,   Vol I,   pp 427-442, 
October 1982. -  ■ 

26 



changing the assumed surface function from a single-perforated cylinder to a 
single-perforated cylinder with a slot at some arbitrarily chosen pressure 
(for the example in Figure 14, the transition was programmed below 10 MPa). 
In effect, the grain was made to unzip, exposing extra surface area for 
burning.  The resultant synthetic pressure-time curve was analyzed using a 
normal closed bomb burning rate code as before. 

The apparent burning rates extracted from the synthetic curve were higher 
than the burning rates input to the synthesis program.  A plot of the input 
and extracted data for the 2.134 mm PD sample appears in Figure 14. 
Interestingly, though the absolute change in burning rates was of the same 
order as found in our experimental study, little or no difference was found 
between the apparent burning rates of the small and large perforation diameter 
samples. 

One significant observation from this portion of the study concerns the 
character of the upper region of the extracted burning rate curve.  This 
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Figure 14.  Synthetic Closed Bomb Burning Rate Curves Assuming Grain Splitting 
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 Predicted for 2.134 mm PD sample 
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section of the synthetic curve bears a strong similarity to the upper portion 
of the experimental data from the 0.940 mm single perforated IP stick samples 
of Figure 6. In summary, therefore, although the grain splitting hypothesis 
can account for an increase in the observed burning rates and for the general 
shape of the 0.940 mm PD single-perforated stick samples, it fails to account 
for the observed order of burning rates in the experimental data. 

D.  Related Observations 

Microscopic examination of grains from the interrupted burning tests 
provides some insight into the way that samples with long perforations burn. 
For the samples with the small perforation diameters, the distances burned 
inside the perforation at the two ends of the grain were twice as great as the 
distances burned on the outer surface.  At the center of the grain, however, 
the perforation distance burned was only two-thirds of the distance burned on 
the grain exterior.  This seems to indicate that there must be a significant, 
finite time for initial flame propagation through the perforation and that 
some form of erosive burning augmentation takes place at the perforation ends. 

In the case of the samples with large perforation diameter, the distances 
burned at the grain ends (perforation versus external surface) were roughly 
the same with possibly a somewhat greater perforation distance burned.  At 
the center of the grain, however, the distance burned inside the perforation 
was only one half the distance burned at the exterior.  This indicates that, 
for the larger perforation samples, flame propagation into the grain takes 
longer and that the erosive component of in-perforation burning is 
considerably less.  It should be noted that at the low burst pressures of 
these experiments (—38 MPa) only 0.1 mass fraction of the propellant would 
be expected to have burned.  It is probable that at higher—or lower—mass 
fractions burned, the relative distances burned at the various locations may 
have been different. 

In a related study,   interrupted burning tests were performed firing 
stick propellant charges in a sawed-off howitzer.  Coning of sample ends 
(greater regression of the perforation surface than exterior surface), 
somewhat similar to our results, was noted.  In addition, unlike in our study, 
extensive grain breakup and splitting were also noted. 

V. CONCLUSIONS 

Overall, it appears that both erosive burning and grain splitting may 
play significant roles in the burning augmentation of single-perforated stick 
propellants.  The contribution of a simple pressure augmented burning effect 
in the perforation is more difficult to assess.  Considerably more work will 
be required to dependably establish the relationships between grain length and 
the various burning augmentation mechanisms.  Further interrupted burning 
tests examining residual grain shapes as a function of mass fraction burned 
should prove useful in generating a more detailed picture of the process. 
Closed bomb tests, especially on identical sample lengths as those intended 
for gun applications  are, of course, needed.  The experiments with the 
slotted stick propellant samples indicated essentially identical burning 
properties as with granular samples.  This is interesting in view of 
observations in gun tests indicating that slotted stick propellants have 
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higher effective burning rates in guns than the closed bombs.  Unlike in the 
closed bomb, combustion in a gun is accompanied by a rapid movement of product 
gases past the propellant as projectile motion and gas expansion take place. 
This may well result in a macroscopic erosive effect, expecially in charges 
having long, axial channels.  It seems likely that combustion studies using a 
device such as the Dynagun  simulator may help to establish the required 
bridge between stick propellant burning under closed bomb and gun 
conditions.  The Dynagun would permit gross movement of combustion gases 
across the stick propellant charge in much the same way as they do in a gun. 
Finally, the picture evolved in this study for the burning of the rather 
resilient NOSOL 363 stick propellant may not be directly applicable to the 
highly brittle M30 stick propellant family.  Clearly, additional studies of 
stick propellant burning are needed. 

^^H. Kvier and J. W. Blaak,   "Fvediating Uniform Gun Interior Ballistias:    Part 
III The Concept and Design of the Dynagun Ballistic Simulator,"    Technical 
Report AAE 74-7 UlLU-Eng 74  0507,  University of Illinois at Urbana- 
Champaign, December,   1974. 
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