TG FiLk burr

~ Statisties =

PRINCIPAL CURVES AND SURFACES

Trevor Hastie

Technical Rceport No, 11 |
November 1984

 AD-A148 833

Q0000803195

Laboratory for
‘Computational

' I\ ‘ ’ .

CT;:-"'
| ) Q::‘"j " r '
v L Mm

uil v l‘ A3

Stanford University

?Tfeaéf - .84? 12 13'~007'

..........
- IR Y . . s e e . T S
L TP e U R A

" Department of Statistics




. ]

This documens snd the metwial snd duts comtained therdln, wvor developed
' wndar spenseschip of the United Stater Govamment. Neither the United Stases
Ser the Department of Duorgy, aer the Ofice of Noval Ressarch, nev the U'S..
Asmy Ressasch Office, ner the Ldand Stanferd Junier Uniowrsity, asr thalr e
playess, ner thalr revpertive comtractem, subcontractoss, or thelr smployess,, '
mabw wy vawsaty, apress o implied, or ssvnmes 2y Sabliy or respen-
iy e sscmacy, complstonun o wiiinae of my nfvestive, :ppare-
n*d”““.“uh'mtlu*
potvately-cwned rights. Mantion of sy product, e mainforturer, o cupplioss
. shall ety ase 1o 18 intended to, imply sppeevel, disapproval. or Simece fov sy -
pasticalar wse. A soyaliy-Sve, senenchuive right %o ase and disseminate sesee
for suy puspese vhetssever, s exprescly reserved to the United States and the
Cntvasiy o

Gl et




W. A1y g3

4. TITLE (and Swdittle)

PRINCTIPAL CURVES AND SURFACES

TECHNICAL

$. TYPE OF REPORT & PERIOD COVERE™

6. PERFORMING ORG. REPORT NUMBER

' Stanford Universjity, Stanford, CA 94305

)

7. AYTHOR(s)

Trevor Hastie

§. CONTRACT OR GRANT NUMBER(S)

NOOOI&-BJ-K-O&H/

/

5. PERFORMING ORGANIZATION NAME AND ADORESS

Department of Statistics and Computational Group
Stanford Linear Accelerator Center

AREA & WORK UNIT NUMBER

0. PROGARAM [L“!NT VROJ!CT TASK

V1. CONTROLLING OFFICE NAME AND ADDRESS
U.S. Office of Naval Research

12. AEPORT DAYE
November 1984

Department of the Navy

13. XUMBER OF PAGES

| Arlington, VA 22217 '
MONITORING AGENCY NAME & ADORES(I? different from Controfiing Office)

15. SECURITY CLASS. (of the report)

UNCLASSIFIED

The. OECL ASSIFICATION/ DOWNGRAGING
SCHEDULE

vy yre 3
16. OISTRIBUTION STATEMENT (of this Repery)

Approved for pudblic release; distribution uhlinited-

17. OISTRIBUTION STATENENT (of the sbewrect entered in Bleck 30, It ditferent lrom Report)

" 18, SUPPLEMENTARY NOTES

The view, opinions, and/or findings contained in th
author(s). and should not be construed as an oificia
position, policy, or decision, unless so designated

fl report are those of the
1 Department of the Navy
'Yy other documentation.

". IIY'ORDO‘(C‘M- olde

~ regression

ary end ideey’’y by bloek sumber)

Principal components, non-linear, smooth, errors in lvariables, orthogonal

Y mnm(a—n--m d‘.-n--ydurlpm—m

./ Principal curves are smooth one dimensional curves that pase throughthe middle of a p dimensional
data set. They minimise the distance from the ponu. and provide|a sos-linear summary of the
data. The curves are non-parametric and their shape is suggested by|the data. Simihrlyl. principal

" surfaces are two dimensional surfaces that pase through the middle/of the data. The curves and
surfaces are found weing aa itérative procedure which starts with a lingar summary sich as the wswal
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- principal component line or pluc Each successive iteration is & smooth or local average of the p
dimensional points, where local is based on the projections of the points onto the curve or surface of
the previous iteration.

A mumber of linear techniques, such as factor analysis and erms in variables regretiion, end
up wing the principal components as their estimates (after & suitable scaling of the co-ordinates).
Principal curves and surfaces caa be viewed as the estimates of non-linear gemeralisations of these
procedures. We preseat some real date examples that illustrate these applications.

3 Principai Curves (or surfaces) have a thearetical definition for distribntions: thew are the Self
Consistent curves. A curve is self comsistent if each point on the curve is the conditional mean of
the points that project there. The maia theorem proves that principal curves are critical values of
the expected squared distance between the points and the curve. Linear princi; al coinponents have
&nm-wn;-fxt wpnnthtlapmapdcmnmught,chutnapnncxpd
component. These results generalise the usual duality between conditional expectation and distance -
m%&amutwmdhunthpmadm,v&ﬂhmthmﬂum -
property of partially cancelling each othar. 1\
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Principal Curves and urfaces

Trevor Hastie 7.

L

Department of Statistics .b\b S
Stanford University. ‘ — I C
and f~
Computation Group b

Stanford Linear Accelerator Center

- Abstract v

Principal curves are sr- >oth one dimensional curves that pa'u through the middle of a p dimensional

data set. They nunnmu the distance from the pdinto. and provide a non-linear summary of the

data. The cufvu are non-parametric and their shape is suggested by the data. Similarly, principal

surfaces are two dimensional surfaces that pass through the middle of the data. The curves and

surfaces are found using an iterative procedure which starts with a linear summery such as the usual

principal component line or plane. Each successive iwuion is a smooth or local average of the P

" dimensional points, where local i is based on the propctxou of the points onto the curve or surface of
the previous iteration.

A number of linear techniques, such as factor analysis and errors in variables regreuxon, end

wp using the principal componenats as their estimates (after a suitable scaling of the co-ordinates). ‘

Principal curves and surfaces caa be viewed as the estimates of non-linear generalisations of these
procedures. We preseat some real data examples that illustrate these applications. '
Principal Curves (or surfaces) have a theoretical definition for distributions: they are the Self
Consistent curves. A curve is self comsistent if each point on the curve is the conditional mean of
the points that project there. The main theorem proves that principal curves are critical values of
' the expected squared distance between the points and the curve. Linear principal compo_nenh have
this property 2s well; in faét, we prove that if a principal curve is straight, then it is a principal
component. These results generalise the usual duality between conditional e.xpectuion and distance
minimisatioa. We aho examine two sources of bias in thc procedures, which bave the mufutory

peoperty of pmuny cancelling each other.

We compare the principal curve and surface procedures to other pnenhnhona of pnncxpal

~ components in the literature; the usnal generalisations transform cho space, whereas we transform
- the nodcl. There are also m:; ties. with multidimensional scaling.

® Werk supperted by the Department of Energy uader contracts DE-ACOS-MPMIS and DE-AT0S-81-ER 10843,
and by the Ofice of Naval Research under contracs ONR N0014-82-K-0340 and ONR N0O14-83-K- <0472, and by
- the U.S. Ar-y Research Office under counct DAAG29-32- K 0088.
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Chapter 1

Introduction

Consider & data set consisting of n obseivations on two variables, z and y. We can
repreeentl the n points in a scatterplot, as in figure 1.1. Itis natural to try and summarize
the joint behaviour exhibited by the points in tﬂe scatterplot. The form of summary we
chose depends on the goal of our analysis. A trivial summary is the mean vecfof which
simply locutes the center of the cloud but conveys no in " srmation about the joint behaviour
of the two variables. ’

° . °
o ° %%
o o
o ©
° ° ° o 9
o o
o
[ ° & °°
% ° o ° °
o , .
o,
o o ©
’% ° :

Figure 1.1 A bivariate data set represented by a scatterplot.

It is often sensible to treat one of the variables as a response variabié, and the other

a8 an explanatory variable. The aim of the analysis is then to seek a rule for predicting the

response (or average response) using the value of the explai;étory variable. Standard linear

regreseion produces a linear prediction rule. The expectation of y is modeled as a linear

. . . '
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- we sxpect our pnncxpal

2 Chapter 1: Introduction

function of £ and is estimated by least squares. This procedure is equivalent to finding the

line that minimizes the sum of vertical squz: -4 errors, as depicted in figure 1 2a.

When looking at such a regressico ! ue, it is natural to think of it as a summary of the

data. Hdwéver, in constructing this sux.nmary’we concerned ourselves only with errors in

the response variable. In many situations we don’t have a preferred variable that we wish

to label response, but would still like to summarize the joint behaviour of = and y. The

dashed line in figure 1.2a shows what happens if we used z as the response. So simply

assigning the role of response to one of the variables could lead to a poor summary. An
obvious alternative is to sutnmarize the data by a straight line that treats the two variables
symmetrically. The first principal component line in figure 1.2b does just this — it is found
by minimizing the orthogonal errors. )
Linear ‘regreaaion has been generalized to include nonlinear functions of z. 'This has
been achieved using predefined parametric functions, and more recently non-parametric

ecatterplot smoothers such as kernei smoothers, (Gasser and Muller 1979), nearest neighbor
smoothers, (Cleveland 1979, Friedman and Stustzle 1981), and spline smoothers (Reiusch

1967). In general scatterplos smoothers produce a smooth curve that attempts to minimize '

the vertical errors as depicted in figure 1.2c. The non-panxmtnc versions listed above
allow the data to dictate the form of the non-lmear dependency.

 In this dissertaticn we consider similar generalizations for the symmetric situation.
Instead of summarizing the data with a straight line, we use a smooth curve; in finding the
curve we trzat the two vmables symmetrically. Such curves wxll pass through the msddle
of the data in a smooth way thhout rastricting smooth to mean linear, or for that matter
without implying that the middle of the data is a straight line. This situation is depicted

_in figure 1.2d. The figure s ggests that such curves minimize the orthogonal distances to

the points. It turns out that for a suitable definition of middle this is indeed the case. We
name them Principal Curv
could well imagine that a st aight line passes through the mlddle of the cloud. In this case
to be straight as well.

The principal component li plays roles other than that of a dmmmmary

o In errors in variables regressicn the explanatory variables are observed with error (as
‘well as the response). This can occur in practice when both vatiables are measurements
of some underlying variables, and there is error in the measurements. It also occurs in
observational studiés where neither variable is fixed by design. If the aim of the analysis

. . R N . - ' . . . L o " . s
A W g gy, AR, LM 2y ST PR e T S g Ry 4 e I I P L L IR T T IR -’Q'f"hl* b S et AR A *
. . - . . P o Lo - -

. If, however, the data cloud is ellipecidal in shape then one
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Chapter 1: Introduction . 3

is prediction o’ g or,regrusit')n and if the z variable is never observed u;ithout error, then
the best we can do is condition ¢;n the observed z’s and perform the standard regression
analysis (Madansky 1959 Kendall and Stuart 1961, Lindley 1947). If, however, we do
expect to observe x without error then we can model the expectation of y 23 a linear
function of the systematic component of z. After suitably scalmg the varizbles, ‘this
model is estimated by the pnncxpal componeat line.

e Often we want to replace a number of highly correlated viarié.bles by a single vari-
able, such as a normalized linear combination of the original set. The first principal

component is the normalized linear combination with the largest variance.

e In factor analysis we model the systematic compqnént of the data as line& combina-
tions of a small subeet of new uh‘observable variables called factors. In many cases
the models are estimated using the linear principal components summary. Variations

- of this model have ap;ie"aked in many different forms in the literature. These include
linear functional and structural mode.s, errors m variables and total least quares.
(Anderson 1982, Golub and van Loan 1979).

In the same spirit we propose using pnncxpal curves -as the estimates of the systematic
components in non-linear versions of the models mentioned above. This broadens the scope
and use of such curves considérably. This dissertation deals with the definition, description
and estimation of such principai curves, which are xhore generally one dimensional curves
in p-space. When we have three or more variables we n carry the generalizations further.

. We can think of modeling the data with a 2 or more dimensional surface in p space. Let us
first consider only three variables and a 2-surface, and dea! with each of the four situations
in figure 1.2in turn. ' '

) ‘If one of the vari;bla is a response vaﬁa.ble, then the usual linear regression model
estimates ihe condltlonal expectation of y given 2z = (z;,2z;) by the least squares
plane. This is a planar response surface which is once again obtained by minimizing
the squared errors in'y. These errors wre the vertical dlstances between P} and the pomt.
on the plane vertxcally a.bove or below v.

e Often a linear response surface does not adequately model the conditional expectation.

 We then turn to nonlinear two dimensional réopdnse surfaces which are smooth surfaces

that minimize the vertical errors. They are estimated by surface smoothers that are
dnect extensions of the aca.tterplot smoothers for curve estunntlon

- - : .o . o ) o
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4  Chapter 1: Introduction

Figure 1.2a The linear regression line mini- Figure 1.2b The principal component line
mises the sam of squared errors in the response minimizes the sum of squared errors in all the
variable. ' _ variables.

V.—-Q

. Flgure 1.2¢ The smooth regreuién_cuwe Figure 1.2d The prinéipal cutve >minimizes
minimises the sum of squared errors in the ' the sum of squared errors in all the variables,
response variable, subject to smoothness con subject to smoothness constraints.

straints. ' B '
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Chapter'1: Introduction 5

o If all the variables are tc be treated symmetrically the principal component plane passes
through the data in such a way that the sum of squared distances from the points to
the plane is minimized. This in turn is an estimate fcr the systematic component in a
2-dimensional linear model for the mean of the three variables.

. F‘indly, in this symmetric situation, it is often unnatural to assume that the best two
~ dimensional summary is a plane. Principal surfaces are smooth surfaces that pass
through the middle of the .dm cloud; they minimize the sum of squared distances
between the points and the surface. They can also be thought cf as a an estimate for
the two dimensional systematic compocnent for the means of the three variables.
These surfaces are easily generalized to 2-dimensional su~faces in p space, although they
are hard to visualize for p > 3.

The dissertation is organized as follows:
. In chapter 2 we discuss in ‘more detail the linear principal components model, as well.
as the linear relatxonslup model hinted at above They are identical in many cases,

and we attempt to tie them together in the sxtuatxona where this is possible. We then
propose the non-linear generalizations.

e In Chapter 3 we define principal curves and surfaces in detail. We motivate an al-
gorithm for estimating scch models, and demonstrate the algorithm using simulated
data with very definite and difficuit structure.

Chapter 4 is theoreticul in nature, and proves some of the claims in the previous chap-

ters. The main result in this chapter is a theorem which shows. that curves that pass
' through the middle of the data are in fact critical points of a distance function. The
principal curve and curface procedures are inherently biased. This chapter concludes

with a ducunnon of the various forms and severity of this bias.

Ch_lpter 5 deals with the algorithms in detail Lhere is a brief discussion of scatterplot
cmoothen, and we show how to deal with the problem of ﬁndnng the closest point on
thc curve. Thc algorithm is expluned by means of simpls examples, and a method for

span ulcctwn is given,

Chapter 6 contuns six examplu of the use and abilities of the procedurea using real
and simulated data. Some of thc examples introcuce special features of the procedures

: -urh as inference using thc bootstrap, robust ophona and outlicr detection. -
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e Chapter 7 prov.des a discussion of related work in the literature, and gives details of
soice of the more recent ideas. This is followed by some concluding remarks on the
work covered in this dissertation.
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Chapter 2

Background and Motivation

Coudcadmvatthnmnd columns. Thcmumconmuotnpanuor
ndalmthpeoadxm hmyntu&tmthsm&mwﬂlhnommunohemnons
dsncﬁornndommubh. '

'2.1. Linear Principal qunponents.

The first (linear) principal compoaent is the normulized linear combination of the p variables
vlththchn-tnmphm ltiavconmiutto:hinkdeuadouddnpoinuin
p-space. The rincipal component is then the length of the projection of the n points onto
s direction vector. The vector is chosen 30 that the variance of the projected points along
it is largest. Any live parallel to this vector will have the same property. To tie it down we
insist that it passes through the mean vector. This line then has the appealing property of .
being the line in p-epace that is closest to the data. Closest is in terms of average squared
. caclidian distance. We think of the projection as being the best linear nne dimensional
summary of the data X. Of course this linear summary might be totally inadequate locally
batitmtowido.m‘bhglobdmmnury.

" The theory and practical i-m-'invo;nd in linesr principal components analysis are
well known (Barnett 1981, Gnanadesikan 1977), and the technique is originally due to
Spearman (1904), and then later developed by Hotelling {1933). We can find the the
second component, orthogonal tot&ﬁnt,l that has the next highest variance. The plane
mnmdbytbmmandmcludmgthwvmnthc plane closest to the d.u.

 In general we caa find dnm<pdmnmond hypcrplano that eonmm the most vmnncc,
_and is clossst to the data. :

The solution to the ptoblon is obtained by‘ computing the singular value decomposi- -
tiom or basic structure of X, (centered with respect to the sample mean vector), or equiva- -
leatly the sigen decomposition of the sample covariance matrix (Golub and Reinsch 1970,
* Greenacre 1984). Without any loss in generality we assume from now on that X is centered.

I this is not the case, we can center X, perform the nnlyli-, and uncenter th; results by

-----------------

. ‘ Lo : . , L - P - __
>t L — ——"
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8 Section 2.1: A linear model formulation

adding back the mean vector.

In particular, the first principd component direction vector & is the largest normalized
eigenvector of S, the saraple covariance matrix. The principal component itself is Xa, an
n vector with dedenv; A; = za where z] is the ith row of X and J; is the one dimensional
summary variable for she sth observation. The coordinates in p-space of the projection of
the sth observation on e are given by *

o) = ad'z; | 2.1)

There is no underlying model in the above. We merely regard the first component
a8 a good summary of the criginal variables if it accounts for a large fraction of the total
2.2. A linear model formulation.

In th'nv section we describe a linear model formulation for the p variables. This formulation
includes many- familiar models such as linear regression and factor analysis. We end up
showing in 2.2.2 that the estimation of the systematic componént of some of these models
is once again the principal component procedure. |

. 3.2.1. Outline of the linear model.

Consider a model for the observed data

HK=w+e ' (2.2)

where w; is an unobeervable systematic component and ¢ an uncbservable random com-

. pooent (We only m‘t-o. se¢ their sum). We nsually‘ imposs some linear structure on u;,
naroely ' - ‘ '

w=s+AN | - (23)

Mu-mzbcummm Au;pxmm&tmmd&uanm-mtor For the

_procedures considered wo is always estimated by the mnph mean vector 2; without loss of

generality we will simply mtthhuboénanundmdignmth; term ug. We also

. leblotcomudwmnbylomu(f X ~ 18. Then the principal component s, -
A\-.fcndlhom:npupml«tl« ptopcuonol the itA observation outo the principal
component ine 8+ @y is 8+ @A = 2+ 0d/(z - 8) :

e v, - IR I I s Lea e et e e 7...,.'.'. .“.,.'. N P .-'..‘.. v e .‘..._\_w..' R TRRC O
) .:, CASAC OO SOUAUATRUARS ;....,.. ..:...1...’ .-.“ .- ‘.\.‘ ’. :. :_&_ '.::':'°':.":.‘..:"'-.t':'!': .\ s ‘.-.‘.(-...'....-. '-.. o .._..
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Chapter 2: Background and Motivation 9

assume that ¢ m mutually independent and identically distributed random vectors with
mean O and covariance mstrix ¥ and are independent of the A;.

K the A; are considered to be random as weli, the model is referred to as the linear
structural model, or more cominohly as the factor mdys'a model. If the A; are fixed it is
referred as the linear functional model. The model (2.3) includes some familiar models as
special cases:

e Let A be p x (p — 1) with rank (p - 1). WgémwritcAu

(%)

Mliﬂl(p-vl-) nctorandl'-‘(p-l)v X'(p—l)'ain'avecanpon-multiply.&b_y
an arbitrary nca-singular (p— 1) x (p - 1) matrix:und pre-multiply A; by its inverse.
Thus we can write the model (2.3) s

-0 e

where E(¢;) = 0 and assume Cov(e;) = diag(0],03,...,03). o} =0} = =d}=0

then we have the usual linear regression model with response z); and regressor variables

‘g

o H the variances are not sero we have thomonmnnublung'mon model. Thcidét .

h&oﬁnda(p l)whymmm?w:hdwpmmcdm'ell

The model takes care of errors in all the variables, vhorou the usual linear re;remon

modal considers errors only in the response variable. Tlm is a form of hnen functlonnl
analysis.

o When the J; are random we have the usual factor anlynu mode, which inclﬁdep the
random effects Anova. This is also nfornd to as the linear structural model.

° lfullthomineummuddn&mrmdommdAupxpthomodclreprmnu

the principal componut dnngo of basis.' In this mnmon it u clear that the A,. are
each functions of the . .

Foe o full treatment of the above models see Anderson (1982).

.............................
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10 Section 2.2: A linear model formulation

3.3.3. Estimation.

We return for simplicity to the case where m = 1. Thus
si=a\+e ' (2.5)

The systemaiic components a); are points in p-space confined to the line defined by a
maltiple A; of the vector e. We need to estimate ), for each obseervation, and the direction
vector. '

We now state some results which can be found in Anderson (1982).
I sither

o the ¢ ars jointly Normal with a scalar covariance cl, where c is possibly nnknowi:;
lﬁdif.\.' are random or fixed, and we estimate by maximum likelihood.

. sabonbctwcdroptbc Normal a-umptmn anduhmatobyleutaqunu,
thuthcmda\. -cucoacunthcﬁruprmctpdcompomtmdthuofothpnncxpd

. component direction vector. In both cases the quantity we wish to minimisze is

RSS(h,e) =3 lsi - -a.u' . (2.6)

i=]
It is easy to ses that for any e the appropriate 'value for A; is obtained by projecting the
point z; onto &. Thus equation (2.6) reduces to

. \ - . — aal.li®
RSS(e) = .Z_;ll& ed'sif” - 2.7)
=tr XX - c'X'Xc

Tb-nomulmdnhnonto (znuthcluMngennctocolX'X. ,
lfthomconnnnco'lupwdbutknm,mcmtrmdormthcproblemtothe : ‘

, pm:oman ThunthmumgthoMahuhnobndmdeﬁnodmtemuof!’

In puucnlu when ¥ is diagonal the procedure amounts to finding the line that mmumzes '
thcw‘huddutmtothcpomundudopncudmﬁgun (2.1) below.:

. If the error covariance is unknown and not scalar then we require raplicate observatxons
in otdct to estimate it.
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Figure 2.1 I« ¥ = diag(c?,03) then we mnumnc the weighted
distance 3 (4}, /of + &3, /03) from the points to the line.

2.2.3. Units of measurement.

It is often a problem in multivariate data analy-is that variables have different error vari-
ances, even though tkey are measured in the same uni& A wom'situution is that often
the variables are measured in eomphtely dxﬂ'erent and mcommemunble units. When we
use least squares to estimate a lower dunemnonal summary, we explmtly combine the errors
on each variable using the usual sum of ccmponents loss ﬁndpn, ssin (2.6) . This then .
gives equal weight to each of the compouents. The solution is thus not invariant to changes
in the scale of any of the variables. This is easily demoustrated by considering a spherica.l

“point cloud. 1f we scale up one of the co-ordinates an arbitrary amount, we can create -
a8 much linear structare ss we like. In this situation we would really like to weigh the
.errors in thnlntimaﬁou of our model according to the variance of the méuuremcni errors,
which ia ‘seldom known. The safest procedure in this situation is to standardize each of the

. coordinates to have unit nnnm This could destroy some of the structure that exists but

without further knowledge nbout the scale of thn components this yxelds a procedure that
is invariant to coordinate scale transformations.

If, on the other hand, it is known that the variables are meuured in the same units, .
we should not dq any scaling at all. An apparent countebexamph occurs if we make

. - - S e ve me . v - -~ - .’ et e P T
f e vt e o iy e e . - P N P S R TP P RS SRS SR
@ et e . e, CIa

. . o . LR IR S I IR TP S SR S S .c‘_-'b'.'.- -‘. .'-'..
.‘.'.’-'."s.'."..‘-'..‘ a,.'-..?"n.'.\o.'a.‘..'- L g S T ¥ y
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12 Secaon 2.3: A non-linesr generalization of the linear model

measurements of the same quantities in diﬁ'grent situations, with different measurement
devices. An example might be taking seismic readings at different sights at the same
instances with different recozding devicq. If the error variances of the two devices are
different, we would want to scale the components differently.

To sum up so far, the principal component summary, besides being a cénvenient data
reduction technique, provides us with the estimate of a formal parametric linear modei
which covers a wide variety of situatiovs. An original example of the one factor model
given here is that of Spearman (1904). The 2: are scores on paycholopcal tests and the X;
is some underlying unobeervable general intelligence factor.

The estimation in all the cases amounts to finding s m-dimensional hyperplane in

-p-tpacctlutuclmuttathcpomhmlommetnc

2.3. A non-linear generalization of the hnear model

Tho above formulation is often very restrictive in that it assumes that the systematic com-

ponent in (2.2) is linear, as in (2.3). It is true in some cases that we can approximate a

- nonlinear surfacs by its first order linear component. In other cases we do not have sufficient

data to estimate any more than a linear component. Apart from these cases, it is more
reasonable to assume a model of the form

&H=I(N)+e (29

where A; is a m-vector as befors and f is a p-vector of functions, each with m ugmiunta The

functions are required to be smooth relative to the errors. Thnu;murdgenenhzatxon

of the linear model.
| - This dissertation deals with a generalization of the linear principal cﬁmpouenta. In-

stead of finding lines and planes that come close to the dua.,,"nﬁndcurvu and surfaces.
Just as the linear principal components are estimates for the variety of linear models listed

above, 0 will our non- linear versions be estimates for models of the form (2.8) . So in"

" addition to having a more gmnl summary of multidimensional data, we pmde & means

. of estimating the -yltcmahc component in a luge class of models nntcbly generahzed to
' mdudo nou-linearities, We refer to these summaries as principal curves and surfaces.

So far the discussion has concentrated pﬁ data sets. We can just as well formulate the

above models for p dimnensional probability distributions. We wonld then regard the data set

's' ‘o ;

{ -'.h.n't MO Y sraT YT ,C.'"-‘-l':f~'-'9‘-_‘.‘.,', ‘e w e \.'~ .
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as a sample from this distribution and the functions derived for the data set will be regarded
as estimates of the corresponding functions defined for the distribution. These models then
define one and two dimenasional surfaces that summarize the p dimensional distribution.

" The point f()) on the surface that correspbnds to a general point = from the distribution

is a p dimensional random variable that can be summarized by a two dimensional random

* variable .

- .‘ c
Aaas T

2.4. Cther generalizatiohs.

There have b~~a a number of generahzatmu of the pnncxpal component model sugguted
m the literature.

e “Generalized principal componeats® usually refers to the adaptation of the linear model
in which the coordinates are first transformed, and then the standard brincipal com-
pouent analysis is carried out on the transformed coordinates.

¢ Maltclimensional scaling (MDS) finds a low dimensional representation for the high

" dimensional point cloud, such that the sum of squared interpoint distances are pre-

served. This constraint has been modified in certain cases to cater onfy for points that
are :loze (v the original space.

e Prcxinuty analysis provides parametric representations for data without noise.

o Non-linear fector analysis is a generalization similar to ours, excepﬁ parametric co-
ordinate functions are used.

Wa Lave been deliberately brief in listing these alternatives. Chapter 7 contains a detailed

dmmona.nd compari@on of each of the above with the principal curve and surface models.

AR R AR
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Chapter 3

The Principal Curve and Surface models

In this chapter we define the pﬁnéipd curve and surface models, first for a p dimensional
probability distribution, and then for a p dimensional finite data set. In order to achieve

seme continuity in the presentation, we motivate and then simply state results and theorems

" "in this chapter, and prove them in clapter 4.

3.1. The principal curves of a probability distribution.

We first give a brief introduction to one dimensional surfaces or curves, and ;then define the
principal curves of smooth probability distributions in p space.

3.1.1. One dimensional curves.

A one dimensional curve f is a vector of functions of a single variable, which we denote by

A. These functions are called the coordinate functions, and A provides an ordering along »

the curve. If the coordinate functiouns are smooth, then f will be a smooth curve. We can
clearly make any monotone transformation to A, say m(}), and b‘y modifying the coordinate

functions appropriately the curve remains unchanged. The 'pirametrization, however, is.
‘'different. There is a.natural parametrization for curves in terms of the arc-length. The -

arc-length of a curve f from Ao to ), is given by

Ay
- [ 1) d.

¥ [17°(s)ll = 1 then! = Ay —~Xo. This is a rather dennble sxtuatxon, since if all the coordmate

variables are in the sams units of measurement, then X is alsa i in thoee units. The vector
(.\) is tangent to the curve at A and is sometunea ca.lled the veloc:ty vector at A. A curve
with J|f']|=1i is called a unit speed puunetnzed curve. We can always reparametnza any

amooth curve to make it unit speed. If ¢ is a unit vector, then f(A) 09 + Av is a unit
speed straight curve. '

‘The vector f"()) is called the acceleration of the curve at A, and for a unit sp‘eedA‘
curve, it is easy to check that it is orthogonal to the tangent vector. In this case 7%/ |||

- . . e . .
- -’ o - 0 - . c . - - - . - - . . e - .
.'. - ,- - .;":o ; . -'.p.‘ ' a.‘ - p' - .n.'-- ’.-' - ,p .'- '... .p o .ﬂ et '_of‘_c RO AL A SeteTtatetntate e
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' . |
Figure (3.1) The radius of curvature is the radius of the circle L
tangent to the curve with the same acceleration as the curve.
is called the principal normal of the curve at A. Since the acceleration measures the rate =
and direction in which the tangent vector turns, it is not surprising that the curvature of ‘ L,....

a parametrized curve is defined in terms of it. The easiest way to think of curvature is in
terms of a circle. We fit a circle tangent to the curve at a putic_ular point and lying in the
plane spanned by the velocity vector and the principal normal. The circle is constructed to

have the same acceleration as the curve, and the ru"lius of curvature of the curve at that :
point is defined as the radius of the circle. It is easy to check that for a unit speed cuive
we get . )
| r7(2) 4 radius of curvature of f at-A __w

=yirmy o =
The—center of curvature of the curve at A is denoted by ef(A) and is the center of this circle.

,p
v ¢
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. 3.1.3. Deﬁnition of prmcipa.l curves.

¥
L]

We now define what we mean by a curve that paso-;s through the middlg of the datS « what
we call a principal curve. Figure 5.2 represen‘s such a curve. At any particular location
on the curve, we collect all the points in p spice that have that location as their closest
point on the curve. Loosely speaking, we collect all the points that project there. Then
the location on .the curve is the average of these points. Any curve that has this property L
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16  Section 3.1: The principal curves of a probability distribution

JERATS)

" Figure (3.2) " Each point on a principal curve is the average of th»
points that project there.

is called a principel curve. One might say that principal curves are their own conditional :::j
expectation. We will prove later these curves are cntxca. points of a dxsta.nce functxon, ‘l-jj:;:

are the principal components

In the figure we have actually shown the points that project xnto & neighborhood on

the curve. ' We do this because usually for finite data sets at most one data point projects
at any particular spot on the curve. Notice that the points lie in a segment with center at :2'—::’.: |
the center of curvature of the arc in qneetion. ‘We will discuss this phenomenon in more R J
v detul in the section on bias in chapter 4. - : : ‘ .—" 1\
We can formalize the above deﬁnmon Suppose X is a randczn vector in p-space, ::: 5 1
with continuous probablhty denslty h(z). Let G be the class of differentiable 1-dimensional ,
‘ curves in IR?, pu-ametnzed by A. In addition we do not allow curves thas form closed. loops, » ; ?...
so they may not intersect themselves or be tangent to themselvu Suppose A € Ay for each _ ;I-::j'.::
fin 9 ForfeGandze lR’ we deﬁne the projection index A p: RP—4A ! by A
x,(z)=m;x{le|z~f(A)|| = nf ||z - f(u)l]}. (31) —
R R I I R _,u - _n AT e e .- :.- -...}7,‘?‘.."’;1’? rrtatetdt . state ..“.';'v.' LTS JNE N .':i-:"‘
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. Chapter 3: The Principal Curve and Surface models 17

The projection index A (z) of z is the value of A for which f(2) is closest to 2. There might
be a number of such points (suppose f is a circle and z is at the center), so we pick the _ b
largest such value of \. We will show in chapter 4 that Ay(z) is a measureable mapping ' o
from R’ to R!, and thus A7(X) is a random variable.

Definition

The Principal Curves of h are those members of § which are self consistent. A curve f € §
is self consistent if

E(X[Ag(X)=2)=f(}) VA€ Ay
We call the class of principal curves 7(h).

* 8.1.3. Existence of principal cur_\'res.

An immediate question migkt be whether such curveﬁ exist or not, and for what kinds of
distributions. It is easy to check thatl for ellipsoidal distributions, the principal cbmponents '

~ are in fact principal curves. For a spherically symmetric distribution, any line through the

mean vector is a principal curve. »

What about data generated from a model as in equation 2.8, where A; is 1 dimensional?

Is f a principal curve for this distribution? The aﬁsyver in general is no. Before we even

try to answer it, we have to enquire about the distribution of A; and ¢;. Suppose that thg

“data is well behaved in that the distributioﬁ of ¢ has tight enough support, so that no

points can fall beyond the centers of carvature of f. This guarantees that each pomt has

a unique closest point to the cnrvel. We show in the next chapter that even under these

ideal conditions (spherically symmetric errors, slowly changing cutvaturé) the average of

points that project at a particu'ar point on the curve from which they are generated lies

- outside the circle of curvature at that point on the curve This means that the br_indpal

_ curve will be different from the generating curve. So in this situation an unbiased estimate

" of the principal curve will be a biased estimate of the functional model. This bias, he  er,
is.sma.ll and decreases to zero as the variance of ‘the errors gets small relative to the radius

of curvature.

. ' o
3.1.4. The distance property of principal curves. , ‘ AN
The p;incip'al'componepta' are critical points of the squared distance from the points to their Rt
projections on straight curves (ﬁneé). Is there any analogous property for principal curves? . v =

a..---'.-..--.—a_—.-,'-‘-..‘-,.,.,.A.‘m-..c.o.»o'. Y T I T AT S o S DU DT S Re L R CIe Lo U NN TN NN N N R S R S . )
- ) h




18 Section 8.1: The principal curves of a probability distribution

It turns out that there is. Let d(z, 1) denote the usual euclidian distance from a point z to

its projection on the curve f:
dz, 1) ¥ |z - 10,2 | (32)
xad defize tbe fonctios D? G— R!by | | o
DN Ed¥(X,1).

We show that if we restrict the curves to be straight lines, then the principal components
are the only critical values of D’(j’) Critical value here is in the veriational sense: if f and
_ g are straight lines and we form f, = f + g, then we d-fine f to be a critical value of D? iff

dDz(L)/dsl(:o =0.

This means that they are minima, maxima or saddle points of this distance function. If we
restrict f and g to be.members of the subset of G of curves deﬁqed on a compact A, then
. principal curves have this property as well. In this case f, describes a class of curves about
1 that shrink in as ¢ gets small. The corresponding result is: dD?(f,)/dele=o = O iff f is
a principal curve of A. This is a key property and i3 an essential link to all the previous
models and motivation in chapter 2. This properiy is similar to that enjoyé& by conditional
expectations or projections; the residual distance is minimized. Figure (3.3) illustrates the
idea, and in fact is almost a proof in oue direction.

| Suppose k is not a principal curve. Ther ilis curve defined by 70 = E(X |2 (X) =
A) certainly gets closer to ﬂ:he‘poinﬁs in any of the neighborhoods than the original curve.
This is the property of conditional expectation. Now tl;e pointa' in any peighborhood defined

by AXg might end up in different neighborhoods when projected onto f, but this redutes the

distances even further. Thia shows that k cannot be a critical value- of. the distance function.

An umnedxate consequence of these two resuits is that if a prmc;pal curve is a straight
lme, taer i! j¢ a principal component Another result is that principal components are self

consistent if we replace condxt;onal expectatxons by linear prcjec" ‘ns. .
3.1.4.1 A smooth subset of principal curves.

We have defined principal cMa in a rather general faéhion without any smoothness re-
strictions. The distance theorem tells us that if we have a principal curve, we will not find

‘any curvas nearby with the same expected distance. We have a mental image of what we _>
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+ m——

FPigure 3.3 The conditional expectation curve gets at least as close
tothcpomuuthcongmalmrve '

woulAd Lke the curves to look hke They should pass through the data smoothly enough so

l " that each dtta point has an ununbxguous closest point on the curve. This smoothness will
. ‘ be dictated by the density A. It turns out that we can neatly summarize this requirement.
Consider the subset 7.(h) ¢ 7(h) of principal curves of h, where f € 7.(R) iff 1 € F(h)
. and Ay(z) is continuous in = for all points z in the support of h. In words this says that if
" two points z and y are close together, then their points of projection on the curve are close

together. This has a number of implications, some of which are obvious, which we will fist
now and prove later.

® There is only one closest point on the prih.ciﬁa.l curve for each z in the support of A.

e The curve is globally well behaved. This ﬁieans that the curve cannot bend back md' '

s 6 0 0EmME. ¢
.

come too close to itself since that mll lead to unblgumes in pro;ectnon (If we want

N to deal mth ciosed curves, such as a circle, a technical modification in the definition
I ‘of Ais reqmred)
_ ' . There are no' poanto at or beyond the centers of curvature of the curve. This aays that

‘the curve is smooth relative to the variance of the data about the curve. This has
intuitive appeal. If the data is very noisy, we c'nnno_t hope to recover more than a ver&
smooth curve (nearly a straight line) from it. - - ’

e
e
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20 Section 3.2: The principal surfaces of a probability distribution

]x-e-(l:)

(e ' ‘ m

| - Pigure 3.4 The continuity cosstraint avoids global ambiguities (2}
and local ambiguities (b) in projection.

Figure 3.4 illustrates the way in which the continuity coastraint avoids global and local
ambiguities. Notice that 7,(h) Gepends on the density A of X. We say in the support of
A, but if the errors have an infinite range, this definition would ocaly allow straight lines.
We can male some technical modifications to overcome this hurdle, such as insisting that A
has compact support. This rules out any theoretical consideration of curves with gaussian
errors, although in practice we always have compact support. Nmrthelu-, the class 7, (h)
will prove to be useful in understandirig some of the properties of principal curves.

3.2. The principal surfaces of a probability distribution.

3.2.1. Two dimensional surfaces.

The level of difficulty increases dramatically as we move from one dimensiohal surfaces or
curves to higher dimensional surfaces. In this work we will only deal with 2-dimensional sur-
faces in p space. In fact we suall deal only with 2-surfaces that admit a global parametriza-

tion. 'I‘l'l'u'allom us o define f to be & smooth Z-dhmmién;l globally parametrized surface
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7 : 4 R for 4C R’ is a vector of smooth functions:
(H(3)

=] ’f‘“
R VTR

( Ni(A1,23)
f1(A1,24) \

 (3.3)

u.(xx,az)J
Another way of defining a 2-surface in p npwi is to have p — 2 constraints on the p coordi-

" nates. An example is the unit sphere in R>. It can be defined as {z : z € R®, =] = 1}.

There is cne constraint. We will call this the implicit definition. |
Not all 2-surfaces bave implicit definitions (mdbius band), aad similarly not all surfaces

bave giocbal parametrisations. However, locally an equivalence can be eatabhshed (Thorpe
1978).

The concept of arc-length gmnhu- to surface area. Hovever, we cannot alwtys re- '

parametrise thcmfxcn;buumudmmthc parameter space correspond to units of
area in the surface. Once again, local parametrizations do permit this change of units.

A Curvature also takes on another dimension. The curvature of a surface at any point
might be different depending oa which direction we look from. The way this is resolved
is to look from all possible directions, and the first ’n'nct'pd curvature is the curvature

.',eon-pondmg to the dxmtwn in which the curvature i is greatest. The second princiral

curvalure corresponds to thc largest cnrvaure in a direction orthogonal to the first. For

' 2-surfaces there are cnly two onhogcnal directions, so| we are done.

3.2.3. Deflnition of principai surfaces.

' Once again let X be a random vector in p-space, with continuous probai:ility dénsity h(z).

Let G? be the class of differentisble 2-dimensional surfaces in B’, puametmod by A€ Ay,

For f € G? and 3 € R”, we define the projection index A 7(z) by

........
..................
-------

Ay(x) = maxmax(A: |la - £()] = infla - 7(u)]}. (3.4)

--------
........




22 Section 3.2: The principal surfaces of & probability distribution

m pr'ojectic'.l index defines the closest point on the surface; if there is more than one, it
picks the one with the largest first component. If this is still not unique, it then maximizes
over the second component. Once again A, (z) is a measureable mapping from R” into R,
and A¢(X) is a random vector. ’

Definition
The Principal Surfaces of A are those members of §* which are self consistent:

E(X [As(X) = 3) = /(3)

Figure (3.5) demonstrates the situation.

m—

Figure 3.5 Each poist on a prinﬁpal surface is the average of the
points thq project there. -

The plane spanned by the first and second principal components minimizes the distance '
_ - from the points to their projections onto any plane. Once again let d(z, f) dencte the usual
~ euclidian distance from a point 3 %o its projection on the surface f, and D¥(f) = Ed}(X, ).
If the surfaces are restricted to be planes, then the planes spanned by any pair of pgincipal :
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Chapter 3: The Principal Curve and Surfece models 23

components are the only critical values of D?(f). There is a result analogous to the one
to be proven for principal curves. If we restrict f to be the members of §? defined on
connected compact sets in IR?, then the principal surfaces of h are the only critical values
o DY(9). | |
‘Let 72(k) C G? denote the class of principal 2-surfaces of h. Once again we consider a
smooth subset of this class. Form the subset 73(k) C 72(h), where f € F3(h) iff 1 € F*(h)
and Ay(3) is continuous in = for all points z in the support of h. Surfaces in 7}(h) have
the following properties.
o There is only one closest point on the principal surface for each z in the support of h.

o The surface iz globally well behaved, in that it cannot fold back upon itself c#using
ambiguities in projection.

o We saw that for principal curves in v}'.(h), there are no points at or beyond the centers
of curvature of the curve. The analogous statement for principal surfaces in 72(h) is
that there are no points at or beyond the centers of normal curvature of any unit speed
curve in the surface. v . ‘
3.3. ‘An algorithm for finding principal curves and surfaces.
We are still in the thoonticﬂ situation of finding pﬁncipil curves or surfaces for a probability
distribution. We will refer to curves (1-dimensional surfaces) and 2-dimensional surfaces
jointly as surfaces in situations where the distinction is not important. .

When seeking principal surfaces or critical values of D*(f), it is natural to look for a

n_noot.h curve that corresponds to a local minimum. Our strategy is to start with a smooth
curve and then to look around it for-a local minimum. Recall that .

D= 2 |x- s D)
=Ey:nt ["x- /(a,(x))ll’» |.\',(x)]. | - (36)

Wa can write this as a minimisation problem in f and A: find f and A such that
LATRVES 16 SF 6V R (3.7

is & minimum. Chulj, given any candidate solution f and A, md_ A g is at least as good.
Two key ideas emerge from this: -
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24 Section 3.3: An elgorithm for finding principal curves and surfaces

e If we knew f as a function of A, then we could minimize (3'.7) by picking A = Ay(z)
at each point = in the support of A. '

e Suppose, on the o*}ier hand, that we had a function A(z). We could rewrite (3.7) as:

» : : . . . .
Di(1,A) = Exn Y El(X; - f(AX))? [A(X)] (3.8) | _
i=1 : : S :
chouldminimimD{byd:oo_singekhf,-sepdntclyn#-tominizniuthecom

sponding term in the sum in (3.8) . This amounts to choosing
()= B(X; AX) =2). 69

" In this last step we have to check that the new f is differentizble. One can consﬁuct many ‘
situations where this is not the case by allowing the starting curve to be globally wild. On -
the other hand, if the starting curve is well behaved, the sets of projection at a particular’
point in the curve or surface lie in the normal hyperpla‘hga which vary smoothly. Since the
density A is smooth we can expect that the conditional expectation in (3.9) will define a
smooth function. We give more details in the next ch;ibter. The above preamble motivates
the following iterative algorithm. 8 :

Principal surface algorithm |
initialisation: Set fO)(A) = AA where A is either a column vector (principal
curves) and is the direction vector of th,e ﬁrst linear principal
. component of A or A is a p x 2 matrix (principal surfaces) con~
sisting of the first two principal component direction vectors.

Set A0) = A 7-

repeat: over iteration counter j
| 1) Set fO)() = E(X |AU-D(X) =),

2) Choose AU) = Ay, o ) -
'3) Evaluste D*0) = D3(/DA0Y). . . S
until: D? () fails to decrease. o | .

Although we start with the linear principal cbmponent golﬁtion, any reasonable stmixig
values can be used. S

P i e T e e A e e A A At et e T T e et A e e et et e e e SN e e e e e e e S
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It is easy to check that the criterion D? (") must converge. It is positive and bounded

below by 0. Suppose we have fU~1) and AU-1). Now D}(fU),AU-1)) < D}(fU-1),aAl-1)

by the properties of conditional expectation. Also D}(f(),AU0)) < D3(f11), A("‘)) since the
AU) are chosen that way. Thus each mp of the iteration is a decrease, and the criterion

" converges. This does not mean: that the procedure has converged, asince it is conceivable that

the algorithm oscillates between two or more curves that are the same expected distance
from the points. We have not found an example of this phenomenon.

The definition of principal surfaces is suggestive of the above algorithm. We want a
smooth surface that is nlf consistent. So we start with the pla.ne (line). We then check

if it is indeed self consistent by evaluating the conditional expectation. If not we have a
surface as a by-product. We then check if this is self consistent, and so on. Once the self
consistency condition is met, we have a principal surface. By the theorem quoted above,
this surface is a critical point of the distance function.

3.4. Principal curves and surfaces for data sets.

So far we have considered the principal curves and surfaces for a continuous mltivnriate
probability distribution. In reality, we usually have a finite multivariate data set. How do
we define the principal curves and surfaces for them? Suppose then that X is anxp matrix

ofn oh_.erntiona on p variables. We regud the data set as a sample from an underlying’

probability distribution, and use it to estimate the principal curves and surfaces of that
distribut >n. We briefly describe the ideas here and leave the details for chapters 5 and 6.

© The first step in the dgdrithm.um linear principal components as starting values.
Wc use the sample principal componenta and their co-reapondmg direction vectors as
mtul estimates of A, and f‘o)

¢ Given functions ?U“) we can find for each %, in the sample a value ‘\U Y= 4\?0_,, (z,)
This can be done in & number of ways, using numerical optumzatlon techniques. In
practice we have 7U=1) evaluated at n values of A, in fact at .\{’ 3, 4\,‘,"”,- o, A6,
?U“) is evaluated at other points by interpo:lation. To illustrate the idea let us con-
sider a curve for which we have ?U'i) gvduated at 5? "”., for s = 1,; ««,n. For each

_ point ¢ in the sample we can project z; onto the line joining each pair (?("")(X("'”),
‘U-‘)(xﬁfﬂ”)) Snppou the distance to the projection is d;a, and if the point pro,;ects
beyond either endpomt, then d;, is the distance to the closest endpoint. Correepond-
ing to uch dis is & value Ay € (AU, U= We then let 31 be the Ay that

ﬁ.\.\\' ‘\\\..5 o, -\\\

PR --. ..-;--. -.;.. D T TP S S O R ST .'o.-.'-
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eormpondl to he smallest value of diy. This is an O(n?).procedure, and as such is

. rather naive. We use it as an illustration and will describe more efficient algorithms
later.

o We have to estimate fU)(2) = E(X |AU~1 = X). We restrict ourselves to estimating
this quantity at only n values of AU=1), namely 3(5 '1) i!.’ ~Dwhich we have already
estimated. We require E(X [AU-Y) = A(’-‘)) Thia says that we have to gather all
the observations that project onto f(’") at A("l) and find their mean. Typically
we have only. .one such obeervation. namely z;. It is at this stage tl;at we introduce

“the scatterplot smoother, the fundamental building block in the principal curve and
surface procedures for finite data sets. We estimate the conditional expectation at
-XS’ ) by averaging all the observations z, in the sample for which. A(’ 1) is close to
5? =1, As long as these obeervations are close enough and the underlymg density is
smooth, the bias introduced will be small. On the other band, the variance of the
estimate decreases as we include more observations in the neighborhood. Figure (3.6)
demonstrates this jocal averaging. Once again we have just given the ideas here. 'n.nd
will go into details in later chapters. ' '

[
. ¢ 4 v e
P o 8 8 8 4+ a
AN
. PR

"Flgure 3.8 We estimate the conditional expectation ' ‘ , :-::-
"B(X | AU-Y = 319-Y) by averaging the obscrvations z, for which S
_ i“ 1) is close to i“'“ . : '
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e One property of scatterplot smoothers in general is that they produce smooth curves
- and surfaces as output. The larger the neighborhood used for averaging, the smoother
the output. Since we are trying to estimate differentiable curves and surfaces, it is
convenient that our algorithm, in seeking a conditional expectation estimate, does
produce amooth estimates. We will have to worry about how smooth these eatxmatu
should be, or rather how big to make the neighborhoods. This becomes a variance

versus bias tradeoff, a familiar issue in non-parametric regression.

o Finally, we estimate D? () in the obvicus way, by odding up the distances of each point
in the sample from the current curve o: surface.

3.5. Demonstrations of the procedures.

We look at two examples, one for curves and one for surfaces. They both are generated
from an underlying ¢rue model so that we can easily check tnat the procedures are doing
the correct thing. ' :

3.5.1. The circle in two-space.

The series of plots in figure 3.7 show 100 data points generated from a cirole in 2 diziensions
with independent Gaussian errors in bofh coordinates. In fact, the generating functions are

z Ssin(A ' -
') = M (= ‘ (3.10)
zy Scos()) e/
yh'ex"e A is uniformly distributed on [0,2x] and e; and e; are independent N (0, 1).
The solid curve in each plcturo is the estimated curve for the iteration as labelled, and
the duhed curve is the true function. The stutmg curve is the ﬁrst pnncxpal component,

in ﬁgure 3.7b. Figure 3. 7; gives the uaual scatterplot smooth of z; against ‘z), which is
clearly an inappropriate oummuy for this constructed data set. -

The curve in figure 3.7k doen auhotanhally better than the previous iterations. The
ﬁguro caption gives us a clue why — the span of the smoother is reduced This means that
the size of the neighborhood uoed for local averaging is umaller We wxll see in the next
cluptcr how the bias in the curves depeuds on this span '

The square root of the overago oquared orthogonal diatance is dxsplayed at each xter—
~ ation. If the true curve was linear the expected orthogonal distance for any point would
be / Eﬁ =1 We will see in chapter 4 that for this situation, the true cxtc!e does not
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Figure 3.7a The dashed curve is the usual
scatterplot smooth. D(S) = 3.3§

Figure 3.7b The dashed curve is the
principal component line. D(}(®) = 3.43
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Figure 3.7c D(}(V)) =3.34
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Figure 3.7 D(}®) = 3.03
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Figure 3.7g D(}®) =225 o Figure 3.7h D(9) =191 4
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Figure 3.7k D(}®)) =0.97. The span is
automatically reduced at this stage. -
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b oo,

minimize the distu;ce, but rather a circle with slightly larger radius. Then the minir.izing _
distance is approximately o3(1 - 1/4p*) = 99. Our final distance is even lower. We still SO
o have to adjust for the overfit factor or number of parameters used up in the fitting proce- i
dure. This deflation factor is of the order. n/(n — g) where ¢ is the number of parameters.
In linear principal components we know ¢. In chapter 6 we suggest scine rule of thumb

approximations for ¢ in this non-parametric setting.

This example presents the principal curve pzocedure with a pa.rticuiarly tough job.
The starting value is wholly ‘inap,:-::p,riate and the prajection of the points onto this line f' -'f:f‘-.j:
does not nearly represzzi the final ordering of the points projected onto the solution curve. —
'At each iteration the coordinate system for the AU) is transferred from the previous curve

to the current curve. Pomts mxtxally project in a certain order on the startmg vector, as

[

depicted in figure 3.8a. The new curve is a function of A(®) measured along this vector ‘ . “
as in figure 3.8b obtained by averaging the coordinates of points local in (). The new: .
(1) values are found by projecting the pomts onto the new curve. It can be seen that the

ordering of the pro;ected points along the new curve can be very different to the ordering
along the previcus curve. This enables the successive curves to bend to shapes that could -
not be parametrized in the original principal component coordinate system. N —d

3.5.2. The half-spbere in three-space. : - .

Figure 3.9 shows 150 points generated from the surface of the half-sphere in 3-D. The
simulated model in polar co-ordinates is

21\ {5sin(Ay) cos(As) e;\ ‘
] = | 5cos(Ar)cos(As) | + | ez
zs ) . : 58in(X3) e3'

23 (3.11)

- for A € [0,2:]' and A3 € [0,7/2). The vector e of errors is simulated from a N(0,1)

- distribution, and the values of A; and Az are chosen so that the points are distributed
uniformly in the surface. Figure 3.9a shows the data and the generating surface. The
expected distance of the points from the generating half-sphers is to first order 1, which is

. the expected squared lungth of the residual when projecting a spherical standard gaussian
3-vector onto a plane through the origin. Ideally we would display this example on a motion
graphics workstation in order to see the 3 dimensions.®

* This dissertation is accompanied by a motion graphics movie called Principal Curves a;ud
Swrfaces. The half-sphere is one of 4 examples demonstrated in the movie.

. - - J .
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(o) B ®)

Figure 3.8 The curve of the the first iteration is a function of A(%)
measured along the starting vector (a). The curve of the the second
iteration is a function of (1) measured along the curve of the first
iteration (b).

3.8. Principal surfaces and principal components.

In this sectxon we draw some comparisons between the principal curve and surface models
and their linear countetparts in addmon to fhose already mentxoned

3.8.1. A Variance decompos;tion.

Usually linear principal components are approached via variance considerations. The first
‘component is that linear combination of the variables with the largest varianie. The second
component is uncorrelated with the first and has largest variance subject to this constraint.

* Another way of saying this is that the total variance in the plane spannod by tha first two

components is larger than that in any other plane. By total variance we mean the sum of

the variances of the data projected onto any orthonormal basis of the subspace defined by

the plane. The following treatment is for one comporent, but the ideas easily generalize to
two. ’
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~ Figure 3.9a. The gemerating surface and  Figure 3.9b. The principal c&mponent
. tine data. D(S) = 1.0 _ plane. D(7(9) = 1.59

Figure 3.9c. D(}V) = 1.20 : Figure 3.9d. D(}*%) = 0.78
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A = (A1,...,24) in the first principal component of X, a n x p data matrix, and
'@ is the corresponding direction vector, then the following variance decomposition is easly
derived: , .

Y var(z;) = Var(d)+ E|jz - a)|? - (3.12)

=1 :
where Var(-) and E(-) refer to sampie variance and expectation. If the principal component
" was defined in the parent population then the result is still true saad Var{-) and E() have
their usual meaning. Tbhe second term on the right of (3-12) is the expocted squared

distance of a point to its projection onto the principal direction.®

The total variance in the original p variables is decompo-ed into twa components: the
variance exphmed by the linear projection and the residual varian<e in the distances from

the points to their projactions. We would like to have a similar decomposition for principal
curves and surfaces.

Let w now be any random variable. Standard results on conditional expectation show
that: , ' ' |
| 3 var(s;) = Z E(s; - EB(z l)? +2: Var( E(z; | w)). (3.13)

: J=1 j=1 1-!
If w = Ay(3) and { is a principal curve so that E(z; |Ag(z)) = f;(Ay(2)), we bave

3> Variz)) = T =~ 200" + 2 Var (f;(Ag(2))). (3.14)

imi

This gives us an analogous result to (3.12) in the distributional case. That is, the total
variance in the p coordinates is decomposed into the variance explained by the true curve
and the residual variance in the expected squared distance from a point to its true position
on the curve. Tbc nmplo version of (3. 14) holda only upproxmutely

2 V-r(tx)"Z"a }(a.)ll +2: var(f, (). )

The reason for this is that most pncucd scatterplot smoothers are not projections, whereu
conditional expectations are.

We mAkc the following o!;atvuiona: -

® We keep in mind that X is considersd to be centered, or nkmﬂivlf that E(s) -0 The
above results are still true if this is not the case, but the equations are Mmessier.
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= if fj(A} = a;], the linear principal component function, then

Z v“(f:('\f(’))) = Eﬂ Var (Ag(z))
=1 f=1
o ' ,Var (A)
since @ has length 1. Here we have written A for the functxon 4\.(2) = d'z.

e if the f; are apptoxmu&dy linear ;= === wr, the Delta method to obtain

Z Vn(!;(*‘;(*))) ~ Z(l’ ( E(/\;(z)))’ Var(ds(2))

=1 y=1
| = Var(}s(z))

mwmmcmhbeumtspeed and thus we have have 17l =1
© 8.6.2. The power method.

We already mlntaonod that vhen the data is ellipsoidal the principal curve procedure yields
lmnrprmcxpdeompounh. chownhovthatxfour:mootherﬁhs&ughthnes, then
once again the principal curve procedure yields linear principal components irrespective of
the starting line. |

Theorem 3.1

I the lmoothc in the pnncxpal curve proadure produces least squares straight line fits,
and if the initial functions describe a straight line, then the procedure converges to the first
principal component. '
"Proof | _ _

Let & be any Mng vector which has unit lesigth and is not onbogonal to the lugest

principal componcnt of X, and assume X is centered. We find Af ) by pro;ectxng z; onto ;
¢{®) which we denote collectively by

A9 = xq@

where A(®) is & n vector with clcmenu 4\&?’, i=1,...,n. We find af.‘) by regressing or
projecting the vector 2; = (21j,...,2a;) onto A0 '

oM = ;(0)",,
= xR
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or )
B ‘\(O)I X

= O

X'Xal0
~ alO¥ X" X al0)
and a(V) is renormalized. It can now be seen that iteration of this procedure is equivalent

to finding the largest eigenvector of X' X by the power method (Wilkinson 1965). g




Chapter 4

Theory for principal gufves and Surfaces

In this chapter we prove the results referred to in chapter 3. Ia most cases we deal only
with the principal curve model, and sugkast the analogues for the principal surface model.

4.1. The projection index is measureable.

Since the first thing we do is condition on Ay(X), it might be prudent to check that it is
indeed a random variable. To this end we need to show that the function A I R? — R!
is measureable. * ‘ - _
Let f()) be a unit speed parameterized continuous curve in p-space, defined for A €

[Pos A1} = A. Let o '

-3 ’

D(s) = g{{d(z, f('\).)} Vf €ER’

where

d(z,7(2)) =llz- 1N,

the usual eudidean distance between two vectors. Now set

M(s) = (A;d(a, /) = D(&)}.

Since A is compact, M(z) is not empty. Since f, and hence d(z, I (1)) is continuous, M*(z) |
is open, and hence M(z) is closed. Finally, for each z in IR” we define the projection index:

Ay(z) = supM(z) -
A 7(3)is attained because M (2) is closed, and we have avoided ambiguities.
Theorem 4.1 .

Ag(3) is & measureable function of z.

* I am grateful to H Kinsch of ETH, Ziirich, for getting me started on. this proof.
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Proof

In order to prove that A ,(z) is measureable we need to show that for any ¢ € A, the set
{2 [Ay(z) < c} is & measureable set.

Now z € {z [Ay(2) < c} <= for any A € (c,A;] there exists a X' € [Ag,c] such
that d(z, 7())) > d(z, f(A')). (i.e. if there was equality then by our convention we choose
Ag(z) = A > c.) In symbols we have

M@ <= (1 U {=ld=100) > dz 100}

AE(eh] MEldosd]
A

The first step in the proof is to show that

BE N U - (=1d=10) > dan o)

AE(¢,01] AgE[Ae]NQ
= A, )

where Q is the set of rational numbers. Since for each A

U =ldE 1)) >d= o2 | (=1dE100) > diz 1(3)}
A€E[2o] \ M €lrolng :

it follows that B, C A,. We need to show that B, 2 A.. Suppose z € 'A, i.e. for any given

A € (e,M] 3 X € [Ao,c] such that

d(z, 7(2)) > d(z, 1(\")),

‘Formygivenmch)md;\'ncwﬁndmc>0mchthat

dz,1(3) = d(z,J (X)) +¢

Now since f is continuous and the rationals are dense in R! we can find a Ay € Q such
that AQ < A and d(f(X'), £(A])) < €. (If A' € Q we need go no further). This implies that
d(z, 1(2)) > d(z, £(2})) by the pythagorean property of euclidean distance. This in turn
implies that z € B, and thus A, g B,, and therefore A, = B.;

hoooor

e e
.. o ‘.~ e,
R [ Yt
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The second step is to show that

2 U  {=1d1(3)) > dlz. 10}
Ag€E(eA1INQ Mg E[r0.clNQ .
= B, '

Now clearly B, C D,. Suppose then that z € D.; i.e. for every Ay € (¢,A1] N Q, there

is & A} € [Ao,¢] N Q such that d(z, (1)) > d(z, £(X;)). Once again by continuity of f and
~ because the rationals are dense in R! we can find another A; € @, A} > A such that

d(z, 1(3)) > d(z, S}

for all A € [Ay, ;.. This means that

se (| U {=z|d(=,7(2)) > d(=, (X))}
A€lrg Ag] AgEl2esNQ

det
for every A\, € (¢,A1]N Q. In other words

2 E ﬂ EA',,\;
Ag€(eM]Q
= B,

and we have that D, = B,. Finally, each of the sets in D, is a half space, and thus

measureable, D, is a countable union and intersection of measurable sets, and is thus itself
~ measurable. [ '

4.2. The stationarity property of principal curves.

We first prove & result foe nrﬁght lines. This will lead into the result for curves. The
straight line theorem says that a principal component line is a critical point of the expected
distance from the points to itself. The converse is also true. ‘ '

We first sstablish some m_on:notation'. Suppose f()) : A = § is a unit speed con-
tinuously cifferentiable parametrized curve in IR?, whers A is an interval in RY. Let '10))

: bo defined similarly, without the unit speed restriction. An ¢ perturbed version of f' is
1 f():) + eg(1). Suppose X has a continuous density in IR? which we denote by A, and

Al
.....

o
.........
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let D3(h, 1,) be defined as before by

' L
D*(hf) = Ea X - 200"
where A/ (X) parametrizes the point on f closest to X . _ . .
Definition ' : ‘ o " -
The curve f is a critical point of the distance function in the class G iff

dD’(h, fl)

i ‘=°=O Vye‘g.,

(We have to show that this derivative exists.)

Theorem 4.2

Let #(A) = EX + vy with |jwo]| = 1, and suppose we restrict g()) to be linear as well. o
So g(A) = Av, |lv] =1and § = £, the class of all unit speed straight lines. Then f is a mo

critical point of the distance function in £ iff v is an eigenvector of & = COV(X).
Note: |
e WLOG we assume that EX=0. -—-
e [lv]] = 1 is simply for convenience. *-
The closest point from = to any line Aw through the origin is found by prq]ectmg z onto ..___.
w and has paumetcr value :
Au(z) = — , ‘ AR
| =i L E
Tha . . s g -
‘ . #(z,20) = ||z __.um,z
| el | S
w'z | T I
. =R Co
'Upon taking expected values we get o ‘ . , -
| . w'iw | | .
D’(h, /\U) =tr T - Ve o . . (4.1)
We now apply the above to I mlteld of w, but first make a simplifying assumption. We _
c3n rasume w. l.o.g that vo =e since the problem is invariant to rotations. ‘ C ' T
i ",:.!,th_ '.-L".i'.;,.:‘: St ,&.,. ---- RO ’- ................ .‘ ........
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We split » into a component v, = ce; along e; and an orthogonal coinponent v*. Thus

v =cv, +v* where ) #* = 0. So f, = A((1 + ce)ey + ev*). We now plug this into (4.1) to
get '
' o)/ .
DA 1) =trE - ((1 + ce)es + ev®) 22((1 -};ce)q + ev®)
. (1+¢€) +€ (4 2) R
—tr 5 (1 + ce)2é, ey + 2¢(1 + ce)é, To* + 2v*'Tv* - e
B (1+ce)+ e S
Differentiating w.r.t. ¢ and setting ¢ = 0 we get ‘
2 oL
b L) -2¢'120". a . L
de <=0 , . )

I ¢, is & principal component of ¥ then thu term is asro for all v* .and hence for all v.
Alternatively, if this term, and hence the denvatxve, is zero for all v and hence all y*e; = 0

we have
v'Ze; =0 v 9%e; =0 ' ' . ——
=>Te; = cey _ | L
=>¢; is an eigenvector of p)
|
Nots:

- Sﬁppon v is in fact another eigenvector of T, with eigenvalue d, then

D10 = D) = < Fatel-4)
This shows that f might be a maximum, a minimum or a saddle point.

Theorem 4.3

Let § be the class af unit speed differentiable curves defined on A, s closed interval of the "
form [a,b]. The curve I is a pnnc:ptl curve of hiff fi is a critical point of the dmtance
funcuon in the class § ‘ '

' We make some observations before"m prove theorem 4.3. Figure 4.1lillustrates the aituatiéxi. e - —~—« '
" The curve Ju wiggles about 'f and approaches f as ¢ approaches 0. In'fuct, we can see that R
the curvature of f, is close to that of f for small ¢. The curvature of , is given by

) A)- A ) .
1rp(3) = ——,-f’,f,:"(‘\;;" , - R

.-‘ ------------ ".'.".'. et L L te '.-..7%".'_'- .-.~ g“c.‘ ......... ._‘.._",.‘._"..-..  ae e
A ‘.‘ » ...‘ .:.\:' :_ o'y q\-.\ .\. \. . \:"\.\ \. DA . ‘.o\ 'ft-' . ,.ﬁ.‘,A , ‘."."-' G SRR ARG A S A QLA { .‘" ._‘, .f .




" .We need to find a 'ra‘ﬁdom variable Y which is integrable and dominates almost surély the |
absolute value of , ' ' ' : ' A
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1)

Figure (4.1) 7.(2) depicted as a function of f(A).

| where N(A)u the normal vector to the curve at A, Thus 1/ry () < 7O/ 7 (A} since

the curve is not nmt speed and so the acceleration vector is slightly off normal. Therefore
we have r7,(A) 2 [|F'(X) + e’ (A)I / /"(2) + eg”|| which converges to ry(A) as ¢ — 0.
The theorem is stated only for curves f defined on compact sets. This is not such a
restriction as it might seem at first glance. The notorious space filling curves are excluded,
but they are of little interest anyway. If the density A has infinite support, we have to oz it

. in JR” in order that N deﬁned on a compact set, can satisfy either statement of the theorem.

(We show this later.) In practice this is not a restriction.

Proof of theorem 4.3. .
We use the dominated convergence theorem (Chung, 1974 pp 42) to show that we can

interchange the orders of integration and differentiation in the expression

| %p’(h, 0= X - ft(Ay,(X))ll’- )

i
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_for all € > 0. Notice that by definition

«=0

lim Z, = 3 | X = #0020

if this limit exists. Now

x-rog] - Jx - roge0]”

€

Expanding the first norm we get

% - g = X - 20N+ o0 N - 2¢ (X = #0252 0027 ED,

ﬁd thus
zs-3(x- 10g) s+ <fo0rs 0
<Y1

where Y; is some bounded random variable.

Similarly we have

N "X - I.(Af.(x))ll’ _ "X - [(A,‘(x))”z.

€

We' expand the first norm agam, and get

zx-2(x- 101.(xD) - a(x,‘(x»+e|lo(xf,(xn|]
>Y;

where Y3 is once again some bounded random.va:iable. These two bouﬁds .satisfy the con-
ditions of the dominated convergence. theoreui, and so the interchange is justified. However,
from the form of the two bonnds; and because f and g are continuous functions, we see
that the limit lim,.q Z, exists whenever A 1.(X) is continuous in ¢ at ¢ = 0. Moreover, this
, limit is given by

2= 5 < x - raag o0 |

= -2 (X - 10 (X)) - 900X, | R

We show. in lemma 4.3.1 that this continuity condition is met almost surely.

R . _ : .- .. g S et
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We denote the distribution function of A 7(X) by hy, and get

d s
D1

= -2 Ex, ( E(X g(X) = 2) - £(3) -9(2). (4.9)
‘=° N

Kf(A)isa pnncxpal curve of A, then E (X |A4(X) = A) = f(2) for all A in the support

of h), and thus | /
iD’(h, f‘) =0 V differentiable g.
de le=0 ) . R
Alternatively, suppose that
Es, { B(X - 700 125(X) = 2)-9() =0 (4.5)

for all differentiable g. In particular we could pick g(A) = E(X [Ay(X) = A) - £{A). Then
. . , ) 2
B[ B3 =2 - ) =0

and consequently f is a principal curve. This cheice of g, however, might not be differen-
tiable, so some approximation is needed.

Since (4.5) holds for all differentiable g we can use different g’s to knock off different
pieces of E(X |Ag(X) = A) — f(A). In fact we can do it one co-ordinate at a titne. For
example, suppose E(X; |[Ay(X) = ) is positive for almost every A € (Ag, A1). We snggest

-why such an interval will always exut We will show that Ay(z) is continuous at almost
every z. The set {(X|)(X)=2e (Ao, A1)} is the set of X which exist in an open connected
set m the normal plane at A, and these normal planes vary smoothly as we move along the
curve. Since the density of X; is smooth, it does not change much as we move from one .

" normal plane to the next, and thus its expecta.txon does not change much either. We then
pick a dxﬂ'erentuble g1 so that it is also poeltwe in that mtervai and zero elsewhere, and
set g3 = - =g, = 0. ‘We ‘apply the theorem and ‘get E(Xy |Ap(X) = X) = f(}) for °
A € (Qo,A1). We can do this for all such mtervals, and for each co-ordmatc, and thus the
'resultuttue B : o 1

Coi-ollary' _

If a principal curve is n‘atraight' line, then it is a principal component.

——
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Proof

If 1 is a principal curve, then theorem 4.3 is *rue for a.ll g, in partxcular for g(A) Av. We

then invoke theorem 4.2. ‘,l

In order to complete the proof, we need to prove tﬁe.fbllowing
Lemma 4.3.1

The projection function Ay, (z) is contmuous at € =0 for almost every z in the support of
h. ' ' '

Proof -

Let us consider first where it will not be contiﬁuous. Sup;ﬁose there are two points on f
equidistant from z, and no other points on f are as close to 2. Thus 3 g > A1, Ag(2) = o
and ||z — f(2o)ll = ||z — 7(A1)||. It is easy to pick g in this situation such that Ay (z) is not
continuous at ¢ = 0. We call such points ambiguous. Hov-ever, we prove in lemma 4.3.2

that the set. of all ambiguity points for a finite length differentiable curve has measure zero.
Weé thus exclude them. ’

Suppose w > 0 is given, and there is no point on the curve as close to z as f(Ay(z)) =
7(X0). Thus Jlz— f(Ao)ll < [z~ f(M)§i ¥V A1 € [a,8] N (Ao — w, Ao + w)°. (Notice that at
the boundaries the w interval can be suitably redeﬁned.)‘ Since this inter—al is compact,
and the distance functions are differentiable, we can find a § >> O such that |]z - ()]l £
2= 70)ll - 6. Let M = supyeio llg(N)ll ‘and eo = 6/(2M). Then Iz - £(Ro)ll <
[I2 = fe(A)ll V M€ (8,8] N (Ao — w, A0 + w)® and Ve <. €o0. This implies that Ay (z) €
(Ao — w, Ao +w), and the continuity is established. ' S

Lemma 4.3.3 , _ ,
The set of ambiguity pomts has probaﬂility measure z_eior '
‘Proof _ _ : : .
Wé prove the lemma for a ,curve- in 2-spa§e, But the p:rdof gener'a.lizes to higher dimensions.
Referring to figure 4.2, suppose 4 is an uhbiguity point {or the curve f at \. We draw the
, circle with center @ and tangent to f at A. This means tat f must be tangent to the circle ‘

somewhere else, say at f()'). If b on the normal at f(}) is also an ambiguity point, we can
draw a similar circle for it. But this contradicts the fact that f(A) is the closest point to a,

M " . - - - - - - " - .
I R R I B R I R o L R A 20 A SO Ik At I IR A SN ST A
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Figare 4.2 There are at most two ambiguity points on the normal
to the curve; one on eitker side of the curve, ‘

sizce the circle for b lies entirely inside the circle for a, and by the ambiguity of b we know

the curve must touch this inner circle somewhere other than at I(A).

Let I(X) be an indicator function for the set of ambiguity p;)ints. Since ther. are -at
most two at each A, we have that E(I(X) [Ay(X) = )) = 0. But this also implies that the
ux;conditiona.l' expectation is zero. ' o A

Corollary . '
The projection index A f(z) is conﬁnuoug at almost every z.
Proof

We show that if A ,(z) is not continuous at z, then z is +n ambiguity point. But this set
bas meag'ure zero by lernma 4.3.2.

I ,(z)‘ is not continuous at z, tLere exists a € ;r()"such that for every § > 0 3 25

such that ||z ~ 25]] < § but !Af(z).- A,(;;){ > €g. Letting & So to zéro, we see that z must

B T L e LI et R S T
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oM

Figure 4.3 The set of points to the right of f(a) that projéct there

has measure sero.

be equidistant to A ,(z) and at least one other point on the curve with projection index at
least ¢o from A!(z). ' : B '

Theorem 4.3 proves the equivaience of two statements: f is a principal curve and f

is a critical vnlue of the distance funciion. We needed to assume that f is defined on a

compact set A. This means that the curve has two ends, and any data beyond the ends
might well project at the endpoints. This leaves some douht as to wether the endpoirt can
be the average of these points. The next lemma shm that for either statement of the

" theorem to be true, some truncauon of the supﬂtort of h xmght be necessary if the support -

is uabounded)

Lemma 4.3.3

Ufis .‘pﬁnci;‘:d curve, ‘thgh (z - f(a\ I(z))) +f'(Ag(2)) = 0 as. for z in the suppor'tl lof ‘

ho if S220L)| = 0 V differentiable g, thep the same is true. By f'(a) we mean the

. =0
derivative from the right, and similarly from the left for f'(b).

Proof

If A 1(2) € (a,8) the proof is immediate. Suppose thén that Ap(z) = a. Rotate the co-

ordinates so that f'(a) = ¢;. No points to the left of f(a) project there. Suppose f is a

R

PR L
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. principal curve. This then unphu that the sct of pomu that are to the nght of f(a) and
project at f(a) has conditional measure zero, else the condmond expectwou would be to
the right. Thus they also have unconditional measure zero.

Aitunativcly, suppose that there is a set of = of positive measure to the right of f(a)
that projects there. We can construct ¢ such that g(a) = f*(a), and zero everywhere else.
For such a choice of g it is clear that the derivative cannot be zero. However, this choice of
# is not continuous. But we can construct a version of g thuhdiﬁ‘emﬁlblemdgoathe
same job as §g. Wchinthenua:hed;contndictiontothcchimthﬁ;wx . ! =0V
differentiable g¢. . . 3 . . =0

4.3. Some results on the subclass of smooth principal curves.

We have defined a subset %(h) of principal curves. These are principal curves for which
Ay(z) is a continuous function at each z in the support of h. In the previous section we
showed that if A ¢(z) is not continuous at z, then z is an ambiguity point. We now prove the
converse: no points of continuity are ambiguity points. This will prove that the continuity
constraint indeed avoids ambiguities in projection. ]

In figure' 4.4a the curve is smooth but it wraps arourd so that points close together
mxght project to completely different parts of the curve. This reflects a global property of
the cvrve and presents an ambiguity that i is unsatisfactory in a wmmary of a distribution.

Th.orem 4.4 | |
If Ay(z) is continuous at z, then £ is not an ambiguity point.
Proof

We prove by contnd)cuon Suppou we have an z, and Ag # a\; such that

ll' I(a\l)ll =|lz- I(a\z)ll
| C=d(f)

It is eany to se that if A, yiekds the closest point on the curve for %, then Ay is the position
that yields the minimum for all 24, = @, /(M) + (1 - ay)3 for a € (0,1). Similarly for A;.
Now the ides is to let ay and a3 get arbitrarily small, and thus ||z, - %a,]] gets small, but
Ag(zay) = A ,(z.,) = conastant and this violates the continuity of A ,(-) R

Figure 4.4b repressnts the other ambiguous situation, this nme couud by a locd
propcrty of the curve. We consider only points umlc the curve. If such pomu can occur u
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1)

2eildg)

) , o)
. Figure 4.4 The comtimuity coastraint avoids global ambiguities (a)
and local ambiguities (b) in projection.

the e-nt.c of curvature, then there is no nn_i:juo point of projection on the curve. By inside
we mean that the inner product (3 — f(A¢(2))) - (eg(A/(2)) = 7(A/(2))) is non-negative,
whers e4(1) is the center of curvature of f at the point J(r). :

. Theorem 4.5

UA,(:)'ncuntinmn;z.tbcnahnotuthocenmofcdnuuicoffaA.

Proof

The ides of the prool is Wlustrated in Agure 4.4b. If a point at (1) projects at A, then it -

* will project ‘at many other points immediately around A, since locally f()) bebuves like the - )
arc of a circle with center €/(1). This would contradict the continuity of Ay. Furthermore,
if & point at 5 beyond e,()) projects at A, we would expect that points on either side of z

. would project to different parts of the curve, and this would also contradict the continuity
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We now make these xdeu precise. Assume z projects at A I(z) = Ag, where

") 1

#=1()+ uf"(xo)u‘uf"(xo)n

+5)

and & > 0. Thus 5 is on or beyond the center of curvature of f at Ag. Let g()) o 72 - =|l.
By hypothesis 9(2) 2 ¢(Ao) with equality holding iff A = Ao. (Otherwise there would be at

least two poum on the curve the same dntu:ce from z and this would violate the continuity '

of Ay). This implies that

(1) ¢(%)=0

(2) ¢"(%0) > O for a strict minimum to be :chi?ved.
We evaluate these two conditions:

¢00) = £000)- (#0%0) - #)

ey, I0) 1
=100 = 1w o TG

+ 6)
=0

00) = £"(30) - (1 30) = 1) + £0%0) - F0%0)
_ __I"(%) 1
= 100 ~ 1o T
=~ [l7"(%)|| 6
< o . ,
which contradicts (2) above. o 8

+8}+1

4.4. Some results on. bxas.

The principal curve procedure is mherently biased. There are two forms of bias that can
occur concnmndy We identify them as model digs and estimation bias.

Modcl bias occurs’ in the framework of a functxonal model, where the data is genenzed
from & model of the form 2 = 7(2) + ¢, and ‘we wish to recover f(1). In general, starting
st f(1), the principal curve procedure will not have f(2) as its solution curve, but rather
& bissed version thereof. This bias goes to sero-with the ratio of the noise variance tothe
radius of curvature. ' B '

Estimation bias occurs because we use lcatt.erplot smoothers to estimate condmonal
expeciations. The bias is introduced because we average over neighborhoods, and this
usually has s fattening effect.
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- Pigure 4.5 The data is generated from the arc of a circle with
radius p and with iid ¥(0,0°%]) errors. The location on the circle is

4.4.1. A simple model for investigating bias.

The scenario we shall consider is the arc of a circle in 2-space.' This can be parametrized
by a umtlpoed curve f(1) with constant curvature 1/p, where p is the radius of the circle:

10) = (’ coul(3/e )), - 48

psin(}/p)
for A €[-2y,As] € [=xp,%p]. For the remainder of this section we will denote intervals of
the type [y, \s] by As. S |
. .The points 3 are gea'cr'atcd as follows: First a ) is selected uniformly from Ay. Given
this value of A\ we pick the point 2 from some .lmoot.h symmetric distrioution with first two

moments (f(1),?]) where o has yet to be specified. Intuitively it seems that more mass

gets put outside the circle than inside, and so the circle, or arc thereof, that gets closest
' to the data has radius lnget than p. Consider the points that project onto a small arc of

* the circle (vee figure 4.5). They lie in & segment which fans out from the origin. As wé
shrink this arc down t-o.s point; the segment shrinks down to the normal to the curve at
that point, but there is always more mass outside the circle than inside. So when we take
conditional expectaticas, the mean lies outside the circle. |

One would hope that the principal curve procedure, operating in i_liotribution space
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and starting at the Atrue curve, would cénverge to this minimizing distance circle in this
u‘lahzod situation. It turns out that this is indeed the case.

. Figure 4.5 depicts the situation. We have in mind situations where the ratio o/p is
small enough to guarantee that P(le] > p) s~ 0. This effectively keeps the points local;

they will not. j)rojec; toa regionbn the circle too far from where they were cenerated.

Theorem 4.6 |

Let f(A),A-€ Ay be the arc of a circle as described above. The parameter A is distributed o
uniformly in the arc, and given A, z=f (A) + e where the components of e are iid with mean L

0 variance 03. We concentrate on a smaller arc A, inside A 7, and assume that the ratio -

1 .0 /p is small enough to guarantee that all the points that project into Ay actually originated
" from somewhere within A;. | ' ' -
Then . | . —
| (e | it
. E(zIAI(Z)EAo) = 0 o K o
‘ b.where - l:"_
' _ .#in(0/2) - i
| | == (4.7) ——
Aefp=0/2and" - - | o
r*=limr, .

0 -

= B\/(p+e;)’ +¢§'
‘Finally r* — paso/p—0. ' N
- Lemma 4.6.1

. Suppose Ay = xp. (We have a full circl‘e'.) The radius of the circle, with the same center
a8 f(2), that minimizes the expected squared distance to the points is*

r= By/(o+e) +4 S

> p.
Alsor* = pasa/p—0. ‘.
o *1 thank Art Owen for suggesting this result. ' _ ' . , , | e
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Proof of lemma 4.6.1

The situation is depicted in Figure 4.5. For a given point z the squared distance from a RERRS
circle with radius r is the radial distance and is given by | ‘

d(z,r) = (=] - n)*. | 4 s

The expected drop in the squared distance using a circle with radius r instead of p is given' - I:-:_-.-_f 7
by . , . )

EADY(5,r,p) = Ed(2,5) - B (z,r) o
(4.8) , i

= (=l - ) - E(la] - ) | R
We now condition on A =0 and expand (4.8); to get '

BAD arpA=0)=p - +2(r- ) Eflp+a) +d

. . by 'v“ﬂ‘
Diffecentiaiing w.r.t. r we see that a maximum is achieved for g
r=r¢°

= E\(p+ea)+4

Fe=pEV(1+ cx./P)" ¥ (e2/p)?
2pE |1+ e/p|
> p| E(1+e1/p)| (Jensen)
= ‘ D
with strict inequality i€ Var(e;/p) = 03/p* = 0. Note that ' -

EAD(s, ') = (o= By e+ D) )

which is non-ne.gativc.

When we condition on some other value of A, we can rotate the system around so that

A = 0 since the distance ﬁ-hvaﬁmt to such rotations, and thus for each value of A the same R v
r* maximizes DAD’(:, 7,0 |A), and thus maxjinizes, EAD?(z,r, p). A I ' T T

"Note: We can write the éxpreuiog for r* as

vr‘=.)n\/(1+51)’+¢§ o @.m)
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where ¢; = ¢;/y, & ~ (0,5), apd § = o /p. Expanding the square root expression using the
Taylor’s expansion we get ' . ,
‘ r* s p+0?/(2p). : (4.11)
This yields an expected squared distance of ‘ '

Ed’(x, ') o? - q‘/(4p’)

which is smaller than the usual ¢®. This expression was also obtained by Efron (1984).
Proof of theorem 4.6.

~Wewinahawthatinsnglnentdfaiu¢the§xpected distance from the points in the

"' segment to their mean convérgea to the expected radial distance as ¢ — 0. If we consider
all such segments of size ¢, the conditional expectations will lie on the circumference of
a circle. By definition the conditional expectations minimize the squared distances to the
points in their segments, and hence in the limit the radial distance in each ségment. But
s0 did r°, and the results follow. j

Suppose that ¢ is chosen so that 2x/¢ is a positive integer. We divide the circle up
into segments each with arc angle §. Consider E(z |Ay(z) € Ay), where A4 and Ay are
defined above. : , '

'Figure 4.6depicts the situation. The points are symmetrical about the z,-axis, so the
expectation will be of the form (r,0)". By the rotational invariance of the problem, if we
ﬁnd these conditional expectations for each of the segments in the circle, we end up. with 2
cu'cle of points, spu:ecl ¢ degrees apart with radius r.

We first show that as $ — 0, r — r+. In order to do this, let us compare the distance

of points [from thgir mean vector r = (r,0) in the segment, to their radial distance from the
circle with radius r. If we let r(z) deﬁoto the radial projection of z onto the circle, we have
Bl(s- E(zlrgla) M 13g(a) € Ayl = El(a e Lag(a) € ). i

| | E((s-—r(z))’ Ae(e) € '

Also, we {hnve .
E((= f)’ lf\y(z) € Ay},
= E[(z-r(2))’ |2 (z) € Ay] + E[(r(2) - ')’ i‘\[(’) € Ay]
= 2B (|r(2) - rl [z - r(z)| cou((2)) [ As(z) € Ay)

‘ ' , (4;1.3)
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" Pigure 4.6 The conditional expectation of 3, given Ay() € Ay

'vhcn ¢(z)m the angles as depicted in figure 4.6. The second term on the right of (4.13)-
is smaller thm (r¢/2)%. We treat npcntely the case when z is inside the cu'cle, and when
sis out.ndo ‘

° When 2 is inside the circle, da(z) is acute and hence cos(y/(z)) > 0. Thus
E(( )’ Aeal

. . | (4.14)
< El(=-r(z)" | As(2) € Ag] + O(4) .

e When z is outside the circle, da(z) is obtuse and cos(¢(z)) < 0. Since - cos(y(z)) = '
sin(y¥(z) — x/2) and from the figure ¢(z) — x/2 < $/4, we have that — cos(y(z)) <
sin(¢/4) = O(¢). Now E[(lr(z) = r| - |z - r(z)]) | A #(2) € Ay] is bounded since the
errors are assumed to hun finite second moments. Thus (4.14) once again holds.

* So from (4 12) and (4. 14) ,an g — 0, the expected squared radial dzstance in the segment
and the cxpected squared distance to the mean vector converge to the same limit. Suppose

E(z|2y(z) =0)=¢"

=(:) .

>y o’
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Sirce the conditional expectation r** minimizes the expected squared distance in the seg-

ment, this tells us that a circle with radius r** minimizes the radial distance in the segment.

Since, by rotational symmetry, this is true for each such segmenf, we have that r** minimizes
E4 E(l=ll - ) |As(2) = ¢) = E(l=]| - 7).

This then implies that r** = r* by lemma 4.6.1 and thus

lim (2 |s(z) € 44) = E(z |2y(z) =0)

=9

This is the conditional expectation of points that projéct toaan arc of size 0 or simply a
point. In order to get the condxtxonal expectatxon of points that project onto an arc of size
#, we simply integrate over the arc:

E(s 12s(2) € M) = Ex area, Bz [Ag(s) =)

Suppose A corresponds to an angle 2, then

E(2[Xy(2) = X) = (r:cos(z))

| r*sin(z)
Thus
4/3 ¢ cos(s
B(z|Ay(z) €A = (ﬁa%, r* sin(s :‘)
o ..-‘ir/.;op) ’
= ( ) (4.15)
o W .
.
Corollary

The above results ;enerahzc exactly for the axtuatxon where data is genetated from asphere
in R3. The sphere that gets closest to the data has radms

L]

r'=E\(ptea)+ef+ed

and this is exactly the conditional expectation of z; for points whoae~projection is at (p,0,0)".
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Corollar"y

I the data is generated from the circumference of a circle as above, the principal curve
procedure converges after one iteration if we start at the model. This is also true for the
principal surface procedure if the data is generated from the surface of a sphere.

" Proof

After one itention_, we have a circle with radius r*. All the pomta project at exactly the ‘
same position, and so the conditional expectations are the same. This is also true for the
principal surface procedure on the sphere. ]

4.4.3. From the circle to fhe helix.

The circle gives us insight into the behaviour of the principal curve procedure, since we
can imagine any smooth curve as being made up of many arcs of circles. Equation (4. 15)
clearly separates and demonstrates the two forms of bias: '

° Modelbiu:incer‘?_p.

e Estimation bias since the co-ordinate functions are shrunk by a factor sin(9/2)/(8/2)
when we average within arcs or spans of size 0.

For a sufficiently largs span, the estimation bias will dominate. Suppose that in the present
setup, o = p/4. Then from (4.11) we have that r* = 1.031p. From (4.7) we see that
a smoother with span corresponding to 0.27x or 14% of the observations will cancel this
effect. This is. considered a small span for moderate sample sizes. Usually the estxma.txon
bias will tend to flatten out curvature. This is not always the case, as the circle example
' demonstrates. In this special setup, the center of curvature ‘remains fixed and the result of '
| flattening the co-ordinate functions is to reduce the radius of the circle. The central idea is
still clear: model bias is in a direction away from- the center of curvature, and estimation
~ bias towards t.he center.

We can consider a circle to be a ﬂattened helix. We show that as we unﬂa.tten the helix, -
. the effect of estimation bias changes from reducing the ndxua of curvature to increasing it.

To fix ideas we consider again the circle in R3. As we hgve obaerved the result of
estimation and model bias is to reduce the expected radius from 1 to r (for a non-zero span

........
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smoother such that r < 1). Thus we have |

s rcos(A)
fo= (rsin(A)) ’

with " }{,(/\)" =y, The reparameterizeci curve is given by

7 rcos(\/r)
~ \rsin(A/r) )’
and by definition the radius of curvature is r <.1. Here the center of curvature remains the

same, but this is not usually the case.
A unit speed helix in IR® can be represented by

[ cos(¥e)
1(2) = | sin(A/c)
bA/e »
where ¢2 = 1+ b3, It is easy to check that ry = 1+ %, so even though the helix looks like a
circle with radius 1 when we look down the center, it has a radius of curvature larger than
1. This is Because the osculating plane, or plane spanned By the normal vector and the
velocity vector, makes an angle with the z; — z2 plane. In the case of a circle, the effect of
the smoothing was to shrink the co-ordinates by a factor . ‘For a certain span smoother,
" the helix co-ordinates will become (r cos(A/c),rsin{A/c),bA/c)’. Notice that straight lines
are preserved by the smoother. Thus the new unit speed curve is given by " '
rcos(A/c*)
7)) = | rsin(r/c*) |, .
' bA/c* ‘ , I
where ¢* = r? + 3%, The radius of curvature is now (r2 + 3)/r. If we look at the difference
in the radii we get ' ' '
' ymrp= T 1w
_Qa- r)(6% - r)-
r

>0if 2> : _

. This satisfies our intuition. For small b the helix is almost like a circle and so we expect
circular behaviour. When b gets large, the helix is stretched out and the smocthed version
has a larger radius of curvature. ‘ '
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4.4.3. One more bias demonstration.

We conclude this section with one further example. So far we have discussed bias in a rather -

oversimplified situation of constant curvature.
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Figure 4.7 The thick curve is the the principal curve using conditional expectations at the
model, and shows the model dias. The two dashed curves show the compounded effect of model
and estimation bias at spans of 30% and 40%. '

A sine wave in R? does not have constant curvature. In parametric form we have

0= (.i:::,))‘ |

A simple ;;albixlation shows that the radius of curvature r (1) is given by

1 __ sinQx)
ri() T 1+ cos? ()

and achieves a minimum radius of 1 unit. “The model for the data is X = J(A) + e where '

A ~ U[0,2] and e ~ N(0,1/4) independent of A. Figure 4.Tshows the true model (solid

curve), and the points are a sample from the model, included to give an idea of the error

structure. The thick curve is E(X |Ag(X) = )). Here is a situation where the model ’
bias results in a curve with more curvature, namely a minimum radius of 0.88 units. This e
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curve was found by simulation, and is well approximated by 1/0.88sin(Ax). There are two
dashed curves in the figure. They represent E(X |A;(X) € A,(})), where A,(2) represents
a symnietric interval of length sA about A (Boundary effects were eliminated by cyclically
extending the range of A.) We see that st s = 30% the estimation bias approximately

cancels out the model bias, whereas at s = 40% there is a residual estimation bias.

4.5. Prir':ipal curves of elliptical distributions.

We hivg seen that for elliptical distributions the principal components are principal curves.
Are there any more principal curves? We first of all consider tke uniform disc with no Roles.
For this distribution we propose the following:

Figure (4.8) The only principal curves in 7, (h) of a uniform disk
_are the principal componenta

Proposition

The only principal curves in 7, %(h) are straight lines through the center of the dxsk
An informal proof of thxs claim is as follows. v

e Any principal curve must enter the disk once and leave it once. This must be true
since if it were to temaln msxde it would have to circle atound. But this would violate

the contmuxty constramt imposed by 7.(h) since there would han to exist points at '
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the centers of curvature of the curve at some places. Furthermore, it cannot end inside

the disk for reasows sirailar to those used in lemma 4.3.3. e

e The curve enters 2ad lgavea the disk normal to the circumference. For symmetry

o LA

reasons this must be true. As it enters the disk there must be equal mass on both

e The curve never bends (see figure. 4.8). At the first point of curvature, the normal
to the curve will be longer on one side than the other. The set of points that project )
at this spot will not be conditionally uriformly distributed along the normal. This - E

: : )
is because the set is the limit of a sequerce of segments with center at the center of .
curvature of the curve at the point in question. Also, all points in the segment will
project onto the arc that generates t.he_ segment; if not the continuity constraint would
_ be violated. So in addition to the normal being longer, it will have more mass on the .
long side as well. This contradicts the fact that the mean lies on the curve. '
Thus the Ionly curves allowed are straight lines, and they will then have to pass through the
center of the disk. ’
Suppose now that we have a convex combination of two disks of different radii but the ;_
same centers. A similar argument can be used to show that once again the oaly principal
curves are the lines through the center. This then generalizes to any mixture of uniform.
disks and hence to any spherically symmetric distribution of this form. -
We ;oqjoctm that for ellipsoidal distributions the only principal curves are the prin- , .
cipal componentas. '
®
..
.
T e.
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‘Chapter 5

Algorithmic details

In this chapter we describe in more detail the various constituents of the principal curve

.- and surface algorithms. '

5.1. Estimation of curves and surfaces.

We described a simple smooth or local averaging procedure in chapter 4. There it was
convenient to describe the smcother as a method of averaging in p space, although it has
been pointed out that we can do the smwoothing co-ordinate wise. Tkat simplifies the
treatment here, since we only need to discuss smoothers in their more usval regression

Usually ai&t«plot smootber is regarded as an estimate of the conditional expectation
E(Y | X), where Y and X are random variables. For our purpotes X may be one or two
dimensional. We will discuss one dimensional smoothers first, since they are easier to

' unplemons than two dimensiocnal smoothers.

5.1.1. One dimensional nmoothen.

The following subset of smootbers evolved naturally as &timam of conditional expectation,
asnd are listed in order of complexity u:d'compumiond cost.

5111 Mav!ngmg'lmootbm

_ The simplest and most natural estimate of E(Y | X) is thu movw‘ IVQI’I‘Q smoother.

‘Given s sample (%,%), i =1,...,n, with the z; in -cegdmg order, we define

© Smooth,(y|%) = -27‘};—1 > v | BECRY

-,elu-m‘ﬁl

where k = [(ne - l)/2| und o € (0,1] is called the span of thc lmoother An estimate of _
tl\o conditional expectation at z; is the sverage of the y; for dl those obeervations with z
value equal to z;. Since we usually only have one such observation, we average the y; for

I

e, e 0
Kl'.',...“
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all those obeervations with z value close to z;. In the deﬁxﬁtion above, close is defined in
the ordinal scale or in ranks. We can also use the interval scale or simply distance, but this
is computationally more expensive. This moving average smoother suffers from a number
of drawbacks. it does not produce very smooth fits and does not even reproduce straight
lines unless the z; are equispaced. It also suffers from bias effects on the boundaries.

8.1.1;.3 Local linear smoothers.

An improvement oa the moving average smoother is the [ocal linear smoother of Friedman
and Stuetzle (1981). Here the smoother’ estimates the conditional expectation at z; by

. the fitted value from the least squares line fit of y on 1 using only those points for which
2j € (zi-u, Zi+s). This suffers less from boundary bias than the moving average and always

reproduces mught Lines exactly. The cost of computation for both of the above amoothers
is O(n) oparations. Of course we can tkink of fitting local polynomials as well, but in
peactice the pm in bias is lunll relative to the extra compumxonal burdea.

5.1.1.3 Locally weighted Bnear unoothm.

Cleveland (1979) suggested using the local linear smoother, but also suggested weighting
the points in the neighborhood according to their distance in z from z;. This produces even
smoother curves at the expense of an increased computation time of O(kn) operations. (In
the local linear smootber, we can obtain the fitted value at 74, from that at z; by applying
some simple updating algorithm to the latter. If local weighting is performed, we can no
loager use upditing formulae.) ‘

8.1.1.4 Kernel smoothers.

TLa kernel smoother (Gasser and Muller, 19‘f9) ipplie. a weight function to every observa-
tion in calculating the fit at =z;. A variety of weight functions or kernels exist and a popular
choice is the gaussian kernel centered at z;. They produce the smoothat functxom and are
computationally the most expensive. The cost is O(n?) opennons, although in practice
the kernels have a bounded domun and this bnngs the cost down to O(an) for some o that
dcpcndnonthohmlmdthodata.

In all but the kernel smoother, the span controls the smoothness of the estimated
function. The larger the span, the smoother the function. In the'cué of the kernel smoother,
there is a scale parameter that controls the spread of the kernel, and the larger the lpread
the smoother the function. We will discuss thc chom of spans in section 5.4.

i BT
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For our particular application, it was {o@d that the locally weighted linear smoother

and the kernel smooiher produced the most s@tisfa.ctory results. However, when the umple‘

~ size geta large, these smoothers become too expensive, and we have to sacrifice smoothness

for computational speed. In this case we would use the faster local linear smoother.

5.1.3. Two dimensional smoothers.

There are substantial differences between one and two dimensional smoothers. When we
find neighbors in two space, we immediately force some metric on the space in the way we

' deﬁnc distance. In our algorithm we simply use the euclidean distance and assume the two

variables are in the same acale.

It is also wmputationaliy harder to find neighbors in two dimensions than in one. The
k-d tvee ( Friedman, Bently and Finkel, 1976) is an efficient algorithm and data structure for
finding neighbors in k dimensions. The name arises from the data structure used to speed
up the search time — a binary tree. The technique can be thought of as a multivariable
version of the binary search roultinQ. Friedman et al show that the computation required
to build the tree is O(knlog n) and the expected search time for the m nearest neighbors
of any point is O(log n).

5.1.3. The local planar surface smoother.

We wish to find Smooth (y | 2z0) where g is 3 2-vector not necessarily present in the sample.
The following algorithm is analogous to the local linear smoother:

o Build the 2-d tree for the n pairs (z",zn),---,(z;,.,z;,,) |

. Fmd the ns nesrest nu;hbon of zo, and fit the least squares plane through their

- associated y nluu

. Thcsmoothu:oudaﬁnedtobothoﬁtud v‘luoszzo

This dgonthm does not allow updating ‘as in the one-dimensional local linear smoother.
The computation time for one fitted value is O(log n + ns). For this reason, we can include
weights at o extra order in computation cost. We use puuun m;hu with covariance
A3I and cesitered at 2o, and A is another panmeter of the procedure.

" A simpler version of this smoother uses the (gaussian weighted) average of the y values
for the ne mn;hbon In the one dimensional case, we find that ﬁttmg local straight lines
reduces tho btu at the. boundnna In surface lmoothmg. the proportion of points on the °
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boundary incresses dramatically as we go from one to two dimensions. This provides a
strong motivation for fitting planes instead of simple averages.

5.2. The projection step.

The other step in the pnncxpd curve and surface procedures is to project each point onto
the current surface or curve. In our notation we require A()(z;) for each i. We have already
d.:ribed the exact approach in chapter 3 for principal curves, which we repeat here for
completeness. ’

5.32.1. Projecting by exact enumeration.

We project z; sato the line segment joining every adjacent pair of fitted vdue; of the curve,
and find the closest such projection. Into implies that when projecting we do not go beyond o
the two points in question. This procedure is exact but computationally expensive (O(n) ' .
operations per ssarch.) Nooetbeless, we have used this method on the smaller data sets
(< 150 observations.) There is no analogue for the principal surface routine.

5.3.3. Projections using the k-d tree. A

At each of the n values of A we have a fitted p vector. This is true for either the principal ; .’:i
camoc-urlmptoeodm We can build a p-d tree, and for each =z;, find its nearest Zl_:.'j-
neighbor amongst these fitted values. We then proceed differently for curves and surfaces. -f:f;ff

. e

o tccumnprojxtthp&nt a'atothcoégmcntajoiningthi- nearest point and its
left neighbor. We do the same for the right neighbor and pick the closest projection.

'@ Por surfaces we find the nearest fitted value as above. Suppose this is at JU)(AU~Y).
Wcthcnmtqutothphmwmpondmgtothuﬁttednluoandgetnnew
value A°.. (Thn plun has already been calculated in the smoothing step and is stored.)

' We then evaluate 7UY(A°) and check if it is indeed closer. (This precautionary step _ e
~ is similar to projecting =5 inte the line segments in the case of curves.) If it is, we ' . : \
st X‘m = A°, elos we st &b’) iu-l’ One could think of iterating this procedure, ' N
which is similar to & gradient mrch Alternatively one could perform s Newton- e
Raphson search using derivative mfcmuuon contained in thé least squares planes.
These spprond:u are upcnnn, and in the many examples tested, made little or no
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5.3.3. Rescaling the \’s. to arc-length.

In the principal curve procedure, as a matter of practice; we alwayé rgscale the A's to arc-

length. The estimated A's are then measured in the same units as the observations. Let i:-' '.:}'.'iji
- denotes the rescaled i‘(j ) ’s, and suppose :\.(j ) are sorted. We define i{ recursively as follows: e :j
' S{ =0. . ' ' - . : -

o & =g +[ 1000 - 068, |

' 5 L ¥ v [ v v LE v ' LA LA L] T I ] lv .'j : '.
‘ :— . , "‘: ..4:1

: ./ . : ..-:.

< .t R |
-g 3 e :‘ sl
I e ] e
B 2 — '/ = o
- 1 B o
: "' ' : --—1-. |

o / -

o 4 4 o
F ] SO
-l A A n l I i i A l A A A A 1 'n i ] :.:'.::.‘

-1 ) 0 1 i . :._-:::

Unscaled A - v - T
o . . AR |
Pigure (5.1) A A plot for the circle example. Along the vertical m _ : ;
we plot the inal values for 4, after rescaling the A’s at every iteration. : . ';

in the principal curve procodm Along the horisontal axis we bave ' .
the Snal {'s waing the principal curve procedure with a0 rescaling. ~ 4

In general there is no analogue of rescaling to arc-length for surfaces. Surface areais the =~ l *
~ corresponding quantity. We can adjust the parameters locally so that the area of a small . aS
region in parameter space has the same area as the region it defines on the mtfm' But _ " ]

this adjustment will be different in other regions of the nurface hsnng the same values for
one of the parameters. The exceptions are surfaces with zero gaussian cnrvature (These
are surfaces that can bo obtained by smoothly denting a hyperplane to form something like
a corrugated sheet. One can imagine that such a rescaling is then possible). -
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Figure (5.2) Each iteraiion approximately preserves the metric _
from the previous one. The starting curve is unit speed, and so the
final curve is approximately 30, up to a constant.

Even though it is not possible to do such a rescaling for surfaces, it would be comforting
. to know that o’1r parametrisation remains reasonably consistent over the surface .as we go
through the iterations. ' | |
Figure 5.1 demonstrates what happens if we use the principal curve procedure on the
circle example, and do not rescale the parameter estimates at each iteration. The metric
gets pteaer'ved, up tu a icah.r. Figure 5.2shows why this is so. The original metric gets
transferred from one iteration to the next. As long as the curves do not change dramatically
from one iteration to the next, there will not be much distortion. '

5.3. Span selection.

We consider there to be tvo cmgonen of spans corresponding to two distinct stages in the

algorithm. ' |

5.3.1. Global pioéedux{al spans.

The first guess for f isa _a.t.riight line. In miixy of the. iqtemting situations, the final
~ curve will not be a function of the arc length of this initial curve. The final curve ie

reached by successively bending the original curve. We have found that if the initial spans
of the smoother are too small, the curve will bend too fast, and may get loat_! The most
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successiul strategy has been to initially use large spans, and then to decrease them slowly.
In particular, ‘we start with a span of 0.5n, and let the procedure converge. We then drop
the span to 0.4n and couverge again. Finally the same is done at 0.3n by which time the
procedure has found the general shape of the curve. We then switch to mean squate error
(MSE) span selection mode. '

'5.3.3. Mean squared error spans.

The procedure has converged to a self consistent curve for the span last used. If we reduce
the span, the average distance will décrea.se. This situation arises in regression as well. In
regression, however, there is a remedy. We can use cross-validation (Stone 1977) to select
the span, We briefly outline the idea.

5.3.2.1 Cross-validation in 'regreuion.

. Suppose we have a sample of r independent pairs (y;, z;) from the model Y = f(X) + e.

A nonparametric estimate of f(zo) is f.(zo) = Smooth,(y |zo). The éxpected squared
prediction error is ' )

EPE= E(Y - f(X))? | (5.2)

where the expectation is taken over everything random ‘(i-.e. the sample used to estimate
f(-) and the future pairs (X,Y)). We use the residual sum of squares,

43.'95(.)‘ = i(y.- - ful=))%,

=1 ‘

 as the natural estimate of EPE. This is however, a biassed estimate, as can be geen by

letting the span s sbrink dov‘vﬁ to 0. The smooth then estimates y; by itself, and RSS is:
'zero. We call this b;'ca due to overfitting since the bias is due to the influence y; has in
forming its own prediction. This also shows us that we cannot use RSS to help us pick the
span. We can, however, use the cross-validated reoi;iuul sum of squares (CVRSS). This is
defined as o

CVYRSS() =Y (- Smootn®(y|z), | (53)
(13§

~where S'mo_oth?)(y |%) is the smooth calculated from the data with the paii' (w4 z:) re-

moved, and then evaluated at z;. It can be shown that this estimate is approximately
unbiassed for the true prediction error. In minimizing the prediction error, we mini.
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mize thointegrated mean square error EMSE given by
EMSE(s) = E(fu(X) - f(X))?

since they differ by a constant. We can decompose thm expresslon into a sum of a variance

and bias terms, namely

EMSE(s) = E[ Var(£,(X)] + E[(E(/,(X) |X) - 1(£))*]
=V AR(s) + BIAS?(a).
As s gets smallér the variance gets larger (averaging over less points) but the bias gets
smaller (width of the neighborhoods gets smaller), and vice versa. Thue if we pick s to

minimize CVRSS(s) we are trying to minimize the true prediction errcc or equivalently to

find the span which optimally mixes bias and variance.

Getting bu:k to the cnrvel, one thouzht is to cross-validate the orthogonal dutance
‘fup~tion. This, kmver, will not work because we would siill tend to use span zero.: (In
general we have more chance of being close to the interpolating curve than any other curve)
Instead, we cross-validate the co-ordinates separately.

5.3.2.2 Crou-vandation for principal curvea.
Suppuo 1 is  principal curve of A, for which we have an estimate f based on a saﬁxple
Z1y... ) 2n. o : T

A natural requirement is to choose » to minimize EMS E{s) given by

EMSE() = n.||;(x,(x)) XeVe

-Z: Ea( v-ru.(x,(x» 1A,(=))+ n,.,!

i=1

m,(xn ,'.(A,(x»“ (5.4)

whid: is onco again a trade-off between bias and variance. Notice that were we to look at the'

: cloout dnhnce between these curves, then the interpolating curve would be favored. As in
the regression case, the quantity EPE(s) = E, “X 1.2 l(X))" estimates EMS E'(a) +
D(f), where D(f) = & "X ](A,(X))“ It i is thus equivalent to choose s to minimize
EMSE(s) or EPE(s). As in the regression case, the crou-val.dated estimate

» ‘ o
CVRSS(s) =3 [Z(zﬁ - Smoota{)(z; ;,\.))’] (5.5
:-l s=1 . . V '
. ’. .;. oty e, - ..':.q_;. -,7' ._:..-*..’-_ R ‘..o‘ ...... . ~‘..-.. ...................... r.::-..;._ ERET e et L pTes
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where A; = A f(z.-), attempts to do this. Since we do not know ), we pick A; = ,A]m (z:)
where 7(*) is the (non croes-validated) estimate of f. In practice, we evaluate CV RSS(s)
for a few values of s and pick the one that gives the minimum.

From the computing angle, if the sxhoother is linear one can easily find the cross-
validated fits. In this case {) = Cy for some smoother matrix C, and the cross-validated fit
§s) is given by §;) = T, 722 (Wahba 1975). |

There are a number of issues connected with the algorithms that have not yet been
mentioned, such as a robustness and outlier detection, what to display and how to do it,
and bootstrap techniques. The next chapter consists of many examples, and we will deal
with these issues as they arise. ' ' '

'
.........




Chapter 6

| Examples

This chapter contains six examples that demonstrate the procedures on real and simulated B

data. We also introduce some ideas such as 'bobtstrapping, robustness, and outlier detection.

| Example 6.1. Gold assay pairs.

This real data cxample iilusfratea: -
e A principal curve in 2-space,
e non-linear crron in variables re_ééssion,
o co-cedinate function plots, and

e bootstrapping principﬂ curves.
A California based company collects computer Ehip waste in order to sell it for its content

of gold. and other precious metals. Before bidding for a particular cargo, the company takes

a sample in order to estimate the gold content of the the whole lot. The sample is split in
two. One sub-sample is assayed by an outsxde 1aboratory, the otber by their own inhouse
hboutory (The names of the company and' laboratory are withheld by request). The
company wishes to eventually use only one of the assays. It is in their interest to know
which laboutory produces on average lower gold content usays for a given sample

by

’ (zg) ,
= ’
Ty

where z;; = log(1 + assay yield for ith agsay pair for lab j) and where j = 1 corresponds

.to the inhouse lab and j = 2 the outside lab. The log transformation tends to stabilize the

variance and produce a more even scatter of points than in the untransformed data. (There

were many more small assays (1 oz per ton) than larger ones (>.10 oz per ton)).

et St SR L e TTe e e Me® T e e Nt e e %y e e e % tho T NS A T LA T W S RIR N T

" The data in figure 6.1a consists of 250 pairs of gold assays. ‘Each pomt-ul represented .
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72 Ezample 6.1: Gold assay pairs

Figure 6.1a Plot of the log assays for thé Figure 6.1b Estimated coordinate func-
inhouse and outside labs. The solid curve is the  tions. The dashed curve is the outside lab, the
principal curve, thé dashed curve the scatter- solid curve the inhouse lab.
plot smooth. ‘

A standard analysis might be a paired t-test for an overall difference in assays. This

would not reflect local differences which can be of great importance since the higher the

' level of gold the more important the difference.

. The data was actually gnalyzed by smoothing the differences in log assays against the
average of the two assays. This can be considered a form of ‘ symmetric smoothing and was

suggested by Cleveland (1983). We discuss the method further in chapter 7.
The Mel presented here for the above data is
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‘where 7; is the unknown true. gold contexit for sample ¢ (or any monotone function thereof),

- fi(r;) is the expected assay result for lab J, and ej; is measurement error. We wish to

analyze the relationship between f; and f2 for diﬁ'ergnt true gold contents.

'This is a generalization of the errors in variables model or the structural model (if we

......
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regard the r; themselves as unobservable random variables), or the functional model (if the
7; are considered fixed). This model is traditionally expressed as a lincar model:

e S I
EI 24 €2 .

filrs)=fiofy (%)  (assuming f; is monotone)
=a+p

where fg(r,-) = z; and

It suffers, however, from the same drawback as the t-test in that only global inference is
possible.

We assume that the ¢j; are pairwise independent and that *
Var(ey;) = Var(ey) Vi.

The model is estimated using the principal curve estimate for the data and is repre-
sented by the solid curve in figure 6.1a. The dashed curve is the usual scatterplot smooth
of z3 against 2 and is clearly misleading as a scatterplot summary. The curve liu above
the 45° line in the interval 1.4 - 4 which represents an untransformed assay interval of 3 to
15 oz/ton. In this interval the inhouse average assay is lower than that of the outside lab.
The difference is reversed at lower levels, but this is of less practical importance since at
'these levels the cargo is less valuable. Tlns is more clein'ly séen by examining the estimated
coordinate functiog plots in figure 6.1b.

A natural question arising at this point is wether the kink in.the curve is real or not.’
If we had access to more data from the sanTe popul&lstion we could Sim;ily calculate the
principal curves for each and see how often the kink is reproduced. We could then perhaps

construct a 95% confidence tube for the true curve.

. I‘n.th‘e absence of such'repgated samples, we use the bootstrap (Efron 1981, 1982) to
. simulate them. We would like to, but cannot, generate samples of size n from F, ihe true

distribution of z. Instead we generate sampled of size n from F, the empirical or estimated
distribution function, which puts mass 1/n qn each of the sa.mple points z;. Each such
sample, which samples the pomts z; with repl ement is called a bootstrap sample,

* In the linear model one nsually reqmres that Var(e,‘.-) = constant;. This assumption can be
relaxed here _ e '
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Figure 6.1c 25 bootstrap curves. The data X is sampled 25 times-
with replacement, each time yielding a bootstrap sample X*. Each
curve is the principal curve of such a sample. o

Figure 6.1c shows the principal curves obtained for 25 such bootstrap samplcs. The
45° line is included in the figure, and we see that none of the curves cross the line in the
region of interest. This p'ro;rid‘es strong evidence that the kink is indeed real.

When we compute a particular bootstrap curve, we use the principal curve of the
original sample as a starting valuie. Usually one or two iterations are all that is requirea
. for the procedure to éouverge. Also, since each of the bootstrap points cccurs at one of the

* sample sites, we know where they project onto this initial curve.

It is tempting to extract from the brocedure étimates of 7;, the true gold level for
sample i. However,. #; need not be the true goldllevel at all. It 4may be any variable that
orders the pairs f(7;) along the curve, and is probably some monotone funﬁtiqn of the true
gold level. It ia clear that both labs conld consistently produée biased estimates of the true
gold level and there is thus no information at all in the data about the true level.

Estimates of r; do. provide us with a good summary variable for each of the pairs, if
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that is required:
f; = h(z)
‘ since 'we obtain #; by p'rojecting the point 2; onto the curve. Fiaally we observe that the

above analysis could be extended in a straightforward way to include 3 or more laborat;oriés.
It is hard to imagine how to tackle the problem using standard regression techniques.

Example 6.2. The helix in three-space.
This is a simulated example illustrating:

* A principal curve in 3-space,

e co-ordinate plots, and

o cross-validation and span selection.

- We looked at the bias of the principal curve procedure in entxmatmg the hehx in chapter 4
We now demonstrate the procedure by generating data from that model. We have

sin(4x))
J(2) = | cos(4x)r) | +e,
B N

where A ~ U[0,1] and e ~ N(0,.2]). “This situstion doelulnot present the principal curve
procedure with any real problems. The reason iz that the starting vector pasoe- down the
middle of the helix and the data projects onto it in .nearly the correct drder 'i‘ible 6.1shows
the steps in the iterations as the procedure converges at each of the procedural mu shown.

At a span of s = .2 we use cross-validation to fird the minimum mse span.

Figure 62c lhm the CV RSS curve used to select the span, which is 0. 1 with a
value of CV RSS of 0.1944. One more step is performed and the procedure is terminated.

 Figure 6.2d shows the estimated co-ordinate functions for this choice of spap. We see

that the estimate of the linear co-ordinate is rather wiggly. It is clear that a small span

was required to estimate the sinusoidal co-ordinates, but a large span would s’uﬁce for.

the linear co-ordinate. This suggests a different scheme for croes-validation—choosing the
spans separately for each co-ordinate. The-feaulh are shown in figures 3.2¢ and 6.2f. As
prodicéed, a larger span is chosen for the linear co-ordinate, and its estimate is no longer
wiggly. This is the final model referred to in tue table and represented in figure 6.2,

v




76 .Ezample 6.2: The heliz sn three-space

Figure 6.2a Data gemerated fromn s he-  Flgure 6.2b Another view of the helix, the

lix with independent errors om each coordinate. daandthpnwpdetm
Thduhdcnmuthwpn&lhlu,thnﬁd
nm-lhpnlcxpdclmm

Table 6.1. The steps in the iterations. lnitially the procedure
m&mﬁtmdwdudcp&u Tbcnthcﬁnlnpnn
found by cro.-nhdum

Iteration # . ' Spaa D3 dof Comments
procedaral npm . .
start 1.0 ] 1110 2.0 principal component line
1 04 0.740 | 4.2 | initial span
2 04 | 0365 | 46
3 04 0.550 4.7
¢ 0.4 0.549 4.7 converged
.8 03 | 037 5.7 | reduce span
6 0.3 0361 | 5.4
7 0.3 10.360 . 5.4 converged
s 0.2 0222 7.3 | reduce span
9 0.2 0.217 69
10 02" 0.217 6.9 .| converged
mse spans -
) 0.07, 0.09, 0.35 | 0.162 9.7
' -1 0.189 | croes-validated
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Figure 6.2¢ The crosssalidation curve
shows CV RSS;(s) as a function of the span s.
A separate span is found for each co-ordinate.

Figure 6.2f The estimated co—ordjhaté func-
tions for the helix, using the spans found in fig--
ure 6.2f, : ;




78 Ezample 8.3: Geological data

‘The entry labelled d.of. in table 6.lis an abbreviation for degrees of freedom. In
linear regression the number of parameters used in the fit is given by tr (H) where H is the
projection or Aet matrix. If the response variables y are iid with variance o2, then

3 Var(i) =Y Var(hiy)
=1 =1

=g’ (H'H)

= otr (H)

. We can do the same calculation for a linear amoother matrix C, and in fact for the local
E straight lines smoother we even bave tr(C'C) = tr,(C).' As the span decreases, the diagonal
entries of C get larger, and thus the variance of the estimates increases, as we would expect.
By One can also approach this from the other side by lookmg at the residual sum ofaquares

In the absence of bias we hsve
ERSS = X (I~ Ol
= Ey(I-C)(I-C)y
= tr|(I - C)'(I - C) Cov(y)]
=(n-te(C))o?®

(6.3)

if tr(C'C) = (C). * More motivation for regarding tr (C) as the number of parameters or
‘d.of. can be found in Clev=land (1979) and Tibehirani (1984). Soms calculations similar to
thoumSSlahowthutheexp«:tcdnquueddutmceoforomthetme[uD’5320’ or
more precisely D? s 207 — 04 /(4p?) where p is the radius of curvature, which in our example

is 1+ 1/x3. Thus D? a 0.18. The cross validated residual estimate 3~ CV BSS; was found

" to be 0.189.. The orthogonal distance from the final curve is D(11) = 0.162. This is deflated -

due to overfitting. The average value of d.o.f for the final curve is (one for each cé—ordinate)

+ 9.7, or a total of 29.1. Some simple ixeuristiu show that the we should scale this value up by
by 2n/(2n - d.o. n= 300/(3(1) 29.1) =1. 1L We then get 2n/(2n - d.o.f)D*1Y) = 0.179
- which is. back in the correct ballpark.

It is more convenient to view the 3 dimensional examples on a color gr.aphi'ca' syétem
(such as the Chromatics system of the Orion group, Stanford University). Thu allows one
to rotatc the points in real time and thus see the 3rd dxmenmon

‘® For our smoothers, each row of C is the row of a projection matrix, hd hence ele; = cy;.
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Example 6.3. Geological data.
This real data example illustrates: _
e Data modelling in 3 dimensions,
. o non-linear factor analysis, and

o outlier detection and robust fitting.

The data in this example.consists of messurements of the mineral content of 64 core samples,
sach taken at different depths (Chernoff, 1973). Measurements were made of 10 minerals
in each sample. We simply label the minerals X;,---, X;g, and analyze the first three.

Mineral X,

lﬂnefal X,

. Figure 6.3a ' The prinéipd curve for the mineral data. (Variable
Xs is. into the page). The spikes join the points to their projection
on the curve. The 4 outliers are joinec to the curve with the broken
lines. ' ' '

Figure 8.3a shows the data and the solution curve. (A final spaﬁ of “0.35 was manually
selected.) In 3-D the picture looks like a dragon with its tail point"mg to the left and the
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Order on curve...A

Depth order of core

Figure 6.3b The values A I(z.) are plotted against the depth
order of the core samples.

long (outlicr) spikes could be a mane. The linear principal component explains 55% of the
variance, whereas this solution explains 82%.

_The spikes join the obeervations to their clooest projections on the curve. This is a
useful device for spotting outliers. A robust version of the principal curve procedure w;s '

- used in this example. After the first it.éution, points receive a weight which is inverﬁly
proportwnal to theu distance from the curve. In the smootlung step, a weighted smooth
is uaed and if the wexght is below a certain threshhold, it is set to 0. Four points were
identified as outliers, and are labelled differently in ﬁgur'e 8.3a . We would really consider

them model outliors, since in that region of the curve the model does not appear to fit .very
well. ' ' - .

‘Figure 6.3b shows the relationship' between the order of the poi_nﬁ oa the curve, and
the depth order of the core samples. The curve #ppea.rs to recover this variable for the most
vart. The area where it does not recover the order is where the curve appears to fit the
data badly anyway. So here we ha've uncovered a hidden variable or factor that we are able
to validate with the additional information we have about the ordering. The co-ordin.ate
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Figure 6.34: The estimated co-ordinate functions or factor locdmg
curves for the three minerals.

ﬁl'otl wouid then represent the mean level of the particular mineral at different depths (see
ﬁgure 6.3¢ ). Usually one would have to use these co-ordinate plots to 1dent1£y the factors,
J\llt as one uses the factor loadings in the linear case.

| Example 6.4. The umform ball.

- This exunpln illustrates:

N A principal surface in 3 space, and

®a connoci.ibn to multidimensional scaling.

The data is artificially conatmcted with no noise, by generatmg pomts umformly from the

surface of a sphere. It is the same data used by Shepard and Carroll ( 1966) to demonstrate
their parametric mapping algonthm (see reference and chapter 7). We simply use it here

* to demonstrate the ability of the prmcxpal surface algorithm to produce surfaces that are

_not a function of the starting plane (in analogy to the circle example in chapter 3).

Tbere are 61 data points, as shown in figure 6.4a. One point is ‘placed at each
intersection of § equally spaced parallels and 12 equally spaced mendxans The extra point
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Figure 6.4a The data points are Placed
in a uniform pattern on the surface of a sphere.
The south pole is missing.

Figure 6.4b The_ second iteration of the
principal surface procedure finds a surface that
is a function of the first iteration.

Figure 6.4c An intermediate stage in the Figure 6.4d The final surface produced by

iterations. . ' the principal surface routine.
N
N
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"Estiniated )4

Estimated A,

Figure 6.4e Another view of the final prin- Figure 6.4f The A map is a two dimensional
cipal surface. ' summary of the data. It resembles a stereo-
’ graphic map of the world.

is placed at the north pole. (If we placed a point at the south pole the principal surface
prccedure would never move from the starting plane, which is in faci a principal surface.)
Figures 6.4b to 6.4d show various stages in the iterative procedure, and ﬁgure. 6.4e shaws
another view of the final surface. Figure 6.4f is a psrameter map of the two dimensional A.
It resembles a stereographic map of the earth. (A stereographic map is obtained by placing
. the earth, or & model thereof, on a piece of paper.' Each point on the surface is mapped
onto the paper by extrapolating the line segment joining the north pole to the point until

it reaches the papgr.) Points in the southern hemisphere are mapped on the inside of a

* . .circle, points in the northern hemisphere on the outside, and there is a discontinuity at the

north pole. Points close together on this map are close together in the 6riginal spgée, but
the converse is not nécesshily true. This map provides a two dimensional summary of the
original data. If we are presented with any new observations, we zan easily locate them on -
‘the map By ﬁndini their clé:sut position on the. surface,

'Example 8.5. One dimensional color data.

This almost real data exaxﬁpl'e illustrates:

- L o S T S S . ov' . P T S S P, . ] ‘- PR
LIRS P P R I AP PRI SR SRS TPt T, ST IR S SRR PR P S SHRTIIAE SL S ST S SIPL P S S SO L S St




Second principal axis

“ Ezample 5.8: Lipoprotein dala

-
(-]

Esiimated co—ordinate functions
(-4

g
[}
8
-

N PP |

A NS IR N U B

IIJJI

lellllJ

: . 0 50 100 150 200
First principal axis Estimated A (wavelength)

Flgure 6.5a The 4 dimensional color data Figura #8.5b The estimated co-ordinate-

projected onto the first principal component plane. functions plotizd against the arc length of the
The principal curve, found in the original four- principal cu:ve. This X will be monotone with

space, is also projected onto this plane. the true wavelengtin. C

e A principal curves in 4-space, and

o a one dimensional MDS example.

These data were vsed by Shepard and Carroll (1966) (who cite the original source as Boynton
ard Gordon (1965)) to illustrate a vernion of their parametric data representation techniques
called proximity analysis. We give more details of this technique in chapter 7.

Each of the 23 observations represents a spectral color at a specific wavelength. Each
observation has 4 psychological varigbles associated with it. They are the relative frequen-
cies with which 100 observers named the color blue, green, yellow and red. As can be seen in

figure 8.5a, there is very little error in this data, and it is one dimensional by construction.

Since the color ché.ngea élowlyb with wavelength, so should these relative frequencies, aqd-
they should thus fall on a ope dimensional curve, as they do. The data, by construction lies .

in a 3 dimensional Simplex since tke four variables add up to 1. The pictures we show are |

projections of this simplex onto the 2-D subspace spanned by the first two linear principal
components. Figure 6.5a shows the solution curve and figure 6.5b shows the recovered
parameters and co-ordinate functions. This solution is in qualitative agreement with the
data and with the solution produced by Shepard and Carroll. |
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Exampl_e 6.6. Lipoprotein data.

This real data example illustrates:
e A principal surface in 3 apac;e with some interpretations,
e a principal curve suggested by the surface, and

e co-ordinate plots for surfaces.
Williams and Krauss (1982) conducted a study to investigate the inter-relationships between

the serum concentrations of lipoproteins at varying densities in sedentry men. We focus
on a subset of the data, and consider the serum concentrations of LDL 3-4 ,(wa Density
Lipoprotein with flotation rates between Sy3 — 4), LDL 7-8, and HDL 3 (High Density
- Lipoprotein) in the sample of 81 men. Figures 6.6a-d are different views of the principal
surface found for the data. Quantitively this surface explains 97.4% of the variability in the
data, and accounts for 80% of the residual variance ﬁnexplained by the principal component .
plane. Qualitatively, we see that the surface has interesting structure in only two of the
c‘o-ordinatea, namely LDL 3-4 and LDL 7-8. We can infer from the the surfacé that the
bow shaped relationship between these two variables does not change for varying levels of
HDL 3. It exhibits an independent behaviour. We have included a co-ordinate plot (figure
6.6e) of the estimated co-ordinate function for the variables LDL 7-8 which helps confirm
this claim. The relationship between LDL 7-8 and (:\;,:\z) depends mainly on the level of
, ;. Similar information is conveyed by the other co-ordinate plots, or can be seen from the
_estimated surface directly. This suygests a model of the form

LDL 3-4 i(\) er I
LDL7-8 | = | fal) |+ ] ex |-
HDL3 / \ fs5(7) es

As specified A; is confounded with HDL 3, and is thus unidentifiable. We need to 'e,stim@tg
- the first two compozents of the model. This is a principal curve model, and figure' 6.6f
shows the estimated curve. It exhibits the same dependence between’ LDL 7.8 and LDL 3-4
as did the surface. The curve explains 92.6% of the variance in the two variables, whereas
the principal component line e#plgins only 80%.

" Williams and Krauss pex;formed a similar ané.lysis look.. _' at pairs of variables at a
time. We discuss their techniques in chapter 7. Their results are qualitatively the s»am'; as

ours for the LDL pair.
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Figure 8.6e vThe estimated co-ordinate
fanction for LDL 7-8 versus &. i, has little
effect.
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Figure 6.6f The principal curve for the
serum concentrations LDL 7-8 and LDL 3-4 in
a sample of 81 sedentry men.




Chap'ter 7

Discussion and conclusions

In this chapter we discuss some of the existing techniques for symmetric smoothing, as ivell
as the various generali;ations of principal components and factor analysis. We compere
these techniques with the methodolcgy developsd here. The chapter concludes witk a

summary of the uses of principal curves and surfaces.
7.1. Alternative f;echniques.

Other non-linear generalizations of principal components exist in the literature. They can
be broadly classified according to two dichotomies. '

e We can estimate either the non-linear manifold or the non-lincar constraint that defines

the manifold. In linear principal components the approaches are equivalent.

e The non-linearity cén be achieved by tra.nsfom'ﬁng the space or by transforming the
model. |

The principal curve and sﬁﬂaée procedures model the noun-linear max_xifold by transforming
the model. |

7.1.1. Generalized linear principal components.

This approach corresponds to modeling either the nonlinear constraint or the man'x;fold by
transforming the space. The idea here is to introduce some extra variables, where each new
 variable is some non-linear transformation. of the existing co-ordinates. One then seeks a

subspace of this non linear co-ordinate system that xx‘xodela the data well. The subspace

" is found by using the ,uau#l linear eigenvctor solution in th: new enlarged space. This

- technique was first suggested by Gnanadesikan & Wilk (1966, 1968), and a good description
can be found in Gnanadesikan {1977). They suggested using ,pofynomial functions of the

original p co-ordinates. The resulting linear combinations afe then of the form ( for p = 2
and quadratic polynomials) '

A,- = @152 + a2 + a3;2123 + agti + a;,zg (7.1)
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and the a; wil be eigenvectors of the appropriate covariance matrix. .

This model has appeal mainly as a dimension reducing tool. Typicalli the linear.
combination with the smallest variance is set tG zero. This results in an impllcit non-linear
constraint equation as in (7.1) where we set A = 0. We then have a rank one reduction
that tells us that the data lies close to a ouodl'atic manifold in the original co-ordinates.

The model has been generalized further to include more general transformations of
the co-ordinates other than quadgatic, but the idea is essentially the same as the above; a
linear solution is found in a transformed space. Young, Takane & de Leeuw (1978) and later
Friedman (1983) suggested different forms of this generalization to include non-parametric
transformations of the co-ordinates. The problem can be formulated as follows Fiod a and
#(5) = (nlen) = opley)) mch that

B l[o(z) — aa's(z)||* = min! . (7.2)

ot alternatively such that T
. " Vaz[d's(2)] = max! a (7.3)
where lc,(z,) =0,de=1and la’(z,) = 1. The idea is to traniform the coordinates

: mublyndtlnnﬁndtluhmrpnmpuoomponcnu. ifin (73)voreplu:ed maz by min

tbanmuldbou&mﬂn(tbc_mtmthcuma[ormodlpm
The estimation procedure alternates betweer lj’ve;'g the 8;(-) acd finding the linear
principal components in the transformed space

"o For & fixed vector of functions 3{ }, v -hose & to be the firat principal component of

the cvariince matrix Eo(z)é!s:)’.

e For @ known, (7;2) can be vu'z.:un‘ in'tlu" form

kl(o;(z;) Z&,n {2,)i% < '.r.l»./.in'n(-),---,c,(-)..v- L (14)

j-!

" and b;‘mfuncuouoloabon llo,, sl Bao km,oqnaﬁoo (7.4) is minimized.’

L

n(n)= !(E bijei(2;) |21)

i3 :
This is tm foe any o, and suggests an inner iterative loop. This i inder loop is very
similar to the ACE algorithm (Bmmu and l’hodmn, 1982), cxcept the norm:lxnnon
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is alightly different. Breiman and Friedman proved that the ACE algorithm converges
under certain regularity conditions in the distributional case.

The disadvantages of this technique are:

- @ The space is tianafonned, and in order to understand the resultant fit, we usually
would need to transform back to the ori~inal space. This can only be achieved if the
&amfomutiou are restricted: to monotone functions. In the transformed space the
estimated manifold is given by ' '

(=)
: = ad's(z).

éy(zp)

Thus if the s;(-) are monotone, we get untransformed estimates of the form’

#\ (9 1(mz)

. | (7.5)
i,} l(a,z) '»
where 5 = o's(z). Equation (7.5) defines a parametrized curve. The curve is not
completely general since the co-ordinate functions are monotone. For the same reason,
Gnanadesikan (1978) expressed the desirability of having proeednrea for estimating
models of the type proposed in this dissertation.

e We ace estimating manifolds that are close to the data in the transformed co-ordinates.
When the tnnd’ormaucu are non-linear this can result in distortion of the error
variances for individual variables. What we really require is a method for estimating |
mxfoldathumdcntothcdmmtheonpndpeo-o«!m Ofcoum,xfthe,
functions are linear, bathsppmh.mndcnmd.

A.n.dmugoddnudmsqmuthuntm.on-lybomuﬁsdtohhcmofhighu '
dxmdmddda,dthmghnﬂmnmwygmrdum This is achieved by
uphan(cmthAvbmA-px' ngthamsgdwonalhypnphncmthc
. transformed space given by AA'e(3;). However, we end up with a -nmb'n of implicit -
coastrain: equations which are hard to deal with and interpret. Despite the problems
associated with generalised principal components, it remains a useful tool for performing
rank 1 dimensicnality reductions.




W&M.&u.u&.-p\.-. (R .:’. Ry
o

Chc;pter 7: Discussion and conciuafona 91

7.1.2. Multi-dimensional scaling.

This is a technique for finding a low dimensional representation of high dimensional data.

The original proposal was for data that consists of () dissimilarities or distances between n

objects. The idea is to find a m (m small, 1, 2 or 3) dimensional euclidean representation for
the objects such that the inter-object distances are preserved as well as possible. The idea
" was introduced by Torgerson (1858), and followed up by Shepard (1962), Kruskal (1964a
,1064b), Shepard & Kruskal (1964) and Shepard & Carroll (1966). Gnanadesikan (1978)
gives a concise description. ' -
. The procedures have also been suggested for situations where we simply want a lower
dimensional representation of high dimensional euclidean data. ' The lower dimensional
representation attempts to repgodixce the interpoint distances in the originai space. We
fit a principal curve to the color data in example 6.5; these dats were originally analyzed
by Shepard and Carroll (1966) using MDS techniques. Although there have been some
intriguing example~ of the technique in the literature, a number of problems exist.

e The solution consists of a vector of m co-ordinates representing the location of points

on the low dimensional manifold, but only for the n date points. What we don’t get,
and often desire is a mapping of the whole space. We are unable, for example, ¢ find
the location of new points in the reduced space.

e The ptoadnm are eompnwionaily expensive and unfeasible for large n (nm > 300
is considered large). They are usually expressed as noa-linear optimization problems
hmpurm‘nddifuinthchoiaofaiurion.

' .Thpmapdcnmndmrfmptoad res putuﬂyovemmebozhthoproblemhsted

above; thcy mnnabhtoﬁndltmctnmu enerduthouthuctnbcfound by theMDS

, proeodum due to the averaging nature of the scatterplot smoothers, but they do provnde

‘ lﬂq}piﬂg for the space. We bave dt their ability to model MDS type data in

examples 6.4 and 6.5. They do not,

aling.
7.1.3. Proximity models.

Shepard & Carroll (1966) suggested a functional model similar in form to the model we
" suggest. They muhdodywdim&thjnmofmpqwforeuh_point, and
comsidered the data to be functions t . The panm'omi (nm altogether) are found

.............................
-..‘...‘-'.‘.‘..'.‘.'.'.'.'.v‘-- AR ‘-.'-.'..,..
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by direct search as in MDS, with a different criterion to be minimized. Their procedure,
however, was geared towards data without error, as in the ball data in example 6.4. This

" becomes evident when one examines the criterion they used, which measures the continuity
of the data as a function of the para.xﬂeters. When the data is not smooth, as is usually the
case, we need to estimate functions that vary smoothly with the parameters, and are close
to the data. ’

7.1.4. Non-linear factor analysis.

More recently, Etesadi-Amoli and McDonald (1983) approached the problem of non-linear
factor analysis using polynomial functions. They use a model of the form

CX=f(\)+e

whete f is a polynomial in the unknown parameters or factors. Their procedure for esti-
mating the unknown factors and coefficients is similar to ours in this restricted setting. * | -
Their emphasis is on the factor analysis model, and once‘t.he appropriate polynomiai terms |
have been found, the problem is treated as an enlarged factor analysis problem. They do
not estimate the A’s as we do, tuilng the geometry of the problem, but instead perform a

.

search in ng parameter space, where ¢ is the dimension of A and n is the number of obser- _ =
vations. Onr emphasis is on providing one and two dimensional summaries of the data. In -

certain lmutlona, these summaries can be used as estimates of the appropriate non-linear
- functional and factor models. | =

7.1.5. Axis inierchangeable smoothing. -
Cleveland (1983) describes a technique for symmetrically -&xoothing a scatterplot which he
calls exis. uumhugnblc moothag ( whxch we will refer to as Al smootlnng) We bneﬂy
outline the idea: . ' ‘
T e stlndudxuud:eootdmmbym(robw) meuuxcofnalc
e rotate the coordinate axes by 45°. (xf the correlaxon is positive, else rotate through
_“:) . ;"
. -ndoih the transformed y against the transformed z. :
® Their pan was publishod in the Sopumbcr 1983 issue of Psychometrika, whereas Hastie |
(1983) sppund in Jlly :
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e rotate the axes back.

. unstandardize.

If the standardization uses regular standard deviations, then the rotation is simply a change
of basis to the principal component basis. The res:liing curve minimizes the distance from
the points orthogonal to this principal component. It has intuitive appeal since the principal
component is the line that is closest in distance to the points. We then allow the points
to tug in the principal component line. It is simple and fast to compute the Al Smooth
and for many scatterplots it produces curves that are very similar to the prmcxpal curve

aolutxon This is not surprising when w= consider the following theorem:

Theorem 71

If the two variables in a scatterplot are standardized to have unit standard deviations,
and if the smoother used is linear and reproduces straight lines exactly, then the axis
intqchangeable smooth is identical to the curve of the first iteration of the principal cirve

: pr@dnra.

Proof
Let the variables = and y be otandnrdlzed as above. The Al Smooth transforms to two

new variables
(= +9)
V2
'o = (3 = ') :

V2 .
Then the Al Smooth replaces (z°, y*) by (z°, Smooth(y* |z*)). But Smooth(=* |z') =
#° since the smoother reproduces straight lines exoctly hd Thua the AI Smooth transforms
back to

(1)

2= ( Smooth(s* |2°) + Smooth(y"lz') '

( Smooth(z* |#°) ~ Smooth(y" |2°)) .7
= vz
S’meo thoamoothoruhnar andmv:ewo{ (1.6), (77) becomes
2= Smooth (2 iz ) S
(7.8)

§ = Suwoth(y |z’ )

® Any weighted local linear smoother hu this proporty Local averages, however, do not unless
tlu predictors are evenly spaced. -

R S
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» This is exactly the curve found after the first iteration of the pnncxpal curve procedure,
since A(0) = z°. 1

Williams and Krauss (1982) extended the Al smooth by iterating the procedure. At
the second step, the residuals are calculated locally by finding the taﬁgent to the curve at
| © each point and evaluating the residuals from these tangents. The new fit at that point is
| the amooth of these residuals against their. projection onto the tangent. This procedure
i . would probably get closer to the principal curve solution than the AI smooth (we have
| ' not implemented the Williams and Krauss smooth). Analytlcally one can see that the
procedures differ from the second step on.

This particular approack to symmetric smoothing (in terms of readua.ls ) suffers from
several deficiencies :

. tho type of curves thst can be found are not as general as those found by the principal
curve procedure.

o they are designed for scatterplots and do not generalize to curves in lugher dimensions.
o they lack the interpretation of principal curves as a form of conditiox_x;l._expectation.
7.2. Conclusions.

In conclusion we summarize the role of principal curves and surfaces in etatxstws and data

analysis.

e They generalize the one and two dunensxonal summaries of multxvanate data usually
provided by the principal components

° Wheplthe princip:l curves and surface are linear, they are the principal éomponént

. My they are the critical points of the usual distance functiﬁn for u;xch -uizzmnxiea; |
t_h‘nginimindicatignth.tthmmnottoomyo(‘thcm..

. They are defined in terms of conditional expectations which satisfies our meﬁtal ix.nager
of a summary. '

o They provide the least squares estimate for generalized versions of factor analysis,
fanctional models and the errors in variables regression models. The non-linear errors
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in variables model has been used successfully a number of times in practical data
analysis problems {notably calibration problems). '

¢ In some situations they are a useful alternative to MDS techniques, in that they provide
a lower dimensional summary of the space as opposed to the data set.

o In some situations they can be effective in identifying outliers in.bigher dimensional

space.

e They are a useful data exploratory tool. Motion graphice cechniques have be:ome
popular for looking at 3 dimensional point clouds. Experience shovw's that it is often
impossible to identify certain structures in the data by simply rotating the points. A
lumn'ury such as‘that given by the principal curve and surfaces can identify structures
that would otherwise be transparent, even if the data could be viewed in a real three
dimensional model. '
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