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On The Classification and Nonlinear Solution of One Type of /121

Stratified Shear Flow

0

Liu Shida Chen Jiayi Liu Shishi Wang Shufang

(Department of Geophysics, Beijing University)

ABSTRACT

Starting from the nonlinear internal gravity wave equation

for stratified shear fluid, this paper considered a type of

progressive wave motions and derived a set'of two-variable

(perturbation velocity and perturbation density) ordinary

differential equations for the self-governing dynamic system of .

this type of fluid motion. Based on qualitative theories in

differential equation, this paper also conducted a qualitative .

analysis on the geometric t-opological structure of the

integration curve in the vicinity of the origin of a phase plane

which used the perturbation velocity and perturbation density as

coordinates. Based on the difference in the Richardson number on 0

the phase diagram, the integration curve was separated into "....

several areas with different properties. When Ri<O, the singular

point was an unstable saddle point regardless of whether the

velocity shear du/dz was positive or negative. When Ri>O, the _

singular point was unstable in an area where the velocity shear

du/dz was positive, while the singular point was stable where the ..

velocity shear du/dz was negative (when O<Ri<1/4, it was a stable

nodal point; when Ri>1/4 it was a stable focal point, so the .

periodic solution of amplitude decay ex'isted; when Ri-- it was a .

stable central point so there existed the periodic solution).

The second order system was obtained by expanding the
nonlinear terms and then retaining the second order terms. Our

analysis indicated that the topological structure was completely

consistent with the first order system. The central point of the

first order system was still the central point of the second

ordermystem. The periodic solution of the second order system
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satisfied the famous K V equation, and it was an ellipticald
cosine wave. Under other conditions the solutions of the second

order system (which was the velocity which varied only with time) I S

were different from those of the first order system. This

further reflected the actual situations associated with many

atmospheric and oceanic phenomena (including turbulence). ". ..- - .- -

I. INTRODUCTION

The density of the atmosphere or the ocean varies with

height (this is being called "layered" or "stratified"), and the

velocity also varies sharply with height (this is called the

"vertical shear"). The most fundamental wive within the 5

stratified shear flow is the internal gravity wave. The medium

to small scale atmospheric systems such as typhoon, scowl line,

and cumulus cloud; as well as temperature jump and turbulence in

the ocean are all closely related to the internal gravity wave.

In the past the discussion.toncerning the internal gravity waves
was mainly concentrated in linear theories. Many important . -

conclusions were obtained this way, such as the identification of

the Brunt-Viisili frequency N as the upper bound of the frequency

of internal wave a , and that the internal wave is stable when

Ri - N2 /(di1/dz) 2 is greater "than 1 /4C13 (here i(z) is the

fundamental shear flow field). It was also established that Ri =

1/4 is the boundary between laminar flow and turbulent flow in

stably stratified atmosphere (N2> 0). In recent years

observations have revealed large amplitude fluctuations of the
[2) [33boundary layer at night and blocked structures

Intermittent turbulent flow [2 ] and solitary waves have also been

observed. None of these phenomena can be explained by the linear

theory. What are the characteristics of nonlinear stratified

shear flow? What kinds of relations do they have with the Ri

number? Can we find analytical solutions? All of these are
topics that we are concerned about. Some of the relatively early

studies concerning the theoretical examination of nonlinear

internal waves include the work of Benney (1966) [ 5 3 and Benjamin

3
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(1966)(6) (1967) [73. Recently Maslowe and Redekopp have

conducted a systematic research into the nonlinear stratified

shear flows. All of these studies applied the multiple scale

perturbation method. This paper analyzed the set of equations

which describes the flow, expanded the nonlinear terms of this

set of equations by asymptotic expansion and conducted an

analysis on the phase plane. In addition, we have also obtained
the analytical solution of the second order system which retained
the second order terms. We obtained an elliptical cosine wave /122

-i where there was no shear (d5/dz = 0). This paper carefully

* examined the effects of the shear du/dz and Ri number on the

stability of the flow within the stratified shear flows. We

pointed out that the property of stability was different with a

difference in the sign of the shear dii/dz. Ri = 1/4 was not a

line separating stability from instability.

II. BASIC SET OF EQUATIONS

By using 7(z) to represent density stratification and ut(z)

to represent velocity shear; the two dimensional (x,z) motion of

a Boussinesq fluid can be considered. The nonlinear equation of

motion, adiabatic equation and continuity equation which describe

the stratified shear flow can be represented as

+ (I+ a) - +- -

as a s P.8Z

] O O w"
+ +w-

4
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Here u,w are the x and z components of velocity, respectively. p

is pressure, p is density, g is gravitational acceleration,

is a stratification parameter, d5/dz is a velocity shear

parameter.

Due to the existence of the nonlinear advective terms in

equation (1),

it is generally difficult to obtain an analytical solution which

can explain the motion phenomenon. Here we will consider a type

of progressive wave motion described below. We will assume that

the wave solution has the following form:

-U(Q) I-(Dp () -Q u D

F. " (2)f- =+ n - got

Here k, n are wave numbers along the x,z direction, respectively, .

w=kc is the angular frequency, c is the wave speed. None of the

parameters w, k, c will vary with x,z, or t.

Substitute (2) into (1) we have

(-.& + kU + k;;)w' - -- r -, Ir
• ' I (3) -

(-a + RU + Ri) 11' - i -
*Ul + "w" - 0

Here the symbol "'" is used to represent derivative taken against /123

By eliminating P and W using the first and the second

equations in (3), we can obtain two ordinary differential

equations in U and ,. -it
'( + V')(-, + ku + R;)U- Aegfl + nk - U

(-to + kU + ki)T - - 2 up

[5, • .9

? .... ...................................... ... i. -



If (- + kU + k5) 4 0, (4) can be transformed into

"Ag1n + 0 A _U-- dg -F(U I7)

v" (R + k,)(-,, + ku + 0s) (5'..-
7 (5)

"n -G(U)
(-a, + ku ± k)

Here F (U, I), G(U) are nonlinear functions.

The right hand side of equation (5) does not contain ,

explicitly so it is a set of ordinary differential equations for

the self-governing system. Based on qualitative analysis of

ordinary differential equations [ 0 , it isreasy to see that the

origins %= 0, U = 0 is the singular point on the (U,ff ) phase

plane. At this point U=O and p=O so this point represents the

.. undisturbed static condition based on physical consideration.

In order to analyze (5), we will conduct Taylor expansion on

the nonlinear F and G terms--on the right hand side of equation

(5) in the vicinity of the origin of the i , U plane. We can

thus obtain

di d;
up_ _ __ _ _ __ _ _ _ dx' " U + ,,r n-(,+kl) U3 ,) 'n'"+ kP)(-, + ) (" & ')(-, + ) (n '(-" + ( 6)

(ft( + (c + )-U+ -

If'~ ~ ~ ~ ~ ~~~7 -- t(-+ )U+.(- +)U+.......

We will now explain that equation (6) is an equation which

can be used for the discussion of internal gravity wave. We

shall place our emphasis on the commonly seen practical situation
where C> >0. In order to simplify our description, we will

first discuss the case where k< n, and we will keep the right

hand side of equation (6) up to the second order terms. Equation

(6) can thus be transformed into

di d. -

v" _ - U - 1u - "A- U" -SC1 "l
z  

nc " "

(U + C)(-U + l\ (7)
.€e dz /-:

I I

I2- N'. U + U' -.U, (U+c)U
got sac' gnec

6
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Equation (7) is the second order self-governing system which

will be used to analyze the nonlinear internal gravity waves from

now on.

III. RESULTS OF LINEAR WAVES

We will first discuss the condition of linear internal

ON gravity waves by using equations (6) and (7). If we were to take

only the linear terms on the right hand side of equation (6), we

can use these terms to describe the linear-gravity waves at an
infinitesimal distance away from the equilibrium point (0,0). At

this time equation (6) becomes /124

diU"-( + " f

+')-c + 1) (0 + kO(-c + i)
-NJ

IT -N' u 1 (8)
n-+il)

If there is only density stratification p(z) and no velocity

shear di/dz= 0 (the-same as Ri -. ), and we also assume N2 is a

constant, we can then obtain the following from (8)
Iva+(NJ+ )(_ + )U -- (9) "i),

I.0

If the variation of U with L is periodic, we can obtain the

dispersion relationship from (9):

(- + -
(10)

Equation (10) is exactly the well known result of stratified flow [I]

and we can also come to the conclusion that w<N.

If we now include the velocity shear in the discussion
(dr/dz=0) and assume that di/dz varies with z, we can obtain the

following equation from (8)

(' td- d'J (ua

-- +i . U, + #8... -. C (Rl c i U

'a 7

a-..,' eL - ') 1 ).:

'a.. . a . . a *.*.....~ 4a**



By setting k<<n, (11) can be simplified as

U - 1  (-- , ), (12)
N2

Here Ri -d...... is the Richardson number.

Equation 12 is consistent with the results of Taylor and

Goldstein [11 ]. Furthermore, if dUi/dz=O equation (12) become (9).

If we were to take only the linear terms in equation (7), it

can be shown below that it is necessary for Ri >1/4 in order to

obtain a stable wave solution. By collecttng only the linear

terms in equation (7), it becomes

}(13).:i~~~7 U"- -u---

gBc

By assuming di/dz and N2  to be constants, we can obtain the

" following equation from (13)

di
u"+ .4"[/ 'O ,eu - 0 (14)..--

We will set the U in equation (14) to be /125 --

V -  (15)
We can then eliminate the U' in equation (14) and obtain

'.'." " -- - (1 - 4Ri)Vz- 0 ( 16 ) -'.
%".'" " 4 C

It is obvious that it is necessary for the coefficient in front

of V to be positive in order for equation (16) to have a wave

solution. This is to say that

i >
<. (17)

All of the above are consistent with the existing results of

*stratified flow theories. This suggests that the basic equation

sets (6)and (7) accurately reflect the results of linear

8
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internal gravity waves. If we keep the second order terms on the

right hand side of either equation (6) or (7), we can then use

them to discuss the finite amplitude nonlinear internal gravity

waves.

IV. THE TOPOLOGICAL STRUCTURE OF STRATIFIED SHEAR FLOW

From (13) we can obtain the integration curve in the

vicinity of the equilibrium point (0,0) on the phase plane (

,U). It is determined by the following equation

dU _-_U- (18)

The property of the phase path is determined by the

characteristic root x of the characteristic equation

d/i (19)
•" --

This is to say that
2' +'A I + N2 -0

dx
(20)

The characteristic root obtained from (20) is

di; d -i - 4R;
:- d- - (21)

2

This is why the phase paths (9 ,U) in the vicinity of the
2origin (0,0) of the parameter (du/dzN are divided into several

different areas as shown in Figure 1. The black dot * in this

figure represents the equilibrium point which is stable, the

white dot o represents the unstable equilibrium point, and the

direction of the row indicates the direction in which time is

increasing. Since = kx + nz - wt, so for a certain given

point (X,Z) the direction in which time is increasing is the

• direction in which is decreasing. The equation for the

9
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* dashed line in this figure is

(c.Z) - (C)

It is a parabola.

No

*1 1 x14 6 /()RRIA
OR() P4O

34 ~A4* No
&CO

Figure 1

1. stable nodal point area
2. stable focal point area

*3. unstable focal point area
4. unstable nodal point area
5. saddle point area
6. unstable

It can be seen from this figure that the parameter plane (dG/dz,N2)

divides the properties of the solution of the stratified shear

flow (the phase diagram which used 1 as abscissa and U as

ordinate) into five areas Ci), Cii), Ciii), Civ), Cv) and four

* boundaries (vi), (vii), (viii), and (ix):

Mi Ri< 0 unstable saddle point area; x, A0, x.<0

(ii) Ri< 1/4, dii/dz < 0 stable nodal point area; X, >x,>0

(iii) Ri> 1/4, d5/dz < 0 stable focal point area; x,, and x,
are complex conjugates with real parts being positive.

(iv) Ri> 1/4, d5/dz > 0 unstable focal point area; X,and X,,
are complex conjugates with real parts being negative.

10
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(v) Ri <1/4, di/dz > 0 unstable nodal point area; x,< x2 <0-

(vi) Ri--, di/dz= 0 stable central point; x. and x. are

pure imaginary roots.

(vii) Ri = 1/4, du/dz <0; x,= x2> 0

(viii) Ri = 1/4, d5/dz >0; x,= x2 < 0

(ix) Ri = 0; X, is either positive or negative,x, =0

It should be pointed out that the above analysis was done

under the conditions of C> 5, k<< n.

For the condition where c< 5 the above analysis can still be

applied.

All we have to do is to switch the di/dz> 0 (or di/dz< 0) with

du/dz <0 (or du/dz >0). This is to say that the first quadrant
2of the parameter plane (du/dz,N 2 ) is a stable area while the

second quadrant is an unstable area.

For the condition where k is not smaller than n, all we havea k

.-. to do is to replace the parameter Ri with n Ri in the above

analysis. This is to say that the stable area is still related
to k and n.

In this way, we can classify the flows according to their Ri

numbers.

Up to now we have only analyzed the first order system (13),

now we will analyze the second order system ( 7). According to

the theory of Poincarg-Bendixson [131 , since the nonlinear terms

in (7) are separately
X(1Z, U) -- "LP 'na.

dsi (22)

Y(17, U) - - U 7u

so we will have /127

X(o 0) -- 0O) -- X(O, 0 -- (O, )- OX(O, ) -- 00 - 0 (23)
Oe u an an

In this way the qualitative properties of the second order system

(7) in the vicinity of the origin (0,0) under the conditions of

i), (ii), (iii), (iv), (v), (vi), (vii), and (viii) are

completely the same as the analysis done on the first order

11
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system (13).
At the same time, relative to the central point (Ri--, dii/dz

= 0) of the first order system, the second order system (7)

becomes
U, - A fU - B(17, U)

YU, r' A(, U) (24)
gnc

[13-
According to the symmetry principle , we have

.(n, U) - A(- , U) (1, U) - - B(- 1, U) (25)

We can be sure that the central point of the first order system

is still the central point of the second order system. Even

" under condition (vi), the qualitative property of the second

order system is the same as that of the first order system.

This is why the qualitative structure of the solution of the

" first order system (13) is.completely the same as that of the

second order system (7) in the vicinity of the origin. The only

difference is that the rate of variation of U and I with t (or

)is different on the phase diagram.

From the complete phase diagram of the stratified shear flow

-- we can see that when C >u, we will have:
2(1) N < 0 (the same as dp/dz> 0) is always a factor for -

instability. As for whether the shear is a factor for stability

or a factor for instability depends on whether du/dz< 0 or d5/dz>
0. In the past, the discussion of a Kevin-Helmholz wave always

treated the shear as a factor for instability.

(2) Miles (1961) and Howard (1961) gave the necessary

condition for a stable internal gravity wave as Ri> 1/4, and they
did not include the condition where 0< Ri< 1/4. It can be seen

from the phase diagram that as long as du/dz< 0, the wave is

still stable when 0 <Ri<1/4.

(3) In the past, people always believed that the wave is

always stable when the Ri number is very large (at this time the

shear di/dz is very small). This is why the production of

. turbulence under the condition of stable stratification (N2> 0 d

/dz <0) could not be explained. According to our analysis,

12
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instability can still be reached under very high Ri as long as

dTi/dz >0.

(4) When 1/4 <Ri< , there exist periodic solutions with

either amplitude growth (under the condition of dU/dz> 0) or

amplitude decay (under the condition of dG/dz <0). When Ri-- ,

there is a periodic solution and when Ri <1/4 there is no

periodic solution. During the night there is a phenomenon of

frequent appearance or vanishing of large amplitude waves in the

boundary layer [2 ]. We believe that this is exactly the condition

of the stratified shear flow within the focal point area where

1/4 <Ri <-.

V. THE NONLINEAR SOLUTION OF THE STRATIFIED SHEAR FLOW /128

In order to compare the rates of variation of U and I with

(or t) between the nonlinear system (second order system) and the

linear system (first order system), we will now derive the S

analytical solutions U ( .Y- and I(E) for the second order system

By taking the derivative against E , the first equation in

(7) becomes

iii i
~ (26)

se me nesSE

We can now obtain the second order nonlinear equation of U by

substituting the ' in the second equation of (7) and the 9' in

the first equation (7) into the formulation.

U*45
I++ -- U 0 -( (27)

We will now derive the analytical solution of the nonlinear

equation (27) as follows. To serve as a contrast, we will first

consider a relatively simple condition. This is to say that we

will first eliminate the nonlinear terms from equation (27) and

then try to solve the linearized equation:

U11 U, - +' 2 U 0
-U -- U -O (28)

13



Equation (28) is actually equation (14), so its

corresponding characteristic equation is

+ -d + 0O..

mic (29)

The characteristic root of (29) is

---- _* 1 4 (30) 0
,,c nc 1.

2 m

Here Xis the representative equation (21).

The form of the solution of equation (28) U ( ) can thus be

determined based on whether the characteristic root r (or X) is a .

real root, an imaginary root or a complex conjugate root. We can

then obtain I(&) from the second equation of (13). These special

solutions are listed as follows: . -.

(1) When X is a real root, the U (E) and I(C) corresponding .

to the two straight lines which pass through the saddle point on

ncdal point along the phase path are

U() - - -(31)

f. gl "" ""

(2) When ) are complex conjugate roots, the solutions of UM)

and 1(E) corresponding to the spiral line in the focal point

area on the phase diagram are:

Cos (kz + ,, _, - .-(2
N IA \ N..L(-E8 -.. r .

e' oy- + d) " j -::-:--(:-'

Here • and 0 are the real and imaginary part of , respectively; /129

and tgA - - 44Ri-1 >l.

(3) When X is a pure imaginary root, the U(E) and I()

corresponding to the .closed trajectory around the central point

of the phase diagram are

14



U( I-CM -(z+ asl- 1)u• xc (33)

N N N N-sin -e (k x+ us - t,)
5 ""uc" 5

We will now solve for the nonlinear solutions corresponding
to equations (31) and (33) as follows. Since the relationship

between U and ff is given by the phase diagram, we will not try to
fino the solution by directly using equatipn (27). Instead, we
will use the original set of equations (7).

For the two straight lines passing through the saddle point
or the nodal point on the phase diagram, we can derive the

following equation from (31)

"." * A(34)

* By substituting (34) into (7) we can obtain

7F U(U + c) (5 '

By integrating (35) we can get ,

U
U+ - (36)

or

+4 2U (1C th -2(37)

So we set

2 2ne(38)

By substituting (38) into the second equation of (7) we can get

2g3. 2inc 2g1 L ZC ~ ' (39)-4 -

10
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SBy comparing (38) and (39) with the linear solution (31), we can

see that the velocities at which they approach (or get away from)

the origin (the equilibrium point) are different. The solution
* obtained by considering only the linear terms has the form of an

exponential function. The solution obtained by considering the
nonlinear terms has the form of a hyperbolic tangent function.

What's more meaningful is that (38) and (39) are very

similar to the progressive wave solution of the nonlinear

dispersion equation (which is the Burgers equation)

+a A!L (P is the dispersion coefficient)(40)

The progressive wave solution with u f U(&) and [ f kx-w t is

I (41)

In equations (38) and (39)

1

is equivalent to z (42)

So the IXI value increases as du/dz increases, corresponding to

decreasing P value. In this way, U will vary sharply at the

location where C changes sign. This explains that for the
nonlinear solutions of (38) and (39) there is a phenomenon of /130

sudden variations in U and I when du/dz is very large. This

phenomenon will not occur if we only consider the linear system.

The conclusion of this paper can be used to explain a lot of the

intermittent phenomena in the atmosphere on the ocean.
Now we will derive the nonlinear solution corresponding to

(33), at the time the origin of the phase plane is the
central point. From (18) or (33) or (24) we can obtain

dU _ _ _G :.,

dli ,a (43)U

So the closed phase path around the central point is
I TP+.U'-D (44)

16
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In this equation D is an integration constant. (44) is an

ellipse.

By taking the derivative against for the first equation of

(24),then substituting tne second equation of (24) and equation

(44) into the formulation, and retaining only up to the second order

terms, we can get
9

U- Us - U'+ D(45)
10 C 0 Jgl0h fl

By taking the derivative of (45) with respect to E we can obtain

the famous KdV equation

U'" + L- U, + -i- UJ" - 0(6).
Joe, sle'- (46)

We have already obtained the solution of (45) and (46), it is an .
L14Jelliptical cosine function1 cn

U() - U,+ (U,- u,)se - ( U,) (:z +,x - (a) (47)

Here U1 >0, U2 <0, U3 <U2 <0 is a third order equation

H(U)-U+-U- '- u+B (48)

These are independent single real roots, and B is a constant.

It can be seen from the comparison between (47) and the

ccrresponding linear solution (33) that the linear wave has the

form of a cosine (or sine) function while the solution obtained

by taking into consideration the nonlinear effects is an

elliptical cosine function. The periodicity and wavelength are

also different. Furthermore, the amplitude of a nonlinear wave is

related to its wave speed[14 j_

Now we have obtained nonlinear solutions for the two

straight lines passing through the saddle point or the nodal

point of the phase diagram as well as the closed curve around the

central point of the phase diagram (1,U).

17
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VI. CONCLUSION
We have obtained the structure of geometric topology for the

phase diagram of the stratified shear flow in the vicinity of the

origin of the (w,U) phase plane. Its property is determined by

the stratification parameter N2  and the shear parameter dG/dz.

Our analysis indicates that the stability of the flow dependsnot

only on the sign of stratification N2  (same as 85/az) but also

on the sign of the shear (dii/dz). This is why only the first

quadrant (c<5) and second quadrant (c>G) on the parameter plane

(d5/dz, N2 ) are stable. Ri = 1/4 is not the boundary between

stable and unstable. It is actually the bondary between periodic

and nonperiodic solutions.

The qualitative properties of a linear system are completely
...

the same as a nonlinear system, but the rates of variations are
different. For the nonlinear system there is a phenomenon of

rapid variation when tdU/dzt is very large. The amplitude of a

nonlinear periodic wave is related to its wavespeed.
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