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1. Mmtroduction

The increased reliability requirements have caused fault-tolerant and degradable
systems to become more important. A separate performance or reliability analysis of
such sytems is inadequate. It is of much interest to introduce measures that reflect
both performance and reliability of the system. Several authors have proposed such
measures and studied their analysis in specific cases [1-7,10-15]. Different models
were often developed to study different performance and/or reliability measures. This
paper is an attempt to unify different performance and reliability models into a single

model that is useful for assessing the behaviour of degradable computer systems.

Such performance and reliability measures can be either system- oriented or job-
oriented. A system-oriented reliability measure is the distribution of the time to
failure {15}, while a job-oriented reliability measure is the probability that the job com-
pletes before system failure [7,18]. System or job oriented performance measures
such as throughput or response time are evaluated assuming no failures [15]. A
system-oriented combined (performance and reliability) measure is the accumulated
reward (or performance measure) up to time ¢ [4,10] or up to system failure [2,15,186].
A combined job-oriented measure is the distribution of the job completion time in the
presence of failure/repair preemptions [3,5,8,12). The analysis of this measure and its

relation to the accumulated reward [8] is a major concern of this paper.

In the model we develop, a computer system is described by a stochastic process
that represents the structural state of the system which changes due to different
events. Associated with each structure- state is a reward rate (e.g., c?mputation capa-
city, throughput or response time). It is particularly useful for our unifying analysis to
consider the execution of a particular job on the system described above, where the
reward rate represents the service rate (e.g., the number of instructions executed per
unit time). It is obvious that the completion time of the job is affected by the preemp-

tions and the possible variations in the service rate due to changes in the structure-
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(, state of the system (e.g., system degradation, failure or repair). We will show that,
\ 'E__: when the job service is resumed after preemptions, the completion time of a given job
;' and the accumulated service (reward) until a given time are dual measures so that the
. f distribution of one of them allows us to compute the distribution of the other. Further-
. more we show how to derive different common performance and reliability measures
E’_: from our model.

. It is important to distinguish the type of a structure-state according to the
\.-, service-preemption interaction associated with a transition to that structure-state. We
s::‘ will consider the following types of structure-states:

SE-:_ a) preemptive-resume (prs): upon preemption, the job's service is resumed at a
7 (possibly) different service rate.

:’_ b) preemptive-repeat (prt): upon preemption, the job's service is restarted at (pos-
: IE sibly) a different service rate. This can be further classified into the following two
b types

.:.‘ i) preemptive-repeat-identical (pri): the same (identical) job is restarted.

' ii) preemptive-repeat-different (prd): a different independent job with the same dis-
) tribution of service-requirement is restarted.

, In [8] we considered the pure cases where all the structure-states in a given model are
, assumed to be of the same type (i.e., prs, pri, or prd). In that paper the analysis was
[ = based on conditional transform techniques. In the present paper, we allow a mixture of
:-_' two different types of structure-states in the model (i.e.. prs with pri, prs with prd and
E?-_ pri with prd). In the mixed cases the analysis is based on exact aggregation and condi-
| -."" tional transform techniques.

‘f In section 2, we introduce the mathematical model, basic assumptions, some

definitions and notations. In section 3 we review the main results of the pure cases

considered in [8]. Section 4 contains some preliminaries and introduces the main idea

of the solution technique in the mixed cases. In sections 5, 8 and 7 we consider the




» A AvathPataTe N )).P.. Pl f.f.’u o oSSR VR L N L AN LR L Bl \ \ A AN NN D R N N P

L0 Sou.
s - - -
o
zz‘-::f :
( analysis of the mixed cases; namely, prs with pri, prs with prd and pri with prd,
.;.»_\ respectively. The techniques developed here are demonstrated by means of a simple
”.: and illustrative example - the switching server. We conclude our paper in section 8.
U
2
\‘ 2. The Basic Model
\ Consider a particular job to be run on a particular computer system. The work
":E, requirement of a job is a random variable B, and is measured in work units (e.g., the
"; number of instructions to be executed). It has the cumulative distribution function
£ G(z) = P(B < z) and LST (Laplace Stieltjes Transform) G~(s) = E(e~*?). It is assumed
h: that G(0+) = 0. Now consider the execution of such a job on a computer system. The
\:: system changes its mode of operation in response to different sources of interruptions
:’ - (e.g., failure/repair of a part or the whole system, increase/decrease of the degree of
b o multiprogramming, system calls and I/0 interruptions, etc.). The change of the mode
1'5: of operation is reflected in the rate at which that particular job is serviced. The ser-
' ::'} vice rate is measured in number of work units (e.g., instructions) per unit time (we also
: refer to it as the work rate or reward rate).
E:.:E The process that describes the mode changes in the system's operation in time is
5;‘;3: called the structure-state process. It is a stochastic process {Z(t).t = 0}, where Z(t)
".*__. is the state of the system (i.e., the mode of operation) at time t. This stochastic pro-
:j:“ cess is assumed to have piecewise constant paths and finite number of jumps in finite
:SE intervals of time. At any time, the system can be in one of the n+1 states numbered
:;.:5: 0,1,2.....,n. In state i the system serves the job at arater;2 0, 1<i1 <n. The state 0
:;-\ is an absorbing "failure” state, i.e., once the systermn enters state 0 it stays there and
_x: offers no more service. There may be other absorbing "non-failure” states among the
::.: states 1,2,...,n, with service rates greater than zero, so that if the system enters such a
3’ state the job will eventually complete. |
o3t
)
7
et R N S R A A A T T T A A
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L It is reasonable to assume that the structure-state process is independent of the work
.h
-\ » 3 3
o requirement of the job. Astatei, 1<1i<n, is of the type prs or pri or prd (as defined
yoo
o in section 1).
» )
L Now let us introduce a cumulative quantity that is very useful in our unifying
1_§ analysis.
3
*i The cumulative measure, W(t): defined to be the total reward gained since the last
"‘}a transition to a prt state, until (global) time t. ¥ is the cumulative measure until
¥
;'}- system’'s failure. We note that () has the following properties:
o
:: i) w(0)=0
o ii) Z(t)=i=>dW(t)/dt =m
:_r": iii) If the structure-state process makes a transition at time ¢ and Z(t+)=i then
v
¢! W(t+)=0ifiis a prt state and W(t+)=W(t-) ifi is a prs state.
M Typical sample paths of the structure-state process and the cumulative measure W(t)
N
i 3', are shown in figure 1, for the following case: The set of states is {0,1,2,3]; state 1 is prs
W with 7;=1, state 2 and 3 are prt with r3=2 and rg=0, state 0 is an absorbing failure
J state.
-’.
j.: The following job-oriented performance measures relate to the cumulative meas-
2.
4 ure W(t).
N2
‘, The job completion time, T(z): defined to be the time needed to complete a job that
,-
::: requires z units of work. T denotes the completion time of a job that requires a ran-
A
_. dom amount of work, B (note that if there are any prd structure-states, the job that
o
. completes at time T need not have the same initial work requirement).
-,’
:::' Since W(t) represents the useful work done on the job upto time ¢, and since ¥(t)
oo
- has piecewise continuous paths with only downward jumps, it follows that
X
N
o T(z) = min{t = 0: W(t)=z]
. and




Q"

\ 6
o

<‘ T = minft = 0: W(t)=5} .

.

_E\ The probability of omission failure, 7(z): defined to be the probability that the system
~:_ fails before the completion of a job that requires z units of work. Thus

!

, n(z) = P(W(t) <z, for all ¢t = 0)

™ = P(T(z) = =).

™

-“C: 7 is the probability that the system fails before the completion of a job with random
_ work requirement. Hence

{' n=P(W(t)< B, forall t >0)

: = P(T =w).

M The related notion of the dynamic failure probability in real-time systems with a
-"\ hard deadline, d [7], is given by n = P(T > d). Since our techniques allow us to com-
pute the distribution function of T, the dynamic failure probability for a given deadline
'f-’-‘, is readily obtained. Obviously, for systems with no absorbing failure states (repairable
:::- system) and with no hard deadlines, = 0.

:_\-:'; The cumulative measure W(t) can be further specialized to the following two
L cumnulative quantities that yield different performance measures.

)

i{';. i) The preemptive-resume cumulative measure, Y(¢): Let all structure-states be of the
:{E: Prs type. Then Y(¢) is the total reward gained in all structure-states until time ¢
;*"; [4.10,14]. Y is the prs cumulative measure until system’s failure [2,13,15,16].
f:;; The following system-oriented measures can be derived as special cases of the prs
EE: curnulative measure Y(¢).

%

.: The system reliability, R(t): Let X be the time until system’'s failure, i.e., the time
Ef until the structure-state process enters the absorbing failure state 0. The reliability
’ R(t) of the system is defined to be the probability P(X > t).
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Clearly, if we set all 7;=1, 1 <1 <n, then

R(t)= P(X >t)
= LimP(Y(r) > t) .

It should be noted that the analysis of the related measure of saftey [9] is the
same as that of the system reliability, provided that all unsafe system states are

grouped into an absorbing failure state.

The total "up" or "down” time until time t, U(t) or D(t): The system is said to be "up”
if it is in a state 1 with 7;>0, else it is said to be "down". U(t) (or D(t)) is defined to be
the total time the system spends in "up” {(or “down") states until time min {¢,X], where
X is the system's life time. Clearly if we set all ;>0 to 1, then

P(U(t)sz) = P(Y(t)<z)
and, since

U(t) + D(t) = min {¢,X]
it follows that

P(D(t)sz)= P(Y(t)=min {t, X} -z).

ii) The preemptive-repent cumulative measure, C(t): Let all structure-states be of the
prt type. Then C(t) is the reward gained since the last transition of the structure-
state process, until (global) time ¢. C is the prt cumulative measure until system's

failure.

The following system-oriented measure can be related to the prt cumulative meas-
ure C(t).
The instantaneous system avgilability at time t, A(t): defined to be the probability
that the system is in an "up” state at time ¢, i.e., in a state with 7,>0. The steady-state
availability, A, is the limit of A(t) as ¢ »o=: it is greater than zero only if there is no

absorbing failure state. Clearly

: T S LA P e W oY,
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A(t) = P(C(t)>0)
and

A= I’;imP(C(t) >0).
From the foregoing discussion it is clear that the cumulative measures introduced

are of central importance. The following theorem presents a useful dual relationship

between the cumulative measure and the completion time of a given job.

Theorem 2.1. The probability distribution function of the cumulative measure,
sup {W(u): 0 < u < t}, is related to the probability distribution function of T(z), as fol-

lows

P(sup {W(u): 0sust]<z)=1-P(T(z)<t)
and

P(sup {W(u):al u 20} <z)=1-P(T(z)<=).
Pragf: It is clear that

fsupiW(u):0susti<cz{ea{T(z)>t}
and

fsupi#(u)al u20|<z e {T(z)==].
Hence,

P(sup {W(u):0sust|<z)=P(T(z)>¢t)
and

P(sup {W(u):al u20j<z)= P(T(z)==). QED.

Corollary 2.1. When all structure-states are prs, the probability distribution function
of the prs cumulative measure, Y(t), is related to the probability distribution function
of T(z), as follows

P(Y(ty<z)=1-P(T(z)<t)
and
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P(Y<z)=1-P(T(z)<=).

Proof: Follows directly from theorem 2.1, since when all structure-states are prs, it

holds that

Y(t)=sup {W(u):0<sus<t]. QED.

As a result of the above corollary, knowing the distribution of T(z) allows us to

determine the distribution of Y(¢) which can be further specialized to determine

different performance measures as discussed above.

The following sections are devoted to the analysis of the random variable

T = min {t =0: #(t) = B]. In the remainder of this section we introduce some nota-

tions and relations that will be used later.

Define the distribution functions

Fi(t.z)=P(T(z)<t|Z(0)=i), z=0, 1si=<n,
F(tz)=P(T(z)<t), z=0,
F(t)=P(Tst{Z(0)=1i), 1sis<mn,
F(t)=P(T<t)

and the LST (Laplace Stieltjes Transforms)
Fi(s.z)=E(e™T®)2z(0)=i), z=20, 1sis<n

From the independence of {Z(t),t = 0] and B it follows that
F(s.z) = E(e™T®) = 3 F(s.z) P(Z(0)=1). z 20,
=1
Fi(s)=E(e*T|Z(0)=i) = [ F(sz)dG(z), 1sisn,
0

F(s)=E(e~T) = ‘g Fo(s) P(Z(0)=1) .

The omission failure probability 7 follows from

(2.1)

(2-2)

(2.3)

(2.4)
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n:P(T:a):l-[',‘z:gLF"(s). (2.5)

1t is clear that the transforms F;7(s,z) and F;"(s) are the key quantities that need
to be determined in the analysis of T. To proceed with the analysis we make the
assumption that the structure-state process {Z(t).t = 0} is a time homogeneous con-
tinuous time Markov chain (CTMC). Let gij, 1 <i#j <n, be infinitesimal transition rate
from state i to state j and g;o be the absorbing failure rate from state i. Let @ = [g;].

1=1,j =n, bethen by n generator matrix where
g = i qij = Q-
i=0
Im
Note that row sums of @ are <0.
Let H be the holding (sojourn) time in the initial state. Then
H =min {t =0: Z(t) # Z(0)} .

From the properties of the CTMC, we have

P(H <z, Z(H+)=j | Z(0)=i) = %’L(l-e THEY iy (2.6)

In the next section we review the pure cases where all states are of the same type.

3. The Pure Cases: Review

The cases where all structure-states of the process are of the same type (ie., prs,
pri or prd) have been analysed in detail in a recent paper [8]. In this section, we
review the basic results. For detailed proofs the reader is refered to [8].
3.1 The Preemptive-resume (ase

In this case we assume that the states 1,2,...,n are all preemptive-resume. Define

the double transform Fi~ {s,u) as follows:
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F (s.u):fe F(s,z)dz, 1<si<n.
g (0}

The main result is given in the following theorem.

' Theorem 3.1. The double tansforms F; (s, u), 1<i<n, satisfy the following equations
e - Ty 9y ~e ,
-~ = : u), < .
T Rsw) stgitriu +§x s+gi+rgu Fisw), 1<is<n (3.1)
S0 jmi
L.
::::: Equations (3.1) can be solved to obtain F{"%(s,u), 1<i<n, which are rational
o,
:‘f.: functions in the Laplace transform variable u. Therefore the conditional LSTs
NN
N "Fi(s,z), 1<i<mn, can be obtained using partial fraction and standard inversion tech-
N
o niques. F~(s) follows from equation (2.4) and hence the omission failure probability
"Zf':: from equation (2.5).
¢, The following corollary is used to determine the LST of the prs cumulative meas-
{ . ure (or reward) for a given initial state.
A
::f::‘: Corollary 3.1. For a given £ = 0, let Y(t) be the prs curnulative measure upto time ¢.

s
.

L Then

x5
[

_J
o . el —uFT (s u)
_;f-:;j E(e»Y®)|Z(0)=i) = L' [ - ] (3.2)
::-'_::- where L,”! represents the Laplace inverse with respect to s, to yield a function of ¢.
» " .-Q
AN
." - In order to demonstrate the derivation of performance measures from the above
s
:..-.1: theorem, let us consider the case where r; =1, 1<i <n. The system of equations
e -
:;;: (3.1) reduces to
g
~
5 F"'(su)=1_+ 2 -—quF"su) 1<i<n
b A% s+qtu S sequru T VT (3.3)
RN I
e
P Let R;(z) be the system reliability given that the initial structure-state is i, and denote
e
\:-' by R(u) its Laplace transform. In this special case, it is clear that (1-R;(z)) is identi-
N
® cal to 7;(z), the omission failure probability, given that the initial structure-state is i.
X 2%
e
f l_'\,'
n"l,'
( :.:;:.'
'
Int:
e
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(s Therefore
~ Ri(z) = 1=ni(z) = P(T(z) <=| Z(0) = 1)
V.
= = F(0z), 1sisn
N y It follows that
-r_Z;f R)(w) = F~(0,u), 1sisn.
};:: Therefore R(u), 1 €1 <n, are obtained by solving the following system of equations
73
0 1 iy .
! R(u) = + R{u), 1<isn
_. \( ) q‘+u F qul. j‘( )
—‘.: j"
xj:ﬁ Similar results can be derived for the time to absorption in Markov chains [15].
'l:: Now let us determine the distribution of the completion time of a job that requires
n
._- z units of work. From equations (3.3) we remark that
o Fr(s,u) = F7(0,s+u), 1sisn
- 1t follows that
A Fls.z) = e~ L[A-(0)]
- =e™ R(z). 1sis<n
s and finally
\::
7 ) , with probability Ri(z)
2 T(@) 2=t = |w, with probability (1-R,(z)) .
':}_: If go=0 1<i=<mn, (i.e., there is no absorbing failure), then T(z) = z, which is
- clearly justified.
Ll
X
v 3.2 The Preemptive-repeat-identical Case
-j':: In this case we assume that the states 1,2....,n are all preemptive-repeat-identical.
d The main result is given in the following theorem.
Theorem 3.2. The conditional LSTs F{"(s,z), 1 <1 < n, satisfy the following equations
®
\..
A
“u
. "tj
Y,
"
0
K&™:
&0
7
k)
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.
(t. ~ = g ~(Bta)e/7 qi _o(stg)z/7\ e i <
<5 Fi(sz)=e + ,2, s+ 1-¢ Ji(sz) 1sisn (3.4)
- im
‘:;-: Equations (3.4) can be solved to obtain F{’(s.z), 1<i<n. F(s) and the omission
o failure probability are obtained from equations (2.4) and (2.5), respectively.
U
R
:-',‘:: 3.3 The Preemptive-repeat-different Case
ko
e
N In this case the states 1,2,...,n are assumed to be preemptive-repeat-different.
\ . The main result is given in the following theorem.
N
: ::,. Theorem 3.3. The LSTs F{"(s), 1 s1i < n, satisfy the following equations
i 9y ~ ;
Y F(s)=G((s+q)/ ) + 21 W{l—&"((s +q )/ T)Fi(s). 1sisn (3.5)
e j=
N i
MY ..
:r::j | Where G((s+q;)/ ;) » 0 as 7; » 0 (since G(0+) =0). F™(s) and the omission failure
.\t . probability are obtained from equations (2.4) and (2.5), respectively. Note that for a
\ deterministic work requirement, say z, equations (3.5) reduce to equations {3.4).
\.‘: In [8] the use of the above theorems is illustrated by means of examples.
oA
)
b
2

4. The Mized Cases: Preliminaries

"
a e e 0,
«

In these cases we allow two different types of states in the same model. Let S and

. 1"‘ "'. LA ’. Lolits
Lata’e’s’y

S be a partition of {1,2,...n} (ie., SN F=02and S U F = {1,2....,n}). All the states in

4,
-

‘2
AT

the subset S are of a certain type and all the states in the subset & are of a different

L] .
A R

l‘.l
X .
et
NLARN

type. In the following sections, we consider all possible mixtures with two types of

states (i.e. prs with pri, prs with prd and pri with prd). In this section, we introduce

e,
RN

AU s

some basic definitions and notations that are useful and common to the analysis in the

subsequent sections. The basic idea of the solution technique in the mixed cases is

»

e
e
.

described below.
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Let the structure-state process be initially in the set 5, in which the job starts
being serviced. The job may be completed before a transition out of the set S, other-
wise the job service continues in the other set, S. Now, the job may be completed
before a transition out of the set S, otherwise the job service continues in the other
set, S. We keep observing the time to transitions between the sets S and S until job
completion (i.e., the service accumulated since the last transition to a prt state is
equal to the job service requirement. Note that the service requirement of the job may
be changed, if prd states are present). Thus we, effectively, aggregate the times spent

in each of the sets, S and S, until job completion.

We note that the structure-state process may jump into an absorbing state before
the job completion. In such a case the job will eventually complete if the work (or

reward) rate is greater than zero, otherwise the absorbing state is a failure state and

the job will never complete.

In the following sections we show how these observations can be elegantly
translated into equations leading to useful theorems for the computation of important

quantities.

Let the structure-state process be initially in the set 5. We introduce some useful

random variables. Let
U =min{t 20: Z(t)eS] . (4.1)

U represents the total time spent in the set S by the structure-state process until it
hits the set S. Now consider a job with work requirement equal to z. This job starts
being processed at time t = 0 in the set 5. Let T(z) be its completion time; it is given

by

T(z)=min{t 20: W(t)=z] . (4.2)

The following two quantities are important to our analysis.

. e .
o e e
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T(z), £T(z)sU

r@ =k ur@)> v | (43
and
re = B0 (44

T'(z) represents the time needed to accomplish z units of work (i.e., to complete the
job) before leaving the subset S. If the structure-state process hits the subset S
before completing z units of work then T'(z) = =,

T"(z) represents the time spent by the structure-state process in the subset S until it
hits the subset S and before completing  units of work (i.e., before completing the
job). If z units of work are completed before leaving the subset S then T"'(z) = =.

Note that both T'(z) and 7"'(z) are defective random variables.

The following different transforms are associated with the above random variables.

For k €5, define the double transform

My (sw) = ‘Z- e Uy (s.z)dz (4.5)
where
Mo (s.z) = E(e*T®|Z(0) = k) ' (4.8)

and the unconditional LST
U7(s) = [ His 2) dG(a) @)

where G(z) is the probability distribution function of the work requirement of a job.

For k€S and j €S, define the double transform

My(s.w) = 'Z- e My(s.z)dz (4.8)
where
My(s.z) = E(e*T"®);, Z(U) = j|2(0) = k) (4.9)
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and the unconditional LST
My(s) = [ Mij(s.z) dG(z) . : (4.10)
()

The quantities defined above will be used in the analysis of subsequent sections.

5. The Mixzed Preemptive-resume with Preemptive-repeat-identical Case

In this case we assume that all states in a subset, say S, are of the prs type, and
that all states in the complementary subset S are of the pri type. Let k €S be the ini-
tial state. The following proposition gives a method of computing M (s,w) as defined
by equation (4.5).

Proposition 5.1. The double transforms My *(s,w), k €5, satisfy the following equations

Tk Qi

U ) = ) * o, Gratnew)

M7(sw), ke3. (5.1)

Proof: Conditioning on the sojourn time in the initial state, H, we get

g /T ifh2z/7,
E(e™*T@®) H=h,Z(0)=k) = q
g~ Y (s,z-rh), th<z/7g
1e5-(x) Ix

Unconditioning on H, yields

Ho(s.z) ]' E(e*T® | H=h,Z(0)=k) q, e ** dn
0

T/

= '-(u»q.)s/r,, + I j' e-(cﬂﬂ“ M (s,z-r.h) dh
[+]

ie5 -k

Multiplying both sides by e ™* and integrating we get equation (5.1). Q E.D.

The double transforms M. (s, w), for k€5, can be obtained by solving equations

(5.1). These are rational functions in the Laplace transform variable, w, and therefore

»
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(e can be inverted to obtain the conditional LSTs M. (s,z), k€S.
-:\:
.::::: For k€5 and j€S, the following proposition gives a method of computing
_;:}:: My;"(s,w) as defined by equation (4.8).
--\1
‘h_) Iy ~ <3 . . .
~ Proposition 5.2. The double transforms M (s.w), k€S, j€S, satisfy the following
) \:'. equations:
g
..':'..' Y qkj D -~ .
M'(s,w) = + —— (s w), keS,jeS.
. b (s.w) w (S+qp+mpw) ‘esz_m (s+qp+r,w) Y (s.w) J (5.2)
Sy
:::: Proof: Conditioning on the sojourn time in the initial state, H, we get
1SN
::::§
A E(s~T0). Z(L)e . . e, ifh <z/7 . and Z(h) = jeS
N (e : Z2(U)=] | H=h.Z(0)=k) = e~** Mg(s.z~7eh), ifh <z/7: and Z(h) =ie5-{k]
S .
s q q
b, =2k g-eh 4 ¥ XL MG(s.z—meh), h<z/7,
:‘ o5 % 1eS—ix) Jx
)
L - Unconditioning on the holding time, H, we get
ASEN
..-‘h.‘ .
N hid { ;1Y T (e +qu )
AP -~ —{s+ -\ ~
e Mi=qy [ e dn+ ¥ gy e W Hs(s.z-rh)dh
:: - 0 {3 BT T 0
‘ - Multiplying both sides by 8 ™* and integrating yields equation (5.2). Q.E.D.
A
e
ARy The double transforms My;{s,w). k€S, j€S, are obtained by solving equations
NG
_4.'-" (5.2). These transforms are rational functions in the Laplace transform variable, w,
’_ and therefore the corresponding conditional LSTs My(s.z). k€S, j €S, can be deter-
o mined.
e
.;}‘ The next two theorems show how the conditional LSTs My (s.z) and My;(s.z), k€5,
.:::"5 J €S, are used to compute the conditional LSTs F{°(s,z), 1 i < n, as defined by equa-
~7
f.:; tion (2.1). First, we define the following quantities:
0P
s
e
'.."-
A ;\»;"h
b
o '\-‘.‘\
RS
[} ﬂ-_*_'o
0
e
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t ]
rZSqu. J oM yo(s z-h) dh, ifrg >0
°

Mea)=| T (6.9)

1- o . ir P = on iesl

&y Gy M) "
]

DYy _gmerads/my Ty [oTOWMT ya(sz-R) dh, ifr >0

(s+9¢) kes (5-4)
NED 2 gy + T g M) (s49) ifr, =0, i,j€5

ke
and
&
g WrnIe/T Tau S @ WM y~(sz-h)dR, fr, >0
seS °
gi(s.x) = - (5.5)
: (s.2). iftr, =0, i€S.

% (s+9:) My (s.2) ¥

Theorem 5.1. The conditional LSTs F((s.z), 1 €S, satisfy the following equations
h(s.z) FT(s.z) = gi(s.x) + ; hy(s.z) ¥y(s.z), 1i€S. (5.8)
JeS-fif

Proof: Conditioning on H, the sojourn time in the initial state, we get

T4/
e [}

E(e*T®)| H=h,Z(0)=i) =
] -qy_f"’"(s 'z)
jes—i

ith =2z/T

+e™ Y gi-}l,"(s,z—nh)
res %

ren Y P I yo(szrn) F(sz) ith<z/m .
jeSxed It

Obviously, if h = z/ 7y, the job completes before the first transition, and T(z)=z/7. If

h < z/7, the job is preempted before it completes. There are three possibilities :

i) The structure-state process makes a transition to another state j€S.
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ii) The structure-state process makes a transition to a state k €S, and the job com-

pletes before a transition to a state in S.

ili) The structure-state process makes a transition to a state & €S, and it returns to a

state j €S before the job is completed.

These three possibilities are represented by the three terms on the right handside for

the case when h < z/7;,. Unconditioning and rearranging yields equation (5.8). Q.E.D.

Theorem 5.2. The conditional LSTs F;"(s,z). i€S, are given by the following relations

Fi(s.z)= M(s.z) + jgs MG(s.z) F{(s,z), i€S (5.7)

Proof: Consider a job with work requirement equal to z. It starts being processed at
the initial state i€S. Its completion time is given by
T(z ;
<
PG <D) " it T(z)< U

T(z)| zi)=iex = "
Z(0)=ieS P_(TQ('T)E}F)J' T(z)| z)=z(mes . f T(z)> U

where U, T(z), T'(z) and T"(z) are random variables as defined in equations (4.1)-
(4.4). Z(U) is a state j €S which is reached at time U. Since the random variables
T(z) and T(z)|z()=2() are independent we can write the following

E(e*T(®)|Z(0)=1) = E(e~*T®)| 2(0)=1)

+ ¥ E(e*T®,2(U)=j|Z(0)=i) E(e*T®)| Z(0)=5)
J€S

Using the definitions in equations (4.6) and (4.9) yields equation (5.7). QE.D.

We conclude with the procedure to compute the LST F~(s) of the job completion

time in the mixed prs-pri case in the following steps:

Procedure 5.1.

1. Compute M (s, w), k€S, by solving equations (5.1).

o ahs

v
AR LN Y




2. Compute M (s.z). k€5, by inverting the Laplace transform M; (s, w) with respect
to w using partial fraction expansion.

3. Compute M;;{s.w), k€S, j€S, by solving equations (5.2).

4. Compute Mgj(s.z), k€5,j€S by inverting the Laplace transform My;'(s,w) with
respect to w using partial fraction expansion.

5. Compute F{°(s,z), i€S, by solving equations (5.8).

8. Compute Fi*(s.z), i€S, by using equations (5.7).

7. Compute F™(s) by using equation (2.4).

We illustrate the procedure by applying it to a simple case of interest.

Example 5.1. The switching server

Consider a system that operates in two modes with different work rates, say r; and
73, for modes “1” and "2", respectively. The system switches between the two modes
according to a Poisson process at different rates, say A and u from modes 1" and "2",
respectively. A total system failure may occur from any mode of operation; let Ag and
Ho be the failure rates from modes "1" and "2", respectively. The CTMC representing

the switching server is shown in figure 2.

The holding times in states 1 and 2 are exponential with parameters A' = A+Ag and
W = u+ug, respectively. This system will be used as an example throughout the paper

to illustrate the use of the techniques developed.

Let state 1 be of the prs type and state 2 be of the pri type. We follow procedure
5.1.
Step 1. Equation (5.1) yields

T

Mi'lsw) = oXvrmr

Step 2. Inverting the Laplace transform M °(s,w) with respect to w yields




v
R 21
(t My (s,z) = e @B/
s
- Step 3. Equation (5.2) yields
~::;l -~ - k
g Miz(sw) = (s+N'+r,w)
:':,' Step 4. Inverting the Laplace transform M1z (s,w) with respect to w yields
o
.~
B~ -
o Hip(s.z) = (1~ "/
18 s +x
\

Step 5. Equations (5.3)-(5.5) yield

T{(s+A) (s +p)-Aw) + Aul(s +u)rie (s +X)roe a)

Yy

hg(s.Z) =Tz [

X r(s+X)(s+w)
- and
:v::: T2
» gz = =l(r—pri)es + prie,]
*4- where
.
: ;é ez = g eI/
o and
=~
J r=r(s+u) ~ras+XN).
w7
’ Equation (5.8) yields
" ~ gafs.z)
~ Fi{(s.z)= Z—%
, e (S Z) hz(S,Z)
.
" - (s+N)(s+w) [(r—pr))eq + prie,]
) r({(s +X\) (s +u) M) + Au((s+u)m e, —~(s +N')r2es)
:.':,': Step 6. From equation (5.7) we have
[
Pl
o Fi(s.z) = o) + mm2e{l1-e,) Fi (s.2) .
. o ( +K
" Step 7. From equation (2.4) we get
o l
S 5
..:.:
2;;-_. !
"..'
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NG '
e -

R N




A ELh
\': - -
"
- 22
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F(s) = P(Z(0)=1) [ Fr(s.z) dG(z) + P(Z(0)=2) [ F3(s.z) dG(z) .
- 0 o
5
N
o
- 8. The Mized Preemptive-resume with Preemptive-repeat-different Case
. In this case we assume that all states in a subset, say S, are of the prs type and
i

that all states in the complementary subset S are of the prd type. The computation of

: the double tansforms My %(s,w) and My;*(s,w), k€S, j€S, follow from equations (5.1)
‘:::' and (5.2) of propositions (5.1) and (5.2), respectively. The conditional LSTs My (s.z)
I". and M,j(s,z) are obtained by using partial fraction expansion and standard inversion
helt techniques.

:.:E The next two theorems give a method to compute the LSTs F{"(s), 1<i <n, as
' \_.:. defined by equation (2.3), using the conditional LSTs M¢(s.z) and My(s.z). k€S, j€S.
. First, we give the following definitions:

.‘:;

\.:' -

5 h(s) = [ hi(s.z) dG(z), i€S, (8.1)
‘-:“ ¢

_ h(s) = _{h‘-j(s,z) dG(z), i,j€S (8.2)
. N

o and

KON

-}? -

. gu(s) = { gi(s.z) dG(z), i€S (8.3)
oY

'_t_': where ki(s,z), hyj(s.z) and g;(s.z) are as given in equations (5.3)~(5.5).

',_::;; Theorem 6.1. The LSTs F(s), 1€S, satisfy the following equations
@

. <. - - .

o M(s) i) = gule) + B hyls) (). des (6.4)
-,'- je ‘“‘

)

o

\.'; Proof: Conditioning on H, the sojourn time in the initial state, and on the initial work
" requirement, B, we get
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=/ . i-fhv 2z/ T
E(e*T®| H=h,Z(0)=i) = g
et ¥ -9—17',“(3)
jes-tiy 9i

+e™y ga—M[(s.z—r,-h)
zey T

te ™) Y &Mk;(s-z“"ih) Fi(s). ifh<z/7 .
jeszes T

Unconditioning on H, yields -

E 4
T"F;'..(S.:) =7 e'("'?ﬁ)’/" + 2 % f e'('*'()h/ri F}‘~(S) dh
fjeS-f§ O

t
+ Y ga fe'(”")h/" Ho(s.z-h)dh
kel [+

z
+3 Y % f g E /T Myi(s.x-h) Fi(s)dh
JES kel [}

Unconditioning on the initial work requirement, B, and rearranging, yields equation

(8.4). QED.

Theorem 6.2. The LSTs F{(s), i1€S, are given by the following equations
FO(s) = M7 (s) + 3 My(s) Fi(s), 1€S (6.5)
jes

where M"(s) and M(s), i€S, j&€S, are given by equations (4.7) and (4.10), respec-

tively.
Proof: Conditioning on the initial work requirement, B, and following similar arguments
as in theorem 5.2, we have
i
% ) -~ ~ -~ -~
o Fl(s.z) = M(s.z) + 3 Mg(s.z) Fi(s)
J'"d ’Es
e
s
X Unconditioning on the initial work requirement, B, yields equation (6.5). Q.E.D.
o
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t We conclude with the procedure to compute the LST F~(s) of the job completion
::"' time in the mixed prs-prd case in the following steps:
- Procedure 6. 1.
_ 1. Compute My (s, w), k€S, by solving equations (5.1).
o 2. Compute My(s.z), k€S, by inverting the Laplace transform M; *(s,w) with respect
1’._-:
$::} to w, using partial fraction expansion, and get M;(s) from equation (4.7).
h
. 3. Compute My;(s.w), k€5, j€S, by solving equations (5.2).
‘_\” 4. Compute M(s,z), k€5, j€S, by inverting the Laplace transform My;%(s w) with
-h:.;
o respect to w, using partial fraction expansion, and get M;',-(s) from equation
\
] (4.10).
SO
o 5. Compute F;°(s), 1€S, by solving equations (B8.4).
: N 6. Compute F;*(s), i€S, by using equations (6.5).
l'.
{ . 7. Compute F~(s) by using equation (2.4).
§ We illustrate the procedure by means of an example.
4 Ezample 6.1. Consider the switching server of example 5.1. Let state 1 be of the prs
type and state 2 be of the prd type. We follow procedure 6.1.
Steps 1 & 2. Equation (5.1) yields
,6“ ~e - rl
- M (sw) = S+N+T W
1 and hence
N
o0 H7(s.:z) = e ="
:-'j:' Unconditioning, we get
- M7(s)= G((s+N\)/T)) .
'.' Steps 3 & 4. Equation (5.2) yields
N -
i ‘
» |
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~e - A
Hiz(sw)= w (S+A'+r,w)
and hence
Hiap(s.z) = o (1-e7 My

+)\'

Unconditioning, we get

H2(5) = 2A= (-G (s +A)/ 7).

Steps 5 & 6. Substituting from equations (5.3)-(5.5) in equations (6.1)-(6.3), we get

["((s AN ) M) + Nul(s +)r e T —(s +N)raeg )

he(s) = 2 T(s+\)(s +u)

and

ga(s) = :—i[(r—ur,)eé’ + urier ]
where
er = G{{(s+X)y/1)),

ez = G((s+u)/73)
and

T =7r(s+u) —ra(s+X).
Equation {6.4) yields

ga(s)
ha(s)

- (s +X)(s +w){(r—pri)ez + priet]
T{(s +N)(s +p) M) + Mul(s +u)r 17 ~(s +X)reez)

Fi(s)=

From equation (6.5) we get
- ~ A ~\ o~
Fr(s)=ei + 22 (1-e) Fis).
Step 7. From equation (2.4) we get

F~(s) = P(Z(0)=1) Fy(s) + P(Z(0)=2) F3 (s) .
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Note that for a deterministic work requirement (B=z), F;(s) and F3(s) in the

mixed prs-prd case are identical to ;' (s,z) and F3 (s,z) in the mixed prs-pri case.

7. The Mized Preemptive-repeat-identical with Preemptive-repeat-different Case

In this case we assume that all states in a subset, say S, are of the pri type and
that all states in the complementary subset S are of the prd type. The following pro-

position gives a method of computing M;'(s,z),k €S, as defined by equation (4.6).

Proposition 7.1. The conditional LSTs M, (s,z), k€S, satisfy the following equations

(1—2 —(s +q‘)z/r.)

Mo(s,z) = e ErwE/n Y g M7(s.z), kel (7.1)

(S +9k) {e3-{k]

Proof: Conditioning on H, the sojourn time in the initial state, we have

-.8/1'.

fh=z/7,
E(e*T®)|H=h,Z(0)=k) = -

LMi(s,z) , ifh<z/1,
teS-jx) Tk

Unconditioning on H, yields equation (6.1). @.E.D.

The next proposition gives a method of computing Hg;(s.z), k€5, j€S, as defined

by equation (4.9).

Proposition 7.2. The conditional LSTs Mgj(s.z), k€S and j€S. satisfy the following

equations

M(s.z) = —1—(( Tej _(1-g ra)=/my

S+qy)

(1 —e ~(s+qy)z/7,

Mi(s,z), keS, jeS. 7.2
(5+q:) “S_Z_quh q( ) J (7.2)

Proof: Conditioning on H, the sojourn time in the initial state, we have
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E(e™*T®):Z(U) = j| H=h,Z(0)=k)
e, ifth <z/7; and Z(h)=je€S
T le®Mi(s.z), ith <z/7 and Z(h)=ie5-{k}

=35 gy ¥ 1"-‘—3""”5(3.:), h<z/m
Qx 1e5-jx) 9k

Unconditioning on the holding time, H, yields equation (7.2). Q. E.D.
The next two theorems give a method to compute the LSTs F;(s), 1<i<n, as

defined by equation (2.3), using the conditional LSTs My (s,z) and M;(s.z), k€S, j€S,

as obtained from propositions 7.1 and 7.2. First, we give some definitions

_g—Esre)=sT,
Ws2) = (1= S8 L P qubiz(s o)), tes. (7.3)
. _p(stq)z/n . o
hi(s.z) = ( °(s 20 (9s "'sz:SQikMkj(svz)]- i,j€Ss (7.4)
and
~(s+q)z/T
gi(s,z) = e BT, U—e(s +;: ) ) kgg qu M (s.z), i€sS. (7.5)

The corresponding unconditional quantities are given by

hi(s) = ‘Zh{(s,z) dG(z), ie€S, (7.8)

hij(s) = .Z'h,{,(s,z) dG(z), 1i.jeS (v.7)
and

gi(s) = _:fg{(s,z) dG(z), 1i€S. (7.8)

Theorem 7.1. The LSTs F{ (s), i €S, satisfy the following equations

hi(s) Fi(s) = gi(s) + ,egm hy(s) Fy(s), ieS. (7.9)

Proof: Conditioning on H, the sojourn time in the initial state, and on the initial work
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requirement, B, we get

e e /", th2z/7

E(e*"® | H=h,Z(0)=i) =

.'* qJ—F')'(s)
g5y &

voeu DIy )
ses i

+e P Y I yoisz) Fy(s) ith <z/7,
jeSked Tt

Unconditioning on H, yields

~(s+q()s/ T,
(1-e D S gy F(s)

~ - (srq)z/7y
F(sz)=¢ +
Visz) (s +q:) jeS—{t]

~(e+q)3/7;

(l-e(s rem) .ZE:;I& M (s.z)

~{s+q)z/ T,
(me ) 5 3 guMis.2) FGs)

+
(s+q:) fesies

Unconditioning on the initial work requirement, B, and rearranging yields equation

(7.9). QED.

Theorem 7.2. The LSTs Fi(s), i€S, are given by the following equations

Fo(s)= M7(s) + j%}s MG F{(s), i€§ (7.10)

where M*(s) and Mj(s) are obtained from equations (7.1), (7.2), (4.7) and (4.10).
Proof: Conditioning on the initial work requirement, B, and following similar arguments

as in theorem 5.2, we have

Filez) = Mi(s.2) + 5 Hi(s.2) F(s)
j€

Unconditioning on the initial work requirement, B, yields equation (7.10). Q.£.D.
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We conclude with the procedure to compute the LST F~(s) of the job completion

- time in the mixed pri-prd case in the following steps:
<.

- Procedure 7.1.
<.

L 1. Compute M,°(s.z), k €S, by solving equations (7.1).

.o 2. Compute My;(s.z), k€S, j€S, by solving equations (7.2).

-

x 3. Compute F{(s), i€S, by solving equations (7.9).

N

\ 4. Compute F{(s), i€S, from equations (7.10).

RS
)

. 5. Compute F™(s) from equation (2.4).

3"‘:‘ We illustrate the use of the above technique by means of an example.
f Ezxample 7.1. Once again we consider the switching server of example 5.1. Let state 1
.:j be of the pri type and state 2 be of the prd type. We follow procedure 7.1.
. Step 1. From equation (7.1) we have

\ .

= Hi(siz)=e ®0/M,

_::'. Step 2. From equation (7.2) we have
> -~ - A I (12N P2
: Mia(s.x) ;F(l e ).

: Step 3. From steps 1 and 2 and equations (7.3)-(7.5) we have
1': ' =1 = _ ~lerwIzsryy 1ie
° he'(s.z) = [1 - (1-e ) Miz(s.z)]
3 o (NN +p) = Mu(1 e NIy (g T
(s +N)(s +w)
and
o gz.(s'z) - "'(l*ll')!/fg + s+“' l-e—(l*p')t/re) Mr(s.z)

= (s+X)(s +y,')e-("“")”'l + (s +\)e Nz, e +ule/rey
(s +N)(s +4) -

From equations (7.8)-(7.8) it follows that
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o 124,

(s+N)s+u) = Mu[1-ey —e7 +eiz]
(s +X) (s +w)

ho'(s) =
. , and
oute) = EHRNEHUIET + s +N)eT 03]

] (s +X)(s +a2)
where

s el =G ((s+x)/7y),

N ez = G ((s+u')/72)

and

. e = G((s+N)/ T+ (s+u)/ 1) .

Equation (7.9) yields

2 FiG) = REF

) - (s+X)s+w)es + u(s+X\) er ~ef]
154 (s+X)(s+u) = Nu[1-e7—eg +ep2]

o Step 4. From equation (7.10) we get

T Fr(s)=er + ;%\.—[1-91"] Fz (s)

2 L s 4o} + Ms4w)es[1-e7] + Mulefes ~eia]
A (s+A)(s+u) = Nu[1-eT —e5 +e 3] '

N Step 5. From equation (2.4) we have

F~(s) = P(Z(0)=1) F7 (s) + P(Z(0)=2) F5(s) .

'ré

.
@ 8. Conclusions

4§ %

In this paper, we have presented a unified modeling approach to the combined
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evaluation of performance and reliability of fault-tolerant/multi-mode systems.
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((—_ The structure-state process of the system is modelled as a CTMC, in which transi-

tions occur in response to events such as failure/repair or system degradation. A

A . . . . .
( P
‘I .l .l 'l N .l .l
Pt e

reward rate (or performance measure) is associated with each structure-state. We have
introduced different types of cumulative measures, and related them to different per-
R formance and/or reliability measures.
.
"_.'; Our main concern was the analysis of the job completion time. We extended the
s
- results in [8] to allow the simultaneous presence of two different types of service-
!
> - preemption interaction, due to changes in the structure-state of the system. We
AR
2:: derived the distribution of the job completion time. Other job-oriented measures, such
L
?_‘J::‘ as the omission/dynamic failure probability are readily obtained from the distribution
) of the completion time.
>
o It is shown that, when all structure-states are of the preemptive-resume type, the
I:'
-.‘; cumulative measure up to a given time is dual to the completion time of a given job.
9.9
{ This is a useful relationship, since it enables us to specialize the analysis of the comple-
-__:' tion time to derive different system-oriented measures such as system
N
-" reliability/saftey and up/down time.
; ‘ It remains of interest to extend the present model to allow a semi-Markov
:':::' structure-state process, and the simultaneous pesence of more types of service-
:.. preemption interaction. Needless to say, the evaluation of performance and/or reliabil-
v
" ; ity in existing systems could benefit from the resuits presented in this paper. There-
AN fore, emphasis should be given to practical applications.
N
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)
R
- @
o 9. References
::,‘.: [1] Baccelli, F. and Trivedi, K. S., "Analysis of M/G/2 - Standby Redundant System,"
EA
5 ) Proc. 9th IFIP International Symposium on Computer Performance Modeling, Col-
I
-
o
o
'
e

Y AP T Y TR 0 Pt L L T T AL T T N, w N N BN N S N AT e s o

-

o
|

-




L €2h

."' - -
Q"

2

0 K
(? lege Park, MD., 1983.

:'.::: [2] Beaudry, M. D., "Performance-Related Reliability for Computing Systems," /EEE
§§ Transactions on Computers, June 1978, pp. 540-547.

“ [3] Castillo, X and Siewiorek, D. P., "A Performance-Reliability Model for Computing |
-i::: Systems,” Proc. 1980 Int. Symp. on Fault-Tolerant Computing, Portland, ME, June !
‘l' 1980, pp. 187-192. |
".:'-* [4] Donatiello, L. and lyer, B., "Analysis of a Composite Performance Reliability Meas-

p 3 ure for Fault Tolerant Systems,” IBM Research Report, RC-10325, January 1984.

:": [5] Gaver, D. P., "A Waiting Line with Interrupted Service, Including Priorities,” J. Royal

- Statistical Society, Series B24, 1962, pp. 73-90.

4 [6] Gay. F. A. and Ketelson, M. L., "Performance Evaluation for Gracefully Degrading
:: Systems,” Proc. Ninth Annual International Conference on Fault-Tolerant Com-
‘“ puting, 1979.
[7] Krishna, C. M. and Shin, K. G., "Performance Measures for Multiprocessor Controll-
;- ers,” Proc. Sth IFIP International Symposium on Computer Performance Model-
j ing, College Park, MD., 1983,

.. [8] Kulkarni, V. G., Nicola, V. F. and Trivedi, K. S., “On Modeling the Performance and
Reliability of Multi-Mode Computer Systems,” submitted, May 1984.

’éj [9] Laprie, J.-C., "Trustable Evaluation of Computer Systems Dependability,” invited
-r‘; paper, in: G. lazeolla, P. Courtois and A. Hordijk (eds.), Mathematical Computer
?. Performance and Reliability, Elsevier Science Publishers B.V. (North-Holland),
E, 1984.

E" [10] Meyer, J. F., "Closed-Form Solution of Performability,” JEEE Transactions on Com-
. puters, Vol C-31, No. 7, July 1982, pp. 648-657.
‘ ;'_: [11] Ng, Y.-W. and Avizienis, A., "A Reliability Model for Gracefully Degrading and Repair-

\ E.t able Systems,” Proc. 1977 Int. Symp. on Fault-Tolerant Computing, Los Angeles,
oy CA, June 1977, pp. 22-28.

..»_' [12] Nicola, V. F., “A Single Server Queue with Mixed Types of Interruptions,” EUT
N

%

M N A IR D G2 (T L h R R SO v G G SN AL LR S SN S5 K Wt

¢!



-------------------

{+ Report 83-E-138, Eindhoven University of Technology, The Netherlands, 1983.

s e
e
s

2

[13] Osaki, S. and Nishio, T., "Reliability Evaluation of Some Fault-Tolerant Computer
Architectures,” Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1980.

a 0 8
+ 8 8w

[14] Puri, P. S., "A Method for Studying the Integral Functionals of Stochastic Processes

¢ — N

with Applications: 1. Markov Chain Case,” J. Appl. Prob. 8, 1971, pp. 331-343.

-4
PR N B

LN ]
.

[15] Trivedi, K. S., Probability and Statistics with Reliability, Queueing and Computer

-* n" ll'

Science Applications, Prentice-Hall, Englewood Cliffs, N. J., 1982,

R

[18] Trivedi, K. S., "Modeling and Analysis of Fault-Tolerant Systems,” invited paper,

N
(Y N

International Conf. on Modeling Techniques and Tools for Performance Analysis,

e

PR

May 16-18, 1984, Paris.

Ay v N i
A R l"a; !

h Y

.‘ ‘ ’,:’_ .4'_ s

L
A

“ S '.]&

» »
wle BACAR
a_ue LI
«¥e N

A

o,

) ." :D .l

il YA

. ~xa SR - e - aptae, "
TR R S L, a'.n'.ﬂ'n QAN Y - . r _'.'.-qn (I ATty
L] . r



RSN L AN

- . e
- Y e . - . -, A S \.'_’.'\J'\- v 0%
. ‘. o PR S A e . S R AR NS N A 2 e W
A D S S e

END

FILMED

ot
PR DRI L )

o
.

AR NN

Al i vv-—ti

.

i '\';.“'*. .

A w.‘.:%m:;..{ DRI Y5 05



