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ity measures that have been proposed for the analysis of fault-tolerant computer sys-

terms. We model the changes in the structure of the system due to different events

(such as degradation, failure or repair) as a continuous time Markov chain. In particu-
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(or a reward rate) is associated with each structure-state. We allow different types of
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We derive the distribution of the completion time of a given job. Although the

developed techniques are suitable for the analysis of complex systems, we demonstrate
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1. It'oducti n

The increased reliability requirements have caused fault-tolerant and degradable

systems to become more important. A separate performance or reliability analysis of

such sytems is inadequate. It is of much interest to introduce measures that reflect

both performance and reliability of the system. Several authors have proposed such

measures and studied their analysis in specific cases [1-7,10-15]. Different models

were often developed to study different performance and/or reliability measures. This

paper is an attempt to unify different performance and reliability models into a single

model that is useful for assessing the behaviour of degradable computer systems.

Such performance and reliability measures can be either system- oriented or job-

oriented. A system-oriented reliability measure is the distribution of the time to

failure [15], while a job-oriented reliability measure is the probability that the job com-

pletes before system failure [7,16]. System or job oriented performance measures

such as throughput or response time are evaluated assuming no failures [15]. A

" system-oriented combined (performance and reliability) measure is the accumulated

reward (or performance measure) up to time t [4.10) or up to system failure [2,15,16].

A combined job-oriented measure is the distribution of the job completion time in the

presence of failure/repair preemptions [3,5,8,12]. The analysis of this measure and its

relation to the accumulated reward [8] is a major concern of this paper.

4. In the model we develop, a computer system is described by a stochastic process

that represents the structural state of the system which changes due to different

events. Associated with each structure- state is a reward rate (e.g., computation capa-

city, throughput or response time). It is particularly useful for our unifying analysis to

• consider the execution of a particular job on the system described above, where the

reward rate represents the service rate (e.g.. the number of instructions executed per

unit time). It is obvious that the completion time of the job is affected by the preemp-

tions and the possible variations in the service rate due to changes in the structure-

"'.4r
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state of the system (e.g.. system degradation, failure or repair). We will show that,

when the job service is resumed after preemptions, the completion time of a given job

4.-. and the accumulated service (reward) until a given time are dual measures so that the

distribution of one of them allows us to compute the distribution of the other. Further-

more we show how to derive different common performance and reliability measures

from our model.

It is important to distinguish the type of a structure-state according to the

service-preemption interaction associated with a transition to that structure-state. We

will consider the following types of structure-states:

a) preemptive-resume (prs): upon preemption. the job's service is resumed at a

(possibly) different service rate.

b) preemptive-repeat (prt): upon preemption, the job's service is restarted at (pos-

sibly) a different service rate. This can be further classified into the following two

types

i) preemptive-repeat-identical (pri): the same (identical) job is restarted.

ii) preemptive-repeat-different (prd): a different independent job with the same dis-

tribution of service-requirement is restarted.

In [B] we considered the pure cases where all the structure-states in a given model are

assumed to be of the same type (i.e., prs, pr,. or prd). In that paper the analysis was

* based on conditional transform techniques. In the present paper, we allow a mixture of
two different types of structure-states in the model (Le.. prs with pri. prs with prd and

pri with prd). In the mixed cases the analysis is based on exact aggregation and condi-

tional transform techniques.

In section 2. we introduce the mathematical model, basic assumptions, some

definitions and notations. In section 3 we review the main results of the pure cases

considered in [8]. Section 4 contains some preliminaries and introduces the main idea

of the solution technique in the mixed cases. In sections 5, 6 and 7 we consider the

.O
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analysis of the mixed cases; namely, prs with pri, prs with prd and pri with prd,

respectively. The techniques developed here are demonstrated by means of a simple

and illustrative example - the switching server. We conclude our paper in section S.

2. The Basic Model

Consider a particular job to be run on a particular computer system. The work

requirement of a job is a random variable B, and is measured in work units (e.g., the

- .number of instructions to be executed). It has the cumulative distribution function

G(z) = P(B g z) and LST (Laplace Stieltjes Transform) G"(s) = E(e-'1). It is assumed

that G(O+) = 0. Now consider the execution of such a job on a computer system. The

system changes its mode of operation in response to different sources of interruptions

(e.g.. failure/repair of a part or the whole system, increase/decrease of the degree of

multiprogramming, system calls and I/O interruptions, etc.). The change of the mode

of operation is reflected in the rate at which that particular job is serviced. The ser-

vice rate is measured in number of work units (e.g., instructions) per unit time (we also

refer to it as the work rate or reward rate).

The process that describes the mode changes in the system's operation in time is

called the structure-state process. It is a stochastic process IZ(t ),t 0 01, where Z(t)

*is the state of the system (i.e., the mode of operation) at time t. This stochastic pro-

cess is assumed to have piecewise constant paths and finite number of jumps in finite

intervals of time. At any time, the system can be in one of the n+1 states numbered

0, 1.2,...,n. In state i the system serves the job at a rate ri X- 0, 1 !9 i ! n. The state 0

is an absorbing "failure" state, i.e., once the system enters state 0 it stays there and

offers no more service. There may be other absorbing "non-failure" states among the
-. '4.

states 1,2.....n, with service rates greater than zero, so that if the system enters such a

state the job will eventually complete.
.-Vj
.. ,
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It is reasonable to assume that the structure-state process is independent of the work

requirement of the job. A state i. 1 ! i ! n, is of the type prs or pri or prd (as defined

-. in section 1).

Now let us introduce a cumulative quantity that is very useful in our unifying

4! analysis.

7he cumulative measure. W(t): defined to be the total reward gained since the last

transition to a prt state, until (global) time t. W is the cumulative measure until

system's failure. We note that W(t) has the following properties:

" i) W(o)=O

ii) Z(t)=i=> W(t)/ dt=r

iii) If the structure-state process makes a transition at time t and Z(t +)=i then

W(t+)=O if i is aprt state and W(t +)= W(t-) if i is aprs state.

Typical sample paths of the structure-state process and the cumulative measure W(t)

are shown in figure 1. for the following case: The set of states is J0,1,2,31; state 1 isprs
with r 1 =1, state 2 and 3 are prt with r2=2 and r3=O. state 0 is an absorbing failure

state.

The following job-oriented performance measures relate to the cumulative meas-

ure W(t).

77e job completion time, T(z): defined to be the time needed to complete a job that

requires x units of work. T denotes the completion time of a job that requires a ran-

dom amount of work. B (note that if there are any prd structure-states, the job that

completes at time T need not have the same initial work requirement).

Since W(t) represents the useful work done on the job upto time t, and since W(t)

has piecewise continuous paths with only downward jumps, it follows that

T(z) =min t 0e : W(t) =zl

and

[ . ~ 
5
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T = nint L- 0- W(t)=B.

Th probability of omission failure, '7(z): defined to be the probability that the system

fails before the completion of a job that requires z units of work. Thus
i l(x) = P( W(t) < x, for all t ;-, 0)

4,'

S= P(M)

77 is the probability that the system fails before the completion of a job with random

work requirement. Hence

S= P(W(t) < B. for all t O)

= P(T = -).

The related notion of the dynamic failure probability in real-time systems with a

hard deadline, d [7], is given by 77 = P(T > d). Since our techniques allow us to com-

pute the distribution function of T. the dynamic failure probability for a given deadline

is readily obtained. Obviously, for systems with no absorbing failure states (repairable

system) and with no hard deadlines, 7 = 0.

The cumulative measure W(t) can be further specialized to the following two

cumulative quantities that yield different performance measures.

"- 4 ii) The preempti e-es e e cumulative measure, Y(t): Let all structure-states be of the

'4 prs type. Then Y(t) is the total reward gained in all structure-states until time t

.a [4.10,14]. Y is the prs cumulative measure until system's failure [2,13.15,16].

The following system-oriented measures can be derived as special cases of the Prs

cumulative measure Y(t).

0 The syjstem reliability, R(t): Let X be the time until system's failure, i.e., the timeV
until the structure-state process enters the absorbing failure state 0. The reliability

R(t) of the system is defined to be the probability P(X > t).
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Clearly, if we set all ri=1, 1 : i :9 n, then

R(t) = P(x > t)

= LinP(Y(i) > t)

It should be noted that the analysis of the related measure of saftey [9] is the

same as that of the system reliability, provided that all unsafe system states are

grouped into an absorbing failure state.

Tm total "up" or "domn" time until time t. U(t) or D(t): The system is said to be "up"

if it is in a state i with rj>O. else it is said to be "down". U(t) (or D(t)) is defined to be

* .the total time the system spends in "up" (or "down") states until time min jt,Xj. where

SX is the system's life time. Clearly if we set all rt>O to 1, then

v-'.',P(U(t): Z) = P(r(t) !g-X)

and, since

U(t) + D(t) = min t,Xj

it follows that

" : P(D(t x ) = P( Y(t ) ;-I rain J t,Xj - x).

ii) Me preemptive-repeat cumulative measure, C(t): Let all structure-states be of the

prt type. Then C(t) is the reward gained since the last transition of the structure-

state process, until (global) time t. C is the prt cumulative measure until system's

* failure.

The following system-oriented measure can be related to the prt cumulative meas-

ure C(t).

The instantaneous system availability at time t, A(t): defined to be the probability

that the system is in an "up" state at time t, i.e., in a state with rt>O. The steady-state

availability, A. is the limit of A(t) as t-. : it is greater than zero only if there is no

absorbing failure state. Clearly

.-'9'.
'.::::::

0o%
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A(t) = P(C(t) > 0)

and

A =L'imP(C(t) > 0).

Frori the foregoing discussion it is clear that the cumulative measures introduced

are of central importance. The following theorem presents a useful dual relationship

between the cumulative measure and the completion time of a given job.

,eorem 2.1. The probability distribution function of the cumulative measure.

sup 7 W(u): 0!9 u <- t J. is related to the probability distribution function of T(z), as fol-

lows

,"P(SUP W(U): O!5 U r tI < X) = P(T(z)<5 t)

and

P(SUP w(u): all U o < z) I 1 - P(T(z) <-).

Proof: It is clear that

sup w(u): 0<u < t < x *=o T() > t

and

sup 7W(u): aL u I < z I T(x) - L

Hence,

" :,P(sup W(u): Ot6u tI < x) =P(T(z) > t)

and

P(sup W(u):aU 0iK<z)=P(T(z)=a). Q.E.D.

Corollary 2. 1. When all structure-states are prs, the probability distribution function

* of the prs cumulative measure, Y(t), is related to the probability distribution function

of T(x), as follows

P(Y(t) < z) = 1 - P(T(z) t)

and

0.*-*. .
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P(Y <z) 1- P(T(m) <o)

Proof: Follows directly from theorem 2.1, since when all structure-states are prS. it

holds that

As a result of the above corollary, knowing the distribution of T(x) allows us to

* determine the distribution of Y(t) which can be further specialized to determine

different performance measures as discussed above.

The following sections are devoted to the analysis of the random variable

T min it ;_O: W(t) = B?. In the remainder of this section we introduce some nota-

tions and relations that will be used later.

Deflne the distribution functions

F(t~x) = P(T(z) !g t), x L, 0.

and the LST (Laplace Stieltjes Transforms)

F;(s..T)=E(e"TW)jZ(O)=i), xz:- 0, 1:5i- n. (2.1)

From the independence of JZ(t).t ;-, 01 and B it follows that

F~s2) = ~s-T)) P(Z(O)=i), z ;-1 0, (2.2)

t=1

The omission failure probability 7 follows from
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1= P(T = -) 1- LimF(s). (2.5)

It is clear that the transforms Fj~(s,z) and Fj'(s) are the key quantities that need

to be determined in the analysis of T. To proceed with the analysis we make the

assumption that the structure-state process Z(t),t t OJ is a time homogeneous con-

tinuous time Markov chain (CTMC). Let qjj, 1 - i sj ! n, be infinitesimal transition rate

-K". from state i to state j and qjO be the absorbing failure rate from state i. Let Q = [q /].

1 i J n, be the nt by nL generator matrix where

= qq = -qu

. Note that row sums of Q are 90.

Let H be the holding (sojourn) time in the initial state. Then

•,.H = mnt !0: z(t) 0z(0)!.

From the properties of the CTMC, we have

P(HIz, Z(H+)=jIZ(O)=.) = -( 1 -- ), ioj . (2.6)

In the next section we review the pure cases where all states are of the same type.

' 3. The Pure Cases: Remeu

The cases where all structure-states of the process are of the same type (i.e.. prs,

pri or prd) have been analysed in detail in a recent paper [8]. In this section, we

review the basic results. For detailed proofs the reader is refered to [8].

3.1 The Preemptive-res-me Case

In this case we assume that the states 1.2,...,n are all preemptive-resume. Define

the double transform F;-"0(s,u) as follows:

-07"

S .* %%%.'%*.*. ~
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The main result is given in the following theorem.

Theorem 3. 1. The double tansforms F;"(s,u). 1 !5 i !5 n. satisfy the following equations

Fju(slu) s ri + q F*(s,u). 1i n. (3.1)

Equations (3.1) can be solved to obtain F;"°(s,u), 1 i n, which are rational

functions in the Laplace transform variable u. Therefore the conditional LSTs

"Ft~(s,z), 1 ! i ! n, can be obtained using partial fraction and standard inversion tech-

..: niques. F-(s) follows from equation (2.4) and hence the omission failure probability

S-. -.- from equation (2.5).

The following corollary is used to determine the LST of the prs cumulative meas-

ure (or reward) for a given initial state.

Corollary 3. 1. For a given t t 0, let Y(t) be the prs cumulative measure upto time t.

Then

,...,= L;-' [ 1 F(s.u)] (3.2)
s

where L;-' represents the Laplace inverse with respect to s, to yield a function of t.

-*1 In order to demonstrate the derivation of performance measures from the above

-.* theorem, let us consider the case where rt = 1, 1: i !9 n. The system of equations

(3. 1) reduces to

F"'(su) + S.L.. F;'(s,u), 1 !9 i !g n. (3.3)
s +q +U J= S +qt +U

Let R(z) be the system reliability given that the initial structure-state is i, and denote

by R](u) its Laplace transform. In this special case, it is clear that (1-Rt(z)) is identi-

* cal to 7t(m), the omission failure probability, given that the initial structure-state is i.
a.* ,
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Therefore

.,(z) = 1 - (z) = P(T(z) < -IZ(o) =)
, ., = "(o.z). 1 .S z n:,.

It follows that

Rt*(u) = F;*(O.u). 1 i i ! n,

Therefore R4(u), 1 i ! n, are obtained by solving the following system of equations

ReO,): __+ R --q--l,,). 1 c ! n
qt +U u qj+u

Similar results can be derived foe the time to absorption in Markov chains [15].

Now let us determine the distribution of the completion time of a job that requires

z units of work. From equations (3.3) we remark that

.~~F(su) = F;-'(O.s+',). 1 i ,

It follows that

F '(s.z) = e3 L-'[F"(o,u)]

and finally

{zwih probability Rt(x)
T(z)Iz(o) = with probability (1-R1(z)).

If qi0 = 0. 1 <i !5 n, (i.e., there is no absorbing failure), then T(z) = z, which is

clearly justified.

3.2 The Preernmptive-repeat-identical Case

In this case we assume that the states 1,2....,n are all preemptive-repeat-identical.

The main result is given in the following theorem.

Theorem 3.2. The conditional LSTs Fr~(sz), 1:r i ! n, satisfy the following equations

5%W

5%%

-" "O

"-J:
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F(s.z ) = ,-(*+I )x/r, + 1 . (s q-(* )1 ) - .) 1I (" + ,) I(s),I i z .. 4)

Equations (3.4) can be solved to obtain F(s.z). 1 ! 5 < n. F'(s) and the omission

failure probability are obtained from equations (2.4) and (2.5). respectively.

I-. 3.3 The Preemptive-repeat-different Case

In this case the states 1,2,...,n are assumed to be preemptive-repeat-different.

The main result is given in the following theorem.

Theorem 3.3. The LSTs F(s), 1 & i n, satisfy the following equations

F-(s) = G-((s .qj)/ r) + 1-{e((s +qO/rj)]Fj'(s) 1! i !9 n. (3.5)

Where G-((s+qj)/rj) -, 0 as rt -. 0 (since G(0+) = 0). l-(s) and the omission failure
.,,.'

9.. probability are obtained from equations (2.4) and (2.5), respectively. Note that for a

deterministic work requirement, say z, equations (3.5) reduce to equations (3.4).

In [8] the use of the above theorems is illustrated by means of examples.

4. The Mized Cases: Preliminaries

In these cases we allow two different types of states in the same model Let S and

* S be a partition of 11,2,...,n I (i.e., S fn = 0 and S U g = 1,2..... J]). All the states in

the subset S are of a certain type and all the states in the subset g are of a different

type. In the following sections, we consider all possible mixtures with two types of

states (i.e. prs with prm, prs with prd and prm with prd). In this section. we introduce

". some basic definitions and notations that are useful and common to the analysis in the

subsequent sections. The basic idea of the solution technique in the mixed cases is

described below.

"-
" 4.

%€,. . .. .. .. ..



SS W

14
.J.

Let the structure-state process be initially in the set 9, in which the job starts

being serviced. The job may be completed before a transition out of the set S, other-

wise the job service continues in the other set, S. Now, the job may be completed

P before a transition out of the set S, otherwise the job service continues in the other

set, .9. We keep observing the time to transitions between the sets S and S until job

completion (i.e., the service accumulated since the last transition to a prt state is

equal to the job service requirement. Note that the service requirement of the job may

be changed. if prd states are present). Thus we, effectively, aggregate the times spent

in each of the sets, S and S. until job completion.

..v. We note that the structure-state process may jump into an absorbing state before

• the job completion. In such a case the job will eventually complete if the work (or

reward) rate is greater than zero, otherwise the absorbing state is a failure state and

the job will never complete.

In the following sections we show how these observations can be elegantly

translated into equations leading to useful theorems for the computation of important

quantities.

Let the structure-state process be initially in the set 9. We introduce some useful

random variables. Let

U = min it L 0: Z(t)eSJ. (4.1)

, U represents the total time spent in the set S by the structure-state process until it

hits the set S. Now consider a job with work requirement equal to z. This job starts

being processed at time t =0 in the set . Let T(z) be its completion time; it is given

by

.(z) = mI t 0: W(t)=z . (4.2)

The following two quantities are important to our analysis.

-
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*= 4"

JTz.if T(z)!gU()
T.'.-; () = if 7(x) > U

and

T"-"- 1. if T(z) > U (4.4)

i-x.U.

T'(x) represents the time needed to accomplish z units of work (i.e., to complete the

job) before leaving the subset S. If the structure-state process hits the subset S

before completing z units of work then T'() = -.

T'(z) represents the time spent by the structure-state process in the subset S until it

hits the subset S and before completing z units of work (i.e., before completing the

job). Ifz units of work are completed before leaving the subset S then T"(z) =

Note that both T'(z) and T"(z) are defective random variables.

The following different transforms are associated with the above random variables.
- -a For k E-, define the double transform

M,'(s.,W) = f - Mj'(s.z) dr (4.5)

where

M;(s,z) = E(e r()IZ(O) = k) (4.8)

, Y.Z and the unconditional LST

*' 14"(s) = fM(s,x) dG(x) (4.7)

where G(z) is the probability distribution function of the work requirement of a job.

For k e- and j ES, define the double transform

MQ O(sw) =f e~ Mj(s.x) dr (4.8)
Oa

where

"M(s~z) -E(e-er(); Z(U) -jjZ(O) k) (4.9)
'0.',€( .

.O__

aft%
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and the unconditional LST

IQ(s) = f -(sz) dG(z). (4.10)

The quantities defined above will be used in the analysis of subsequent sections.

5. The Mixed Preemptiie-resunme uith Preeptie-,repeat-dentical Q.se

In this case we assume that all states in a subset, say S, are of the prs type, and

that all states in the complementary subset S are of the pri type. Let k e, be the ini-

tial state. The following proposition gives a method of computing M; #(sw) as defined

%' by equation (4.5).

Proposition 5.1. The double transforms M;*(s.w), k eS,. satisfy the following equations

"(s .i~+?* ) (s++r M(s.w), k eS. (5.1)

Proof: Conditioning on the sojourn time in the initial state, H. we get

""E E-8r(z) iH=h.Z(O)=k) =t

"t" Unconditioning on H, yields

M" j(s.z) =f E(e-' (')IH=h,Z(O)k=) q e-_'k dh

00

Multiplying both sides by a " and integrating we get equation (5.1). Q.E.D.

The double transforms M;"(s,w), for k eC, can be obtained by solving equations

.(5.1). These are rational functions in the Laplace transform variable, 'w, and therefore

_s.
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can be inverted to obtain the conditional LSTs M;(sz). k e.

For k e-3 and j eS. the following proposition gives a method of computing

.:M(s,w) as defined by equation (4.8).

Proposition 5.2. The double transforms M '(s.w). k eS, j cS. satisfy the following

equations:

- '(S, ) % + ,(sqk+i -Mi'(s,w), kc-Sjes. (5.2)S -.'*
w-~ ~ ~ ~ w 147(s~s~qw)=w

,'C- Proof: Conditioning on the sojourn time in the initial state, H. we get
'.5.

"" M s{r-h) if it < z/r and Z(L) =jES

-V E(e - 7 ); Z(U)=j H=h,Z(O)=k) = h and Zh) = eS

.,. = e -
-8 + M -je A(sz-r th), h <z/r&

.- te3'- J 9

Unconditioning on the holding time. H. we get

.qj e' -")h dh + , qkt- f - f -('') M;(.z-Y h) cd
0 tael5* 0

o%.

Multiplying both sides by e- and integrating yields equation (5.2). Q.E.D.

The double transforms M,'(sw). k eS, jeS. are obtained by solving equations

(5.2). These transforms are rational functions in the Laplace transform variable, w,

and therefore the corresponding conditional LSTs M;)(sz). k eS, j ES, can be deter-

mined.

The next two theorems show how the conditional LSTs M;(sz) and M;4(s,z), k e,

jeS, are used to compute the conditional LSTs Ft(sz), 1 ! i ! n, as defined by equa-

tion (2. 1). First, we define the following quantities:
.l%

*5' 5-

-%•

.5.o,
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... 'Mh(S(1) kf 0 (5.3)

if 1- =L0 i -S

+ E:a-M '-'--= - ' " ' (s.z -h) P. if, > 0
(S.3 (5.4)

*~ ~ ~ h A(s.x) =if,0
"q + E giq, M;,(s.z)]/(s+q,). ir, 0. Q. s

kor

and

r, )- a+98 /r + E-(a.'A )h/vi M,~(sz-h) d. if rt > 0
u.'- s(5.5)

'" ( A(.). if ri = 0. teS.
4.P P

7 wormo 5. 1. The conditional LSTs F1 (sz), i ES. satisfy the following equations

,(sz) F (s.) = g,(s.z) + ,_, (.=) f(s,=), ies. (5.6)

Proof: Conditioning on H. the sojourn time in the initial state, we get

ifh a! z/rt
E(e -')lH=h.Z(0)=i) = 0LF,'(s.z)

+ -c !- Fj(sz-nA)
,q.

•-., +e-*f qu M'*/ ,(s.=--t) F;(s.=), if h <x/,

* Obviously, if h = z/rt, the job completes before the first transition, and T(z)=z/r t . If

A < z/ri. the job is preempted before it completes. There are three possibilities:

h Pi) The structure-state process makes a transition to another state j eS.

% "',. -~ .',_ , h .. . , , . . , . ._,. ,..- 4,_. -, " .. .- ." , *,..., *., "_ . ". * .- .- . * .". "." '- .'-. %''- % %'%",-,-, *",",% .,% '_
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ii) The structure-state process makes a transition to a state k e, and the job cor-

pletes before a transition to a state in S.

4.- iii) The structure-state process makes a transition to a state k e. and it returns to a

state j eS before the job is completed.

These three possibilities are represented by the three terms on the right handside for

- the case when A < z/rt. Unconditioning and rearranging yields equation (5.8). Q.E.D.

Theorem 5.2. The conditional LSTs F~(s,x), i e, , are given by the following relations

F. (sx) = Mj,(sz) + E M,7(s.) F-(sz), ieS. (5.7)

Proof: Consider a job with work requirement equal to z. It starts being processed at

-' the initial state ieS. Its completion time is given by

T'(z)

* (.T)> U + T(z)Iz(o)=z(v~es . if T(x) > U

,.. {. IPT() >f TU))

where U. T(z). T'(z) and T"(z) are random variables as defined in equations (4.1)-

(4.4). Z(U) is a state j eS which is reached at time U. Since the random variables

T"(z) and T(z) I Z(O)=Z( are independent we can write the following

"s'. E(.-rE(9 ) Z(O)=i) = E(e -r(2)1 Z(o)=i)

.. + E E(e -vr*(z);z(U)= I Z(O)=i) E(c -*(B) I Z(O)=j)
yes

Using the definitions in equations (4.6) and (4.9) yields equation (5.7). Q.E.D.

We conclude with the procedure to compute the LST F-(s) of the job completion

time in the mixed prs -pri case in the following steps:

Procedure 5 1.

1. Compute M;"(s,w), ke.S, by solving equations (5.1).

--. P.d . •~ * . . 94 .~ \s - ,v. , \ \+-~ '- 4 4.r .- 9
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2. Compute M(s .z). k C-3, by inverting the Laplace transform M,*(s ,w) with respect

* to w using partial fraction expansion.

3. Compute M*(s .w). k eS. j e-S. by solving equations (5.2).

4. Compute M,(s~z), kceS jc-S by inverting the Laplace transform M7;(s~w) With

respect to wusing partial fraction expansion.

5. Compute F?(s~z), ic-S, by solving equations (5.6).

6. Compute F;(s,z). ic-S, by using equations (5.?).

47. Compute r"(s) by using equation (2.4).

We illustrate the procedure by applying it to a simple case of interest.

Example 5.1. Mhe suitching server

Consider a system that operates in two modes with different work rates, say r, and

r2, for modes "I" and '2Z', respectively. The system switches between the two modes

according to a Poisson process at different rates. say X and u from modes 'T' and "2".

respectively. A total system failure may occur from any mode of operation; let N~o and

Mobe the failure rates from modes 'T1" and "2". respectively. The CTMC representing

the switching server is shown in figure 2.

The holding times in states 1 and 2 are exponential with parameters X' = X+No and

= As+p. respectively. This system will be used as an example throughout the paper

to illustrate the use of the techniques developed.

, .. "

* . Let state 1 be of the prs type and state 2 be of the pri type. We follow procedure

,5.1.

Step 1. Equation (5. 1) yields

Step 2. Inverting the Laplace transform M°(s)w) with respect to w yields

-PINt usn atalfato epnin
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MUT(sz) =6-(B+K)B/"

Step 3. Equation (5.2) yields

' = (s+ '+rw)

Step 4. Inverting the Laplace transform M-*(s.w) with respect to w yields

MT2(s,z) =

Step 5. Equations (5.3)-(5.5) yield

r ((s +k,)(s +g)-AA) + XA((s +;4')r Ie I -(s +,,)re 2)
kg(sx) r 3(s+ ,)(S+,)

and

y2- - [(-pr )e2 +

where
L [ , = -(. +')z.,,

e1 =e

and

r =r (s +p') - r2(s +X').

Equation (5.6) yields

g 2(S.Z)
Fj (s.z) =h 2 (s,Z)

(s +)(+) [(r -Art I)e 2 + ArI e I1

*.. . r((s +X')(s +.')-?) + \A((s +')re I-(s +A')rze2 )

Step 6. From equation (5.7) we have

=Tsz e, + I-~ -e 1) Fj (s,x)

Step 7. From equation (2.4) we get

', /0J'

V. *- we-_ V_" ' U . v '



It£ It"

22.o-.

r~)=P(Z(O)=1) fFj'(s,x) dG(z) + P(Z(O)=2) fF (s.z) dG(z).

6. The Mi ed Preemnptive-resume 4th Preemptive-repeat-differen Case

In this case we assume that all states in a subset, say S. are of the prs type and

" that all states in the complementary subset S are of the prd type. The computation of

,, .'the double tansforms M;'°(s,uw) and Mj*(sw), keS-, jcS, follow from equations (5.1)

and (5.2) of propositions (5.1) and (5.2), respectively. The conditional LSTs M(s,z)

and Mj(sz) are obtained by using partial fraction expansion and standard inversion

techniques.

" The next two theorems give a method to compute the LSTs F'~(s), 1 ! i !5 n, as

:- defined by equation (2.3). using the conditional LSTs M,;(s .z) and M(s ,z), k cS, j eS.

First, we give the following definitions:

hi(s) = h, (s,x) dG(z), ies, (6.1)

and

- g,(s) frg,(s.x) dG(z), ieS (8.3)
Sa0

where h,(s,z), htj (s.z) and gt(s.z) are as given in equations (5.3)-(5.5).

Theorem 8.1. The LSTs F;(s), i eS, satisfy the following equations
-e

*: hi(s) F;(s) = gt(s) + ; hq1 s) F"(s), ieS. (6.4)

'Proof: Conditioning on H, the sojourn time in the initial state, and on the initial work

4" requirement, B, we get

,9.

.I
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E(e ?)Hh.Z(O)=i) '
R2 -Fir(S)jeij qt

+ -'* - ;(S.'-,'h)

.qt

_Il qtMA(z-ih) F7(s) .if h < z/ ri

Unconditioning on H. yields -

r, F,(s.z) = r, e -(#+q' /ri+ . e, -( j"/"r Ft(s) dh
jes-fij 0

+ % e- j(sxh

jes beg'

Unconditioning on the initial work requirement, B, and rearranging, yields equation

(S.4). Q.E.D.

7heorem 6.2. The LSTs F~(s), i S, are given by the following equations

F7(s) = Mj-(s) + E M(s) F-(s), i S (6.5)

where M"(s) and M17(s), ic-S, je-S, are given by equations (4.7) and (4.10), respec-

tively.

Proof: Conditioning on the initial work requirement. B, and following similar arguments

as in theorem 5.2, we have

I.' &,-( gsx) = Mj,(s.z) + E M1(s ,) Fj(s)

Unconditioning on the initial work requirement, B, yields equation (6.5). Q.E.D.

.-

-. %
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We conclude with the procedure to compute the LST F-(s) of the job completion

time in the mixedprs-prd case in the following steps:

Procedure 6. 1.

1. Compute M;'(sv). k eS, by solving equations (5.1).

2. Compute M;(s ,z), k CS, by inverting the Laplace transform M;*(su) with respect

to wa, using partial fraction expansion, and get M;(s) from equation (4.7).

3. Compute M'(s.u), k CE., j eS, by solving equations (5.2).

4. Compute M;,(s,z), kES, .eS, by inverting the Laplace transform M,(s 0, ) with

,- respect to u, using partial fraction expansion, and get M;(s) from equation

(4.10).

5. Compute F1-(s), ieS, by solving equations (6.4).

B. Compute Ft '(s), i , by using equations (6.5).

7. Compute F~(s) by using equation (2.4).

We illustrate the procedure by means of an example.

Emample 6. 1. Consider the switching server of example 5.1. Let state 1 be of the prs

type and state 2 be of the prd type. We follow procedure 6. 1.

Steps 1 & 2. Equation (5.1) yields

..- M7"(s') = s
s -X'+r 1w

and hence

MT (s,z) =e

Unconditioning, we get

-t 3j(s) = q((5 yields

' " Steps 3& 4. Equation (5.2) yields

0L
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,J.

W (s'.+r)w)

and hence
_..Q-- ~MjTs(s,z) = -- le-sX)/,

S +X'

Unconditioning, we get

"."; uTM(s) = [-c( +)/)]

Steps 5 & 6. Substituting from equations (5.3)-(5.5) in equations (6.1)-(6.3). we get

"h(s) = r2 [ r((s +')(s +g')-x&) + ku((s +j')rjeT-(s:'-" r (s +A') (s +IA')]
and

g2(s) = -[(r-rj)ej' + ,srlejI
T

where

e T = G-((s +A')/r 1)

" ej = C'((s+I')lr)

and

r =r,1 (s+,W) -r2(S+X')

Equation (6.4) yields

g92(s). ., "- .Fr"(s) = h2 (s )
Fj s

, (s+X')(s+kC)[(r-Ar)e F + Mr,eT]
"-.r ((s +A')(s +-j.')-A1&) + Axs((s +/ ')r e j -(s +A')r~e )

From equation (6.5) we get

XFT(s) = eT + .,7-< 1-e T) fj'(s)

Step 7 From equation (2.4) we get

A F(s) = P(Z(O)=1) Fr(s) + P(Z(O)=2) Fj(s).

..

' " .+ t' ". . .. ... " 
"

* *- . ,.* "-
'' <
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Note that for a deterministic work requirement (B=z), Fj(s) and FI (s) in the

mixed prs-prd case are identical to FTj(s.z) and Fi(s,z) in the mixed prs-pri case.

7. The Mixed Preempntive-repeat-identical with Preemptive-repeat-different Case

In this case we assume that all states in a subset, say 5, are of the pri type and

that all states in the complementary subset S are of the prd type. The following pro-

position gives a method of computing M!(s ,z),k CS, as defined by equation (4.6).

Proposition 71 . The conditional LSTs M;(s ,z), k cN, satisfy the following equations

M-(s,z) = e- c( +qt)X/% + (1-e- M,(s,). k -3. (7.1)

" ,." Proof: Conditioning on H. the sojourn time in the initial state, we haveV if h /. /r
-.--" E(e-r() H=h.Z(O)=k) =

ifh UZ~-' le -  - Mt(s,z) , ifh <x/rt

tes-1k. St

Unconditioning on H, yields equation (6.1). Q.E.D.

The next proposition gives a method of computing M;(sz), k C-, j ES, as defined

..- by equation (4.9).

Proposition 72. The conditional LSTs M;(sz). kces and jCS, satisfy the following

equations

MJ;(s'z) 1-e~q~

,S qk "t " Z #; (7.2)

Proof: Conditioning on H, the sojourn time in the initial state, we have

i0

'V,.,

f * : * E . -r
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E(e-8r"Cz);Z(U) = IH=h,Z(O)=k)

e-. if h <z/ and Z(h)=3ES(e- (sz). ifh <2/rt and Z(h)=ic-E- k

e 6 ke -" Mj(sz) h <zx/ rk

Unconditioning on the holding time, H, yields equation (7.2). Q.E.D.

The next two theorems give a method to compute the LSTs F~(s). 1 !S i < n, as

defined by equation (2.3), using the conditional LSTs M,;(s.x) and M (s ,z), k eS, j ES,

S,-as obtained from propositions 7.1 and 7.2. First, we give some definitions

h;(s'z) = [1 - (st-e ) +e sS. (7.3)

.,V ( + z) [g + E qU (sT)]. Q. ES (7.4)

and

"g (sz) e + (1 -(S9O=/) ( i S. (7.5)
(s+q) Cb'

The corresponding unconditional quantities are given by

h,'(s) = fi(s,z) dG(z), i-S, (7.6)
0*

* h%(s) = hq(sz) dG(z), .,jeS (7.7)
0

-' and

g,(s) = f;(sz) dG(z). ieS. (7.8)

Theorem 7.1. The LSTs F;(s), i eS, satisfy the following equations

,;-::, k(s) F;(s) = ,(s) + Y, h(s) F;(s). icS.(.)

S Proof: Conditioning on H, the sojourn time in the initial state, and on the initial work
* ;.**

S°'
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requirement, B, we get

E(e-sr(B) H=h.Z(O)=i) =II

+9--& qj ; Z

+~~ - A j(sz) F(s), if h < /rt
6SA qt

Unconditioning on H. yields

.- (l+ (,,4.,.)

1-7 sz + qVM,(s)F~s

(sl q )) j ieS - s

.

Unconditioning on the initial work requirement, B. and rearranging yields equation

, (7.9). Q.E.D.

Theorem 7.2. The LSTs F(s). i.c, are given by the following equations

*j Fg(s =!f;(s )+ E MF;(s ). i~ (7.10
jes (.0

where Mt'(s) and Mj(s) are obtained from equations (7.1), (7.2), (4.7) and (4.10).

Proof: Conditioning on the initial work requirement, B, and following similar arguments

as in theorem 5.2, we have

F -(s.z) = £I(s.x) + E M (s.x) F?(s)

Unconditioning on the initial work requirement, B. yields equation (7.10). Q.E.D.

4°
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We conclude with the procedure to compute the LST F-(s) of the job completion

time in the mixedpK-prd case in the following steps:

*Procedure 7.1.

1. Compute 1 (s,z), k C-, by solving equations (7.1).

S2. Compute M;(s .z), k ., j eS. by solving equations (7.2).

3. Compute F;"(s), i-S. by solving equations (7.9).

4. Compute Fj~(s). eS. from equations (7.10).

5. Compute F'(s) from equation (2.4).

We illustrate the use of the above technique by means of an example.

Example 7.1. Once again we consider the switching server of example 5.1. Let state 1

be of the prL type and state 2 be of the prd type. We follow procedure 7.1.

' Stop 1. From equation (7.1) we have

MT(s,Z) = • (" +X)u/r.

Step 2. From equation (7.2) we have

Mjj(sz) = %,-e

. Step 3. From steps 1 and 2 and equations (7.3)-(7.5) we have

"'(S,)= [1 - +- {-e -' ''2) (s,_)]s +AL

(s + X,)(s +A') - AN( -- 4'1/-l)( 1 -e
-

(S +,\')(s +MU')
"" and".a(sz) = -(*+W)s/, + +--7 ( 1-e((U )S/?a) M Z(s,-)

- . (s +..X)(s +M')e-( + + A(s +,\')e-€" A~3/r.( _e-(. +-/,.)

(s +)')(s +A,)

From equations (7.6)-(7.8) it follows that

,%

%q _ , _.., ... •., .,-_ . ,-S,,,- . 4V, ,-, ,-,
5

. '/,,. , ? .rr 
o
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h2'() (S+k) )~j4- T -ej +eT2

hu~s = s +)(s(S +k\)(s +IAt')
and

-g 2 (s) (s+k)(s+M')e +Mu(s+X)e-i]
(S +A)(S +A,)

where

and

2 = G((s+X')Ir 1 + (s4.A)/r2),

Equation (7.9) yields

* Fj(s) =g 2 '(s)
h2'(S)

(S+X')(,s+A')ej' + u4S+X')[ej-eT2]
(s+A')(s+M') -Wl-eT-e'+uj2]

Step 4. From equation (7.10) we get

Fj~s) =j ej+ 1-e~ IF:(s)

-(s+A')(s+A~')e .9. (s+A)e [1-eT] + XAeej-eT2]

Step 5. From equation (2.4) we have

* r(s) =P(Z(O)i ) FT (s) + P(Z(0)=2) Fr (s).

* 8. Con~clusions

In this paper, we have presented a unified modeling approach to the combined

evaluation of performance and reliability of fault-tolerant/multi-mode systems.
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The structure-state process of the system is modelled as a CTMC, in which transi-

tions occur in response to events such as failure/repair or system degradation. A

S." reward rate (or performance measure) is associated with each structure-state. We have

• introduced different types of cumulative measures, and related them to different per-

-_.\ formance and/or reliability measures.

-. Our main concern was the analysis of the job completion time. We extended the

results in [8] to allow the simultaneous presence of two different types of service-

preemption interaction, due to changes in the structure-state of the system. We

derived the distribution of the job completion time. Other job-oriented measures, such

as the omission/dynamic failure probability are readily obtained from the distribution

of the completion time.

It is shown that, when all structure-states are of the preemptive-resume type, the

cumulative measure up to a given time is dual to the completion time of a given job.

This is a useful relationship, since it enables us to specialize the analysis of the comple-

tion time to derive different system-oriented measures such as system

reliability/saftey and up/down time.

It remains of interest to extend the present model to allow a semi-Markov

structure-state process, and the simultaneous pesence of more types of service-

preemption interaction. Needless to say, the evaluation of performance and/or reliabil-

ity in existing systems could benefit from the results presented in this paper. There-

-, fore, emphasis should be given to practical applications.
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