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these atoms by promoting multiphoton photolysis of the oxidizer, as well as
fuel molecules. Thus, this type of laser diagnostic probe is potentially

-. quite intrusive depending on the combustion region that is probed, as well as
the laser energies used.
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I . INRODUCTION

Propc 1 1 1t combust ion is a process of considerable complexity in which
hii h temperittir, chemical reactions play a major role. in order to understand

the actu.il htat releasing chemical steps that are involved, an extensive
program h.i' hen ongoing at BRL, as well as in other combustion research
institrltlon', where much simpler laboratory model flames are studied in
detail. Stich studies involve the interplay of flame diagnostics (usually
based on la.--r spectroscopy techniques) with flame modeling work, as well as
allied kin ,tics efforts to supply necessary elementary reaction rate constants
rl s-h detaliled chemical flame models. In the area of flame diagnostics,

las;er spectroscopy techniques such as absorption, Raman, laser induced
fluoresc'ence ([F), coherent anti-Stokes Raman spectroscopy (CARS), etc., have
been able to detect the stable major flame species as well as many reactive
molecilar intermediates. There is, however, an important class of combustion

* *iitorneli,-tes, i.e., the flame atoms, such as H, 0, and N, which has
historicallv eluded direct detection due to the lack of accessible energy

levels for single photon excitation.

Very recently, though, multiphoton excitation techniques have been

siuccessful in detecting the hydrogen and oxygen atoms in a flame. So far, two
distinct detection approaches have been demonstrated, one involving
multiphoton eonission (MPE) 1 ,2 and the other multiphoton ionization (MPI), 3'4' 5

the latter allo referred to as optogalvanic detection. In the case of the

oxv en atoms, however, direct detection in a flame was first accomplished by
spontaneous Raman scattering 6 and coherent anti-Stokes Raman spectroscopy

C,. (CARS). 7 Apparently, sensitivity limits and spectral interferences have
" prevented further development of these spectroscopies for atomic flame

I etect 1on.

•1",e, - 3,Tdner, P . Gfrfstrom, and S. Sovanberg, "7loo-Photon Excitation of
At?7-r','c Ox~jgen ~na Flame," Opt. Comm.n., Vol. 42, p. 244, 1982.

i 2 . uc' t, J.T. ,i inon, G.. King, O.W. Weeney, and N.M. Laur'endeau, "Too-
I. P ton- xe ted F! escenzce Measurement of Hydrogen Atoms in Flames,"

- '. )pt. r"tt., Vol. 8, o. 365, 1983.

-" . *.4 oi0 itk, "Resonant 4uttiphoton Optogalvanic Detection of Atomic
J?yd.rogen ! z Flames," Opt. Lett., Vol 7, p. 437, 1982.

4.7.L.M ;olTs-ith, "Resonant Afultiphoton Optogaloanic Detection of Atomic

2ixyjen 7n V1 Zaes," J. Chem. Phys. Vol. 78, p. 1610, 1983.

":).,[Tioe;3., and T.4. Cool, "Detection of Atomic Hydrogen in Flames by
* 1 .P JW? 'our-Photon Ton zation at 365 nm," Chem. Phys. Lett., Vol. 100,

' ... , .7.11. Hechtel, "Spontaneous Raman Scattering by Ground-State
-'O r,,',n te Ot, L gett., Vol. 6, p. 36, 1981.

7R.,. Tqect ani *T.Il. Rechtel, "Coherent Anti-Stokes Raman Spectra of Oxygen
A.,-mr in ,amps," Ot. Lett.- Vol. 6, p. 458, 1981.
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. Both the MPI and the MPE approaches suffer certain limitations MPE

always has quenching considerations as well as photometric inefficiencies,
while MPI lacks selectivity in signal detection, and is thus quite susceptible
to background ionization. In either approach, the nonlinear signals which
usually depend on the number of photons, n, required for the given transition,
are generally low due to the characteristically small multiphoton absorption
cross sections. Thus, tight focusing and maximum laser energy extraction is
typically desirable. We have made recent observations in our laboratory,
however, whic'h suggest that at sufficiently high laser energies, the flame
diagnostic probe can become substantially intrusive by promoting multiphoton

dissociation of the parent fuel and oxidizer molecules, in this case into
hydrogen and oxygen atoms. Also, we have observed very efficient collisional
energy transfer from the two-photon populated oxygen level to a neighboring
level, as well as energy transfer from the excited oxygen to hydrogen atoms
(see Fi.-ure ). The two-photon excitation scheme for oxygen atoms using
225 nm photons, followed by detection of emission at 845 nm (see Figure 1),
was initially demonstrated in a low pressure discharge 8 and then applied
successfully for the first time lo a combustion environment in an experiment
involving the C2 H2 /02 flame.1

II. EXPERIMENTAL

Figure 2 shows the experimental schematic. A Nd:YAG laser is used to
pump a dye laser in which R590 dye is circulated. The output is frequency
doubled and mixed with the 1.06 micron Nd:YAG fundamental in a commercial
wavelength extender to produce tunable radiation in the 225 nm range. This
beam is then focussed with a 100 mm focal length lens into a curved knife-edge
burner, whose edges are separated by 3 mm from each other, and in which a fuel
rich CH4 /N20/N 2 flame (0.14:0.38:0.48) is stabilized. Laser pulse widths of
5 nsec and energies up to 1.5 mjoules/pulse at 10 pps were employed. The

emitted radiation from the flame was collected by a lens system and passed
through a broadband filter into a 0.3 in monochromator whose slits were
relatively wide (ca. 2 nm) and finally detected by a photomultiplier tube (EMI

9659QA). The PMT output was fed into a 7912AD Tektronix transient digitizer,
which was interfaced with a PDP 11/04 computer. Typically 50-300 laser shots
were averaged per data point.

III. RESULTS AND DISCUSSION

Figure 3 shows an 0 atom emission profile through the curved knife-edge
burner. A well-defined flame front is quite evident while the second peak is
interpreted as resulting from entrained air further reacting with the fuel-
rich post-flame gases. Figure 3 is based on monitoring the 777.5 nm line,
which is actually a grouping of three closely spaced lines originating from
the three 5P upper states to the common S state. The emission intensity of

2this group as measured in the primary flame zone was about an order of

8"W.K. Ri,;ch.1, B.E. Perry, and D.R. mrosley, "Tvo-Photon Laser-Induced

Fluorescence in Oxygen and N~tojen to's," Chem. Phys. Lett., Vol. 82,

p. 85, 198!.
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magnitude greater than the emission at 844.7 nm. When photometric wavelength
differences, such as grating and PMT quantum efficiencies are taken into

account, the 777.5/844.7 emission ratio is still about 3. This indicates an
efficient energy transfer process and has desirable analytical implications
since now two different wavelengths are available for 0 atom detection. Due
to the fact that low signal levels were usually a problem, most of the
experiments were done monitoring the 777.5 nm line.

Figure 4 shows the 0 atom two-photon excitation spectra where the ground

spin-orbit states are resolved. The observed ratio of 9.5:4.1:1 can be
compared to a Boltzmann calculated ratio of 5.8:3.1:1 for an adiabatic flame
temperature of 2290*K. This, in turn, can be compared to the ratio of
1.6:l.:I,which was observed in optogalvanic experiments on the H2/02/Ar
flame.4  The reason for these discrepancies is not clear at this time, but
recently there have been further theoretical efforts to substantiate the two-
photon absorption cross sections which were found to be equal for each of the
three fine-structure components involved in this transition.9 A rough
estimate of 0.0001% for the deteclion limit is based on the emission intensity
in the primary flame zone (see Fig ,i, 3) and a calculated 0 atom mole fraction
of 0.005% (NASA/Lewis equilibrium progirri). This number should be improved by
at least an order of magnitude by optimizing the optical collection
efficiency, as well as using a red-sensitive PMT. This detection limit can be
compared to 0.01% indicated in the trevious MPE experiment, 1 parts-per-million
sensitivity 4o5 the MPI experiment, as well as 0.01-0.1% for the two Raman
experiments.

Further spectral investigations revealed another emission line centered
at 656.3 nm, which was generally as intense as the 777.5 nm line and was
resonant with 0 atom two-photon excitation. We have identified this emission
as the H transition in the hydrogen atom Balmer series (see Figure 1

• .However, the mechanism for populating the n=3 level, which is 8861 cm- higher
in energy than the laser populated 0 atom level, was quite unclear for some
time. Another even more surprising observation was the detection of the two
0 atom emission lines, as well as the 656.3 nm H-atom line in the absence of a
flame when only room temperature premixed gases were flowing through the
burner. In order to understand these findings, a determination of the order
of nonlinearity, n, of these signals under different conditions was initiated
and the results are given in Table 1. The uncertainties for the value of n
are based on a number of different runs in which the Nd:YAG amplifier lamp
energy was varied to yield energies between 0.2-1.5 mjoule/pulse. Clearly,
this is not the best way to vary the probe laser energy since the output pulse
time profile may change somewhat. Unfortunately, intensity attenuation
attempts using polarizers available in our laboratory were unsuccessful since
the coatings could not withstand the high peak intensities and short
wavelengths used. Nevertheless, the results listed in Table 1 are consistent
with a qualitative picture of multiphoton induced photolysis of the fuel and
oxidizer parent molecules followed by a 0 atom two-photon resonant formation
of a microplasma. In the preheat region the value of n=4 is close to what is
found for the N20 room temperature flow where n=5, suggesting that multiphoton

9D.R. Croeley and W.K. Rischel, "On Relative Fine-Structure Intensities in
Two-Photon Excitation," Phys. Rev., in press 1984.
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TABLE 1. ORDER OF NONLINEARITY (n) OF MULTIPHOTON INDUCED

EMISSION SIGNALSa

Atom (Emission X) Flame Region Probed n

0 (777.5 nm) Preheat 4 ± 0.5
Primary 2 ± 0.5
Post-Flame 1.8 ± 0.5

Room Temp. Flow 5 ± 1

H (656.3 nm) 10 +
4%.

a - Where emission signal a (laser energy)n

photolysis of N20 is contributing significantly to the total 0 atom emission
signal. In the primary and post- iL:, regions, however, the value of n=2 is
just what one would expect for a two-pliton generated signal where the
photolytic parent, N20, has already reacted away and the native 0 atom flame
population is relatively high. The highest order of nonlinearity is found for

N71 the H atom emission which is expected since it takes some number of photons to
photolyze C"4 , and more.for N2 0, and finally two to excite the 0 atoms. The
lack of uncertainty limits for the li-atom case attests to the difficulty
(i.e., long averaging times and high degree of scatter) involved in making
measurements on very high orders of nonlinearity.

A microplasma is not surprising since the absorption of the third photon
ionizes the 0 atoms4 and the temperature in the focal volume may be much
hotter than even the flame temperature, thus promoting collisional energy

transfer from 0 to H atoms. An alternative to multiphoton photolysis might be
plasma chemistry involving highly excited states or ion-molecule reactions,
but these explanations seem less likely since all of the emissions are prompt,
i.e., 5 nsec or less apart from each other. Again, it should be stressed that
the results in Table 1 are qualitative in nature since signal levels,
especially where n is high, were quite low, requiring laser energies over
I mjoule/putse, and they are based on the collisionally induced 777.5 nm line
where the rates of collisional energy transfer may not be constant for the
different experimental conditions. Clearly, this is a complex situation which

0 deserves further study. Nevertheless, the potential for the multiphoton
diagnostic probe to be intrusive certainly exists and thus appropriate caution

A should be exercised in these types of experiments. The implication of our

4% results to previous multiphoton 0 atom flame studies cannot be readily
.4% assessed since those were done on flame systems other than the CH4 /N20/N 2 and

thus photochemical effects (if any) are probably quite different. Finally,
6 multiphoton induced photolysis should, in fact, not be too surprising since

recent literature in chemical physics has many examples of such, even

12



involving typical flame molecules like H210 or C2H2 .  There is even a recent

flame paper where laser probe intrusion (presumably photochemical) was
noted. On the other hand, as pointed out by those authors, there may be new

opportunities to expand our knowledge of combustion by exploitingI photochemistry.

IV. CONCLUSIONS

The following conclusions can be reached on the basis of our experiments.

1. Oxygen atoms can be detected in a CH4 /N2 0/N2 flame by two-photon

excitation at 225.6 nm and emission detection at 844.7 nm.

2. The collisional energy transfer between the directly populated 3pexcited oxygen atom state and the neighboring 5p state is very efficient.

This is quito surprising since the process involves the change of spin
multiplicities. For a given experimental condition, the resulting emission at
777.5 nm can be much more intense than the one at 844.7 nm and thus be more

useful for sensitive analysis of 0-atoms.

3. Hydrogen atom emission at 656.3 nm is detected, which is resonant
with 0 atom two-photon excitation. This may result from an endothermic

collisional energy transfer process occurring in the microplasma formed in the
Sfocal volume of the laser whose temperature is hotter than the flame

temperature. Alternative explanations, however, for the H-atom emission such

as plasma chemistry/fast ion-molecule reactions, cannot be ruled out at this
time.

4. Since both oxygen atom and the single hydrogen atom emissions were
detected without a flame, the multiphoton photolysis of the atom precursors,
N2 0 and CH4 , was indicated. This was substantiated by a study of the order of

nonlinearity of the emission signal.

5. The above observation indicates that the laser multiphoton flame
diagnostic probe is potentially quite intrusive, depending on the region of

the flame being studied (i.e., the relative concentration of photochemical
precursors), as well as the laser energies utilized (i.e., the higher the
laser energy, the more prominent the higher order processes become). Thus,
appropriate caution should be exercised in these kinds of experiments.

1 0 S.T. Pratt, P.M DehLer, and J.L. Demer, "Resonant Multiphoton Ionization

of i )i the B Z + , v=7, J=9, and 4 Levels with Photoelectron Energy
Analsis," J. Chem. Phys., Vol. 78, p. 4315, 1983.

11'.B. Craig, W.L. Faust, L.S. Goldberg, and R.G. Weiss, "TV Short-Pulse
Fragmentation of Isotopically Labeled Acetylene: Studies of Emission with

Sd),anose!ond Resolution," 7. Chem. Phyu., Vol. 76, p. 5014, 1982.

1 2 M. Alden, 1. Edner, and S. 69anberg, "Simultaneous Spatially Resolved

Monitoring of C2 and O in a C 2 H2 /0 2 Flame Using a Diode Array Detector,"
Aj2p. Phya,.-A Vol. 29, p. 93, 1982.
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