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6. Results

The inputs and outputs of an (n,k) convolutional code (CC) can be represented,

respectively, as D-transforms

x(D) x I x- DJ 1imo

and

y(D) - X (2)
j-O

of the input sequence of k-vectors of form xj 1 [jX 2j,...,xkj] and the output

sequence of n-vectors of form yj - [l'j'Y 2j''',yYnjp where x i and Yij belong to

a finite Galois field F = GF(q) usually restricted to the binary field GF(2) of

two elements, and D is the delay operator. The input x(D) and the output y(D) are

W linearly related by means of a kxn generator matrix G(D) as follows:

y(D) = x(D)-G(D), (3)

-'a-

where the elements of G(D) are assumed usually to be polynomials over the finite

field GF(q), where q is the power of a prime number. The maximum degree M of the

polynomial elements of G(D) is called the memory delay of the code, and the

constraint length of the code is K = M+1.

In order to avoid catastrophic error propagation, the encoder matrix G(D)

is assumed to be basic. For the basic encoder, the Smith normal form of G(D) is

G = A-Ik,DI-B (4)

where A = A(D) is a kxk invertible matrix with elements in F[D], the ring of

4. polynomials in D over F, and B = B(D) is an nxn invertible matrix with elements in

F[D]. The elements of the inverses A and B of matrices A and B, respectively,

0 I
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are polynomials in F[D].

By definition,

G(D)-HT(D) =0(5

where 1(D) is the parity check matrix. Let

B

B =[ ](6)
B 2

and

B- (B1 (7)

where the first k rows of B constitute submatrix B1 and the remaining (n-k) rows

are matrix B2 , and where, likewise, the first k columns of B
-1 constitute submatrixi2

B and the remaining (n-k) columns are matrix B2. Since

12
V. B*B

LJJ
B 21Bl, B2B2

6 , = I
n

we get

B kIBI= Ik BB =0

(8)

=2 0 , B22 nk

In terms of partition, Eq. (7), the parity check matrix is defined by

@T
H = B2  (9)

:* .



It should be noted that the parity-check matrix is not unique. For example,

it can be shown that R CB2T is a parity-check matrix where C is any (n-k)x(n-k)

Invertible matrix with elements in F[D].

Let the received codes be

z(D) - y(D)+e(D),(10)

where e(D) is the D-transform of the error sequence. The syndrome of the

received code z(D) Is

s(D) - z(D)-HT(D)

= (y+e)-.H

M (xGi-e) -HT(1'S"

Since G-HT  D, we get

s = e-HT (12)

It has been shown [1] that the set of solutions is a coset of the set of all

codewords.

To explicitly solve the syndrome equation, Eq. (12), substitute H as given

by Eq. (9) in Eq. (12), thereby obtaining

S = eB = e, (13)
2 B' 0 1Ik"n-k

In Eq. (13), let

= eB-I (14)

So that Eq. (13) becomes the simple equation

Z.
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S = (15)

where s = [S23"S2...,snk] and C = [c1,E2 ,...,n]. The general solutions of

Eq. (15) over the ring F[D] is given evidently by

[E1,9C29...,01 = [Tl,c2 ,...,k = -C

(16)

[Ek+l,,k+2,..., l = [sls 2 ,...,sn k]

where T. = T.(D) are arbitrary elements in F[d]. Thus, more compactly, the3 3

general solution of Eq. (14) is

C= [TS) - eB-1  (17)

4where T, as in Eq. (16), is an arbitary k-vector of elements in ring F[D].

Finally, a multiplication of both sides of Eq. (17) by B yields

e =B = [Ts] B 1BI+SB 2  (18)

From the identity in Eq. (8) and (9) that B2  is the left inverse, denoted

by H-1, of parity-check matrix. Hence,

:B 2 = (]-I)T (9
"',1 (19)

where HI1 is the left inverse of H. From the Smith normal form in Eq. (4) of

a basic encoder that

.p.. -1A G = [Ik,OlB = B1  (20)

A substittuion of B in Eq. (20) and B in Eq. (19) into Eq. (18) obtains
1 B2

e = TA-G+s(H-). (21)S(21

'.5•
*<,
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Since T is an arbitrary k-vector of elements in F[D),

. t f TA71 (22)

is also an arbitrary vector of polynomials in F[D]. Substituting t in Eq. (22)

into Eq. (21) yields,

e =tG+s(H- )T  (23)

as the general solution of syndrome equation, Eq. (12).

Towards this end, substitute Eq. (19) into Eq. (23) and, by Eq. (9) and

(11), the quantity z-B2 for syndrome s. These substitutions yield

e = (t)G+z-(B2 "B2 ) (24)

Let P = B2 B2, since B2 and B have rank (n-k), it can be shown that matrix

R = B2 B2 also has rank (n-k). A substitution of R into Eq. (24) yields

e - tG+zR (25)

*By the maximum likelihood principle, the most likely error sequence is the one

with minimum Hamming weight. Given z(D), the sequence e(D) with minimum Hamming

weight is found by minimizing the weight of the right side of Eq. (25) over all

polynomials t(D) in F[D]. That is,

minlell = min H1tG+zRII, (27)

_ tcFED]

what one attempts to do in Eq. (27) is to find that sequence t which, when

* encoded as iC and subtracted from z-R, yields the sequence e of minimum Hamming

weight. That is,

. tC+zR (28)
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is the D-transform of the minimum weight possible error sequence.

By Eq. (4), the right inverse G-1 of the generating matrix G is

-1 -. [I -:1 (29)

* From Eq. (28) and Eq. (29), one obtains

. = [iG+zB2  2).

'. ,

,.* _ . - £+.--,BB 2 ]- -

E]2  [i 1

e~a'Y= t+ZB2 " [O, I n - k
] "  0 "A- '

= t. (30)

U By Eq. (10), the subtraction of 6 from z produces a best estimate 9 of the
'U transmitted code, i.e.,

X2 z - . (3 1 )

If multiplied on the right by G, yields

x -G , (32)

, the best estimate of the original message. Hence, substituting Eq. (31) in

Eq. (32) and using Eq. (30) produces

:-G

46 -- - (33)

# -P... . U**. ,U .'~p
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This important identity shows that t = L(D), obtained by the minimization in

Eq. (27), is a correction factor to the standard method of recovering the

message from z = z(D) if z were noise-free.

The above results are now applied to systematic convolutional codes. The

generator matrix for a systematic CC has form

G(D) = [Ik , P(D)] (34)

where Ik is the kxk identity matrix and P(D) is a kx(n-k) of polynomials over

GF(q) in the delayed operator D. A parity check matrix associated with G(D) in

Eq. (34) is the (n-k)xn matrix,

TH(D) = [-P (D), Ink) (35)

The Smith normal form of Eq. (34) is, by Eq. (14),

C = A[Ik, OIB

= [(36)

Hence, for a systematic code, A = Ik and

-i k' k (37)

B = [z: 'n-k

1 the inverse of B is found to be

B-1 [k' -:(
ii L°, n-
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J. The partitions, given in Eqs. (6) and (7), of B and B- , respectively, are, for

a systematic CC,

.B 1

B=[2"2]

" where

. B1  [I, P(D)] and B2  [0, In- k  (39)

and

* B 1  [B1, B ],

where

B1 =  and B2 = L (40)

n-k]

Consequently, the syndrome s in Eq. (12) is

s = z-H T = Z.- I
[n-k

= (z ,Zp -

= - Zm(D)P(D)+z p (D), (41)

where z m(D) is the message code vector of k components, possibly corrupted by

noise, and z (D) is an (n-k) component vector of parity symbols, also possibly
p

changed by channel noise.

S.Next, by Eqs. (39) and (40), the matrix R in Eq. (26) is given by

., -..

""' . .. . .. . . .. ,,



NP ~a.' *.*a . t % t . *2 .-'W r- -. t .. * . . L -. .. - - . %

a10

R B 2 B2 L:Ii [0, In-k1
1

2-

..L'.1 =J(42)

Thus,

e = tG+zR = t(IkP+z
".. s "n-k

[tI k, tP(D)] +

= [t(D), (t(D)-z m(D))P(D)+z p(D)], (43)

where z m(D) is the received message sequence "in the clear", z (D) is the
. p

received parity sequence of CC, and t(D) is an element of F[D]. By Eq. (41),

the above general solution, Eq. (43), of the syndrome equation for a systematic

CC can be expressed in an alternate form

e(D) = It(D), t(D)P(D)+s(D)], (44)

Let denote the error sequence of the solution, Eq. (44), of minimum

Hamming weight, and let t be element t(D) E F[D], for which the Hamming weight

of e(D) in Eq. (43) or Eq. (44) is a minimum. Then, by Eqs. (43) and (44),

as in Eq. (28), e and t are related by

* " e = [t, (t-zm)-P+z1

= [i, tP+sl. (45)

By Eqs. (29), (36), and (38), the right inverse of the generator matrix C in

Eq. (34) is

--
..,, • .€ '' t, " ,., q," "., "r *,. 4*, ". ,, . ', "" %'. % 4'.",. ",. ". -", .. *. " *. . ' .%.
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C-5. 11

•G I = B- = [k> -Pj[
P4.,

k .(46)

Again, the subtraction of e from z produces

Z-

*" as the best estimate at transmitted code, so that

yG = (z-4)-G = zG -t

4.,
-Z = - = z - (47)

, as the best estimate of the received message in terms of zM, the received message

in the clear, and the correction factor, t.

Next, we are going to give an example on the error trellis syndrome decoding

. of Wyner-Ash convolutional code.

If

G(D) = C +G D+...+G Dm (48)0 1 m

is a generator matrix of a CC of memory M = m, as defined in Eq. (3), then

- evidently

0 Go 0 Cl. ° 2o**' C 0... | (49)

0 0 G 0o G 1 ..2 G, o ... j
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is the infinite generator matrix associated with G(D). Thus, a systematic code

with generator matrix G(D) = [Ik' P(D)) has

Ik P 0 P0 .P 0 Pm

G 0 0 2 (50Ik 0o P1  0 ... o P
0 = 'B (50)

I P 0 ... 0 P
k .0 O m

as its companion infinite generator matrix, where

P(D) = P 0 +P 1 D+P2 D2+.. .+PDm (51)

where 0 is the kxk all zero matrix and P. is the kx(n-k) matrix. By Eq. (35),

the associated parity-check matrix is

P 0 T I

P2
T  0 P 0 I

2 1 (52)TT
*'. m

P 0
-.B

mm
In terms of Eq. (51) and (52), Blahut defines an (n,k)= (2 ,2-1) Wyner-Ash

cede as follows: Let HI be the parity-check matrix of the binary (2m-j 21-l-m)

T T T* Hamming one-error-correcting block code. Choose matrices .P 2PM T to

0. be the m rows of the parity-check matrix Iti i.e.,

T
P1

11 2 2 [P ,P, '' P (53)

m
9-
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T i
Finally, let P be a vector of 2m-l ones, i.e.,

0T

, 0 (54)

Blahut shows [6, Theorem 12.5.1] that the minimum free distance of the Wyner-Ash

code is 3 and, as a consequence, it will correct at least one error.

Example: For m= 2, the parity-check matrix of the Hamming code is

H1 1 10• ffi 1 0 11

so that by Eqs. (53) and (54), P T = [I 1 1], P T  1 0], and P2T (1 0 1].
-2

Thus by Eqs. (51)

ID+ 21
P(D) I+D

I +D
2

and, by Eqs. (34) and (35),

1;" 1 0 0, I+D+D2

G(D) 0 1 0, 1+D

0 0 1, 1 +D

I-' -"andA-'."

nd H(D) = [1+D+D2, I+D, I+D2  11 (55)

are the generator and parity-check matrices of the (4,3) Wyner-Ash CC,F: respectively. Also by Eqs. (37) and (38)

EO

[
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1 0 0, l+D+D2

B-. B-1  [1k,  P(D) 0 1 0, I+D2
-1 - 00i 1 +D

B=B-" 2

_O0 0 O, 1-

So that, by Eqs. (39) and (40), B2 = [O 0 0 1] and B2 = HT and, finally, by

Eq. (42), -1+D+D 2  00 0, -+D-D 2

1+D 0 0 0, I+D
R = B 2B2  1 +D2  [0 0 0 11 000, 1 (56)

1 000, 1

Substituting Eqs. (55) and (56) into Eq. (25) or directly from Eq. (43).

The result is

e(D) e = [e., e2 ' e3 9 e4]

[t, (t1+zI)((I+4-D )+(t2+Z2)(l+D)+(t 3+z3)(lD 2)+.4 ], (57)

where

t(D) -t = [tl  t 2  t3]. (58)

S By Eqs. (41) and (44), e in Eq. (57) can also be expressed as

4. e = [t, r+s] (59)
..

where s is the syndrome,

2 2
s(D) s = z (1+D+D )+z2 (+D)+z 3 (1+D )+z4  (60)

and

- r(D) - r tI1 (I+D+D
2)+t2 (1+D)+t3 (1+D ) (61)

6%.1&
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Define the truncation of e(D) at stage or frame time N as

[e(D)] N = 0 [elWe2j,..,enJDJ  (62)
=0nj

Thus the Ha-mming weight of the sequence of possible errors in N frames is

N
II[e(D)]NII- = I I[elje2j ... ,e I

j=0

N
= I lcoef[e(D)] I. (63)

j=0 D3

By Eqs. (57) and (63) for this particular example of a convolutional code,

coeffe(D)] = [t lt 2jt 3j,rj+sj]. (64)

• Dj

where

r - tl,j tl,j-1tl,j-2

t2,j t 2,j-l+

t 3 ,j +t3J - 2  (65)

and

s j s lj+Z ,j- +zlj-2+

, 2jz2,j-l +

z 3j +z 3,j- 2+

z 4 j (66)

If the values of r. at frame time j are imagined to be generated by a sequential

circuit, then the pair

a= (t.-' j-k ) (67)

where

Stj_ 1 = [t 11i -1t 2,J-l't3,j I ]

t%
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S ~ and

t j -2 it [t.J-2P t2,t-2't3,J-2l

constitutes the values of the internal states of the circuit and vector t is the
-j

Let the sequential circuit with output

u [t, r(t o (68)

then by Eq. (59), the error trellis of the code is, for all path generated,

v s +r(t ,O)]. (69)

To illustrate the above concepts, let the input to the present example of

the CC be

X = [I 1 1, 0 0 0, 1 1 1, 0 0 0, 1 11],
1.

', i.e., xI = [1 0 1 0 1] = x2 = x3. By the generating matrix given in Eq. (55),

the output y = [yI' Y2' Y3' Y4] are obtained as follows:

Yl = Y2  Y3 Vl '1 0 1 0 11 and

Y4  (I+D+D2 )x 1+
(I+D)x2+ (l+D

2 )x3.

-0 Explicitly,

Y4  [1 0 1 0 1 0 01.

Thus, the output of the encoder is

y = [1 1 1 1, 0 0 0 0, 1 1 1 1, 0 0 0 0, 1 1 1 1] (70)

.':

4.%
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Assume y, given in Eq. (70) is transmitted over a binary symmetric channel

(BSC) with probability of error somewhat less than.- 0.0833. Then, the
12

received code sequence is likely

z = [i 1 0 i, 0 0 0 O, 1 1 1 1, 0 0 0 0, 0 1 1 ) (71)

i.e.

z1 = 1 0 1 0 0], z2 = 11 0 1 0 ),

z 3 = [0 0 10 IL Z4 = 11 0 1 01

A .  By Eq. (60), the syndrome sequence for this value of received sequence is

s = [1 0 1 0 1 1 1] (72)

It is shown in Ref. 6, p. 366, that the present 3/4 rate code of this example

can correct one error in every 3 frame times or code length of 12. As a consequence,

one needs only to correct one error every 3 frames. This limits the number of

t = [t,t 2 vt3 1 to 4, namely the values

[0 0] O, [1 0] - 1

(73)

[0 1 0] 2, [0 0 1] = 3

Figure I shows a constrained regulator trellis with outputs [t,r]. In

Fig. 1, note that, because of the limited error-correction capability of the

2
* code, the number of internal states o - (Dt, D t) of the circuit can be limited

to 7 out of possible 64. Moreover, the number of state transitors can be

limited to those shown in Fig. 1 for the regulator trellis diagram. The branches

of the trellis are labeled with the value [t,r]. For example, the branch from'1
state a = [0 0] to a = [3 01 is labeled by [t,r] [3,11 [0,0,1,11, which

h '11
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means tI = 0, t2  0 0, t3 
= 1, and r = 1.

To decode the message in Eq. (71), by Eq. (68) an error trellis is created

by adding the vector [0,s] to all labels in the regulator trellis where, a is the

syndrome value. Thus, in Fig. 2, the value of [0,s], where s is the syndrome

value in Eq. (72), appear on all possible transitions a = [0 0] to a - [0 0]

on the top line of the error trellis. At each node, the cumulative Hamming weight

of the path, passing through that node, is written. The Hamming weight at each

node, plus the weight of a possible branching from that to the next node, is used

to eliminate branches. To illustrate, in Fig. 2 there are four branches at

frame z which could go to state or node a = [0 0]; The transition is chosen in

the branch from a = [0 3] to a = [0 0]. Since the node weight 2 plus branch

weight 0 is 2, the minimum 4 possible transitions.

The minimum overall path weight of the error trellis in Fig. 2 is

10 0, 3 0, 0 3, 0 0, 0 0, 1 0, 0 1, 0 0, 0 0]

in terms of state values a = [Dt, D2 t]. Hence, based on the criterion of

Eq. (27), the best estimates of t is

t = [3, 0, 0, 0, 1, 0, 0, 0]

( = [0 0 1, 0 0 0, 0 0 0, 0 0 0, 1 0 0, 0 0 0].

If this vector is added component-wise to z in Eq. (71), the message is

corrected to yield x x, the original message.



20

C4.)

CV)

C3o

L--j4. C) CaC

44 0

c> C30 C
50

a- 4.JC

CV) 4-S 4
-- 

cm

r-I~ CC

C: 4.)3

r-. 4 L.1

CV7
- 0'

C310

-I-
C(W)

4-'

00) C%1 0. 0 .(

0~c * 0* -*

II-



- ; h

IOU 21

REFERENCES

C 1. I.S. Reed and T.K. Truong, "New Syndrome Decoding for (n,l) Conventional

Codes," Electronic Letters, Vol. 19, No. 9, April 1983, pp. 344-346.

2. I.S. Reed and T.K. Truong, "New Syndrome Decoding Techniques for Convolutional

Codes Over GF(q)," to be published in Proceedings IEE.

3. C.D. Forney, Jr., "Convolutional Codes I: Algebraic Structure," IEEE Trans.

Into. Theor. IT-9, 1963, pp. 64-74.

4. A.J. Vinck, A.J.P. de Paepe, and J.P.M. Schalkwijk, "A Class of Binary Rate

-On-Half Convolutional Codes that Allows an Improved Stack Decoder," IEEE
,'.

Trans. Info. Theor. IT-26, No. 4, 1980, pp. 389-392.

5. A.D. Wyner and R.B. Ash, "Analysis of Recurrent Codes," IEEE Trans. Info.

Theor. IT-9, 1963, pp. 143-156.

6. R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley,

1983.

%

PC.,* O%



-. 

* ,~ ~ %~%:-~i.t- .- 2 * ~ *~

2-
-S

4-

.4

I'.
I'..

A

2,:

*4.

FILMED
I,..

'S

I'...

.5

-p
-4,

1%?
* 5p. 1-85.5.

.54~

-p 4.

4- *1
.1*

.5-..

*4%

-4%

DTIC
5% Pp

-p

U'

.4-

r~S .55 

~VI~mr


