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The inputs and outputs of an (n,k) convolutional code (CC) can be tepresented

respectively, as D-transforms

x(D) = § ijj (1)
3=0
and
yo - z y, o) @) 4
3=0

of the input sequence of k-vectors of form xj = [xlj’xzj""’xkj] and the output

sequence of n-vectors of form yj = [ylj”éj""’ynj]’ where xij and yij belong to
a finite Galois field F = GF(q) usually restricted to the binary field GF(2) of
two elements, and D is the delay operator. The input x(D) and the output y(D) are

linearly related by means of a kxn generator matrix G(D) as follows:
y(D) = x(D)-G(D), 3)

where the elements of G(D) are assumed usually to be polynomials over the finite

field GF(q), where q is the power of a prime number. The maximum degree M of the
polynomial elements of G(D) is called the memory delay of the code, and the
constraint length of the code is K = M+l.

In order to avoid catastrophic error propagation, the encoder matrix G(D)

is assumed to be basic. For the basic encoder, the Smith normal form of G(D) is
G = A-[1,,D]-B )

where A = A(D) is a kxk invertible matrix with elements in F[D], the ring of

polynomials in D over F, and B = B(D) is an nxn invertible matrix with elements in

F[D]. The elements of the inverses 1\"1 and B-l

of matrices A and B, respectively,
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are polynomialé in F[D].

By definition,
T
G(D)*H (D) = O

where H(D) is the parity check matrix. Let

B
B = 1
)
and
B-l = [-ﬁl 932] ’

A R R R A R R R o e LR LA L 5 L8 K

(5)

6

¢)

where the first k rows of B constitute submatrix Bl and the remaining (n-k) rows

are matrix B,, and where, likewise, the first

k columns of B-l constitute submatrix

2
ii and the remaining (n-k) columns are matrix Eé. Since
B
B3t - | Y. [Bl,i ]
B 2
_2
_ P BiBy
B,B,, B,B.
210 BaBs
=1
n
we get
BlBl- Ik, 3132 =0
(8)
BB =0 3282 7 Tak
In terms of partition, Eq. (7), the parity check matrix is defined by
=T
H =B, (9)
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It should be noted that the parity-check matrix is not unique. For example,

it can be shown that H = CBZT is a parity-check matrix where C is any (n-k)x(n-k)
invertible matrix with elements in F[D].

Let the received codes be

z(D) = y(D)+e(D), | (10)

where e(D) is the D-transform of the error sequence. The syndrome of the

received code z(D) 1s

s(D) = z(D) - (D)
= (y+e) -H!
= (xCte)-H' (1)
Since G-HT = D, we get
s = e-H' (12)

It has been shown [1] that the set of solutions is a coset of the set of all
codewords.
To explicitly solve the syndrome equation, Eq. (12), substitute H as given

by Eq. (9) in Eq. (12), thereby obtaining

— -1 0
s = eB2 = eB . s (13)
n-k
In Eq. (13), let
-1
€ =eB ", (14)

So that Eq. (13) becomes the simple equation

L , .~ : e » o
.~l MGt '?" ! W0, ." f, ""'".\! . “". N Ln | ' u )

o
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3,
I SO
! . 8=¢ » ' (15)
; In-k

._ where s = [51’52’°"’sn-k] and € = [el,ez,...,en]. The general solutions of
oh Eq. (15) over the ring F[D] is given evidently by

y
- [el,ez,...,elo] = [11,12,...,tk] =T,
s (16)
“. . )

 : [ek+1’ek+2""’€n] = [sl,sz,...,sn_k] =g
O\

" where Tj = Tj (D) are arbitrary elements in F[d]. Thus, more compactly, the

:; general solution of Eq. (14) is

'l

-, .

2. € = [1,8) = eB 1 Qan
o
:f where 1, as in Eq. (16), is an arbitary k-vector of elements in ring F[D].

-

‘. Finally, a multiplication of both sides of Eq. (17) by B yields
\J' B1

-5 e =¢B = [1,s]" = 'l'Bl-!-sB2 (18)
s B,

. ! :

o From the identity in Eq. (8) and (9) that BZT is the left inverse, denoted
) -

o by H 1, of parity-check matrix. Hence,

‘::
Sl i -1

X B, = @, (19
.4 -1 .

o where H © is the left inverse of H. From the Smith normal form in Eq. (4) of
< ‘ , .
J.‘
” a basic encoder that

7

o __1 _ a

o A6 = [1,,0]*B = B, (20)
.\:..
W™ .
::- A substittuion of B, in Eq. (20) and B, in Eq. (19) into Eq. (18) obtains

o
Y - -

& e = A lersn T, (21)
N
N

A

7

s.
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Since T is an arbitrary k-vector of elements in F[D],

. t = - _ (22)
is also an arbitrary vector of polynomials in F[D]. Substituting t in Eq. (22)

N into Eq. (21) yields,

» . . -

- e = ters(@8 )T (23)

A .

' as the general solution of syndrome equation, Eq. (12).

N Towards this end, substitute Eq. (19) into Eq. (23) and, by Eq. (9) and

N

» -—
(11), the quantity z'B2 for syndrome s. These substitutions yield

y e = (t)G+z- (8,B,) (24)

L Let R = ié 32, since B, and<§é have rank {n-k), it can be shown that matrix

) .

) R = ié Bz also has rank (n-k). A substitutjon of R into Eq. (24) yields

}

b e = tG+zR (25)

. By the maximum likelihood principle, the most likely error sequence is the one

" with minimum Hamming weight. Given z(D), the sequence e(D) with minimum Hamming
weight is found by minimizing the weight of the right side of Eq. (25) over all
polynomials t(D) in F[D]}. That is,

35 min||e|| = min ||tG+zRr|], (27)

J teF[D]

. what one attempts to do in Eq. (27) is to find that sequence t which, when

.

X encoded as tG and subtracted from z-R, yields the sequence ¢ of minimum Hamming

[ weight. That is,

Y, e = tC+zR (28)

J

l

\
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A is the D-transform of the minimum weight possible error sequence.

§. By Eq. (4), the right inverse G_l of the generating matrix G is
)

pAY ¢t =yt k{41 ' (29)

[ From Eq. (28) and Eq. (29), one obtains

L '-1
[tG+ZBZ B2] G

P

®>
.

[»]
[}

;,{ t+z-BZ~BZ[Bl,Bz]. A

L™
i

A7 t+zB,-[0,1__,1- A

”~
]
(g 8]
.

(30)

T
L NS

s, ' N
v

4

LA )
L ARA

By Eq. (10), the subtraction of & from z produces a best estimate y of the

"l
iy

transmitted code, i.e.,

e \
."'l\.' k'

y = z-e. (31)

'.

»

[y
»

Al
AN

If multiplied on the right by G, yields

2 =3¢t (32)

v
X ) -",;',- S
LN NN N ]

t

the best estimate of the original message. Hence, substituting Eq. (31) in

Eq. (32) and using Eq. (30) produces

a4 %
5 ‘-.',\I'.,' :

% = (2-8).671

L X

= 2+G -t (33)

Al

'l..-.'l' A
NSNS NN
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: This important identity shows that t = £(D), obtained by the minimization in

Eq. (27), is a correction factor to the standard method of recovering the
R message from z = z(D) if z were noise-free.
1A ‘
‘j The above results are now applied to systematic convolutional codes. The
l
' generator matrix for a systematic CC has form
: . -
; () = [1,, B(D)] (34)
\ ‘ where I, is the kxk identity matrix and P(D) is a kx(n-k) of polynomials over

CF(q) in the delayed operator D. A parity check matrix associated with G(D) in
N Eq. (34) is the (n-k)xn matrix,
. RD) = [T, I__,] - (35)
) ? "n~k '
lj The Smith normal form of Eq. (34) is, by Eq. (14),
y G = A[L, 0]B
b
¢
! B E
’ = [Ik’O] (36)
: 0, In—k
\
j Hence, for a systematic code, A = Ik and
Ky
! 1 P

k,
B = (37)

' c, In-k
i _ the inverse of B is found to be
o«
N I -P
- -1 k’
: B = » ’ (38)
. : o, In—k
.l
'
iy
(
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The partitions, given in Eqs. (6) and (7), of B and B—l, respectively, are, for

a systematic CC,

B
B = 1 -
)
where
By = (I, P(D)] and B, = [0, T__,] (39)
and
-1 - —
B = [Bl’ le’
where
_ I _ -P
Bl = and B, = . (40)
0 2 I
n-k
Consequently, the syndrome s in Eq. (12) is
- p]
s = z-HT = Ze
n—k]
~p
= [zm,zp]° .
| "n—k]
= ~2, (D) POz (D), D)

where zm(D) is the message code vector of k components, possibly corrupted by
noise, and zp(D) is an (n-k) component vector of parity symbols, also possibly
changed by channel noise.

Next, by Eqs. (39) and (40), the matrix R in Eq. (26) is given by

Wy

W » - - AR . LS ) LR I
e Ko ’ .p' S T P .u'lo- N ) .l. 0 J"‘al“.t o .o‘\!' .L"\L LRI\ -".l"o. 9, .l".'f'-','r‘,\n‘. O
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J'l;' 10
o

N _ [ -p

A R = 82 B2 = . . *[o, In-k]

{ | n-k

0, -P

-‘ = . (42)
(.' _9’ In—k

:, Thus,

e e = tG+zR = t[L ,Pl+z

:: 0, In—k

k -P

b = [tIk, te(D)] + |0, =z

KR hv h}n—k

Lo = [t(D), (t(D)-zm(D))P(D)+zp(D)], (43)
‘; where zm(D) is the received message sequence "in the clear", zp(D) is the

2

e

N received parity sequence of CC, and t(D) is an element of F[D]. By Eq. (41),
o

{ the above general solution, Eq. (43), of the syndrome equation for a systematic
Y

‘:i CC can be expressed in an alternate form

=

:; e(p) = [t(D), t(D)P(D)+s(D)], (44)
6:: Let € denote the error sequence of the solution, Eq. (44), of minimum

??: Hamming weight, and let t be element t(D) ¢ F[D], for which the Hamming weight
?t_ of e(D) in Eq. (43) or Eq. (44) is a minimum. Then, by Eqs. (43) and (44),

{& as in Eq. (28), e and t are related by

:;’:_: a - -~ A_ .

"® e = [t, (t zm) P+zp]

e

p - .-

A ~ 2

o = [t, tP+s]. (45)
rl“f-

.

P& By Eqs. (29), (36), and (38), the right inverse of the generator matrix G in

Eq. (34) is

BT RN e Y S e DR \-‘\- R \o.‘
< Ot o Ca i Tatat e dn s

‘\‘.\:"\- SN
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A A B A ) -

it . 11
_ Tz 1., -t

(» ¢l k| k k

;: 0 o, In—k 0

2,

-

- I

" =1 *|. (46)
v 0

2 Again, the subtraction of e from z produces

Ca
. ~ ~

-~ y = z-e

:.

>

2 as the best estimate at transmitted code, so that

“~

~ ~ "'1 A - - -~

¥ . x=y6 = (z-&)-G 1 = zG 1—t

-

: [ ] e € (47)

=tz _,2 t =z ~t

( m’’p 0 m
l‘

w

3 as the best estimate of the received message in terms of zn» the received message
. in the clear, and the correction factor, t.

E. Next, we are going to give an example on the error trellis syndrome decdding
o of Wyner-Ash convolutional code.

. If

4

X! m

A = + e ¥/
% G(D) co GlD+ +GmD ' (48)
\)

‘: is a generator matrix of a CC of memory M = m, as defined in Eq. (3), then

e evidently

o

-~ ROOOOE PO

-

f ¥ .-' -' ’ .f '.-‘ . ﬁ'.".*‘.f‘.J\(\..\ h Y \;‘g;.\‘ L. n_.‘\'.-_..<‘..._..\ \"-‘:.." ..- ." ‘.'-\1‘\1:.‘4 .

G0 G1 G2 Gm 0 O 0o ...
G = 0 G0 Cl G2 “ee Cm c o0 ... (49)
0 0 GO G1 62 ‘e Gm 0o ...
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is the infinite generator matrix associated with G(D).

Thus, a systematic code

with generator matrix G(D) = [Ik’ P(D)] has
B I
Ik Po (o] Pl 0 P2 cee O Pm
L P o P o ... O
k 1
G = 0 . (50)
Ik PO 0 ... 0 Pm
L_ .o e J
as its companion infinite generator matrix, where
P(D) = P +P,D+P D’+...+P D® (51)
01 2 .o e m

where 0 is the kxk all zero matrix and Pi is the kx(n-k) matrix. By Eq. (35),

the associated parity-check matrix is

T
P, I
T T
p," 0 p 1
pzT 0 plT 0 I
H = T (52)
rpT o ...
m
pT o
m

In terms of Eq. (51) and (52), Blahut defines an (n,k) = (2",2"-1) Wyner-Ash

cede as follows: Let Hl be the parity-check matrix of the binary (Zm-l,Zm—l—m)

Hamming one-error-correcting block code. Choose matrices P PZT,...,PmT to
be the m rows of the parity-check matrix Hl, i.e.,
-
P
T
P
1 2 T
H = i [Pl,PZ,...,Pm] (53)
p T
L. m

s LR ARE ALY -.‘,-.J_-.;,\-_\'_:.-.-'_-.’w{:.__:{-. ol .",. .......
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13
Finally, let POT be a vector of 2™-1 ones, i.e.,
T
P, = [1,1,...,1] (54)
———
2"

Blahut shows [6, Theorem 12.5.1] that the minimum free distance of the Wyner-Ash

code is 3 and, as a consequence, it will correct at least one error.

Example: For m = 2, the parity-check matrix of the Hamming code is

1,110
B =1 01l
T T T
so that by Eqs. (53) and (54), P," = [11 1], P,"=1[110], and P, = [1 01]).
Thus by Egqs. (51)
14D+D2
P(D) = | 14D
1 40
and, by Eqs. (34) and (35),
2
100, M4DHD
G(P) = { 010, 14D
001, 1 +p2
and
2 2 .
H(D) = [1+D+D", 14D, 1+D", 1] (55)

are the generator and parity-check matrices of the (4,3) Wyner-Ash CC,

respectively. Also by Eqs. (37) and (38)
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100, 14D
ot [ @ 010, 14
=B = = 2
0, I, 001, 1 +p
000, 1

So that, by Eqs. (39) and (40), B, = [0 001] and ié = HF and, finally, by

Fa- (42), [ 14pp? | [ 00 0, 1D+ |
B 14D 000, 14D
e 1 402 0001~ 000, 1 40 ¢
1 | | 000, 1 ]

Substituting Egs. (55) and (56) into Eq. (25) or directly from Eq. (43).

The result is

e(D) = e = [el, €)s €4, e4]
= [t, (t1+zl)(1+D+D2)+(t2+22)(1+D)+(t3+z3)(1+D2)+z4], (57)
where
t(b) =t = [tl, ty» t3]. (58)

By Eqs. (41) and (44), e in Eq. (57) can also be expressed as

e = [t, r+s] (59)
where s is the syndrome,
- 2 2
s(D) = s = 21(1+D+D )+zz(1+D)+z3(1+D )+z4 (60)
and
r(D) = r = t1(1+D+D2)+t2(1+D)+t3(1+D2) (61)
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Define the truncation of e(D) at stage or frame time N as
N

ey = I I

J .
ik elj,ezj,...,enj]D (62)

Thus the Hamming weight of the sequence of possible errors in N frames is

N
'I[e(D)]NII = .Z Il[elj’ezj"“oenjlll

j=0
N

= ) |lcoefle(m)]]]. (63)
§=0 Dj

co;f[e(D)] = [tlj’th’t3j’rj+sj]' (64)
D .
where
r, = t, ot L . . 4
3 1,5 1,31 71,j-2
t2 ,j+t2 .3 _1+
t, . +t, .
3,3 3,3-2 (63)
and

sj = zlj+zl,j—1+zl,j-2+

z2j+z2,j-1+

z +z +

3j 3,j-2
%83 (66)

If the values of rj at frame time j are imégined to be generated by a sequenti#l

circuit, then the pair

Oj = (£j—1’£j—2) (67)

where

i = 18y 510t -1, 5]




(AN

-~

. .

:.!\}'.'Ex' AR SRS RSN

16

and
L2 = [ty 20t ¢ a0ty o))
constitutes the values of the internal states of the circuit and vector £j is the
j~th input to the circuit.
Let the sequential circuit with output
u, = [t., r(¢r.,0 68
: [3’ (—j’ j)] (68)

then by Eq. (59), the error trellis of the code is, for all path generated,

v = [‘_t;._j, sj+r(_t_j,oj)]. (69)

To illustrate the above concepts, let the input to the present example of

the CC be
x={(111,000,111,000,111],

i.e., x; = fL0101)] = X) = Xqe By the generating matrix given in Eq. (55),

the output y = [yl, Yy ¥go y4] are obtained as follows:
Y1 =Y, T ¥y =% < (L0100 1] and
= (1+D+D2)x +(1+D) x +(1+D2)x
Yy 1 2 3
Explicitly,
Y, = (101010 0}.
Thus, the output of the encoder is

y=0{1111,0000,1111,0000,111 1) (70)

NP AN NS
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-:; Assume y, given in Eq. (70) is transmitted over a binary symmetric channel
(;_ (BSC) with probability of error somewhat less than:f; = 0.0833. Then, the
A
a)
:ﬁ received code sequence is likely
S
Ny z=01101,0000,1111,0000,0111]) (71)
-
Sj i.e.
+
o zy = fro10 0], z, = [1L0101],
L .
o 2, = (00101}, z, = [10101].
.
S
7
i% By Eq. (60), the syndrome sequence for this value of received sequence is
! s=[1010111) ' (72)
-
e |
:{ It is shown in Ref. 6, p. 366, that the present 3/4 rate code of this example
\;. , can correct one error in every 3 frame times or code length of 12. As a consequence,
N . .
;ﬁ: one needs only to correct one error every 3 frames. This limits the number of
“% t = [tl’tz’t3] to 4, namely the values
2
-.J
:{ [000] =0, [A00] =1
- (73)
. [010] =2, [oo1} =3
®
l.d-
- Figure 1 shows a constrained regulator trellis with outputs [t,r]. In
-
o«
«i: Fig. 1, note that, because of the limited error-correction capability of the
* A
2
"; code, the number of internal states o = (Dt, th) of the circuit can be limited
-‘_h: .
:ﬁ to 7 out of possible 64. Moreover, the number of state transitors can be
"y
?} limited to those shown in Fig. 1 for the regulator trellis diagram. The branches
.
- of the trellis are labeled with the value [t,r]. For example, the branch from
o
‘o state ¢ = [0 0] to 0 = [3 0] is labeled by [t,r] = [3,1} = [0,0,1,1], which
S
")
K
o

. . . . Gy RGO ST IS IR TP AT R IO
S L W T Y T AN LT A ) A e L ’ v ) A

s ¥ ¥ K s
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means tl = 0, t, = 0, ty = l, and r = 1.

To decode the message in Eq. (71), by Eq. (68) an error trellis is created
by adding the vector [0,s] to all labels in the regulator trellis where, s is the
syndrome value. Thus, in Fig. 2, the value of [0,s], where s is the syndrome
value in Eq. (72), appear on all possible transitions ¢ = [0 0] to o = [0 0]
on the top line of the error trellis. At each node, the cumulative Hamming weight
of the path, passing through that node, is written. The Hamming weight at each
node, plus the weight of a possible branching from that to the next node, is used
to eliminate branches. To illustrate, in Fig. 2 there are four branches at
frame z which could go to state or node o = [0 0].

The transition is chosen in

the branch from 0 = [0 3] to 0 = [0 0]. Since the node weight 2 plus branch

weight 0 is 2, the minimum 4 possible transitionms.

The minimum overall path weight of the error trellis in Fig, 2 is
fpo,30,03,00,00,10,01, 00, 00])

in terms of state values o = [Dt, th]. Hence, based on the criterion of

Eq. (27), the best estimates of t is
t=1030001,0,0, 0]
=[001, 000,000, 000,100, 00 0].

1f this vector is added component-wise to z in Eq. (71), the message is

corrected to yield x = x, the original message.
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