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INTRODUCTION

Scattering of seismic waves due to departure from plane stratified

media appears to play a vital role in the observed ground motion from

nuclear explosions. A striking example is the transverse component Lg

which is generally larger than the vertical or the radial component

(Gupta and Blandford, 1983). Transverse Lg from explosions at the

Nevada Test Site (NTS) has been found to be also a better estimator of

yield than direct P (von Seggern and Alexander, 1984). At teleseismic

distances, significantly greater stability of P coda (amplitudes and

spectra) as compared to direct P has been pointed out and established in

numerous recent studies (see, e.g. the review articles by Aki, 1982 and

Bache, 1982). For a limited test area, P coda should therefore provide

a more precise measurement of yield than the initial P. There are

several mechanisms that may operate to make code amplitudes more precise

than the primary signal. P coda consists of scattered energy where most

of the scattering takes place near the source and the receiver.

Near-source scattering is perhaps mainly due to the scattering of

source-generated surface waves to P body waves by topographic features

and other impedance irregularities within several kilometers of the

source (Greenfield, 1971). Contribution to teleseismic P from

near-source scattering occurs for signals emerging over a large portion

of the focal sphere so that the effects of reflection from the free

surface (i.e., cancellation by pP) will be suppressed. Among others,

Blandford and Shumway (1982) have remarked on the large variability of

teleselsmic P due to the effect of pP so that the use of coda may well

remove this problem. The uniformity of coda amplitudes over the

elements of an array for a single event suggests that coda is

insensitive to the near-receiver focusing and defocusing effects that

can drastically influence the primary arrival. This probably happens

because (1) the energy scattered near the source and arriving directly

at the receiver travels not along the path followed by the direct P but
along numerous adjacent paths so that the coda may represent an average

over the amplitudes generated within a relatively large source region;

and (2) direct signals are received in a relatively large region

receiver focusing is averaged out.

s n h e n n e o e r
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Local or near-receiver scattering should influence initial P as

well as the later arrivals. In fact, topography and other

inhomogenetties near the receiver should, on the basis of reciprocity,

* be as significant scatterers as they are when near the source. Gupta

and Blandford (1983) analyzed the spectral composition of the three

orthogonal components of ground motion in the initial P waves from

SALMON and concluded that local scattering is significant, especially at

high frequencies. One may, however, expect near-source scattering to

dominate over local scattering in some cases and local scattering to

greatly exceed near-source scattering In certain other situations. Tn

other words, only certain "clean" sites may be suitable for

investigating near-source scattering. In this study, observations from

the large aperture seismic array, NORSAR, located on Permian and older

hard (mostly gneisses and granite) rocks are used. Large subsurface

impedance contrasts should not exist at this locality so that

near-receiver scattering should be low. Most of our analyses of P and P

coda is carried out on records of explosions at NTS for which the yield

and shot medium properties were known. Records of Soviet explosions at

the Shagan site in the Semipalatinsk region are also examined and their

yields estimated on the basis of the NTS experience.

-2-
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COMPARTSON OF P AND P CODA SPE.CTRA

Short-period, vertical component NORSAR records of fourteen (14)

underground nuclear explosions (Table 1) were first selected for

spectral analysis of initial P and the associated codas. The selection

was made so as to observe the following criteria: (1) records of the

center element of NORSAR subarray O1A, used in this study, were not

clipped and had satisfactory signal to noise ratios; (2) accurate shot

* point to surface velocity (called medium velocity, hereafter) values,
" i9

obtained by vibroseis or similar techniques, were available; events

before 1970 could not therefore be used (Blandford et al., 1977); and

(3) all events were below the water table and confined to Yucca Flats

and Pahute Mesa regions of the NTS.

Figure 1 shows typical waveforms for the explosions STRATT at Yucca

Flats and POOL at Pahute Mesa. The yields of the two explosions are

nearly equal. Both records have nearly the same peak amplitude values

but the frequency contents of the initial P wavetratn appear to he quite

different. The P codas on the two records, however, do not seem to be

significantly different. The time windows used for spectral analyses of

initial P and P coda, as indicated in Figure 1, are 12.8 sec and 25.6

sec long with the P window starting 4 sec before the onset of direct P.

With digitization rate of 20 samples per second, the two windows,

containing 256 and 512 points, respectively, were tapered with a Parzen

window and Fourier transformed. The two spectra were smoothed over 4

and 8 points, respectively. The noise spectra were obtained in the same

manner by using a time window immediately preceding the initial P window

and of length 12.8 sec. The amplitude spectra of observed signal (S),

noise (N) as well as S-N, uncorrected for instrumental response, for

initial P and P coda from STRAIT, are shown in Figures 2a and 2b,

.* respectively. The corresponding amplitude spectral ratio P/P-coda,

corrected for noise by subtracting the power in noise from the power in

observed signal, is shown in Figure 2c. For certain frequency values,

the power in noise exceeded the power in the observed signal. Points

for which SIN was less than 1.4 were not plotted on the P/P-coda plots.

Similar spectra and spectral ratio P/P-coda for MAST are shown in

-3- ....
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Figure 2b Results from STRAIT recorded at NORSAR. Displacement spectra
of P coda, similar to those in Figure 2s.
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Figure 2c Results from STRAIT recorded at NORSAR. Spectral ratio
P/P-coda (corrected for noise), points for which the signal to
noise power ratio is less than 2 are not plotted.
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-: Figures lb,c. for both explosions, S/N is good for frequencies up to

0 about 3 Hz. The least squares mean slopes of the P/P-coda spectral

ratios for the frequency range n.5 to 3.0 Hz are indicated in Figures 2c

and 3c.
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VARTATTON OF SPECTRAL RATTO P/P-CnDA WTT" XPLOSTON MFDTIIM VPLOCTTY

A comparison of the spectra and spectral ratios In Fig~ire 2 and 3

shown several Interesting features. P coda spectra appear considerably

smoother than the Initial P spectra. The spectral holes observed in the

P spectra due to cancellation by pP seem to have been filled in the P

coda spectra. In fact, the spectral nulls for MAST have been estimated

to be at about 1.0 Hz and 2.0 Hz (Shumway and Blandford, 1978). These

are clearly seen on the spectra of Figure 3a but nearly absent in Figure

3b. These spectral nulls can also be seen on the spectral ratio In

Figure 3c as spectral minima. For STRAIT, the spectral nulls (see

Figure 2c) are not as well defined as for MAST. The spectral ratio

P/P-coda, on the average, decreases vith frequency for STRATT and

increases with frequency for MAST. In other words, initial P for

STRAIT, an explosion in a low velocity medium (see Table 1) is richer in

low frequencies compared to P coda whereas the opposite is true for

MAST, an explosion in much higher velocity medium. The frequency

dependence of spectral ratio P/P-coda appears to be related to the

medium velocity and probably other properties of the near-field medium.

The spectral ratios P/P-coda were also obtained for 12 other

explosions for which the explosion medium velocities were known. The

least-squares mean slopes on P/P-coda plots (suck as those in Figures 2c

and 3c), are plotted against shot medium velocity in Figure 4 for all 14

explosions. There is considerable scatter among the data points but an

approximately linear trend vith correlation coefficient of 0.801 is

obtained. The large variation in the ratios of P/P-coda for the 14 NTS

explosions has to be mainly due to differences in the near-source region

because the receiver is same and also because, for measurements at

teleseismic distances, the effects of near-receiver structure would tend

to be constant when the ratio of P to P-coda is taken.

Greenfield (1971) suggested that P coda from explosions is

principally due to near-source scattering of short-period Rayleigh waves

Into P waves. The large amplitude explosion-generated Rayleigh waves

slowly propagate outwards with appreciable energy for several tens of

seconds and a fraction of this energy is gradually converted to P waves .

and radiated downwards to teleselsmic distances.

-14-



A possible qualitative explanation for the dependence of the

spectral ratio P/P-coda on the medium velocity can be offered by

comparing shots in low and high velocity media. The initial P, as

defined in Figure 1, consists mainly of direct P, pP and P waves derived e

from conversion of near-field Rayleigh waves (called R *P waves,

hereafter). The observed stability of P coda and the variability of --

first P suggest the existence of small-scale heterogeneities in the

earth's interior (Aki, 1982). In particular, from coherency

measurements of near-field ground motion from an NTS explosion,

McLaughlin et al. (1983) concluded that the upper 1 km or more of Pahute

Mesa is heterogeneous at scale lengths less than 1 km. Scattering

should therefore be greater for smaller wavelength or increase with

frequency and decrease with the medium P-wave velocity. The region

surrounding an explosion in a low velocity medium will act as a high

scattering (low scattering Q) region not only because of the lower

medium velocity but also because of generally greater impedance U

contrasts which increase the scattering efficiency. Furthermore,

seismic energy from shots in low velocity media may enounter low

inelastic Q near the source due to lower hydrostatic pressure (Stewart

et al., 1983). All these factors make the initial P (comprising P, pP

and R * P waves) from an explosion in low velocity medium deficient in

high frequencies. Due to greater scattering, the high frequency energy

is scattered away or removed from the initial P and some of it may

appear later as P coda. This is similar to the apparent attenuation of

a scattering medium described by Richards and Menke (1983). The initial

P is therefore deficient in high frequencies as compared to P-coda.

Note that the P coda used in this study, starting 8.8 see after the

first P and lasting for 25.6 sec (see Figure 1), is perhaps sufficiently

delayed with respect to the first P so that its spectrum represents an

average over such a large region around the shot point that the

scattering effects of localized low or high velocity overburden lose

their significance. The spectral ratio P/P-coda will therefore have a

negative slope for explosions in low velocity medium. There will he

much less scattering for explosions in high velocity medium so that the

spectral ratio P/P-coda will have a smaller negative or even positive

slope. This explanation is of course simplistic and purely qualitative

because scattering is a complicated function not only of the medium

velocity but also of numerous other parameters such as the actual size,
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shape and location of the heterogeneities. Source depth and the

presence of topographic features in the source region are also expected .1

to play important roles. The former strongly influences the generation * -

of short-period Rayleigh waves (Hudson and nouglas, 1975) whereas the

latter may strongly control the conversion of surface waves to

teleseismic P (Hudson et al., 1973). A detailed investigation using the

finite difference technique on more realistic models of explosions in

various media is planned for the future. 7

II

-16-

7*.-..*.



.~~~. . .° .

P AND P CODA MAGNITUDES BASED ON SPECTRAL INTEGRATION

W Using P and P coda windows specified earlier, spectra corrected for .

noise and instrumental response were first obtained for the 14 .

explosions listed in Table I. Particle velocities integrated over

several frequency ranges such as 0.5 to 3.0 Hz, 0.5 to 2.0 Hz, and 1.0

to 3.0 Hz (referred to as spectral particle velocity) were obtained and

plotted against the known yield of explosions on a log-log scale. The

signal to noise ratio for most explosions fell off rapidly beyond 3 Hz

so that frequencies higher than 3 Hz were not considered to be useful.

The frequency range 0.5 to 3.0 Hz appeared to provide better correlation

with yield than the other frequency ranges. The results for P and P

coda are shown in Figures 5 and 6, respectively.* The data for P show

large scatter and the Yucca Flats and Pahute Mesa events appear to

separate out. For P coda, there is no clear distinction between the -S

Yucca Flats and Pahute Mesa events. On the basis of commonly accepted

explosion source time functions (e.g. von Seggern and 3landford, 1972),

the spectrally integrated magnitude versus yield data should show a mean

slope of less than unity (see, for example, Blandford, 1976). An

attempt is made to fit a slope of 0.9 to the data in Figures 5 and 6.

The integrated spectral magnitudes are subject to variations

similar to those for time domain measurements. The effect of pP, which

has a modulating effect on the spectra, will in general be somewhat

smoothed out as compared to its time domain counterpart. P coda should

be nearly free from the effects of pP. The effect of attenuation due to

the upper mantle structure is also important (Blandford, 1976; Marshall

et al., 1979) and should equally apply to P and P coda. A correction -

for the effects of attenuation was therefore applied to the spectral

• These two figures (as well as Figures 7,8,9 and 10) do not show the

actual data points because the yield values are classified. Complete

figures are available in Appendix A (classified).
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yield for the initial P from the fourteen NTS explosions.
Lines of slope of 0.9 are drawn through data points for the
four Yucca Plats events (upper line) and the ten Pahute Mesa
events (lower line). For actual data points, see Appendix
A.

:. c - /R/

...................................................



I:':

0)

ein0

LO- /

> //

04 -.7

a- /.
/

C.)Lf-' / .-.

M'-
1- / 7-

*. / ::-.
04 /

C)/

N) //'>'>

/
/

.0 101o0 1.80 2.20 2.60 3.0
LOG YIELD
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data points, see Appendix A.
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A.
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data by assuming t - 0.4, the value appropriate for NTS shots recorded

at NORSAR (Der, et al., 1983). The particle displacement value for each

frequency, f van therefore multiplied by the term exp (w f t ).

" Finally, a correction for the source function was applied using the von

Seggern and Blandford (1972) source time function for the known yields

of the 14 NTS explosions. The source function for a given yield, Y may

be expressed as

2 a 2 1/2
(A + 11

S(W) - Y __ __ (1)

w 123/2[(k) + 1131

where w - 2 i f, If () is a coupling term independent of frequency, and

k - k (5/Y) 1 3  (2)
0

where A and k are medium-dependent constants. The source function
0

correction is therefore the multiplication of the particle displacement

values by S(o)/S(w). With these two corrections, the integrated

spectral magnitude versus yield plots should ideally have a slope of

unity.

The 14 NTS explosions used in this study were mostly in tuff and
rhyolite (only one was in alluvium, see Table 1). All shots were below

the water table so that, following Blandford (1976), we used the granite

reduced displacement potential (RDP) for teleseismic P (i.e. A - 5.OR

and kO - 16.8). For P coda, we first tried the same granite RnP. P
0

coda is, however, derived mainly from waves propagating upwards and

sideways so that, again following Blandford's (1976) suggestion, a

source function for tuff (A - 1.0, k - 12.0) was also attempted. The
0*

results for P and P coda, with both t and source function corrections,

are given in Figures 7, 8 and 9.

Comparing the two sets of results, spectral integration of initial

P in Figure 7 is similar to that in Figure 5 but with somewhat smaller

source bias between the Yucca Flats and Pahute Mess events. Considering

all 14 explosions, the standard deviation, a , associated with fitting a

slope of 1 is 0.14 magnitude unit (m.u.). A comparison of the results

for P coda in Figures 8 and 6 appears to show some improvement when t

and source function corrections are applied. Moreover, a slope of unity

-24-



seems to be valid for the data in Figures 8 and 7. Obtaining a slope of

unity has practical significance since it suggests that corrections for

source function and t can appropriately be applied to P coda so that

results from several stations (each with its own t value) can be

properly combined to further improve the yield determinations. The

standard deviation for the P coda data in Figure R is only 0.06 m.u.
The corresponding P coda results based on the source function for tuff

(Figure 9) indicate a of 0.07 m.u., if the smallest yield explosion is

excluded. The latter seems to be an outlier perhaps because of reasons

such as its being the only explosion in alluvium, only 34m below the

water table and Its record at NORSAR having low signal to noise ratio.

In any case, the results for P coda (Figures 8 and 9) have significantly

less scatter than initial P, withc ^- 0.07 m.u. Note that this low value

of a is nearly the same as for yield estimates from regional Lg waves

for NTS explosions when results from several stations were combined

(Nuttli, 1983).

In a real situation, one would like to use the P coda from an

explosion to estimate its yield so that the value of yield necessary for

applying the source function correction will not be available. We there-

fore needed to test how good the P coda estimates can be if only

approximate yields such as those from known mb values are known. For NTS

tuff/rhyolite events, Bache (1982) suggested the following relationship

between magnitude,-K 2 (see Marshall et al., 1979) and yield, Y

-vr= 3.71 + 0.89 log Y (3)

with o - 0.09. One may assume m2 to be the same as mb(ISC). Knowing

the mb value for the 11 tuff/rhyolite explosions in Table 1, we obtained

their approximate yields from equation (3) and applied the corresponding

source function correction based on the tuff RDP. The results are shown

in Figure 10 in which the integrated spectral displacement is plotted

against the log of actual yield. Assuming a slope of unity, the

standard deviation, a ie 0.09 m.u., only slightly greater than the

earlier value of 0.07 m.u. Note that several yield values derived from

the use of equation (3) differ from the actual (classified) yields by

nearly a factor of 2. Comparing Figures 9 and 10, it seems that source

function correction based on approximate yields works almost as well as
when based on actual yields.

-25-
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MAGNITUDRS BASED ON SPECTRAL INTEGRATION FOR SOVT9T EXPLOSIONS

Twenty three explosions from the Shagan River region of the Eastern

Kazakh test area of the IISSR, with satisfactory recordings at NORqAR

were selected (Table 2). P and P coda magnitudes were obtained using

the same procedure as for the NTS explosions but the frequency range was

increased to 0.5 to 5.0 4z since nearly all records showed good signal

to noise ratios for frequencies up to at least 5 ltz. The correction for

attenuation in the upper mantle for Shagan explosions recorded at NORSAR

requires t - 0.15 (Der et al., 1983). Since the yield of the Soviet

explosions is not known, the source function correction could not be

applied in the same maner as for the NTS explosions. An alternative

approach, described below, was therefore used to obtain approximate

values of yield which were then used to apply the source function

corrections.

Using an improved general linear model technique on a large amount

*= of short-period data, Rlandford et al. (19R3) deduced that a yield of

*. 150 kton for a Shagan explosion should correspond to mb of 6.17.

Marshall et al. (1979) defined a new magnitude, m 0 which correlates well

with yield for explosions at various test sites. The explosions at

Shagan are believed to be in hard rock similar to granite so that their

empirical relationship for explosions in salt and granite

mQ - 4.26 + 1.00 log Y (4)

(see Figure 6b, Marshall et al., 1979) should be applicable. One may

also write

mQ - mb(TSC) + C (5)

where C is a constant. From equations (4) and (5)

log Y - m (ISC) + C - 4.26 (6)
b

. Using the information that for Y - 150 kton, mb(TSC) - 6.17, equation

' (6) gives C - 0.27 so that

log Y - mb(ISC) - 3.99 (7)

* Knowing mb(ISC) for the Shagan explosions (Table 2), the yield can thus

. be estimated and the source function correction can be applied. A

* granite RDP was assumed. Results for P and P coda are shown in Figures

11 and 12, respectively, where mb(ISC) is plotted against the spectral

displacement. There are only 14 data points for P since P was clipped

for 9 explosions; P coda was however available for all events. The

results for initial P (Figure 11) show a mean slope of 0.75 + 0.05

-26-
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TABLE 2

SHAGAN RTVER EXPLOSTONS USE) IN STUDY

Yield from
No. Date Location (ISC) m (ISC) Nuttli (1983)

b

1 02 Nov 1972 49.91R, 78.85E 6.1 170

2 23 Jul 1973 49.94N, 78.85F 6.1 229

3 31 May 1974 49.91N, 78.91E 5.9 62

4 16 Oct 1974 49.99N, 78.96E 5.5 20

5 27 Dec 1974 49.91N, 79.05E 5.6 61

6 27 Apr 1975 49.94N, 79.02F 5.6 35

7 29 Oct 1975 49.92N, 78.91E 5.8 31

8 25 Dec 1975 50.02N, 78.86E 5.7 91

9 21 Apr 1976 49,89N, 78.81E 5.1 17

10 09 Jun 1976 49.98NW 79.07E 5.1 21

11 04 Jul 1976 49.85N, 78.97F 5.8 112

12 28 Aug 1976 49,95N, 78.98E 5.8 49

13 29 May 1977 49,86N, 78.84E 5.8 47

I 14 29 Jun 1977 49,96N, 78.91E 5.3 16

15 05 Sep 1977 50.05N, 78.93E 5.8 3q

16 11 Jun 1978 49.88N, 78.81E 5.9 74

17 05 Jul 1978 49.84N, 78.91E 5.8 59

18 15 Sep 1978 49.91N, 78.94F 6.0 105

19 04 Nov 1978 50.03N, 78.98E 5.6 46

20 23 Jun 1979 49,89N, 78.92F 6.2 120

21 07 Jul 1979 50,05N, 79.06E 5.8 105 o ,

22 04 Aug 1979 49,86N, 78.94E 6.1 157

23 14 Sep 1980 49.94N, 78.86E 6.2 200
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(i.e. standard deviation of 0.05) and correlation coefficient of 0.97.

The standard deviation of magnitude estimate, W is 0.07. For P coda

(Figure 12), mean slope is 0.70 + 0.03, correlations coefficient is 0.98

and 6" - 0.06. As one would expect, correlation with mb is better for P

coda than for P. There is of course no way of checking how well the

spectral displacement values correlate with actual yields. It is,

however, interesting to note that the observed slope of about 0.7 for

both P and P coda agrees well with the slope derived for magnitude-yield

curves on the basis of the source function for granite and t* - 0.15

(see Figure 7, Blandford, 1976).

Using short-period Lg waves recorded at regional distances at a

number of stations, Nuttli (1983) estimated the yield of all the Soviet

explosions used in this study; these values are also listed in Table 2.

A plot of these yield values versus coda spectral displacement values

(Figure 13) shows rather poor correlation (correlation coefficient of

0.91). In other words, our coda displacement values do not correlate

well with Nuttli's yield values. It is, however, found that the AFTAC

classified mb values correlate better with our coda displacement values .

(correlation coefficient - 0.97) than with Nuttli's yield values

(correlation coefficient - 0.94). This perhaps means that yields based

on P coda at a single station are at least as accurate as those derived

from Lg recorded at a number of stations.
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DISCUSSTON AND CONCLIJSTON

Our results from spectral analyses of P and P coda of NTS

explosions offer the exciting possibility of obtaining source medium

information from short-period teleseismic data. The positive

correlation between the spectral ratio P/P-coda and explosion medium

velocity is encouraging. Other factors such as depth of burial,

subsurface velocity and density distribution, topography are also bound

to influence the spectra of P and its coda so that more sophisticated

analyses incorporating these factors should lead to considerably more

information about the explosion source and its environment.

Magnitudes based on spectral integration of P coda from NTS

explosions provide a much more reliable measure of yield than the

initial P. Furthermore, the spectral displacement of P coda seems to be

linearly related to yield after corrections for the effects of

attenuation in the upper mantle and source function based on knowledge

of approximate yield (or mb) have been applied. Slope of 1 on spectral

displacement versus yield plots (on a log-log scale) suggests that

results from several stations can be combined to further improve the

yield determinations. It is also hoped that information regarding the

source medium, such as that derived from the spectral ratio PIP-coda, can

also be used to further improve the yield estimates.

Spectral integration of P and P coda from Soviet explosions within

the Shagan River region show mb to correlate better with spectral

displacements from P coda than those from the initial P. There is of

course no way of verifying how well the coda values correlate with

yield. It seems, however, that P coda from a single station can

provide at least as good estimates of yield as those from Lg based on a

network of stations.
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