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I. IRTRODUCTION

A current focus of interest in the U.S8. Army ballistic research program
involves the numerical calculation of compressible flow about muzzle brake
devices. By absorbing a portion of the recoil impulse, the muzzle brake
pernits design of large caliber weapons characterized by increased range with-
out increased weight. Near field calculations are helpful in studying fatigue
life and structural integrity of blast-loaded surfaces. Far-field calculations,
vhich often can be performed with less complex flow models, can determine if
safe maximum overpressures exist in the gun crewv area.

Near-to-intermediate range muzzle brake calculations have recently been
obtained® using a popular, locally one-dimensional, first-order accurate method
of Godunov.’ Model results afford predictions of peak over-pressure levels in
the proximity of the brake and provide initial data for continuing far-field
calculations by independent means.

In the interest of economizing computer resources, for far-field calcula-
tions, it is desirable to employ simple one-dimensional flow models. Mach
contours for the early stages of a typical blast are exhibited in Figure 1.
Already, local spherical symmetry is suggested, and evidence from spark
photography confirms that the trend is characteristic of later evolution.
Under this hypothesis, some exploratory far-field calculations are undervay,
vhich utilize spherically symmetric flov models and the numerical method of
characteristics. "

1. G. E. widhopf, J. C. Buell, and E. M. Schmidt, "Time Dependent Near-Field
Muzzle Brake Simulatione," AIAA-82-0973, ATAA/ASME 3rd Joint Thermo-
physics, Fluids and Heat Transfer Conferemce, St. Louis, Missouri, June
1982.

2. A. M. Godunov, A. V. Zabrodin, and G. P. Prokopov, "Differemce Schemee for
Two-Dimensional, Unsteady Problems in Gas Dynamics and Calculation of Flowe
With a Detached Shock Wave," Journal of Computing Mathematics and Mathe-
matical Physics, USSR Academy of Sciences, Vol. 1, No. 6, November -
December 1961. (Translation)

3. M. L. Bundy, "A Nonsimilar Solution for Blast Waves Drivem by an Asymp-
totic Piston Expansion,” AIAA-83-0496, AIAA 21st Aerospace Sciences
Meeting, January 1983, Reno, Nevada and U. S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, MD, BRL Technical Report ARBRL-TR-
02497, June 1983. (AD A130012)

4. M. L. Bundy, C. H. Cooke, and E. M. Schmidt, "Reshaping an Artificially
Diffused Shock Solutionm," BRL Report, to be published.
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The objective of the present research is to investigate an alternative
numerical method, which might complement, or perhaps supplant, the method of
characteristics approach. Our intent is to revise Van Leer”s second-order
accurate, Godunov method, > originally formulated in the framework of Lagrangean
fluid dynamics, for application to the one-dimensional Euler equations. A
similar effort, as yet unpublished, and which differs somewvhat in philosophy,
has been carried out by Colells.®

The desirability of investigating second-order accurate methods for shock
capturing is illustrated by Figure 2. Here, the first-order Godunov method,
implemented by personnel of Aerospsce Corporation for numerical solution of
the two-dimensional axis-symmetric Euler equations, has been applied to calcu-
late a conical flow which simulates some of the more dominant characteristics
of a muzzle blast. Assuming there is provided some heuristic model of contact
surface history, as well as initial data between the outer shock and its drivinmg
contact surface, this calculation could be continued into the far-field by the
method of characteristics.’® However, shock smearing due to the artificial vis-
cosity of the numerical method in this case makes troublesome the question of
precise shock location and strength. A reshaping of initial data near the shock,
or else a more accurate calculation which provides crisper shock structure,
appears to be called for.

In the past few years, a variety of new methods for numerical calculation
of flows vith embedded shocks has evolved, of which references 5-9 are perhaps
a representative sample. Van Leer’s second-order sequel to the original Godunmov
method appears among the more promising. The method is slledged®to give

5. B, Van Leer, "Towards The Ultimate Coneervative Difference Scheme. V.
A Second-Order Sequel to Godunov's Method," Jowrnal of Computational
Physicse, Vol. 32, pp. 101-186, 1978.

6. P. Colella, "A Direct Eulerian MUSCL Scheme for Gas Dynamics," Lawrence
Berkeley Laboratory Report LBL-14104, February 1982.

7. J. L. Steger and W. F. Warming, "Flux Vector Splitting of the Inviscid
Gas Dynamics Equations with Application To Finite Difference Methods,"
Journal of Computational Physics, Vol. 40, No. 2, April 1981.

8. G. Moretti, "The \ Scheme," Computers and Fluides, Vol. 7, pp. 191-20S5,
Pergamon Press, 1979.

9. H. C. Yee and R. J. Warming, "Implicit Total Variation Diminishing
Schemes For Steady Flow Calculations," AIAA-83-1902, ATAA 6th Compu-
tational Fluid Dynamics Conference, Danvers, Massachusetts, July
1983.

UL )

NP, 539, 4L, T Y, |



\. 2
A_’AI-AJ I.IA. .

[V ]

o
@

AL LA AL CRLLE AL R “pfedat tal pt haly a0 LA 3 82 N R b A\acata gve g 4t

..........

superior resolution of shocks and flow discontinuities, compared, say, to the
methods surveyed by Sod'’ and Miner and Skop.!! However, remapping from the
Lagrangean to Euler variables requires, perhaps significant, extended comput-
ing time per cycle.® Hence, it appears an unnecessary encumbrance.

The purpose, then, of this research is to reformulate Van Leer‘s algo-
rithm in Eulerian fluid dynamics framework, revising as it becomes necessary,
in order to achieve a more accurate, one-dimensional shock capturing algo-
rithm,which could also be employed in two-dimensional calculations through
fractional splitting of the equations of flow.

I1. GOVERNING EQUATIONS

In strong conservation law form, the Euler equations for one-dimensional
ideal compressible flow can be written

oU oF

—a—t- + -é-i + G=0-. (1)
Here
0 pu pu
U= | pu F=|p+pu =3 ou’ )
o E (P + pE)u (P+pE)u

vhere 0 = 0,1, or 2, in turn for cartesiam, cylindrical, or spherical coordi-
nates. R is the respective distance coordinate.

The fluid dynamic variables are:
¢ = local speed of sound in fluid
p = density

u = velocity

10. G. A. Sod, "A Survey of Several Finite Difference Methods For Systems of
Hyperbolic Conservation Laws," Jowrnal of Computational Physeics, Vol. 27,
pp. 1-31, 1978.

11. E. W. Miner and R. A. Skop, "Explicit Time Integration For The Finite
Element Shock Wave Equations)' AIAA-82-0994, ASME/AIAA 3rd Jbiqt Thermo-
physics, Fluide, Plasma and Heat Transfer Conference, St. Louie, Missouri,

June 1982.
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S P ™ pressure
. . E = specific total energy
£ cps. o
: e = gpecific internal energy.
2} .
,-‘ Here cp©, are specific heats, and
]
. Y =c¢. /¢
2 PV
i~ 2 - YP/p
")
N P =(y-1)pe
'\. E =e+ u_z .
b s 2
e
~‘
vt I11. GODUNOV METHODS
= We shall derive the Godunov algoritbm for the case of a uniform grid;
. however, the method is readily adaptable to encompass non-uniformity. By

integrating Equation (1) over a typical space-time cell R < R <R,
t, < t<tp+] and applying Green”s theorem for the plane, we arrive at the

exact equation
141 tn + 1 Ri +1
1
AR f / G dR dt. (3)
1 tn Ri

Here, superscript usage of a space index denotes advanced time level,
while corresponding subscript usage denotes present time level: i.e.,

=,

i,n+1

LdSs
AR

o

i+l
-— - At
U =Ui"'1-_<F>

e

. ‘_
[A (.. ."t"l
1)
1]

’."‘l
G h

(4)

Yo

P

€y =)

i,n.

A
."'I --.‘1 1

s
K

The space average over a cell, space-centered at R; 1, is

) iy
1, ,;u‘x .L h
=
[
+
[

Oy
'

»

0"‘

1 .
R / U(R,t ) dR, AR = R o1 - Rys (5)
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vhile the time average flux on interface R = R; is
t

n+1
1
<F> = A_ f F(U(Ri)t))dt’ At = tn <+ 1 - tn. (6)

t
n

Godunov’s method can be made first-or second-order accurate, depending upon

how the flux integrals, Equation (6) and the cell integral of G in Equation
(3) are approximated.

A, First-Order Accurate Method

In Godunov’s original derivation,? the function U(R 'tn ) is approxi-

mated with a piecevise constant function which on cell Rj; < R S Rj 41
assumes the average value Ul.,; Cell averages are updated to the next time
level through approximating the integrals in Equation (3), by solving a
Riemann problem at each cell interface. The Riemann problem entails the

solution of Equation (1) for t>t n’ with 0= 0 and with initial conditions at
t= t given by:

\'/ R>R

va it h i M
V., R <R.
i-14, i

where VI = (P, p,u). However, only the resulting values of V on the inter-
face Rj are of interest. The primary mechanism for interaction of the dis-
‘continuity, Equation (7), is the propagation of expansion or compression waves
avay from the interface. The nonlinear equations which afford an iterative

solution of the Riemann problem are well-documented in references 5, 10, and
12'

For purposes of numerical stability, the time step At is chosen to be
such that propagation times are insufficient to allow waves from adjacent
discontinuities to have influence on interface R = Rj. Then values

*
Vi = lim V(Ri,t)

+
t+t , (8)

12. M. Holt, Numerical Fluid Dynamics, Springer-Verlag, Berlin, Heidelburg,
New York, 1977.
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obtained from solving the Riemann problem at each interface, together with
cell average values, are used to approximate the integrals in Equation (3).
Godunov’s first-order accurate method results:

_i

T =T, - % [FQU; , ) - FUp] - At 6(T, P- 9)

B. Second Order Method

For the second-order accurate Godunov method, primitive quantities
stored at each time level are cell average Uj + } and interface differences
tvl; . 1 =Vi+1-Vi. The calculation of the average derivative is now
possible:

i Pl v]
7 - oV =1 oV _ i+}
VR) i+ 17, " W J w® R=—x 10
. i+ R
i

This affords a more accurate, piecewise linear function approximation: On
scellR, < R<R .,

VeV L3t (R, (R-Ry LD an

Corresponding inputs for the Riemann problem at interface Ri are, from
Equation (11),

Vi =vi:_i :7[\’]11; . (12)

The output from the Riemann problem, solved as previously, is the value

*
vi = lim V(Ri,t). (13)
+
trt

vhich results immediately after the interface discontinuity is resolved. 1In
addition, a value

* .3V
Vt = lim 5 (Ri't) (14)
-> +
t tn

for the corresponding resolved time derivative is to be obtained by auxiliary

12
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means (see next section). As established by Van Leer,’ the interface approxi-
mation

VeV, w,) Loty 0 (t)? (15)

can be applied to evaluate, with a higher order of accuracy, the flux
integrals in Equation (3). The cell integral can be approximated, employing
the trapezoidal rule, with

tn + 1 Ri + 1 (16)
’ J‘ _[ G dR dt =
t R,
n 1
m ("1 3
= j; [G(Ri N 1,t) + G(Ri,t)]dt + 0 (AR)
n

which now involves interface values. For a typical interface integral

n+1
.‘ G(U,R,)dt = L5 [6',R) + G(U;,R))) + 0at)>. amn

t
n

Advanced time level interface values are predicted by means of

iy * At + 0 (At)2 (18)
V' = Vi + (vt)i t ( .

and initial interface differences with

[V]i + 1 - vi +1 Vi. 19)

At the cost of additional storage and altered processing stream, after
solution of the Riemann problem adjusted interface differences

* * *
V) 3" Via° Y (20)

13
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could be computed, to be used for more accurate evaluation of the interface

- time derivatives, described below. However, Van Leer does not appear to
have used this device, and we have not verified whether the additional cost
(& is justified.

;:'_::7'_ C. Resolved Interface Initial Time Derivatives

: For the compressible flow equations, Equations (1-2), compatibility

e relations along characteristics are,

)

e %l:- = ¢? g—% (21)
e on &R <

L T

g du,1 dP_, ouc

N F i (22)
S

.:.‘\:' on g—R =u * C.

\-.'n t

7

o To better insure correct transmission of signals, these Equations are

differenced (spatially) as in Moretti’s A - scheme,® in order to obtain

Ko relations which can be solved for initial interface time derivatives. This
(‘;5‘_ differencing is given by the equations
NS au 1. ap” 5u 1 9P *

o .- u u cuc

) : -+t () ) -+, HFr—== + & (23)
at, pc” 4 ot i i+ 9R  pc OR i+ R

g

A
M N
’J‘:_;

aun 1, 9P 3u 1 9P *

i Uy &y = - ou 1 9o° - (Suc

- 5. - 52, GY, -0 {-mw . R, (24)
, i i i i- i

o

o
o
@
A5
1550 5 * *
GO p 1 oP 9P 3p

W 1 5 3P 3By 30 (25)
)

N . ati (c*i) ot aR i+ 9R it

o
T

% 4

%2 '

R T A B R i G S A S




Where space derivative occur in Equations (23-29), average space derivatives
are used, on the (*) side of an interface. Depending upon whether or mot
u is positive, up- or down-vind differencing is employed in Equation (25).

IV. COMPUTATIONAL RESULTS

The first and second-order Godunov methods previously discussed have
been ngplied to the linear shock tube calculation reported by Miner and
Skop.!! Here, an infinite tube contains gas in two compartments initially
separated by a diaphragm. Table I shows the respective initial conditions.

TABLE 1. LINEAR SHOCK TUBE DATA

Po =1, Pl = Ll
Po = 1. p1 = ,125
uo =0, u1 =0,

The Godunov calculation is programmed to choose its own time step, in
accordance with stepwise stability restrictions. The results after one
hundred cycles, for the first-order accurate calculation, are displayed in
Figures 3-6. Figures 4-5, in particular, show the smearing of shock struc-
ture due to the inherent numerical dissipation of the method, present even
on this very fine grid.

The second-order accurate method is activated by a program switch.
Figures 7-10 show the results after another one hundred cycles of calcula-~
tion. An immediate sharpening of the shock is to be observed.

It seems to be a consensus of opinion that higher order methods for
shock capturing are likely to be characterized by overshoot and oscillations
behind the shock!?® Our results appear to be no exception. Van Leer’s
oscillation limiting techniques® were attempted, as well as sparse use of
numerical viscosity in the vicinity of the shock. For our code, the second
approach seemed to give as good results as the first. Here, the Riemamn
solver provides a shock Mach number, which is a maximum at the point of in-
flection occurring within the structure of the physical shock. This pro-
vided a wmeans for limiting application of artificial viscosity, to a few
points either side, but concentrated more to the upstream side of the shock.
For density and velocity, the artificial viscosity was chosen as

-3 Pi +1 " ZPi + Pi -1 W

P + 2P, + P,
i i-1

V=10 Y; (26)

i i+172Vi Y 0
i+l

13. J. L. Steger, private communication.
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The results of Figures 7-10 sgre calculated with this dissipation, which
is of the order

—
.
[ |

% 6,2
o V=0(10"3V). (27)
s 3R’
N
-\
L The effects seem to be a dampening of oscillations behind the shock, with ‘
" no apparent degradation in crispness. However, the overshoot appears to
:ﬁ persist, about 3% in error.
\} In order to see that the shock is propagating properly, the calculation
- vith the second-order method has been allowed to continue to time t = .14, As
\ reported by Miner and Skop,!! at this time the shock front should have pro-
A gressed to R = .75, Figures 11-12 verify that the shock fromt is approxi-
. mately at this locationm.
1
» V. SUMMARY AND CONCLUSIONS
= First and second-order accurate Godunov methods for the numerical solu-
o tion of ideal compressible flows with embedded shock waves have been formu-
Q lated, programmed, and tested by means of a linear shock tube calculation.
’ Results shov an immediate improvement of the crispmess in shock structure,

{ for the higher order accurate method. The higher order method appears to have

inherent overshoot at the shock, together with oscillations behind the shock.

N It appears mandatory to dampen these oscillations, by means of Van Leer-type

e oscillation limiting schemes, or else through addition of artificial viscos- |

Ny ity restricted to a small region behind the shock. Surprisingly enough, for

- the present problem both schemes were found to give comparable results in
this respect.

3.
2
4 a

Perhaps we should mention how the present method differs from Van Leer’s

Q: original version,’ aside from the conversion to Eulerian fluid dynamics.

e Major differences are:

x: a. Omission of some near-shock terms from Equations (23-24), heuristi-

(s cally added, perhaps to insure entropy increase at the shock.

tf b. Use of Godunov’s original nonlinear iteration scheme (References 2, 1
- 12) for the Riemann problem, versus Van Leer”s more elaborate accelerated
‘ version. Although slower computationally, this scheme does distinguish be-

. tveen shock and compression waves; hence,it should be more accurate, as )
o evidenced by the omission of (a).

:R c. For the Lagrangesn formulation, the contact surface in the Riemann

- problem lies along the cell interface. Hence, it is reasonable for Van Leer

® to employ separate left and right demsity P;, in calculating Pp . However,

'I
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L for the Euler version this practice does not appear as logical, since the

contact surface can lie on either side of the cell interface. The result,

{: and possibly the biggest drawback of the Euler version, is that contact surface
resolution does not much improve, when going over to second-order accuracy.
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